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Abstract—Stance detection is the view towards a specific target
by a given context (e.g. tweets, commercial reviews). Target-
related knowledge is often needed to assist stance detection
models in understanding the target well and making detec-
tion correctly. However, prevailing works for knowledge-infused
stance detection predominantly incorporate target knowledge
from a singular source that lacks knowledge verification in lim-
ited domain knowledge. The low-resource training data further
increases the challenge for the data-driven large models in this
task. To address those challenges, we propose a collaborative
knowledge infusion approach for low-resource stance detection
tasks, employing a combination of aligned knowledge enhance-
ment and efficient parameter learning techniques. Specifically,
our stance detection approach leverages target background
knowledge collaboratively from different knowledge sources
with the help of knowledge alignment. Additionally, we also
introduce the parameter-efficient collaborative adaptor with a
staged optimization algorithm, which collaboratively addresses
the challenges associated with low-resource stance detection
tasks from both network structure and learning perspectives.
To assess the effectiveness of our method, we conduct extensive
experiments on three public stance detection datasets, including
low-resource and cross-target settings. The results demonstrate
significant performance improvements compared to the existing
stance detection approaches.

I. INTRODUCTION

STANCE detection is the view towards a specific target
with a given context, such as tweets or commercial re-

views. Typically, those given contexts in stance detection tasks
are mostly short-length contexts, which makes it challenging to
predict the target’s stance for the data-driven detection models
with such limited information. Large pretrained language mod-
els (PLMs) are becoming the default backbone to enhance the
stance detection model with learned commonsense knowledge,
leading to great success in this field [1], [2]. To further enrich
the knowledge of targets, the straightforward approach is to
incorporate the target-related background knowledge as extra
supplementary knowledge for the pretrained stance detection
model, which has been shown to substantially improve model
performance [3], [4]. In detail, those works infuse explicitly
knowledge individually through knowledge graph [5], [6],
Wikipedia [7], [8], generative knowledge [9], [10], lever-
aging PLMs’ knowledge feature learning and representation
capability by fine-tuning entire models’ parameters. However,
those knowledge-infuse solutions are quite inefficient in fine-
tuning large PLM backbones on the limited training data. For
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instance, the few/zero-shot stance detection dataset VAST [11]
has very limited training data or even no training data for each
target. Besides the low-resource challenge, unbalanced dataset
distribution is another challenge for the stance detection task,
leading the training trajectory to fall into the local minima.
Last but not least, we find some background knowledge is not
always infused correctly in the knowledge infusion process.
This is because a single knowledge source in previous works
can not fully cover and support enough knowledge for diverse
targets [4]. For example, the target “breaking the law” in
Wikipedia is erroneously linked to a heavy metal music song
rather than its ground truth definition of engaging in activities
contrary to the law.

To address the aforementioned challenges, we propose
a novel collaborative knowledge-infused stance detection
method for training the large detection model in the low-
resource setting efficiently. Specifically, we introduce a
retrieval-based knowledge verifier that mitigates incorrect
knowledge infusion by selecting the high-semantic background
knowledge from different knowledge sources, rather than rely-
ing on a single knowledge source. Furthermore, we present a
trainable collaborative adaptor integrated into PLMs to enable
efficient parameter learning in low-resource stance detection
tasks. Concretely, the collaborative adaptor freezes the parame-
ter weights of large PLM and fine-tunes the parameter-efficient
adaptor only, which alleviates the over-fitting effects on large
PLM in low-resource scenarios. However, we empirically find
that intuitively adding adaptors into PLM may lead to unstable
training in the new stance detection tasks. We think the
initialized weights of the collaborative adaptor can not work
well with the pretrained PLMs in the early fine-tuning stage of
new tasks. Moreover, the unbalanced data distribution further
impacts the stable training. So we design a staged optimization
algorithm for the adaptive model training in unbalanced distri-
butions. The primary objective of the first optimization stage
is to prevent the training trajectory from converging to a local
minimum leading to unexpected performance. In the second
stage, our model introduces a weighted cross-entropy loss to
balance the biased stance categories and further improve the
model performance in low-resource stance detection tasks. In
other words, we progressively used label smooth (stage-1) and
weighted loss (stage-2) separately to reduce the over-fitting
effects in our low-resource stance detection tasks, which is
different from traditional optimization paradigms using those
two in the whole training process.

We conducted extensive experiments on three public stance
detection datasets, encompassing the low-resource stance de-
tection, and cross-target stance detection tasks. Experimental
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results demonstrate the superior performance of our method
compared to state-of-the-art approaches across all stance de-
tection tasks. The contributions of our work are summarised
as follows,

• We introduce collaborative knowledge verification to
assist the detection model in selecting more semantic-
related knowledge from different knowledge sources. To
our knowledge, this is the first work to infuse verified
knowledge into the knowledge enhancement stance de-
tection task.

• We introduce a collaborative adaptor to selective learning
features in an efficient way for the low-resource setting. It
contains three sub-components which are architecturally
located in different positions of the backbone model,
learning different features collaboratively.

• To alleviate the unbalanced effects of low-resource stance
detection tasks, we also provided a staged optimization
algorithm to improve the training efficiency in large
PLMs. Experiments showed the superiority of our method
in different low-resource settings and outperformed state-
of-the-art approaches on three public stance detection
datasets.

II. RELATED WORKS

A. Knowledge Enhancement

Knowledge enhancement increases the capabilities in think-
ing, understanding, and reasoning for the data-driven models
beyond the original training data. In recent years, there has
been a growing trend in infusing external-specific knowledge
as complementary knowledge to the large pretrained mod-
els [12]. Depending on the infused knowledge, knowledge
infusion methods can be broadly categorized into structured-
knowledge infusion (e.g., knowledge graph) and unstructured-
knowledge infusion (e.g., Wikipedia, text corpus).

Domain-specific experts typically collect structured know-
ledge and encompass well-organized and rich knowledge.
For instance, CKE-Net [5] utilizes the structured knowledge
base (ConceptNet) to enhance its model’s common sense
knowledge in zero/few-shot stance detection tasks. Similarly,
K-BERT [13] incorporates domain knowledge through entity
triplets obtained from the knowledge graph. Other methods
like JAKET [14], ERNIE [15] and Entity-as Experts [16] also
infuse knowledge from knowledge bases through grounding
knowledge with entity linking technologies. Structured know-
ledge provides well-organized and domain-specific knowledge
for specific targets in stance detection tasks. However, its
utility is limited by the pre-defined scope of available know-
ledge, which may not cover all targets encountered in practical
scenarios.

In contrast, unstructured knowledge offers more flexibility
and can be easily collected from a wide range of diverse
domains. For instance, the VAST [11] dataset introduces
thousands of diverse targets that mostly can not be found
in the well-constructed structured knowledge. To incorporate
unstructured knowledge into the stance detection models, WS-
BERT [4] directly infuses external knowledge from Wikipedia
as its inputs to pre-trained models for stance detection in

the VAST dataset. Another knowledge infusion paradigm is
that finetune PLMs on the specific domain corpus to em-
bed the domain-specific knowledge, as demonstrated by Sci-
BERT [17], Bio-BERT [18], BERTweet [19]. In addition to
domain-specific finetuning, Self-talk [20] offers another inter-
esting solution by exploring knowledge from its own training
corpus with hand-crafted prompts, enhancing language model
learning with task-related knowledge. Furthermore, DDP [21]
and K-Former [22] present the retrieval-based knowledge
infusion methods by retrieving knowledge from feature pools
and online websites, respectively. Nevertheless, more efforts
are still needed to collaborate structured and unstructured
knowledge together in a correct and efficient manner for large
PLM-based models, particularly in low-resource tasks.

B. Stance Detection
Stance detection refers to the identification of attitudes

toward a specific context or topic, typically framed as a
stance classification problem (pros, cons, neutral) for the
neural network-based models. Stance detection encompasses
various tasks depending on the specific topics involved, in-
cluding rummer stance detection [23], fake news stance detec-
tion [24], disinformation/misinformation stance detection [25],
multi/cross-language stance detection [26], [27] and zero-
shot stance detection [11], etc. In this study, we focus on
in stance detection tasks of background knowledge infusion
and low-resource training. To infuse background knowledge,
existing approaches try to incorporate knowledge from dif-
ferent sources. For instance, CKE-Net [5] introduces target-
related knowledge from ConceptNet, which is trained on the
common sense knowledge graph. Similarly, BS-GGCN [28]
simplifies the whole Concept-Net graph to a compact sentence-
related graph, enabling more efficient knowledge embedding
for stance detection. Moreover, WS-BERT [4] leverages the
background knowledge from Wikipedia pages as its additional
input to improve the model performance in stance detection.
Regarding the low-resource challenge, STCC [29] employs
contrastive learning to enhance target representation in low-
resource stance detection tasks. Different from STCC building
contrastive examples in the existence of the target, Joint-
CL [30] builds contrastive examples from the prototype graph
representation of the target’s link, which further improves
the model performance on the unseen targets. While most of
those works solve the knowledge infusion and low-resource
separately, it is essential to consider two challenges together
to improve the performance of stance detection models.

III. METHODOLOGY

Before delving into our methodology, we define the no-
tations of the stance detection task as follows: Given a
context set C with elements ci where i = 1, 2, ..., nc, and
a target set T with element tj where j = 1, 2, ..., nt. The
stance detection task is formulated to predict the stance y
that maximizes P (y|C,T}), where the stance set is Y =
{pros, cons, neutral}. Regarding the knowledge enhance-
ment stance detection task, its objective is defined as maximiz-
ing P (y|{C,T,K}), where K denotes the infused knowledge
that assists in the stance detection task.
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Knowledge Alignment

Target: “Breaking the law”

Context:  … , thereby rewarding lawbreaking 
and penalizing those who have not gotten caught 
breaking the law. This is …
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Fig. 1. Overview of our stance detection architecture: knowledge alignment, parameter-efficient learning, and staged optimization. Knowledge alignment
collaboratively selects semantic similar knowledge of the target from different knowledge sources. Parameter-efficient learning introduces the collaborative
adaptor and knowledge augmentation into the stance detection model to perform low-resource learning. Staged optimization algorithm optimizes the classifier
with label smoothing, then pushes the classifier edge aligning to data distribution with the help of weighted loss.

The overview of our proposed methodology, as illustrated in
Figure 1, contains three modules: (1) Knowledge alignment,
which aims to collaborative select semantic target know-
ledge from structured and unstructured knowledge sources.
(2) Parameter-efficient learning, which involves collaborative
adaptor and knowledge augmentation to enhance model per-
formance in low-resource settings. (3) Staged optimization
algorithm, which further refines the adaptive model through
strategies such as label smoothing and weighted loss.

A. Knowledge Alignment

We introduce a knowledge alignment module to assist the
stance detection model infuse target-related background know-
ledge correctly, particularly for the targets that lack matching
items in singular knowledge source (e.g., Wikipedia). To help
the unmatched targets infuse knowledge out of Wikipedia, we
incorporate retrieval knowledge from the Internet, specifically
through Google search, as an additional knowledge source.
Thus, our approach adopts a multi-source knowledge infu-
sion paradigm across structured Wikipedia and unstructured
Internet, which selects the semantic similar knowledge as the
collaborative knowledge K to align to the target T from mul-
tiple knowledge sources. Figure 2 illustrates our knowledge
alignment module, as follows,

In the paradigms of knowledge enhancement stance detec-
tion, detection models mostly infuse extra knowledge through
the target (T) rather than the given context (C). There are two
reasons. Firstly, the stance detection task aims to identify the
stance (Y ) of the target, which may not be explicitly men-
tioned in the given context. Consequently, the target contains
more information compared to the given context. Secondly, the
context is typically long and complex, making it challenging
to locate target-related information for infusing background
knowledge (K). In our proposed collaborative knowledge in-
fusion approach (Figure 2), we collaboratively incorporate the
background knowledge into the detection model by retrieving
the target-related knowledge from Wikipedia and the Internet.

For structured Wikipedia knowledge, we utilize the target
as the keyword to retrieve background knowledge through
Wikipedia’s API1. This API returns a summary of the matched

1https://github.com/goldsmith/Wikipedia

Target: “Breaking the law”

RetrieveExtract

TF-IDFWikipedia 
RankerAPI

Verifier
Features Similarity

0.45
0.65

Verified
Knowledge

Fig. 2. Knowledge alignment. The target’s collaborative knowledge is the
knowledge with a higher semantic similarity score from Wikipedia or the
Internet. The target’s Wikipedia knowledge is obtained by Wikipedia’s API.
The target’s knowledge from the Internet is obtained by Google retrieval.

Wikipedia page. In cases where is no match for a target, we
follow the setting of [4] and consider the target itself as the
knowledge without introducing additional information.

For unstructured Internet knowledge, we retrieve the target-
related web pages by using the searching prompt “What is
the meaning/definition of TARGET (T)”? as the search term
for the Google search engine. Subsequently, we select the
top three pages from the Google search results and employ
BeautifulSoup 2 to parse the HTML contents of these pages
into candidate passage lists (D). The next step involves filtering
out unrelated contexts from the candidate passage lists, as
web pages often contain noise and extraneous information.
To accomplish this, we utilize TF-IDF ranker to identify and
exclude noisy passages from a long list of candidate passages.

TFIDF(T,D) = TF(T,D) · IDF(T), (1)

Once the knowledge related to the target has been collected
from Wikipedia and the Internet, we introduce the knowledge
verifier to select more accurate knowledge from multiple

2https://git.launchpad.net/beautifulsoup
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sources as the infused knowledge. Knowledge verification
involves feature encoding and feature similarity comparison,
that selects semantic similar knowledge among different know-
ledge sources. Concretely, we employ Sentence-BERT [31]
to encode the target T and its corresponding knowledge
(Wikipedia knowledge Kw and Internet knowledge Kg) into
embedding features (Tem,Kem

w ,Kem
g ), as follows,{

Tem,Kem
g ,Kem

w

}
= Stance({T,Kw,Kg}), (2)

Subsequently, we compute the semantic similarity between
the stance target and different knowledge using the classical
cosine similarity:

S(Tem,Kem
w ) =

Tem,Kem
w

||Tem|| × ||Kem
w ||

, (3)

S(Tem,Kem
g ) =

Tem,Kem
g

||Tem|| × ||Kem
g ||

, (4)

Finally, we select the knowledge with the highest semantic
similarity as the collaborative knowledge K to be infused into
our model, which is expressed as follows:

K = argmax{S(Tem,Kem
w ), S(Tem,Kem

g )}, (5)

By collaborative integration of this verified knowledge,
our stance detection model allows for the inclusion of more
reliable knowledge in stance detection tasks. This knowledge
infusion manner expands the scope of target knowledge by in-
corporating information from both structured and unstructured
knowledge sources. As a result, it addresses the limitations as-
sociated with relying on a single knowledge source, including
the issues of out-of-scope knowledge and false infusions.

B. Efficient Parameter Learning

To enable efficient parameter learning for low-resource
stance detection tasks, our approach introduces collaborative
adaptor and knowledge augmentation into our PLM-based
stance detection model. Collaborative adaptor significantly
reduces parameters compared to fine-tuning the entire model
for low-resource stance detection tasks. Additionally, our
collaborative adaptor learns diverse feature representations by
leveraging the collaboration of multiple adaptors. To address
the input-length limitation of stance models when incorporat-
ing collaborative knowledge contexts, we also introduce know-
ledge augmentation, which helps overcome the constraints
imposed by the PLM’s input length.

Suppose our stance detection model is parameterized by the
fixed pretrained PLM backbone W and collaborative trainable
adaptors ∆W . The backbone model can be a generic language
model BERT or RoBERTa with Transformer architecture.
In our low-resource stance detection task, the objective of
the knowledge-infused stance detection task is formulated as
follows:

J = max
∆W

T,C∑ Y∑
log(PW+∆W (Y |{C,T,K)). (6)

During the training process, our approach keeps the param-
eters of the pretrained model fixed and trains the collabo-
rative adaptor on the low-resource stance detection dataset.
The fixed-weight setting prevents the catastrophic forgetting
problem and mitigates the challenges associated with training
large models on limited training data (C). Moreover, the
collaborative adaptor has significantly fewer parameters than
the PLMs |∆W | << |W | (e.g., the prefix-tuning adaptor of
our collaborative adaptor only has approximately 0.01% of the
parameters W in BERT). This reduction in parameters greatly
alleviates the data dependency for large model training.

Hidden States 
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Fig. 3. Overview of collaborative adaptor in efficient-parameter learning.
Q,K, V are the query, key, and value of the Transformer module respectively.
LoRA denotes the low-rank adaptor, and the gate is a controller for LoRA.

The motivation of our collaborative adaptor is to introduce
multiple adaptive modules that collaboratively work together
to provide a more powerful feature representation capability
than the individual adaptors. Figure 3 presents the overview
of our collaborative adaptor, which consists of gated low-
rank adaptation, prefix-tuning, and attentive fusion modules.
Those adaptive modules are hierarchically incorporated into
different levels of the Transformer architecture. In detail, the
gated low-rank adaptor (Wl) is inserted after the bottom hidden
state layer of transformer architecture. It maps the selective
embedding features from previous layers. In the intermediate
level of the Transformer architecture, the prefix-tuning (Wp)
introduces additional trainable prefix tokens before the key
K and value V to incorporate new task-specific information
into the PLMs. At the top of Transformer architecture, we
introduce the attentive fusion module (Wf ) to further select
task-related features from value V . Therefore, all adaptive
modules collaborate to learn task-specific information and
feature representations in a hierarchical manner.

More specifically, the gated low-rank adaptation not only
maintains the parameter efficiency of the low-rank adaptor
(LoRA) [32], but also introduces a gate function Φ to selec-
tively incorporate the learned features from LoRA. This gate
function empowers the vanilla LoRA with a similar attentive
capability to the Transformers module, by passing through
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the learned features selectively. Here, we default set the gated
function Φ to Sigmoid function. Mathematically, if we denote
the output of fully connection layer with normalization as the
hidden state H , the low-rank downscale metric Wdown and
upscale metric Wup map features in an efficient-computing
manner. Our gated LoRA is defined as follows:

I l = Φ(WT
upWdownH) +WIH, I ∈ {K,V,Q}, (7)

Gated LoRA selectively passes the learned features from
LoRA with the gated function Φ, which captures task-specific
representation. The LoRA features are then collaborative with
the Transformer’s features to form the key K, value V , and
query Q through an additive operation correspondingly. Before
feeding the mapped embedding < K,V,Q > into multi-head
computation, we introduce prefix tokens (T) into query and key
(< K,V >) to further enrich the feature learning capability
of our detection model in the efficient-parameter learning.

Zi = Attentioni(Q,< Tk;K >,< Tv;V >), (8)

Zi is the ith output of the multi-head attention computation.
The prefix-tuning adaptors are introduced at the intermediate
level of every Transformer, with significantly fewer trainable
parameters compared to full parameter fine-tuning. To leverage
the attentive mechanism, we introduce attentive fusion at the
top of the Transformer, selectively activating the prefix-tuning
features. As an attentive network, the key (K ′) and value (V ′)
are derived from the outputs (Zi) of the multi-head attention
layer, and the query (Q′) is obtained from the previous layer’s
query (Q) through a residual connection. The attentive fusion
is performed using dot production

⊗
. All computations of

attentive fusion are listed as follows:

Zaf = Softmax(Q′
⊗

K ′),

Z = Zaf

⊗
V ′.

(9)

In this way, our collaborative adaptor performs efficient-
parameter learning architecturally across bottom embedding
layers, middle of Transformer, and top feature fusion. All the
efficient modules collaborate with each other to learn a generic
representation for the low-resource stance detection tasks.

Besides the collaborative adaptor in efficient-parameter
learning, we also introduce knowledge augmentation to facil-
itate efficient-parameter learning. In the knowledge infusion
module, the crawled knowledge obtained from the Internet
often exceeds the maximum input length of backbone PLMs.
Our knowledge augmentation approach involves slicing the
lengthy knowledge content into properly segmented parts to
help the detection model capture the complete semantics of
the infused knowledge.

Unlike previous approaches in knowledge-infused stance
detection that infuses knowledge (K) following the paradigm

[ T, C, < SEP >,K, < CLS >]

or
[ T < SEP >,C, < SEP >,K, < CLS >]

where T, C, and K denote the target, given context, and
knowledge, respectively. < SEP > and < CLS > are separate
token and ending token for the PLMs. we reformulate our
knowledge infusion paradigm into

[Pt,C, < SEP >,Ksub, < CLS >]

Our input paradigm employs the prompt Pt:

“What′s the stance of T in following context?′′

instead of the target T to fully leverage the capability of PLMs,
which matches the pre-training input format of two sentences
split by < SEP >, as well as keeping the semantic integrity.

In detail, we conduct the knowledge augmentation by slicing
the long collaborative knowledge content into sub-knowledge
segments, each of which fits the maximum length requirement.
This manner helps the stance detection model capture the
entire background knowledge instead of the cropped know-
ledge with missing information, as in the previous knowledge
enhancement paradigms. The sub-knowledge segment Ksub is
sampled from the collaborative knowledge K as follows:

Ksub = [Ki∗l/2, K(i+1)∗l/2],

s.t. i ∈ (0, 1, ..., ⌊Len(K)/l⌋).
(10)

The collaborative adaptor and knowledge augmentation
work together to optimize efficient-parameter learning by re-
ducing trainable parameters and addressing data limitations in
low-resource stance detection tasks. The collaborative adaptor
reduces the data consumption in training large-scale PLMs,
while knowledge augmentation expands the training data to
further improve training efficiency.

C. Staged Optimization Algorithm

To address the challenges of data discrepancy and domain
gap between training data and pretrained models in the low-
resource stance detection task, we propose a staged optimiza-
tion algorithm that combines collaborative knowledge infusion
and efficient parameter learning. However, the collaborative
adaptor weights are initialized randomly, which may hinder
its cooperation with the pretrained backbone PLMs during
the initial training phase. Another issue is the unbalanced
data distribution that is often overlooked in stance detection
tasks. Our algorithm aims to mitigate these challenges in low-
resource stance detection.

Algorithm 1 presents the algorithm details for the low-
resource stance detection task. Once the collaborative know-
ledge K and adaptor initialization are prepared, we set the
first stage step for label smooth training, and set the second
stage with the weighted loss for unbalanced stance categories.
Before training begins, we prepare the prompt Pt and aug-
mented knowledge Ksub with the given stance target T as the
training input triplet < C,Pt,Ksub >. Our two-stage learning
algorithm incorporates weighted loss and label smoothing
to improve the adaptive model’s performance in unbalanced
stance detection. Our algorithm aims to enhance the model’s
capability to handle ambiguous and diverse inputs by adjusting
the loss function weights and introducing label smoothing
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Algorithm 1 Staged Optimization Algorithm
Require:

Initialize the target’s collaborative knowledge K.
Initialize the weights of collaborative adaptor Wl,p,f .

Ensure:
Set the input < C,T,K > and stance label Y .
Set the total steps N , stage-1 step Ns1, stage-2 steps Ns2.
Set the initial learning rate α0, Set the loss weights
[θa, θb].

1: repeat
2: for it = 1 to N do
3: Fetch training data batch < C,T, Y >.
4: Set knowledge augmentation Ksub ←< T,K >.
5: Set Prompt P← Pt.
6: Stage-1: label smooth
7: if it ≤ Ns1 then
8: Set smooth factor ε
9: else

10: ε← 0
11: end if
12: Stage-2: weighted loss
13: if it ≥ Ns2 then
14: θ ← θa
15: else
16: θ ← θb
17: end if
18: Feed Forward computing:
19: Ỹ ← model(C,Pt,Ksub|W,Wl,p,f )
20: Compute cost function:
21: CE(Y, Ỹ )← −

∑c
c=1 θ · Yclog(Ỹc)

22: J(Y, Ỹ ) ← −(1 − ε)log(1 − CE(Y, Ỹ ) −
εlog(CE(Y, Ỹ ))

23: Compute gradient:
24: ∆Wl,p,f ← ∂J(Y,Ỹ )

∂Wl,p,f

25: Update gradient:
26: Wl,p,f ←Wl,p,f + α∆Wl,p,f

27: end for
28: until convergence

during the training process. In the first stage, label smoothing
is applied to soften the training targets, allowing the model
to better handle uncertain data instances. Meanwhile, label
smoothing helps the collaborative adapter convergence with
newly initialed parameters. In the second stage, a weighted
loss function is employed to assign different weights to
different classes, thereby improving the model’s ability to han-
dle unbalanced datasets. Our algorithm provides a promising
solution for tackling the challenges of data discrepancy and
unbalanced data distribution in low-resource stance tasks.

IV. EXPERIMENTS

To evaluate the effectiveness of our proposed method, we
conducted extensive experiments on three publicly available
stance detection datasets and different low-resource settings.
In this section, we provide a brief description of the datasets
and the compared methods used in our stance detection task.

Finally, we summarize the results using F1 as the default
evaluation metric.

A. Datasets

VAST [11] is a typical zero-shot/few-shot stance detec-
tion dataset that covers a wide range of over 6000 targets
across various themes, including politics, sports, education,
immigration, and public health, etc. The VAST dataset consists
of 13447, 2062, 3006 examples in its training, validation, and
test sets, respectively. Notably, the majority of targets in
VAST are designed for zero-shot setting. It has an average
of approximately 2.4 examples per target. This characteristic
makes VAST particularly suitable for zero-shot/few-shot stance
detection tasks.

P-Stance [33] is stance detection dataset specific to the
political domain. It contains in-target and cross-target settings
with 21, 574 labeled tweets on three specific targets: “Biden”,
“Sanders” and “Trump”. In the in-target setting, the target and
classifier are the same in both the training and evaluation sets.
Conversely, in the cross-target setting, the targets are entirely
different, allowing for the evaluation of the generalization
performance.

COVID-19-Stance [34] is stance detection dataset con-
structed from COVID-19-related tweets. It contains 6, 133
tweets with respect to four specific targets: “Anthony S. Fauci,
M.D. (Fauci)”, “Keep School Closed (School)”, “Stay at Home
Order (Home)” and “Wearing a Face Mask (Mask)”. COVID-
19-Stance is also an unbalanced dataset in terms of class
distribution.

B. Compared Methods

TAN [35] is a classical attention-based method for the stance
detection task. It contains a target-specific attention extractor
and a long short-term memory network.

BERT [36] is a well-known Transformer-based pretrained
language model widely used for various downstream tasks.
We employ BERT as our baseline for reference in the stance
detection task.

WS-BERT-Dual [4] infuses target-related knowledge from
extra Wikipedia to enhance background knowledge of PLMs
in stance detection tasks. It utilizes two pretrained encoders to
encode tweets and knowledge separately.

In addition to the shared baselines mentioned above, we
also introduce other strong specific baselines for different
stance datasets. For VAST task, we introduce graph con-
volution networks-based methods BERT-GCN, CKE-NET [9],
and BSRGCN [28]. Those methods joined large pretrained
models with graphic convolution networks to leverage the
learning capability of the models on heterogeneous data with
structured graphic representation. For the zero-shot setting in
VAST task, we select BSRGCN and contrastive learning-based
Joint-CL [30] as the compared methods.

For PStance task, we choose the bi-recurrent neural net-
works (BiCE) [37] and gated convolutional neural networks
(GCAE) [38] and PGCNN [39] as the baselines. Specifically,
the GCAE uses a TanH as the gate function to selectively
output the sentiment futures according to the given aspect.
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Similarly, PGCNN also used the parameterized filters as the
gate function to effectively capture the aspect-specific features.
Moreover, we also include BERT-Tweet [33] as the compared
method, which is pretrained on the target Tweet domain data.

For COVID-19-Stance task, we choose CT-BERT [34] as
the baseline, which pretrained on the COVID-19-related tweet
corpus to enhance task-specific domain knowledge. We also
include CT-BERT-NS and CT-BERT-DAN [40], which incorpo-
rate self-training and domain adaption into CT-BERT to further
improve model representation capability and reduce domain
gap in the stance detection task.

C. Implementation Details

We utilize RoBERTa as the backbone model for both
VASE and PStance tasks. The batch size is set to 16, and
the learning rates range from 1e − 5 to 5e − 5 in our
experiments. Since COVID-19-Stance is a task related to the
COVID-19 pandemic, we employ CT-BERT and BERT as the
backbone models to leverage COVID-19-related knowledge
from pretrained models. Due to our GPU memory limitations,
the batch size is set to 8. Regarding the hyperparameters of the
collaborative adaptor, we set the rank to r = 8 for the low-rank
adaptor. The prefix-taken is set to 100 with a dropout rate 0.2.
The reducing factor for the feature fusion module is 16, and
all gates are the ReLU function. The models are implemented
using Pytorch, and the maximum input length is default set
to 512 tokens. We trained the models for a maximum of 30
epochs, and applied stopping with a patience of 10 epochs.
The optimizer used is AdamW with a weight decay of 1e−5.
All the experiments are conducted with the same random seed
on four NVIDIA RTX A5000 GPU cards.

D. Results

To verify the effectiveness of our proposed method, we
evaluate its performance on three public stance detection tasks:
VAST, PStance, and COVID-19-Stance. Firstly, we evaluate the
proposed method on the VAST, a low-resource dataset with
a significantly larger number of targets than the other two
datasets. Additionally, we evaluate the method’s performance
on the PStance and COVID-19-Stance datasets. Following
previous work [4], all the datasets are evaluated using the
macro-average F1-score as the standard metric. The overall
performance is calculated as the average across all stances.

VAST dataset officially splits into two sub-tasks: zero-shot
stance detection (600 targets) and few-shot stance detection
(159 targets). Zero-shot setting does not include any targets
in its training set, while the few-shot setting has very limited
training samples (approximately 14.8 examples per target) in
its training set. In contrast, the PStance and COVID-19-Stance
datasets have over hundreds of training examples per target.
Table I summarizes the evaluation results on the VAST dataset.

From the numbers presented in Table I, we can observe
that the baseline method BERT achieves clear improvements
around 2% in the overall performance compared to the none
pretrained baseline TAN, which indicates pretrained models
have a stronger feature representation capability than none

TABLE I
EXPERIMENTAL RESULTS ON VAST

Method Zero-shot Few-shot Overall
TAN 66.6 66.3 66.5
BERT 68.5 68.4 68.4
BERT-GCN 68.6 69.7 69.2
CKE-Net 70.2 70.1 70.1
BSRGCN 72.6 70.2 71.3
Joint-CL 72.3 71.6 72.3
WS-BERT-Dual 75.3 73.6 74.5
Ours 81.9 79.6 80.7

pretrained TAN. Building upon BERT, BERT-GCN incorpo-
rates graphic convolution networks (GCN) with BERT further
improving the overall F1 score to 69.2. Similarly, the GCN-
based methods CKE-Net and BSRGCN demonstrate progres-
sive improvements by leveraging graph convolution networks,
achieving an F1 score of 71.3. Specifically, BSRGCN performs
better in the zero-shot setting, benefiting from the unsuper-
vised training on the domain-specific corpus. Joint-CL further
enhances model performance through contrastive learning,
achieving an overall F1-score of 72.3. To enhance background
knowledge, WS-BERT-Dual introduces target-related know-
ledge from Wikipedia, resulting in signification improvements
compared to previous methods.

However, all those solutions overlooked the fact that VAST
is a low-resource task, particularly for large pretrained models.
Our method addresses this issue by incorporating efficient-
parameter learning, and staged optimization for the low-
resource task. Another neglect point in those solutions is that
the infused target’s knowledge should be the corrected know-
ledge. Our method addresses this issue by incorporating the
collaborative knowledge infusion that introduces knowledge
from multiple knowledge sources in a more accurate way.
As a result, our method achieves new state-of-the-art (SOTA)
performance on VAST, achieving an overall F1-score of 80.7.
Interestingly, we find that the zero-shot settings achieve higher
scores than the few-shot settings, especially in the pretrain-
based methods. This difference can be attributed to the fact
that the zero-shot and few-shot sets are two distinct subsets
with completely different targets in the test set. Consequently,
we can treat these two settings as two separate datasets.

TABLE II
EXPERIMENTAL RESULTS ON PSTANCE

Method Trump Biden Sanders Avg.
TAN 77.1 77.6 71.6 75.1
BiCE 77.2 77.7 71.2 75.4
PGCNN 76.9 76.6 72.1 75.2
GCAE 79.0 78.0 71.8 76.3
BERT 78.3 78.7 72.5 76.5
BERT-Tweet 82.5 81.0 78.1 80.5
WS-BERT-Dual 85.8 83.5 79.0 82.8
Ours 86.2 84.1 80.5 83.6

Different from VAST with a large number of targets in
a low-resource setting, PStance contains only 3 targets, and
COVID-19-Stance contains 4 targets. Table II presents the
evaluation results of compared methods on PStance. The
classical recurrent neural network-based TAN and BiCE ob-
tain comparable performance to the GCN-based PGCNN and
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GCAE, yielding an F1-score around 75 76. Those results
approach the performance of pretrained BERT. This sim-
ilarity in performances suggests that rich training sources
can benefit different types of models, and even achieve
comparable performance to pretrain-based BERT. Different
from BERT pretrained on the generic corpus, BERT-Tweet
enhances domain-specific knowledge by being pretrained on
the Twitter corpus, resulting in significant improvements of
4% in the overall F1-score. Building upon BERT-Tweet, WS-
BERT-Dual further infused the target background knowledge
from Wikipedia, attaining an overall F1-score of 82.8. In light
of WS-BERT-Dual, our method further optimizes knowledge
augmentation through parameter-efficient learning, achieving
the best performance across all the targets than the compared
methods in PStance task.

TABLE III
EXPERIMENTAL RESULTS ON COVID-19-STANCE

Method Fauci Home Mask School Avg.
TAN 54.7 53.6 54.6 53.4 54.1
ATRGU 61.2 52.1 59.9 52.7 56.5
GCAE 64.0 64.5 63.3 49.0 60.2
CT-BERT 81.8 80.0 80.3 75.3 79.8
CT-BERT-NS 82.1 78.4 83.3 75.3 79.8
CT-BERT-DAN 83.2 78.7 82.5 71.7 79.0
WS-BERT-Dual 83.6 85.0 86.6 82.2 84.4
Ours 86.05 86.76 86.91 83.33 85.76

We also conducted evaluations of the proposed method on
the domain-specific COVID stance detection and present the
results in Table III. From the comparison of the results, we
can clearly observe the performance gap between traditional
gated-based methods (TAN, ATGRU, GCAE) and pretrain-
based models (CT-BERT and its variants). The gated-based
methods, which only conduct finetuning on its rich training
set, obtain low average F1-scores below 60.2, lacking any
background knowledge specific to the target domain.

In contrast, pretrained models trained on the COVID-related
Twitters data exhibit good background knowledge and fea-
ture representation for COVID-19-Stance, resulting in a high
average F1-score above 79.0. Meanwhile, self-training and
domain adaptation techniques applied to CT-BERT led to
performance improvements in stance detection for “Fauci” and
“Mask”, but no substantial improvements in the overall F1-
score. With the help of dual pretrained model encoders, WS-
BERT-Dual further elevates the overall performance to 84.4.
Similarly, our method achieves the best performance among
the compared methods in COVID-19-Stance by leveraging
collaborative adaptor and staged optimization. Based on the
extensive experimental comparisons, we can conclude that our
proposed method performs well not only in low-resource VAST
stance detection task but also in rich-resource PStance and
COVID-19-Stance tasks.

V. DISCUSSION

A. Ablation Study

We performed an ablation study on the main modules of our
method, namely collaborative knowledge infusion, efficient
parameter learning, and staged optimization, using the VAST

and PStance datasets. In addition to reporting the overall
F1-score for zero-shot and few-shot settings in VAST, we
also provide the detailed results for three specific stances:
pros, cons, and neutral. For PStance, we report the average
performance across the different targets.

Table IV presents the results of the ablation study con-
ducted on VAST, where RoBERTa serves as the backbone
model. We study the impact of each module on the back-
bone performance. All individual modules that work with the
backbone outperformed the finetuning of the vanilla backbone.
The collaborative knowledge infusion (KI) module, which
includes knowledge verification and augmentation, facilitated
the learning of target-specific background knowledge and
achieved remarkable improvements of 75.1%. Likewise, the
efficient parameter learning module (EP) proved beneficial for
the stance detection model on the low-resource VAST data
with the help of collaborative adaptors. When comparing the
performance across different stances, we observed that the
neutral stance exhibited significantly higher scores compared
to the pros and cons stances. Our staged optimization (SO)
module tries to address this bias by incorporating label smooth
and weighted loss, resulting in overall performance improve-
ments. Furthermore, extensive ablation studies were conducted
to assess different combinations of the modules. We can
observe that two module combinations further improve model
performance by 1%−2%. Similarly, our method incorporating
all three modules achieved the best overall F1-score of 80.7%
on VAST, highlighting the effectiveness of each module in
addressing the challenges of the low-resource VAST task.

We also conducted an ablation study on PStance, which
benefits from a relatively rich training source than the low-
resource VAST dataset. Table V presents a summary of the
ablation study on PStance, focusing on the efficiency of three
modules with the same backbone RoBERTa. Notably, the
ablation study results differ from the results obtained for
VAST. Interestingly, we observed a slight decrease in model
performance with the collaborative knowledge infusion (KI)
module than the vanilla backbone. This performance drop
may be attributed to the specific dataset, as PStance only
contains four targets compared to diverse targets in VAST. In
other words, only four background long-sequential knowledge
content K is infused into the model training pipeline, which
may hinder feature learning on short-sequential raw tweets
content C. In the single-modular settings, we found backbone
incorporating knowledge infusion (KI) or staged optimization
(SO) exhibited superior performance compared to the efficient
parameter learning (EP) module in the rich-source PStance
task. This suggests that full parameter finetuning is more
effective than the adaptor-based solution in data-rich tasks.
Similarly, in the two-modular settings, we observed that the
setting with EP module (setting 4&6) performed worse than
the setting without EP modular (setting 5). We also observe
that the backbone with two-modular settings yielded more
improvements in the overall F1-score than the single-modular
settings. In the three-modular setting, we find the performance
of the ‘Trump’ and ‘Sanders’ targets could be further improved
compared to the two-modular settings. However, the ‘Biden’
category experienced a significant drop compared to its results
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TABLE IV
ABLATION STUDY ON VAST

Backbones KI EP SO Cons(ZS) Pros(ZS) Neu(ZS) Zero-Shot Cons(FS) Pros(FS) Neu(FS) Few-Shot Avg.
RoBERTa-L 65.7 59.0 95.0 73.3 65.6 60.5 97.4 74.5 73.9
RoBERTa-L ! 66.4 64.9 93.5 74.9 66.4 63.2 96.3 75.3 75.1
RoBERTa-L ! 71.4 72.3 90.7 78.1 67.7 68.6 88.5 74.9 76.5
RoBERTa-L ! 74.5 72.0 92.0 79.5 69.2 67.8 87.0 74.7 77.0
RoBERTa-L ! ! 70.7 70.4 95.5 78.9 68.9 70.1 95.9 78.3 78.6
RoBERTa-L ! ! 69.1 73.5 94.9 79.2 68.5 72.8 96.7 79.3 79.3

Ours ! ! ! 75.2 75.3 95.1 81.9 71.5 72.6 94.7 79.6 80.7

‘Neu’ is short for the neutral stance.
‘ZS’ and ‘FS’ are shorts of Zero-shot and Few-shot. ‘L’ denotes the large size backbone.
‘KI’, ‘EP’, and ‘SO’ denote knowledge infusion, collaborative adaptor, and staged optimization.

TABLE V
ABLATION STUDY ON PSTANCE

Setting KI EP SO Trump Biden Sanders Avg.
0 85.5 82.7 76.9 81.7
1 ! 84.6 82.7 76.9 81.4
2 ! 76.3 80.5 78.5 78.4
3 ! 84.4 83.6 78.4 82.1
4 ! ! 84.8 82.7 73.7 80.4
5 ! ! 86.1 83.3 80.5 83.3
6 ! ! 85.0 85.5 80.5 83.7
7 ! ! ! 86.2 84.1 80.5 83.6

‘KI’, ‘EP’, and ‘SO’ denote collaborative knowledge infusion, effi-
cient parameter learning, and staged optimization.

in the setting-6. We attribute this to the negative impact of
the ‘EP’ module in the three-modular setting, which slightly
decreased the overall performance compared to the two-
modular setting 6. Thus, we can conclude that the adaptor-
based solution does not always perform well in rich-resource
tasks.

B. Cross-target Stance Detection on PStance

We evaluate the model’s generalization performance on
the rich-source PStance, we conducted cross-target stance
detection, training model on one target, and evaluated on
another target (e.g., training on Trump and testing on Biden).
We employed BERT-Tweet [33] and WS-BERT-Dual [4] as the
strong baselines. BERT-Tweet is pretrained on the Twitter cor-
pus, benefiting from domain-specific knowledge. WS-BERT-
Dual is a dual-path architecture using BERT and BERT-Tweet
as feature encoders to incorporate target-specific Wikipedia
knowledge. We follow the experimental settings of WS-BERT-
Dual, testing on three targets: Trump, Biden, and Sanders. We
employ the knowledge infusion and the staged optimization
modules for cross-target stance detection tasks, as our ablation
study demonstrated the two-modular setting performs best
in rich-resource PStance. All the experimental results are
summarized in the following table:

From the results of Table VI, we observed that the WS-
BERT-D achieved significant improvements (average 5% F1-
score) in all six cross-target pairs compared to the baseline
BERT-Tweet, benefiting from the additional BERT branch for
encoding extra Wikipedia knowledge. In contrast, our method
only uses the RoBERTa as the backbone for cross-target

TABLE VI
CROSS-TARGET STANCE DETECTION ON PSTANCE

Cross-Targets BERT-Tweet WS-BERT-Dual Ours
Trump → Biden 58.9 68.3 68.2

Trump → Sanders 56.5 64.4 67.8
Biden → Trump 63.6 67.7 72.1

Biden → Sanders 67.0 69.0 74.8
Sanders → Trump 58.7 63.6 63.4
Sanders → Biden 73.0 76.8 78.9

Avg. 63.0 68.3 70.9
* All the reported results are F1 score.
* In cross-target setting, the stance detection model is trained on left-

target data and tested on the right-target data.

stance detection. We further improved four of six cross-target
pairs by introducing the staged optimization, resulting in a
slight performance drop in “Trump→ Biden” and “Sanders
→ Trump” than the WB-BERT-Dual. Additionally, we noticed
that the two pairs’ target results are not symmetric to each
other. Overall, our proposed solution achieved a new state-
of-the-art performance in cross-target stance detection on the
PStance dataset.

C. Low-resource Stance Detection

In this section, we further evaluated our method’s per-
formance in the low-resource settings of stance detection
on the subsets of PStance and COVID-19-Stance datasets.
Specifically, we randomly sampled 5%, 10%, 15%, 20% data
from their training sets as our low-resource data settings, and
kept its test sets for evaluation.

TABLE VII
LOW-RESOURCE STANCE DETECTION ON PSTANCE

Settings Baseline Ours Avg.(%)
Trump Biden Sanders Trump Biden Sanders

5% 69.3 70.5 63.5 71.2 73.9 68.2 3.4 ↑
10% 70.5 72.4 71.0 73.8 75.0 72.5 2.5 ↑
15% 72.9 76.1 72.3 74.2 78.1 73.9 1.7 ↑
20% 74.0 78.4 74.5 76.9 79.4 75.1 1.7 ↑

‘Settings’ means different low-resource settings with different
sample percentages from PStance.
‘Avg.’ denotes the average performance improved between our
method and the baseline.

Following the setting of the ablation study, we set the BERT
as the baseline and backbone of our method in all the low-
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TABLE VIII
LOW-RESOURCE STANCE DETECTION ON COVID-19-STANCE

Settings Baseline Ours Avg. (%)
Fauci Home Mask School Fauci Home Mask School

5% 34.6 44.0 37.0 22.7 40.8 44.0 37.0 22.7 6.6 ↑
10% 57.8 59.9 42.3 26.3 72.9 59.9 42.3 26.3 12.7 ↑
15% 69.6 62.1 49.0 40.3 77.2 62.1 49.0 40.3 6.4 ↑
20% 70.8 74.2 54.0 45.4 80.6 74.2 54.0 45.4 12.8 ↑

resource stance detection evaluations. Table VII and Table VIII
summarized the comparison results on different low-resource
settings of PStance and COVID-19-Stance.

From the reported results of Table II on different low-
resource settings, we can observe that our method surpasses
the baseline compared to the baseline in all low-resource data
settings, which shows our method presents the effectiveness
of our proposed method. Overview the whole performance
across different settings, we can obviously find the progressive
increasing trends with the training data adding in both the
baseline and our method. Last but not least, our method bene-
fits more with less training data, and the average improvements
are reduced with more data introduced from 5% to 20%.

Table VIII summarized the low-resource setting evaluation
results on the COVID-19-Stance dataset. Similar to the low-
resource setting results of PStance, our method surpassed the
baseline with large margins in all low-resource settings. The
average performance can achieve more than 6%. Different
from the performance trends in PStance, the performance
improvement trends do not keep consistently changing with
increasing of training data. We think the main reason causing
this is the domain gap and diverse data distributions in
different stance topics of COVID-19-Stance.

D. Efficient Parameter Learning

In this section, we compare the performance of our efficient
parameter learning paradigm with the entire model finetun-
ing paradigm in the low-resource stance detection task. We
selected the classic BERT and RoBERTa for entire model
finetuning, using both basic (B) and large (L) model sizes.
Our efficient parameter learning approach utilizes the large-
size RoBERTa as the backbone. All the models are evaluated in
the zero-shot and few-shot settings as defined by VAST dataset.
Note, the few-shot and zero-shot in traditionally computer
vision tasks are evaluated with same test data. However, in
our VAST NLP dataset, the few-shot and zero-shot settings
are evaluated with different test data.

Table IX presents the performance of different models
on the zero-shot stance detection task with respect to three
stances: pros, cons, and neutral. In the entire model finetuning
setting, we observe that the basic-sized models outperformed
the large-sized models in terms of average F1 score. Specif-
ically, the BERT models experienced a 1% drop in average
F1-score from basic-size to large-size, while the RoBERTa
models even encountered a decrease of more than 4%. The
large model’s zero-shot performance decay may attribute to
combined training few-shot on the low-resource VAST dataset.

TABLE IX
ZERO-SHOT PERFORMANCE ON VAST

Methods Param∗ Pros Cons Neutral Avg.
BERT-B 110M 64.0 63.2 94.2 73.8
BERT-L 340M 60.0 66.8 94.1 72.4

RoBERTa-B 110M 67.4 72.3 93.7 77.8
RoBERTa-L 340M 65.7 59.0 95.0 73.3

Ours 3K 75.2 75.3 95.1 81.9

Param∗ denotes the total trainable parameters.
‘B’ and ‘L’ denote the basic and large model sizes, respec-
tively.

The large-size models exhibit reduced generalization capabil-
ity with limited training data samples, resulting in performance
decay in zero-shot stance detection tasks. Consistent with the
findings of the ablation study, the neutral stance achieved
significantly higher scores (above 90%) than the pros and
cons stances in the zero-shot setting. In contrast, our efficient
parameter learning method, which maintains the pretrained
model’s generalization capability by freezing its parameter,
achieved the best performance in the zero-shot stance detection
task.

TABLE X
FEW-SHOT PERFORMANCE ON VAST

Methods Param∗ Pros Cons Neutral Avg.
BERT-B 110M 64.2 65.1 95.1 74.8
BERT-L 340M 64.2 61.3 91.8 73.8

RoBERTa-B 110M 64.6 70.8 95.1 76.8
RoBERTa-L 340M 65.6 60.5 97.4 74.5

Ours 3K 71.5 72.6 94.7 79.6

Param∗ denotes the total trainable parameters.
‘B’ and ‘L’ denote the basic and large model sizes, respec-
tively.

Table X presents the results of different models in the few-
shot VAST stance detection task. Similar to the zero-shot
setting, we observe a decline in overall performance as the
model size increases. Additionally, the neutral stance detection
performance exhibited significant superiority over the pros and
cons stances. For the entire model finetuning paradigm, there
have been no notable variations between basic and large-size
models in the pros and neutral stances. However, in the cons
stance, the large-size models experienced a sharp drop. This
can be attributed to the unbalanced data distribution, which
leads to model performance decay when trained on limited
samples. Therefore, the entire model finetuning using a large
pretrained language model is not an optional solution for
zero/few-shot stance detection tasks. The reason for zero-shot
setting (Table IX) achieved better performance than the few-
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shot setting (Table X) is mainly depends on the special test
data setting in the VAST dataset that the few-shot and zero-
shot settings have total different test data samples, which is
different from traditional few-shot and zero-shot setting with
the same test data. In other words, the settings in Table IX
and X can be seen as two datasets. This divergence from
traditional evaluation methods is a key factor in understanding
the experimental results. Moreover, this pattern of zero-shot
settings outperforming few-shot settings is not unique to our
study but is also observed in comparable works, such as TAN
[35], BERT [36], CKE-NET [9], BSRGCN [8], and WS-
BERT-Dual [4], which report similar anomalies in Table 1. Our
proposed method offers a solution for the low-resource stance
detection task, which has only 3K trainable, significantly
fewer than the millions of trainable parameters required for full
model finetuning. Despite the parameter reduction, our method
still can achieve superior performance with a considerable
margin.

E. Collaborative Adaptor Analysis
Collaborative adaptor is an essential part of efficient pa-

rameter learning in the low-resource detection task, which
consists of three modules: gated LoRA, prefix-tuning and
attentive fusion. To assess the importance of each module, we
conducted evaluations by removing individual modules from
our collaborative adaptor.

TABLE XI
COLLABORATIVE ADAPTOR ANALYSIS ON VAST

Settings Pros Cons Neutral F1
w/o Gated LoRA 71.9 70.3 95.8 79.3
w/o Prefix-tuning 70.6 73.3 94.3 79.4

w/o Attentive Fusion 66.1 62.1 92.5 73.6
All 73.4 73.9 94.9 80.7

‘w/o’ denotes without .

Table XI presents the performance of different settings of
the collaborative adaptor. For instance, the setting ’w/o gated
LoRA’ indicates the removal of the ‘gated LoRA’ module.
All settings were evaluated on the low-resource VAST using
the same hyperparameters. We observed the ’gated LoRA’
and ’prefix-tuning’ modules exhibited similar drops of ap-
proximately 1% with slight variations across different stances.
Surprisingly, in the ‘w/o attentive fusion’ setting, all stance
scores experience a sharp decline of approximately 7% on
average. Through the performance comparisons, we discovered
that the attentive fusion module had a more significant impact
on down-steam stance detection tasks than the gated LoRA
and Prefix-tuning modules in the efficient-parameter learning
paradigm. One possible explanation for this observation is
that attentive fusion is more closely connected to the stance
prediction classifier than the other two models, which serve
as feature extractors with less impact on the final stance
prediction.

F. Comparison with ChatGPT
ChatGPT 3 attracts lots of attention in the natural language

processing community due to its impressive performance
3https://openai.com/blog/chatgpt

on conversational tasks, leading to its utilization in various
downstream NLP tasks. In this section, we aim to evaluate the
performance of ChatGPT on VAST, which is a varied stance
topics dataset with over a thousand targets. To adapt ChatGPT
for the stance detection task, we constructed the prompt as
follows:

“Please choose one stance from cons, pros, neutral for
< TARGET > (T) on following content: < TWEET > (C)?”

We sequentially selected and evaluated 100 samples, com-
prising 33 cons, 33 pros, and 34 neutral instances. Regard-
ing ChatGPT is an evolving system4, all the evaluation results
are reported as follows,

TABLE XII
VAST SAMPLES EVALUATION ON CHATGPT

GT/Pred Cons Pros Neutral Recall
Cons (33) 18 4 9 58.1
Pros (33) 3 18 14 51.4

Neutral (34) 12 11 11 33.3
Precision 54.5 54.5 32.4 /

The row is prediction (Pred) and the column is
ground truth (GT).

The evaluation results presented in Table XII indicate that
ChatGPT’s performance on VAST stance detection dataset
is not as impressive as anticipated, which is similar to the
findings of the work directly using the chain-of-thought [41]
in ChatGPT for stance detection on VAST dataset with only
62.3 F1 performance. From the result analysis, we observe
that ChatGPT often predicts the pros or cons stances to the
neutral stance, resulting in the neutral stance in a low recall
score. This tendency might stem from ChatGPT’s inclination
to produce mild and friendly responses [42], leading to a bias
toward predicting neutral stances. Furthermore, we observed
that ChatGPT trends to output a neutral stance for sensitive
topics, such as voting, humanity, and elections.

VI. CONCLUSION

In this paper, we propose a method for low-resource stance
detection that collaborative infuses verified target knowledge
with efficient parameter learning. Firstly, we enhanced the
infusion of target-related knowledge by extending it beyond
structured Wikipedia to encompass a broader range of un-
structured information from the entire Internet. To ensure
the selection of relevant semantic background knowledge,
a knowledge verifier is employed. Secondly, we introduce
efficient-parameter learning through collaborative adaptors,
which involve a minimal number of trainable parameters by
freezing the weights of large PLM-based models. This manner
not only facilitates efficient model training in low-resource
stance detection tasks but also retains the rich prior knowledge
encoded in pretrained models. Thirdly, a staged optimization
algorithm is proposed to mitigate the impact of unbalanced
data. Additionally, knowledge augmentation and prompting
techniques are integrated into our efficient parameter learning
framework for low-resource stance detection. Experimental
results demonstrate the effectiveness of our method on three

4The ChatGPT results were evaluated on 04 June 2023.
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public datasets with state-of-the-art performance. In future
work, we plan to further explore efficient-parameter learning
in the context of multi-modal stance detection tasks.
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[23] D. Küçük and F. Can, “Stance detection: A survey,” ACM
Comput. Surv., vol. 53, no. 1, feb 2020. [Online]. Available:
https://doi.org/10.1145/3369026

[24] A. ALDayel and W. Magdy, “Stance detection on social media:
State of the art and trends,” Information Processing and Management,
vol. 58, no. 4, p. 102597, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0306457321000960

[25] M. Hardalov, A. Arora, P. Nakov, and I. Augenstein, “A survey
on stance detection for mis- and disinformation identification,”
in Findings of the Association for Computational Linguistics:
NAACL 2022. Seattle, United States: Association for Computational
Linguistics, Jul. 2022, pp. 1259–1277. [Online]. Available: https:
//aclanthology.org/2022.findings-naacl.94

[26] M. Mohtarami, J. Glass, and P. Nakov, “Contrastive language adaptation
for cross-lingual stance detection,” in Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, Nov. 2019, pp. 4442–4452. [Online].
Available: https://aclanthology.org/D19-1452

https://doi.org/10.1145/3152494.3152518
https://aclanthology.org/2021.naacl-main.376
https://aclanthology.org/2022.wassa-1.7
https://aclanthology.org/2021.findings-acl.278
https://aclanthology.org/2021.findings-acl.278
https://aclanthology.org/2021.naacl-main.278
https://doi.org/10.1162/tacl_a_00360
https://aclanthology.org/2021.findings-acl.126
https://aclanthology.org/2021.findings-acl.126
https://aclanthology.org/2020.emnlp-main.717
https://ojs.aaai.org/index.php/AAAI/article/view/5681
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://ojs.aaai.org/index.php/AAAI/article/view/21417
https://aclanthology.org/P19-1139
https://aclanthology.org/2020.emnlp-main.400
https://aclanthology.org/D19-1371
https://aclanthology.org/W19-5055
https://aclanthology.org/W19-5055
https://aclanthology.org/2020.emnlp-demos.2
https://aclanthology.org/2020.emnlp-demos.2
https://aclanthology.org/2020.emnlp-main.373
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3369026
https://www.sciencedirect.com/science/article/pii/S0306457321000960
https://www.sciencedirect.com/science/article/pii/S0306457321000960
https://aclanthology.org/2022.findings-naacl.94
https://aclanthology.org/2022.findings-naacl.94
https://aclanthology.org/D19-1452


13
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