
A piecewise neural network method for solving

large interval solution to initial value problem of

ordinary differential equations

Dongpeng Han1 and Chaolu Temuer2*†

1,2Mathematics Department, Shanghai Maritime University, 1550
Haigang Avenue, Shanghai, 201306, Shanghai, China.

*Corresponding author(s). E-mail(s): tmchaolu@shmtu.edu.cn;
Contributing authors: handongpeng@stu.shmtu.edu.cn;

†These authors contributed equally to this work.

Abstract

Various traditional numerical methods for solving initial value problems of dif-
ferential equations often produce local solutions near the initial value point,
despite the problems having larger interval solutions. Even current popular neu-
ral network algorithms or deep learning methods cannot guarantee yielding large
interval solutions for these problems. In this paper, we propose a piecewise neural
network approach to obtain a large interval numerical solution for initial value
problems of differential equations. In this method, we first divide the solution
interval, on which the initial problem is to be solved, into several smaller intervals.
Neural networks with a unified structure are then employed on each sub-interval
to solve the related sub-problems. By assembling these neural network solutions,
a piecewise expression of the large interval solution to the problem is constructed,
referred to as the piecewise neural network solution. The continuous differentia-
bility of the solution over the entire interval, except for finite points, is proven
through theoretical analysis and employing a parameter transfer technique. Addi-
tionally, a parameter transfer and multiple rounds of pre-training technique are
utilized to enhance the accuracy of the approximation solution. Compared with
existing neural network algorithms, this method does not increase the network
size and training data scale for training the network on each sub-domain. Finally,
several numerical experiments are presented to demonstrate the efficiency of the
proposed algorithm.

Keywords: Piecewise neural network, Initial value problem, Ordinary differential
equations, Extension of local solution, Parameter transfer

1

ar
X

iv
:2

40
3.

19
21

8v
1 

 [
m

at
h.

N
A

] 
 2

8 
M

ar
 2

02
4



1 Introduction

As we know, constrained by convergence requirements, various traditional numerical
solution methods, such as Picard approximation and Runge-Kutta methods, for initial
value problems (IVP) of differential equations or dynamic systems (ODEs), are typi-
cally suitable only for local solutions within a neighborhood interval of the initial value
point, even if the problem possesses larger interval (global) solutions. Consequently,
extending a local solution to a larger interval remains a fundamental challenge in the
field of numerical solutions to ODE problems, which has yet to be fully addressed [1, 2].

Currently, the artificial neural network (ANN) algorithm, as a novel numerical
solution method for solving differential equation problems, is rapidly evolving and
attracting attention and exploration from many researchers [3]. Although the ANN
algorithm, like traditional methods, performs well mainly in the neighborhood of the
initial value point and lacks inherent learning capability on large intervals, it offers
numerous advantages in solving IVPs of ODEs. For instance, the neural network-based
solution of a differential equation is differentiable and presented in closed analytic
form, suitable for subsequent calculations. It is independent of discrete schemes and
the shape of the variable domain. Therefore, it is anticipated that the aforementioned
solution extension problem can be effectively addressed through the enhancement and
efficient utilization of the ANN algorithm. In this paper, we propose a piecewise ANN
(PWNN) method to tackle this problem.

Before describing our algorithm, let us briefly review the development profile of
ANN algorithms for solving differential equation problems.

The theoretical foundation supporting the use of ANN algorithms for solving dif-
ferential equation problems lies in the general approximation theorems provided by
Hornik, Womik, and Li X et al. [4–6], which theoretically establish that any continu-
ous function can be approximated by a neural network. Subsequently, a widely utilized
ANN algorithm for solving differential equations with initial boundary value conditions
was introduced by Lagaris et al. [7]. However, for problems involving more complex
initial boundary values, this method faces difficulties in constructing the necessary
trial solutions for the underlying problems.

Another significant development in ANN algorithms for solving differential
equation problems is the implementation of automatic differentiation technology [8–
11], which has led to the proliferation of ANN methods for solving differential equation
problems and their broader application. Building upon this technique, Justin Sirignano
and Konstantinos Spiliopoulos proposed the Deep Galerkin method (DGM), a deep
neural network method for solving (partial) differential equation problems in higher
dimensions [12]. Cosmin Anitescu et al. introduced an ANN method utilizing adap-
tive configuration strategies to enhance method robustness and reduce computational
costs in solving boundary value problems of differential equations [13].

A landmark advancement in ANN algorithms for solving differential equation prob-
lems was the introduction of physical information neural networks (PINN) by Raissi et
al. [14]. In this method, the initial boundary conditions of the differential equation are
incorporated into the loss function, allowing the ANN to directly express an approx-
imate solution to the differential equation. This eliminates the need to construct a
trial solution according to equations and initial boundary value conditions, as required

2



by Lagaris’s method. Subsequently, numerous ANN algorithms based on PINN have
been developed rapidly. For example, Lei Yuan and Yi-Qing Ni et al. introduced the
Auxiliary PINN (A-PINN), capable of bypassing limitations in integral discretization
and solving forward and inverse problems of nonlinear integral differential equations
[15]. Pao-Hsiung Chiu et al. proposed novel PINN methods for coupling neighboring
support points and their derivative terms obtained by automatic differentiation [16].
Yao Huang et al. combined PINN with the homotopy continuation method, propos-
ing Homotopy PINN (HomPINN) for solving multiple solutions of nonlinear elliptic
differential equations, overcoming the limitation of PINN in finding only the flattest
solution in most cases [17]. Fang, Yin et al. utilized PINN to address a range of fem-
tosecond optical soliton solutions pertaining to the high-order nonlinear Schrödinger
equation [18]. Based on the PINN method, Bai, Yuexing et al. proposed an enhanced
version of PINN called IPINN, introducing localized adaptive activation functions to
improve performance, successfully applying the method to solve several differential
equation models in finance [19]. Meng et al. introduced a modified PINN method called
PPINN, dividing a long-period problem into a series of short-period ones to accelerate
the training of ANN algorithms [20].

Moreover, there are numerous other analogues of PINN-based studies and vari-
ous types of ANN methods. For instance, convolutional ANN methods [21–23] and
theoretically guided ANN methods [24, 25] have also been employed to explore new
solution methods for (partial) differential equations. Particularly noteworthy is the
work of Run-Fa Zhang and Sudao Bilige, who proposed bilinear neural networks, the
first attempt to obtain analytical solutions to nonlinear partial differential equations
using the ANN method [26, 27].

Importantly, a general observation from these literature is that ANN algorithms
for solving IVPs of differential equations perform well in relatively small domains near
the initial value point but sometimes exhibit poor convergence over large intervals.
To obtain a large interval solution, it is often necessary to enhance the training data
and expand the network size (depth and width). However, doing so not only reduces
computational efficiency but also makes it challenging to guarantee obtaining a large
interval solution to the problem. Therefore, alternative strategies are being explored
to enhance the efficiency of ANN algorithms. For example, various adaptive activa-
tion functions [19, 28–30] and adaptive weights [31, 32] have been proposed. The key
feature of these studies is the introduction of hyperparameters into traditional acti-
vation functions to adjust ANN convergence. Studies by Jaftap et al. have shown
that these methods are primarily effective in the early stages of network training [33].
Adaptive weights leverage gradient statistics to optimize the interplay between vari-
ous components in the loss function by incorporating additional weighting during the
training process. While these solutions alleviate the convergence difficulties of neural
networks in complex problems from different perspectives, there is insufficient evi-
dence to demonstrate that simultaneously using different optimization schemes can
still reduce network training difficulty and achieve large interval solutions. To solve
the IVP problem of dynamic systems, Wen et al. proposed an ANN algorithm based
on the Lie symmetry of differential equations [34–37]. This novel approach combines
Lie group theory and neural network methods.

3



Given the aforementioned challenges, this paper proposes an innovative approach
for obtaining large interval approximate solutions to IVPs of ODEs. In this algorithm,
the interval is divided into several small compartments, and a neural network solu-
tion is learned on each compartment using PINN. Consequently, the trained ANNs
generate fragments of the large interval solution of the IVP of an ODE on those
sub-intervals, respectively. For each specific sub-interval, the ANN training requires
neither complex structure nor dependence on large-scale training data, significantly
reducing computational overhead. Subsequently, by assembling these neural network
solutions, a piecewise expression of the large interval solution to the problem is con-
structed, termed the piecewise neural network solution. The compatibility of these
sub-interval network solutions and the continuity and differentiability of the piecewise
solution over the entire interval are investigated theoretically. Transfer learning tech-
niques of network parameters between adjacent neural networks and multiple rounds
of pre-training approaches in the training procedure are utilized.

The innovative contributions of this paper are threefold. First, a new ANN method
for solving the extension problem of the local solution of the initial value problem
of differential equations is presented. Second, a novel method of generalizing ANN
and its application is introduced. Third, a new approach is explored in which modern
algorithms (artificial neural networks, deep learning) are used to overcome the short-
comings of traditional methods for solving numerical solutions to differential equation
problems. Our work aims to provide a more comprehensive understanding of the ANN
method to solve ODE problems in both theoretical and practical aspects.

The structure of this paper is organized as follows. For completeness, Section 2
briefly reviews the PINN method for IVPs of ODE systems; Section 3 details the
PWNN algorithm proposed in this paper; Section 4 presents the theoretical analysis of
PWNN solutions and implementation of the proposed method; Section 5 demonstrates
the applications of the proposed method in solving several specific IVPs of ODEs.
Concurrently, comparisons between the results of our method and those of the PINN
method and Runge-Kutta method are presented to demonstrate the efficiency of the
proposed algorithm. Finally, Section 6 summarizes the work.

2 A brief recall of PINN

Consider an IVP of a system of differential equations
dy

dx
= f(x, y), x ∈ I = (0, T ),

y(0) = y0,
(1)

with independent variable x ∈ R and dependent variable y = (y1, y2, · · · , yn) ∈ Rn and
initial value (or initial condition, IC) y0 = (y01 , y

0
2 , · · · , y0n) ∈ Rn. We assume through

the article that the right hand side function f(x, y) = (f1(x, y), f2(x, y), · · · , fn(x, y)
satisfies the condition [1]

(H1): Continuous in (x, y) ∈ Ω ⊂ R×Rn for a domain Ω and Lipschitz continuous
on y.

The condition guarantees the existence of unique local solution to the problem (1).

4



In addition, since the present article works on the large interval solution of IVP
(1), we also use the default assumption below:

(H2): The solution of IVP (1) exists on large interval I of x (called large interval
solution).

Thus, the PINN is an ANN algorithm for solving the solution of problem (1) with
fully connected structure that consists of one-dimensional input layer (0the layer), M
hidden layers, si nonlinear active neurons for ith layer with i = 0, 1, · · · ,M + 1 and
s0 = 1, sM+1 = n, and output layer ((M + 1)th layer) with n linear output neurons.
The output of the network is denoted as

N(x) = (N1(x), N2(x), · · · , Nn(x)),

for an input sample x ∈ I which has mathematically the form of

N(x) = σM (σM−1(· · · (σ1(W
1t+ b1)W 2 + b2) · · · )WM + bM )WM+1 + bM+1, (2)

for selected activation functions σi+1, weights matrix W i+1 between ith and (i+1)th
layer and bias vector bi+1 for (i + 1)th layer neurons with i = 0, 1, 2, . . . ,M and
bM+1(x) = x.

The collection of all trainable parameters of the ANN, denoted as ϑ, is con-
sisted of weights W i = (wi,1, wi,2, . . . , wi,si)T with wi,j = (w1,j

i , wi,
2,j , · · · , wsi−1,j

i )

in which the components wk,j
i (k = 1, 2, · · · , si−1, j = 1, 2, · · · , si) are the weights

connected the neurons in (i − 1)th layer to jth neuron in ith layer, and layer biases
bi = (b1i , b

2
i , . . . , b

si
i )T (i = 1, 2, · · · ,M+1). Hence,W i is a si×si−1 matrix. Let ϑ denote

the set of all weights and biases parameters of the net work. The unsupervised learning
(training) method is used. That is, the optimal solution N(x) at optimal parameters
ϑ = ϑ∗ is searched such that the loss function to be given below is minimized.

Usually, the mean square error (MSE) is used to define the loss function for training
the network as follows:

Loss =
1

n

n∑
i=1

MSEfi +
1

n

n∑
i=1

(Ni(0)− y0i )
2, (3)

where

MSEfi =
1

M

M∑
j=1

(N ′
i(xj)− fi(xj , N1(xj), N2(xj), · · · , Nn(xj)))

2,

and {xj}Mj=1 is a training data set sampled by a distribution sense from the solution
interval I, and N ′

i(x) is the derivative of the approximate solution Ni(x) with respect
to the independent variable x. In training the network, the automatic differentiation
operation ∇ is used to realize N ′

i(x). One of initialization methods [38] is performed on
the neural network parameters when starting the training. A optimization technique
[39] is used to adjust the network parameters in order to minimize the loss function
(3) and carry out the back propagation of errors. After completing the training of the

5



network by minimizing the loss function (Loss < ϵ) or sufficient iterative parameter
refinement (learning, training) (Iter > maxit), we obtain the network pattern (2) with
a optimal parameter set ϑ∗, which represents the approximate solution of problem (1).
The basic structure of above mentioned ANN (e.g, PINN) is shown in Fig. (1).

Particularly, what should be especially mentioned here that the experiences of
applying an ANN on solving IVP of a (partial) differential equations show that it often
yields high accuracy approximate solution merely near the initial value point rather
than the entire interval [0, T ) [1]. That is, generally, there exist a constant 0 < δ ≪ T
such that the output N(x), called PINN solution, converges to exact solution y(x)
over [0, δ) with high accuracy. We denote the approximation as

N(x) ≈ y(x).

In other words, as the training point gradually moves away from the starting point
x = 0, the learning ability or generalization ability of the ANN gradually weakens.
There are two main potential reasons for this phenomenon. First, the requirement of
Loss → 0 in network training is only a necessary condition for N(x) to solve IVP (1).
Second, with the expansion of the sampling data interval, the support of initial value
information to the training ANN may gradually decline [7]. Therefore, in order to

𝑥

σ1

𝜎1

𝜎1

𝜎2

𝜎2

𝜎2

𝑁1

𝑁2

𝑁𝑛

⋮ ⋮ ⋮
IC



d

d

i
i

N
f

x


(0) (0)i iN y

Loss

Loss<𝜀
or

Iter>maxit

Yes

Done

No

N(x)

ODEs

IC

𝜎𝑀

𝜎𝑀

𝜎𝑀

⋮

⋮
⋮

⋮

Fig. 1 Network structure of PINN for solving IVP (1).

obtain the large interval solution of problem (1) by ANN method, it is often necessary
to construct a neural network with a large number of neurons and a deep layers so
that the influence of the initial value is deep and wide, which may make the network
learn the solution as accuracy as possible [3]. However, the increase of network scale
significantly increases the training difficulty of the neural network, and even makes it
impossible to get normal training. In view of this problem, based on the advantage
of PINN’s high-precision learning ability in a neighborhood of initial value point, we

6



propose a PWNN method in next section to obtain the large interval solution. In
the method, the solution interval I is split into several intercell compartments and a
related small size in scale neural network is applied on each the sub-interval for solving
a sub-IVP corresponding to (1). Finally stitches these neural network solutions of the
sub-intervals together to obtain the approximate solution of problem (1) over whole
interval I.

3 A piecewise ANN method

In this section, based on the default assumptions (H1)−(H2) and well learning ability of
a PINN, we will present the PWNN method for finding the large interval approximate
solution of IVP (1).

3.1 Method

The basic framework of the method is described as follows.
First, we divide the interval [0, T ] into p sub-intervals, namely insert p− 1 points

in interval [0, T ] making

0 = a0 < a1 < · · · < ap = T, [0, T ] =

p⋃
i=1

∆i, ∆i = [ai−1, ai],

and suppose that sub-interval ∆i is relative small so that the well performing of PINN
is guaranteed. Then, we construct p ANNs (e.g. PINNs) with identical structures as
given in Section 2 corresponding to the splitting of the interval [0, T ], denoted them as
{mi}pi=1. Each neural network mi is used to solve a sub-IVP of the same differential
equations in (1) on the ith sub-interval ∆i with a well defined initial value at ai−1.
The output of the network is denoted as N i(x) = (N i

1(x), N
i
2(x), · · · , N i

n(x)), which
has composite expression like (2) and represents the approximation of exact solution
of the sub-IVP, denoted as ȳi(x) = (ȳi1(x), ȳ

i
2(x), · · · , ȳin(x)). Particularly, component

N i
j(x) is the output of j-th neuron of network mi in the output layer for an input

x ∈ ∆i, representing the approximation of ȳij(x) for j ∈ {1, 2, · · · , n}. The network is
illustrated in Fig. 2.

Specifically, first, a PINN m1 is trained to solve the sub-IVP of the system in (1)
on interval ∆1 with initial value ȳ1(0) = y0. The loss function used for the network is
defined as

Loss1 =
1

M1n

n∑
i=1

M1∑
j=1

(
dN1

i

dx
(xj)− fi(xj , N1

1(xj), N2
1(xj), · · · , N1

n(xj)))
2

+
1

n

n∑
i=1

(N1
i (0)− y0i )

2.

Here, the training data points {xj}M1
j=1 are taken from the interval ∆1 by some dis-

tribution sense (the following-up data samplings are similar). The training of the

7



𝑥

σ1

𝜎1

𝜎1

𝜎2

𝜎2

𝜎2

𝑁1
1

𝑁2
1

𝑁𝑛
1

⋮ ⋮ ⋮



1d

d

i
i

N
f

x


1(0) (0)i iN y

Loss

Loss<𝜀
or

Iter>maxit

Yes

No

𝑚1: [0, 𝑎1]

ODEs

IC

𝜎𝑀1

𝜎𝑀1

𝜎𝑀1

⋮

⋮
⋮

⋮

IC

𝑥

σ1

𝜎1

𝜎1

𝜎2

𝜎2

𝜎2

𝑁1
2

𝑁2
2

𝑁𝑛
2

⋮ ⋮ ⋮



2d

d

i
i

N
f

x


2 1(0) (0)i iN N

Loss

Loss<𝜀
or

Iter>maxit

Yes

No

𝑚2: (𝑎1, 𝑎2]

ODEs

IC

𝜎𝑀2

𝜎𝑀2

𝜎𝑀2

⋮

⋮
⋮

⋮

𝑥

σ1

𝜎1

𝜎1

𝜎2

𝜎2

𝜎2

𝑁1
𝑝

𝑁2
𝑝

𝑁𝑛
𝑝

⋮ ⋮ ⋮



d

d

i

p

i

N
f

x


1(0) (0)p p

i iN N 

Loss

Loss<𝜀
or

Iter>maxit

Yes

Done

No

𝑚𝑝: (𝑎𝑝−1, 𝑎𝑝]

ODEs

IC

𝜎𝑀𝑝

𝜎𝑀𝑝

𝜎𝑀𝑝

⋮

⋮
⋮

⋮

Pass the parameters

Pass the parameters

⋮

IC

IC

Fig. 2 Network structure of PWNN for solving IVP (1).

network m1 is completed when the termination (convergence) conditions of the net-
work training (generally the loss function value drops to near zero or the iteration
step size is sufficient) are satisfied. As a result, due to the approximation prop-
erty of ANN, the ANN is an approximate solution of the sub-IVP, denoted by
N1(x) = (N1

1 (x), N
1
2 (x), · · · , N1

n(x)), i.e., it is the approximation of exact solution
ȳ1(x) = (ȳ11(x), ȳ

1
2(x), · · · , ȳ1n(x)) of the sub-IVP over ∆1. Notably, compared to a

neural network that solves IVP (1) over the entire interval I, network m1 requires
only a structure of relatively small scale and is trained well on ∆1 because it is a small
neighborhood of the initial value point x = 0. This gives full play to the strong local
learning ability, faster convergence speed and high approximation accuracy of PINN.

8



After obtaining the first network m1 on ∆1, we train and use the next network
m2 to approximately solve the sub-IVP of the system in (1) with an initial value of
ȳ2(a1) = N1(a1) in terms of previous trained network m1 on the interval ∆2. The
corresponding loss function for m2 is defined as follows:

Loss2 =
1

M2n

n∑
i=1

M2∑
j=1

(
dN2

i

dx
(xj)− fi(xj , N1

2(xj), N2
2(xj), · · · , N2

n(xj))

)2

+
1

n

n∑
i=1

(
N2

i (a1)−N1
i (a1)

)2
.

(4)

Here, the training data points {xj}M2
j=1 are taken from the interval ∆2. The second

term on the right-hand side of the loss function ensures that network m2 approximates
m1 as closely as possible at the initial point a1. When the termination conditions
are satisfied network m2 has been trained and yields approximate solution N2(x) =
(N2

1 (x), N
2
2 (x), · · · , N2

n(x)) of the exact solution ȳ2(x) = (ȳ21(x), ȳ
2
2(x), · · · , ȳ2n(x)) of

the sub-IVP.
Inductively, suppose we have already trained network mi and obtained approx-

imate solution N i(x) = (N i
1(x), N

i
2(x), · · · , N i

n(x)) of the exact solution ȳi(x) =
(ȳi1(x), ȳ

i
2(x), · · · , ȳin(x)) of the sub-IVP of system in (1) with initial value ȳi(ai) =

N i−1(ai−1) on the interval ∆i for i = 1, 2, · · · , k−1. Now, next network mk is trained
and used to approximate exact solution ȳk(x) of the sub-IVP of the same system in
(1) on the interval ∆k with initial value ȳk(ak−1) = Nk−1(ak−1) in terms of previous
network mk−1. The training data points {xj}Mk

j=1 are taken from the interval ∆k. The
corresponding loss function for network mk is defined as:

Lossk =
1

Mkn

n∑
i=1

Mk∑
j=1

(
dNk

i

dx
(xj)− fi(xj , N1

k(xj), N2
k(xj), · · · , Nk

n(xj))

)2

+
1

n

n∑
i=1

(
Nk

i (ak−1)−Nk−1
i (ak−1)

)2
.

(5)

When the termination conditions are satisfied network mk has been trained and
yields approximate solution Nk(x) = (Nk

1 (x), N
k
2 (x), · · · , Nk

n(x)) of the exact solution
ȳk(x) = (ȳk1 (x), ȳ

k
2 (x), · · · , ȳkn(x)) of the sub-IVP.

In this way we train and use all ANNs mi or equivalently N i(x), subsequently
to approximate exact solution ȳi(x) of the sub-IVP over sub-intervals ∆i with initial
value ȳi(ai−1) = N i−1(ai−1) for i = 1, 2, · · · , p.

9



Finally, we construct a piecewise function over [0, T ) by these PINN’s solutions
given by:

ŷ(x) =


N1(x), x ∈ [0, a1],

N2(x), x ∈ (a1, a2],
...

Np(x), x ∈ (ap−1, T ),

where

Nk(x) = (Nk
1 (x), N

k
2 (x), · · · , Nk

n(x)), k = 1, 2, · · · , p.

4 Theoretical analysis and a parameter transfer
method

In the section, we will theoretically demonstrate that the function ŷ(x) given in last
section is an approximation of the large interval solution y(x) of IVP (1) we are
looking for. Meantime, we give a parameter transfer method and multiple rounds of
pre-training approach in training PWNN.

4.1 Approximation of large interval solution

In fact, the network mk, or equivalently Nk(x) with N0(x) = y0, presented in the last
section approximately solved the following sub-IVP of the system in (1):

dȳk

dx
= f(x, ȳk), x ∈ ∆k,

ȳk(ak−1) = Nk−1(ak−1),
(6)

for dependent variable ȳk(x) = (ȳk1 (x), ȳ
k
2 (x), · · · , ȳkn(x)) and for each k ∈ {1, 2, . . . , p},

inductively, and we have

Nk(x) ≈ ȳk(x) on ∆k, k = 1, 2, · · · , p. (7)

In addition, we also set a sub-IVP of (1) on each sub-interval ∆k as
dyk

dx
= f(x, yk), x ∈ ∆k,

yk(ak−1) = yk−1(ak−1),
(8)

with yk(x) = (yk1 (x), y
k
2 (x), · · · , ykn(x)) and y0(0) = y0 for k ∈ {1, 2, · · · , p}. Due to

the uniqueness of the solution of the IVP of an ODEs under assumption (H1) given in
last section, we know that solution yk(x) of sub-IVP (8) is the restriction of the exact
solution y(x) of IVP (1) on ∆k. That is,

yk(x) = y(x) on ∆k, k = 1, 2, · · · , p, (9)

10



and particularly, y(x) = y1(x) = ȳ1(x) on ∆1. Hence, noticing (7), approximation

N1(x) ≈ y(x), (10)

holds on ∆1.
For k = 2, we have

y2(a1)
(8)
= y1(a1) = ȳ1(a1)

(7)
≈ N1(a1)

(6)
= ȳ2(a1).

Hence, on sub-interval ∆2 the initial values of IVP (6) and IVP (8) are approximate.
Consequently, by the qualitative property that the solution of IVP of an ODEs with
assumption (H1) continuously depends on the initial value, approximation

N2(x) ≈ y(x), (11)

holds on ∆2.
Similarly, we can inductively prove

Nk(x) ≈ y(x), (12)

hold on intervals ∆k for k = 1, 2, · · · , p. This shows that approximation ŷ(x) ≈ y(x)
holds on each ∆k.

Furthermore, from the construction of PINN N(x) (see the multiple composite
structure of the PINN’s output expression (2)), we see that function Nk(x) is contin-
uous and differential over the each sub-interval ∆k. Therefore, except the end points
ak of ∆k(k = 1, 2, · · · , p − 1), function ŷ(x) is continuous and differential over large
interval [0, T ). Although we do not confirm the continuity of ŷ(x) on thoses end points,
we, from (6) and (7), know approximation

Nk(ak) ≈ Nk+1(ak),

implying the approximation of the two side limitations

ŷ(a−k ) ≈ ŷ(a+k ), (13)

hold for k = 1, 2, · · · , p − 1. This indicates that there may exist just a small ’jump’
in the value of function ŷ(x) at an end point. However, in numerical solution, the
errors can be controlled within the tolerable error range by improving the convergence
accuracy of PINN solutions Nk(x).

To sum up above procedure, we have proved the following conclusions.
Theorem: On the solution interval [0, T ), the piecewise function ŷ(x) satisfies

the approximation ŷ(x) ≈ y(x) and is continuously differentiable except for the finite
points ak(k = 1, 2, · · · , p− 1), where the approximation (13) holds.

The Theorem is the theoretical basis of our PWNN method.

11



4.2 Transfer of network parameters

According to the research by Xavier et al., the parameter initialization of a neu-
ral network directly affect whether the network can be trained successfully [38]. In
the proposed PWNN method, we need to train p interrelated PINNs. Therefore, the
parameter initialization and transfer of the PWNNs in training them are a key step
to successfully obtain large interval approximate solution ŷ(x). In order to assess and
improve the stability and performance in certain cases, there are some additional
network parameter transfer and multiple rounds of pre-training techniques which we
employ beyond the basic setup.

1. A parameter transfer technique. In fact, we have already used a parameter
initialization technique in the training and theoretical analysis of PWNN. This is
shown in IVP (6) and procedure of constructing ANNs mk(k = 1, 2, · · · , p), which is
explained in more details in the following steps.

Start with k = 1. By the standard steps of PINN, initializing network parameters
ϑ1 with Xavier technique or some other ones, we then train first PINN m1 on ∆1 to
solve IVP (6) for k = 1 and determine N1(x).

For k = 2, 3, · · · , p, initializing parameters ϑk of mk using parameters ϑk−1

obtained in mk−1, we then train the kth PINN mk on ∆k to solve IVP (6) and deter-
mine Nk(x). That is, once network mk−1 has completed training, we pass parameters
ϑk−1 to network mk as initialization of parameters ϑk of mk as shown in Fig.2.

It is worth noting here that since network mk inherits the parameters of mk−1, the
computational effort of loss function Lossk will be greatly reduced, thus speeding up
the training of the network.

2. Multiple rounds of pre-training method. In the first time training PINN, it is
not always satisfactory performance of the being trained network due to the randomly
parameter initialization. In this case, it is common to conduct training the network
in several rounds (pre-training) based on the latest obtained parameters. That is, the
obtained parameters after completing the training of an ANN are used as initialization
of the network to train again, and so on until the end of the training round. This
multi-round pre-training gradually optimizes the parameter initialization, avoids the
uncertainty caused by random initialization and guides the improving training quality.

In our PWNN case, the above parameter transfer method (see above the case
k = 1) is used in the first round of training, and then the multi-round pre-training
method is used after the second round. Specifically, each neural network mj , j =
2, 3, · · · , p receives the parameters of mj−1 as parameter initialization in the first
round of training. For subsequent rounds, in training a network, it receives the network
parameters obtained from the latest training round of this network as its initialization.
This multi-round pre-training will progressively improve the approximation of ŷ(x) to
the exact solution of IVP (1). To further improve the approximation accuracy of ŷ(x)
to exact solution y(x), we even apply the two kind techniques interactively in training
PWNNs.

12



4.3 Implementation of PWNN

Let ϑi
k denote the training parameter set of network mk in the ith round and maxit

denote the maximum number of iterations. Loss represents the loss value of the neural
network, which is determined by Eq.(5), and ε > 0 represents a pre-specified error
limitation.

Now, summarizing the above statement of PWNN method, we have the following
Algorithm PWNN as an implementation of our proposed PWNN method.

Algorithm PWNN

Initialization: Define a generic functional module
Back-propagation=

{
While it ≤ maxit ∧ loss ≥ ε

Update ϑi
k via a optimizer [39]

Update the loss based on Eq.(5) and back propagation method
}

Begin:
for i = 1 to n do

if i = 1 then
for k = 1 to p do

if k = 1 then
ϑi
k is initialized using Xavier method or some others [38]

else
initializing ϑi

k = ϑi
k−1

end if
Back-propagation

end for
else

initializing ϑi
k = ϑi−1

k

Back-propagation
end if

end for
End

5 Experiment

In this section, we give several numerical experiments using the PWNN algorithm, and
compare the results with those of PINN method and Runge-Kutta method to show
the validity of our proposed method.

13



5.1 Example 1

Consider the following IVP of an ODEs
dy1

dx = y2,
dy2

dx = −y2 − (2 + sinx)y1,

y1(0) = 0, y2(0) = 1,

(14)

with dependent variable y(x) = (y1(x), y2(x)) on interval [0, 10]. We first use normal
PINN to find the ANN solution of the problem. We construct a 3-layer neural network
with 1 input neuron, 2 output neurons, and 2 hidden layers of 20 neurons each. We
uniformly sampled 1,000 points on the interval [0, 10] as the training data set. The
learning rate is set to 0.01, and the number of iterations is 10,000. The training results
of the network are shown in Fig. 3.

Fig. 3 PINN results for IVP (14) with final loss function value 6.58 ∗ 10−5.

Then we use PWNN to solve the problem with less training data and the same
structure as PINN above on each sub-interval. Interval [0, 10] is divided into five
equidistance sub-intervals ∆i = [2(i − 1), 2i](i = 1, 2, · · · , 5). The neural network
employed in each sub-interval consists of two hidden layers, with each hidden layer
containing 20 neurons. In order to compare it with PINN, we uniformly sample 200
data points from each sub-interval as the training data. The learning rate is set to 0.01,
and each neural network performed 2000 iterations. The results of training PWNNs
mi(i = 1, 2, · · · , 5) are shown in Fig. 4. The first five graphs represents the PWNNs
on each interval as well as loss function values, and the last graph is their combination
ŷ(x) = (ŷ1(x), ŷ2(x)).

We also solve the problem using the fourth-order Runge-Kutta method to compare
the results with those of using above methods.

In Fig. 5, the results obtained by using PINN method, PWNN approach and fourth-
order Runge-Kutta method (RK4) are presented. It can be observed that the overall
results of the three methods are similar. However, compared to PINN, the results of
PWNN and RK4 are closer. It shows that PWNN is more efficiency than PINN in the

14



Fig. 4 Result figures of PWNNs: the first five is mk with final loss function value on each
sub-interval ∆k(k = 1, 2, · · · , 5). The last one is their combinations ŷ1(x) and ŷ2(x) .

Fig. 5 Comparisons of the results of solving IVP (14) using PINN, PWNN and RK4 methods.

sense of numerical solution.

5.2 Example 2

Consider the following IVP of a SIR model of epidemic dynamics


dy1

dx = −0.003y1y2,
dy2

dx = 0.003y1y2 − 0.1y2,
dy3

dx = 0.1y2,

y1(0) = 98, y2(0) = 2, y3(0) = 0.

(15)

15



First, we use PINN to find its solution over the interval [0, 50]. The used PINN consists
of 1 input neuron, 3 hidden layers of 20 neurons each, and 3 output neuron. The
200 training points are taken from [0, 20] equidistantly. The network adopts Xavier
initialization, employs the Adam optimization algorithm with a learning rate 0.01, and
runs for 10000 iterations. Fig. 6 illustrates the solutions given by the PINN for IVP
(15) over the interval [0, 20]. Observably, the PINN successfully computes solutions
merely within the intervals [0, 14] (left graph) instead of large interval [0, 20] (right
graph). That is, as the solution interval further extends the learning results of PINN
notably deviate from the real case.

Fig. 6 Results of PINN to solve IVP (15) which failed to get large interval solutions.

We now solve the problem over a large interval [0, 50] using the PWNN method
with a smaller size structure than the PINN above. Divide interval [0, 50] into 10
equally sized sub-intervals and Take 100 training points in each sub-interval by uniform
distribution. Construct a neural network for each segment, where each network consists
of 1 input neuron, 1 hidden layer with 20 neurons, and 3 output neurons. Utilize Xavier
initialization and Adam optimization algorithms for each network with learning rate
0.01 and 10000 iterations to train m1 on interval [0, 5]. Fig. 7 illustrates the training
results of PWNNs for all sub-intervals. The titles of the figures specify the names of
the networks for each interval along with the respective values of the loss function
after the completion of network training. Fig. 8 displays the comparisons between the
results of both PWNNs and the RK4 method. The solid lines represent the solutions
ŷ(x) obtained from PWNNs, while the discrete points depict the solutions obtained
using RK4 method. Obviously, PWNN gives a large interval solution of problem (15)
that is highly consistent with RK4.

Example 2 shows that direct application of conventional PINN can only obtain
the inter-cell solution (local solution) of the problem, while PWNN directly gives a
large interval solution consistent with RK4, which demonstrates the effectiveness of
the given PWNN algorithm.

16



Fig. 7 Results of PWNNs mi on ∆i for (i = 1, 2, · · · , 10) and loss function values for each PWNN.

Fig. 8 Comparison of the results of using PWNN and RK4 methods.

5.3 Example 3

Consider IVP of an ODEs 
dy1

dx = cosx,
dy2

dx = −2 sin 2x,

y(0) = 0, y2(0) = 1.

(16)

It is easy to obtain the analytic solutions of the IVP as y1 = sinx, y2 = cos 2x for
all x ∈ R. Although this example is very simple, it is not easy for PINN to solve
this problem over a large interval due to the periodic oscillation of the solutions. We
performed four rounds of pre-training for PINN on the problem, with 10000 iterations
per round. The training results are shown in Fig.9. It can be observed that despite
executing four rounds of training, there is still a considerable discrepancy between the

17



training results and the analytic solutions, especially in the interval [25, 50], where the
network did not effectively learn the solutions.

By PWNN method, we divide solution interval [0, 50] into five equal sub-intervals
and construct the corresponding PWNNs. These networks were also trained in four
rounds of pre-training with same iteration number per sub-interval in each training
round. The training results are shown in Fig.10. It can be seen that the PWNNs
approximate the analytic solutions quite well after the first training round.

Fig. 9 Results of PINN for IVP (16) which is failure to obtain large interval solutions.

Fig. 10 PWNN solutions to problem (16) over [0, 50]

In the experiments, we use uniformly sampled 100 training points in each interval.
Table 1 provides detailed comparisons of convergence trends of PINN and PWNN in
terms of decreasing of the loss function values during the four training rounds, under
same calculation environment. The loss value for the PWNNs refers to the average
of the loss function values in each interval. As can be seen from the table, PWNN
has obvious advantages in convergence compared with PINN. In Table 2, we present
the convergent trend of PWNN as increasing the number of pre-trining rounds, which

18



shows that the convergence of PWNN is improved by significantly decreasing of loss
values.

Table 1 Comparison the convergent trends of PWNN and PINN in terms of loss function values.

Rounds PINN PWNN

1 1.59 7.88e-3
2 1.49 5.14e-3
3 1.42 2.93e-3
4 1.34 1.92e-3

Table 2 Convergence of PWNNs in each training round.

Rounds

loss PWNN
m1 m2 m3 m4 m5 Mean value of loss

1 1.19e-4 6.32e-4 1.68e-2 3.25e-3 1.86e-2 7.88e-3
2 1.68e-5 3.42e-4 1.57e-2 1.48e-3 8.18e-3 5.14e-3
3 9.85e-6 2.78e-4 5.66e-3 1.08e-3 7.63e-3 2.93e-3
4 6.75e-6 2.53e-4 8.23e-2 9.55e-4 7.65e-3 1.92e-3

5.4 Example 4

Consider the following IVP
dy1

dx = y2y3,
dy2

dx = −y1y3,
dy3

dx = −0.51y1y2,

y1(0) = 0, y2(0) = y3(0) = 1.

(17)

As previous examples, we first use PINN to find the numerical solutions of the prob-
lem in the interval [0, 20]. We perform four rounds of training for PINN, with 10000
iterations per round. The learning rate is set to 0.001 for the first round and 0.0001 for
the subsequent rounds. In these experiments, the values of the loss function remains
around 1.99∗10−3 for different rounds. This indicates that further increasing the num-
ber of training rounds and iterations does not significantly reduce the loss function
value. The training results are shown in Fig. 11.

In using PWNN, we divide the solution interval [0, 20] into five equal parts and
construct corresponding PWNNs. Then, train each PWNN for four rounds, with each
round consisting of 10,000 iterations on each sub-interval. The learning rate for the
first round of training is set to 0.001, while for the remaining rounds, it is set to
0.0001. The training results of the PWNNs are shown in Fig. 12. The values of the
loss function corresponding to each round of PWNN are shown in Table 3. It can be
observed that as the number of training rounds increases, the loss function values of

19



Fig. 11 PINN solutions of problem (17) in different rounds

Fig. 12 PWNN solutions of IVP (17) in different rounds

the PWNNs gradually decreases. In Fig. 13, we show the comparisons of results of the
PWNN in the fourth round with the those of RK4. It can be seen that the results of
the PWNN method are in good agreement with those of the RK4 method.

Table 3 Comparisons the results obtained by PWNN and RK4 for
solving IVP (17).

Rounds

loss PWNN
m1 m2 m3 m4 m5

1 1.41e-5 2.17e-4 2.38e-4 3.74e-3 1.30e-4
2 1.53e-6 1.67e-5 1.50e-5 5.28e-3 1.73e-4
3 6.98e-7 4.97e-6 5.68e-6 6.44e-5 1.71e-4
4 4.43e-7 2.20e-6 4.09e-6 1.94e-5 3.61e-5

20



Fig. 13 Comparison of solving results of PWNN and RK4 methods for IVP (17)

6 Discussion and Conclusion

The neural network-based method for solving differential equations provides solu-
tions with excellent generalization properties. Models based on neural networks offer
opportunities to theoretically and practically tackle with differential equation prob-
lems across various sciences and engineering applications. While most other techniques
offer discrete solutions or solutions with limited differentiability, or strongly depend
on the discrete scheme of the variable domain. Effectively using the advantages of non-
linear approximation of artificial neural network and overcoming the shortcomings of
traditional numerical methods is a hot research direction at present.

In this paper, based on the advantages of PINN local strong convergence, we pro-
pose a piecewise neural network method for solving initial value problems of ODEs
over large intervals of the independent variable. This method not only provides an
approach for coordination of multiple networks to solve an IVP of ODEs but also intro-
duces a parameter transfer and multiple rounds of pre-training technique to effectively
enhance the accuracy of network solutions in training multi-correlation ANN mod-
els. On one hand, we offer a new method to address the solution extension problem
of initial value problems of differential equations. On the other hand, our work aims
to contribute to both the theoretical and practical aspects of applying ANN, provid-
ing deep insights into the application of modern methods to traditional mathematical
problems.

Through comparative experiments, we prove that under almost the same network
training environment, the training time of piecewise neural network is shorter, the
convergence speed to the solution of the studied problem is faster, and it can also make
up for the defects of the basic ANN algorithm. For example, an interesting observation
is that when PINN is used to solve the system of equations (16), the network seems to
achieve better training performance on the interval [0, 20], while it seems to struggle

21



on the interval [25, 50]. This phenomenon reflects PINN’s tendency to solve the IVP
locally rather than the entire interval. Furthermore, in section 5.2, when PINN is used
to solve the equation (15) over a large solution domain, although the final loss value
obtained by PINN training is very low, the approximate solution obtained does not
match the actual solution. This may reflect two reasons. On the one hand, it shows
that the optimization of the residual loss function is only a necessary condition for the
artificial neural network output to be an approximate solution of the problem, but not
a sufficient condition. On the other hand, this is due to small numerical instabilities
during back-propagation because of the complexity of the loss hypersurface where the
ANN can settle on a local minimum with a small value for the loss function [2]. While
the piecewise neural network method proposed in this paper solves these problems
effectively to some extend.

Certainly, there are some limitations to the study. We did not consider applying
the proposed method to partial differential equation problems, which would involve
partitioning high-dimensional domains of independent variables. The successful appli-
cation of this method strongly depends on the effective training of sub-neural networks
on each corresponding interval. In other words, if an ANN in a certain link cannot be
effectively trained in the training of a PWNN, the whole algorithm may not complete
the solving task. Furthermore, the continuity and differentiability of network solution
ŷ(x) over the entire interval have yet to be guaranteed theoretically. These are topics
for further study in the future.

References

[1] Braun, M.: Differential Equations and Their Applications. Springer, New York
Berlin Heidelbeg Tokyo (1983). https://doi.org/10.1007/978-1-4684-0173-8

[2] Piscopo, M.L., Spannowsky, M., Waite, P.: Solving differential equations with
neural networks: Applications to the calculation of cosmological phase transitions.
Phys. Rev. D 100, 016002 (2019) https://doi.org/10.1103/PhysRevD.100.016002

[3] Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods
for Differential Equations. Springer Briefs in Applied Sciences and Technology.
Springer, Springer Dordrecht Heidelberg New York London (2015). https://doi.
org/10.1007/978-94-017-9816-7

[4] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural Networks 2(5), 359–366 (1989) https://doi.org/
10.1016/0893-6080(89)90020-8

[5] Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural
Networks 3(5), 551–560 (1990) https://doi.org/10.1016/0893-6080(90)90005-6

[6] Li, X.: Simultaneous approximations of multivariate functions and their deriva-
tives by neural networks with one hidden layer. Neurocomputing 12(4), 327–343

22

https://doi.org/10.1007/978-1-4684-0173-8
https://doi.org/10.1103/PhysRevD.100.016002
https://doi.org/10.1007/978-94-017-9816-7
https://doi.org/10.1007/978-94-017-9816-7
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(90)90005-6


(1996) https://doi.org/10.1016/0925-2312(95)00070-4

[7] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordi-
nary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000
(1998) https://doi.org/10.1109/72.712178

[8] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learn-
ing library. CoRR abs/1912.01703 (2019) https://doi.org/10.48550/arXiv.1912.
01703 1912.01703

[9] Rall, L.B.: Automatic Differentiation: Techniques and Applications. Springer,
New York Berlin Heidelbeg (1981). https://doi.org/10.1007/3-540-10861-0

[10] Verma, A.: An introduction to automatic differentiation. Current Science 78(7),
804–807 (2000)

[11] Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differ-
entiation in machine learning: a survey. Journal of Machine Learning Research
18(153), 1–43 (2018)

[12] Sirignano, J., Spiliopoulos, K.: Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics 375, 1339–1364 (2018)
https://doi.org/10.1016/j.jcp.2018.08.029

[13] Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T.: Artificial Neural Net-
work Methods for the Solution of Second Order Boundary Value Problems.
Computers, Materials & Continua 59(1), 345–359 (2019) https://doi.org/10.
32604/cmc.2019.06641

[14] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics 378,
686–707 (2019) https://doi.org/10.1016/j.jcp.2018.10.045

[15] Yuan, L., Ni, Y.-Q., Deng, X.-Y., Hao, S.: A-PINN: Auxiliary physics informed
neural networks for forward and inverse problems of nonlinear integro-differential
equations. Journal of Computational Physics 462, 111260 (2022) https://doi.org/
10.1016/j.jcp.2022.111260

[16] Chiu, P.-H., Wong, J.C., Ooi, C., Dao, M.H., Ong, Y.-S.: CAN-PINN: A fast
physics-informed neural network based on coupled-automatic–numerical differen-
tiation method. Computer Methods in Applied Mechanics and Engineering 395,
114909 (2022) https://doi.org/10.1016/j.cma.2022.114909

23

https://doi.org/10.1016/0925-2312(95)00070-4
https://doi.org/10.1109/72.712178
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1007/3-540-10861-0
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.32604/cmc.2019.06641
https://doi.org/10.32604/cmc.2019.06641
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2022.111260
https://doi.org/10.1016/j.jcp.2022.111260
https://doi.org/10.1016/j.cma.2022.114909


[17] Huang, Y., Hao, W., Lin, G.: HomPINNs: Homotopy physics-informed neural
networks for learning multiple solutions of nonlinear elliptic differential equations.
Computers & Mathematics with Applications 121, 62–73 (2022) https://doi.org/
10.1016/j.camwa.2022.07.002

[18] Fang, Y., Wu, G.-Z., Wang, Y.-Y., Dai, C.-Q.: Data-driven femtosecond opti-
cal soliton excitations and parameters discovery of the high-order NLSE using
the PINN. Nonlinear Dynamics 105(1), 603–616 (2021) https://doi.org/10.1007/
s11071-021-06550-9

[19] Bai, Y., Chaolu, T., Bilige, S.: The application of improved physics-informed
neural network (IPINN) method in finance. Nonlinear Dynamics 107(4), 3655–
3667 (2022) https://doi.org/10.1007/s11071-021-07146-z

[20] Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: Ppinn: Parareal physics-informed
neural network for time-dependent pdes. Computer Methods in Applied Mechan-
ics and Engineering 370, 113250 (2020) https://doi.org/10.1016/j.cma.2020.
113250

[21] Long, Z., Lu, Y., Dong, B.: Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics 399, 108925
(2019) https://doi.org/10.1016/j.jcp.2019.108925

[22] Zha, W., Zhang, W., Li, D., Xing, Y., He, L., Tan, J.: Convolution-based model-
solving method for three-dimensional, unsteady, partial differential equations.
Neural Computation 34(2), 518–540 (2022) https://doi.org/10.1162/neco a
01462

[23] Gao, H., Sun, L., Wang, J.-X.: Phygeonet: Physics-informed geometry-adaptive
convolutional neural networks for solving parameterized steady-state pdes on
irregular domain. Journal of Computational Physics 428, 110079 (2021) https:
//doi.org/10.1016/j.jcp.2020.110079

[24] Wang, N., Zhang, D., Chang, H., Li, H.: Deep learning of subsurface flow via
theory-guided neural network. Journal of Hydrology 584, 124700 (2020) https:
//doi.org/10.1016/j.jhydrol.2020.124700

[25] Wang, N., Chang, H., Zhang, D.: Theory-guided auto-encoder for surrogate con-
struction and inverse modeling. Computer Methods in Applied Mechanics and
Engineering 385, 114037 (2021) https://doi.org/10.1016/j.cma.2021.114037

[26] Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact
analytical solutions of nonlinear partial differential equations and its application
to p-gBKP equation. Nonlinear Dynamics 95(4), 3041–3048 (2019) https://doi.
org/10.1007/s11071-018-04739-z

[27] Zhang, R., Bilige, S., Chaolu, T.: Fractal Solitons, Arbitrary Function Solutions,

24

https://doi.org/10.1016/j.camwa.2022.07.002
https://doi.org/10.1016/j.camwa.2022.07.002
https://doi.org/10.1007/s11071-021-06550-9
https://doi.org/10.1007/s11071-021-06550-9
https://doi.org/10.1007/s11071-021-07146-z
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1162/neco_a_01462
https://doi.org/10.1162/neco_a_01462
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jcp.2020.110079
https://doi.org/10.1016/j.jhydrol.2020.124700
https://doi.org/10.1016/j.jhydrol.2020.124700
https://doi.org/10.1016/j.cma.2021.114037
https://doi.org/10.1007/s11071-018-04739-z
https://doi.org/10.1007/s11071-018-04739-z


Exact Periodic Wave and Breathers for a Nonlinear Partial Differential Equation
by Using Bilinear Neural Network Method. Journal of Systems Science and
Complexity 34(1), 122–139 (2021) https://doi.org/10.1007/s11424-020-9392-5

[28] Chien-Cheng Yu, Yun-Ching Tang, Bin-Da Liu: An adaptive activation function
for multilayer feedforward neural networks. In: 2002 IEEE Region 10 Conference
on Computers, Communications, Control and Power Engineering. TENCOM ’02.
Proceedings., pp. 645–650. IEEE, Beijing, China (2002). https://doi.org/10.1109/
TENCON.2002.1181357

[29] Dushkoff, M., Ptucha, R.: Adaptive Activation Functions for Deep Networks.
Electronic Imaging 28(19), 1–5 (2016) https://doi.org/10.2352/ISSN.2470-1173.
2016.19.COIMG-149

[30] Qian, S., Liu, H., Liu, C., Wu, S., Wong, H.S.: Adaptive activation functions
in convolutional neural networks. Neurocomputing 272, 204–212 (2018) https:
//doi.org/10.1016/j.neucom.2017.06.070

[31] Wang, S., Yu, X., Perdikaris, P.: When and why PINNs fail to train: A neural
tangent kernel perspective. Journal of Computational Physics 449, 110768 (2022)
https://doi.org/10.1016/j.jcp.2021.110768

[32] Xiang, Z., Peng, W., Liu, X., Yao, W.: Self-adaptive loss balanced Physics-
informed neural networks. Neurocomputing 496, 11–34 (2022) https://doi.org/
10.1016/j.neucom.2022.05.015

[33] Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of
Computational Physics 404, 109136 (2020) https://doi.org/10.1016/j.jcp.2019.
109136

[34] Wen, Y., Chaolu, T.: Learning the nonlinear solitary wave solution of the
korteweg–de vries equation with novel neural network algorithm. Entropy 25(5)
(2023) https://doi.org/10.3390/e25050704

[35] Wen, Y., Chaolu, T.: Study of burgers–huxley equation using neural network
method. Axioms 12(5) (2023) https://doi.org/10.3390/axioms12050429

[36] Wen, Y., Chaolu, T., Wang, X.: Solving the initial value problem of ordinary
differential equations by lie group based neural network method. PloS one 17(4),
0265992 (2022) https://doi.org/10.1371/journal.pone.0265992

[37] Wen, Y., Chaolu, T.: Lie group-based neural networks for nonlinear dynamics.
International Journal of Bifurcation and Chaos 33(14), 2350161–12 (2023) https:
//doi.org/10.1142/S0218127423501614

[38] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

25

https://doi.org/10.1007/s11424-020-9392-5
https://doi.org/10.1109/TENCON.2002.1181357
https://doi.org/10.1109/TENCON.2002.1181357
https://doi.org/10.2352/ISSN.2470-1173.2016.19.COIMG-149
https://doi.org/10.2352/ISSN.2470-1173.2016.19.COIMG-149
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.jcp.2021.110768
https://doi.org/10.1016/j.neucom.2022.05.015
https://doi.org/10.1016/j.neucom.2022.05.015
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.1016/j.jcp.2019.109136
https://doi.org/10.3390/e25050704
https://doi.org/10.3390/axioms12050429
https://doi.org/10.1371/journal.pone.0265992
https://doi.org/10.1142/S0218127423501614
https://doi.org/10.1142/S0218127423501614


neural networks. Journal of Machine Learning Research - Proceedings Track 9,
249–256 (2010)

[39] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv.
arXiv:1412.6980 [cs] (2017). https://doi.org/10.48550/arXiv.1412.6980

26

https://doi.org/10.48550/arXiv.1412.6980

	Introduction
	A brief recall of PINN
	A piecewise ANN method
	Method

	Theoretical analysis and a parameter transfer method
	Approximation of large interval solution
	Transfer of network parameters
	Implementation of PWNN

	Experiment
	Example 1
	Example 2
	Example 3
	Example 4

	Discussion and Conclusion

