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Abstract

Video paragraph captioning (VPC) involves
generating detailed narratives for long videos,
utilizing supportive modalities such as speech
and event boundaries. However, the existing
models are constrained by the assumption of
constant availability of a single auxiliary modal-
ity, which is impractical given the diversity and
unpredictable nature of real-world scenarios.
To this end, we propose a Missing-Resistant
framework MR-VPC that effectively harnesses
all available auxiliary inputs and maintains re-
silience even in the absence of certain modal-
ities. Under this framework, we propose the
Multimodal VPC (MVPC) architecture integrat-
ing video, speech, and event boundary inputs
in a unified manner to process various auxiliary
inputs. Moreover, to fortify the model against
incomplete data, we introduce DropAM, a data
augmentation strategy that randomly omits aux-
iliary inputs, paired with DistillAM, a regu-
larization target that distills knowledge from
teacher models trained on modality-complete
data, enabling efficient learning in modality-
deficient environments. Through exhaustive
experimentation on YouCook2 and ActivityNet
Captions, MR-VPC has proven to deliver su-
perior performance on modality-complete and
modality-missing test data. This work high-
lights the significance of developing resilient
VPC models and paves the way for more adap-
tive, robust multimodal video understanding.1

1 Introduction

Video Paragraph Captioning (VPC) (Park et al.,
2019) is a fundamental video-language under-
standing task that requires the model to generate
paragraph-level captions for minutes-long videos.
Besides raw video frames, there exist several auxil-

1Our code is available at https://github.com/
lancopku/MR-VPC.
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Figure 1: The performance of the previous SOTA model
Vid2Seq drastically declines as the percentage of ASR
text missing grows. In contrast, our MR-VPC consis-
tently achieves superior performance in both modality-
complete and modality-missing environments.

iary modalities that can potentially serve as supple-
mentary inputs, such as speech inputs utilized in
Vid2Seq (Yang et al., 2023b), flow features used in
MART (Lei et al., 2020), and event boundaries (the
start and end timestamps of the events) leveraged
in various models (Zhou et al., 2018b; Yamazaki
et al., 2022a,b, etc). Despite the growing perfor-
mance of these models, we notice that they assume
to have access to the same auxiliary modality
during both training and testing, which contradicts
reality. In real-world scenarios, the availability
of modalities undergoes dynamic changes, which
leads to the following two issues for the models
developed under the unrealistic assumption.

Issue-1: Under-utilization of available modal-
ities. Since a specific auxiliary modality is solely
considered during training, the models fail to lever-
age unseen modalities that may emerge at test time.
For example, VLCap and VLTinT (Yamazaki et al.,
2022a,b) cannot employ transcribed speech, which
is proven extremely beneficial in Vid2Seq (Yang
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et al., 2023b); conversely, Vid2Seq cannot make
use of event boundaries, which contain rich in-
formation about the temporal structure of videos.
Issue-2: Vulnerability to missing modality in
noisy environments. The performance of these
models may degrade drastically when the required
auxiliary modality is absent or of low quality,
which is common in real-world situations. For in-
stance, Liu and Wan (2021) find that the VPC mod-
els relying on event boundaries yield significantly
lower performance when the ground-truth event
boundaries are replaced with learned ones. Besides,
we observe that the state-of-the-art model Vid2Seq
is vulnerable to the missing of automatically tran-
scribed speech (ASR texts) as depicted in Figure 1.

In response to issue-1, we design a multimodal
VPC (MVPC) architecture to integrate the inputs
from multiple modalities. Concretely, MVPC
first encodes the two auxiliary modalities (i.e.,
tokenized event boundaries and transcribed speech)
into a unified textual feature space using a shared
text encoder. Then, the textual features are
fused with the video features before entering the
language decoder to generate paragraph captions.
Further, to alleviate issue-2, we devise two training
strategies to enhance the robustness of our model
to missing modalities. Firstly, we simulate the
absence of auxiliary modalities by randomly drop-
ping the inputs (named DropAM) during training.
This approach reduces the model’s reliance on
auxiliary inputs and improves generalization in
noisy situations. Second, to take full advantage of
the auxiliary modalities, we propose to perform
multimodal knowledge distillation (Hinton
et al., 2015) (referred to as DistillAM) where
the model trained on modality-complete data
acting as the teacher and the model operating in
modality-missing situations learning as the student.
By combining MVPC, DropAM and DistillAM,
we present a Multimodal noise-Resistant Video
Paragraph Captioning framework (MR-VPC).

Experimental results on two benchmarks demon-
strate the superiority of MR-VPC in handling both
modality-complete and modality-incomplete data.
Notably, MR-VPC is tailored for the challenging
VPC task and substantially outperforms prior
robustness-oriented methods studied for classifi-
cation tasks. To our knowledge, this work pioneers
formulating VPC as a multimodal learning
problem with noisy inputs and presents practical
solutions that enable VPC systems to utilize inputs
from diverse modalities while remaining robust

even when parts of them are missing.

2 Related Work

Video Paragraph Captioning (VPC) VPC is a
widely studied video-language understanding task
involving producing paragraph-level captions for
long videos lasting for minutes (Park et al., 2019).
Existing VPC models commonly incorporate addi-
tional auxiliary information alongside video frames
as inputs, such as transcribed speech (Yang et al.,
2023b) and event boundaries (Zhou et al., 2018b;
Yamazaki et al., 2022a,b, etc). Liu and Wan (2021)
and Song et al. (2021) build VPC models for raw
videos without event boundaries, but their models
still underperform those utilizing auxiliary modal-
ities. To the best of our knowledge, our work takes
the first step to utilize both transcribed speech and
event boundaries for VPC in an end-to-end manner,
and we are the first to study the robustness of VPC
models to noisy inputs with missing modalities.

Robustness to Missing Modality As multi-
modal neural networks are vulnerable to missing
modality (Ma et al., 2022), recent years have seen
a surge of studies on enhancing model robustness
on modality-incomplete data across various
multimodal tasks (Woo et al., 2022; Lee et al.,
2023; Wei et al., 2023; Yuan et al., 2023, etc). In
terms of methodology, researchers have explored
approaches such as modality fusion strategy
search (Ma et al., 2022), data augmentation in the
form of modality dropout (McKinzie et al., 2023),
and regularization objectives (Woo et al., 2022;
McKinzie et al., 2023). However, existing efforts
are limited to relatively simple classification tasks,
and model robustness to missing modality in more
complex language generation tasks like VPC is
yet to be explored. We have found that simply
applying the existing approaches in other tasks
does not achieve satisfactory results in VPC and
bridge this research gap by developing training
strategies customized for VPC in our MR-VPC
framework, which will be discussed in § 3 and § 4.

3 Methodology

3.1 Problem Formulation

An instance in a VPC dataset can be formulated
as (Vi,Ai,Ei,Ci), where V,A,E,C stand for
video frames, ASR texts, event boundaries, and
the caption, respectively. An example from the
YouCook2 (Zhou et al., 2018a) dataset is illustrated



…

<47s> <60s>

I‘ll be preparing very popular traditional salad called Fatouche. If you’d like to… 
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<67s> <89s>

pick the ends off the verdalago.   … combine lemon juice sumac garlic salt and oil in a bowl.

… …

… … …

Figure 2: The composition of an instance in the multi-
modal VPC task from the validation set of YouCook2.

in Figure 2. We assume that the video modality
V is always available at test time and the auxiliary
modalities A and E are likely to be affected by
noise in the wild. Given NA and NE as the noise
functions for A and E (e.g., random missing in the
context of our study on missing modality), respec-
tively, for a model F (V,A,E) trained on the clean
training set Dtr = {(Vi,Ai,Ei,Ci) ,1 ≤ i ≤ ntr},
where ntr is the size of the training data, our target
is to maximize the performance on the noisy test set
Dte = {(Vi,NA (Ai) ,NE (Ei) ,Ci) ,1 ≤ i ≤ nte},
where nte is the size of the test data.

3.2 MVPC Model Framework

Overview Overall, as illustrated in Figure 3, our
multimodal video paragraph captioning (MVPC)
model consists of four modules: the video encoder
Ev to encode V , the text encoder Et to encode the
concatenation of A and E, a fusion module Ef

that merges visual and textual features, and a text
decoder Dt that generates the caption C.

Video Encoder The video encoder Ev encodes
the video sequence of F frames xv ∈ RF×H×W×C ,
where H,W and C are the height, width, and the
number of channels, respectively, and outputs the
video embedding sequence Ev (xv) ∈ RF×d, where
d is the embedding size. Concretely, we use a CLIP
ViT-L/14 (Radford et al., 2021) image encoder
to encode each frame and then feed the frame
features into a 12-layer Transformer (Vaswani
et al., 2017) for temporal interaction.

Text Encoder To resolve issue-1, we expect the
model to be capable of modeling both A and E in-
puts end to end. Thus before feeding A and E into
the text encoder Et, we adopt the relative time to-
kenization (Yang et al., 2023b) to map continuous
timestamps into discrete time tokens denoting the
percentage progress. Then Et transforms the con-
catenation of the ASR sequence and event bound-
ary sequence xt consisting of n tokens in total into
the text embedding sequence Et (xt) ∈ Rn×d.

Test Modalities
YouCook2 ActivityNet

METEOR CIDEr METEOR CIDEr

V+E+A 23.11 74.13 14.09 42.29

V+A 21.05 (-2.06) 59.55 (-14.58) 12.24 (-1.85) 29.71 (-12.58)
V+E 12.46 (-10.65) 8.77 (-65.36) 12.91 (-1.18) 43.14 (+0.85)
V 6.79 (-16.32) 3.42 (-70.71) 11.64 (-2.45) 26.08 (-16.21)

Table 1: The performance of the vanilla MVPC model
on YouCook2 and ActicityNet Captions in different
modality missing settings.

Fusion Module and Text Decoder At the end
of the workflow, the text decoder Dt generates the
target caption sequence in an auto-regressive man-
ner, conditioned on the encoder embeddings pro-
duced by the fusion module Ef merging Ev (xv)
and Et (xt). Specifically, for Ef , we adopt a
parameter-free concatenation operation; for Et and
Dt, we employ the T5v1.1-base encoder-decoder
model (Raffel et al., 2020).

Weight Initialization To benefit from large-
scale pretraining, we initialize the model with
the Vid2Seq weight pretrained on YT-Temporal-
1B (Zellers et al., 2022) 2. Note that our work
differs from Vid2Seq in terms of the task context
and research goal. We aim at the VPC task that
generates textual paragraph-level captions C from
the input modalities V,A and E, where A and E
are likely to be missing, while Vid2Seq is originally
designed for the dense video captioning task where
the inputs are V and A (without considering miss-
ing modality) and the outputs are C and E. To es-
tablish a baseline for comparison, we re-implement
Vid2Seq and fine-tune its pretrained weights for the
VPC task (details in Appendix B). This allows us
to evaluate the performance improvement achieved
by our proposed framework. Note that MVPC is
not a simple extension of Vid2Seq, as our general
framework to incorporate A and E unitedly is
agnostic to the underlying structure and applies to
other vision-language foundation models.

3.3 Training Strategies of MR-VPC

As the vanilla training of MVPC does not consider
potential noise in the inference stage, it suffers from
severe performance drops facing missing modality
(issue-2), as shown in Table 1. For instance, the
absence of A results in a 65.36 (88.17% relatively)
CIDEr drop on YouCook2; the missing of E causes
a 12.58 (29.75% relatively) CIDEr decline on Ac-
itivityNet. 3 In light of this weakness, we explore

2Available at this link.
3We find that the ASR data of ActivityNet contains little

useful cues and show small negative effects, so we nullify the

https://github.com/google-research/scenic/tree/main/scenic/projects/vid2seq
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Figure 3: The overview diagram of our MVPC (multimodal video paragraph captioning) framework.

the following training strategies to enhance the
model’s resilience to missing modality (the model
trained with them is referred to as MR-VPC later).

3.3.1 DropAM: Drop Auxiliary Modalities
Since the missing modality can be viewed as a dis-
tribution shift from the training data, a fundamental
idea to enhance model robustness is simulating the
noise during training. To this end, we randomly
drop the auxiliary modalities A and E to reduce
the dependence of the model on them. Specifically,
we transform the original training set Dtr to D̂tr =

{(Vi, N̂A (Ai) , N̂E (Ei) ,Ci) ,1 ≤ i ≤ ntrain}, in
which N̂A and N̂E are the proxy noise functions
that random replace Ai and Ei with a default null
character at probabilities pA and pE , respectively:

N̂A (Ai) = {

′′, p ≤ pA
Ai, p > pA

, N̂E (Ei) = {

′′, p ≤ pE
Ei, p > pE

,

(1)

where p is a random variable uniformly drawn from
the range [0,1]. We use pA = pE = 0.5 as the value
works generally well in practice. Please see the
discussion about their effects in Appendix D.

3.3.2 DistillAM: Learning from the Teacher
with Modality-Complete Data

Solely applying DropAM turns the model training
into a multitask learning process involving sub-
tasks with different input conditions, which possi-
bly adds to the learning difficulty and compromises
the performance on modality-complete data. There-
fore, we resort to knowledge distillation (Hinton
et al., 2015), a learning paradigm that transfers the
knowledge from teacher models with better con-
ditions, such as more training data and a larger
number of parameters, to student models without
these advantages. In our problem, we consider

ASR input of ActivityNet at test time later.

the vanilla MVPC model trained on the modality-
complete training set Dtr as the teacher model Ft,
and our goal is to transfer the knowledge learned by
Ft to the MR-VPC model that likely faces missing
modality as the student model Fs. In early trials,
we have found that distilling from word-level logits
(WordKD) achieves limited performance gains in
our task. Therefore, inspired by the sequence-level
knowledge distillation (SeqKD) (Kim and Rush,
2016) studied in machine translation, we create a
new training set Dkd by replacing the ground-truth
caption C with the predictions given by Ft based
on the modality-complete data:

Dkd = {(Vi,Ai,Ei, Ft (Vi,Ai,Ei)) ,1 ≤ i ≤ ntr} , (2)

and then construct the augmented training set
Daug =Dtr⋃Dkd by merging Dkd and the original
training data Dtr. It is notable that this procedure
named DistillAM is orthogonal to the noise sim-
ulation process DropAM in § 3.3.1, so they can
be applied together, i.e., the random noise can be
injected into the augmented training data Daug in
the training phase in the way stated in § 3.3.1.

3.3.3 Connection to Prior Strategies for
Multimodal Classification Tasks

Although MASD (McKinzie et al., 2023), the state-
of-the-art approach to enhance model robustness to
missing modality in classification problems, also
takes the form of modality dropout and knowledge
distillation, it differs from our solutions in essence.
Concretely, MASD performs self-distillation,
namely aligning the predicted probabilities on
modality-complete and modalities-incomplete data
output by the same model under training. In con-
trast, we use a fixed teacher model trained on
modality-complete data, which facilitates the effi-
cient learning of the student model in the challeng-



ing VPC task. We will show the advantage of our
MR-VPC over MASD and its variant MASD+Wise-
FT (McKinzie et al., 2023) in § 4.2.2.

4 Experiments

4.1 Experimental Setup
Evaluation Protocol Following Yang et al.
(2023b), we use CIDEr (C) (Vedantam et al., 2015)
and METEOR (M) (Banerjee and Lavie, 2005)
metrics to evaluate the accuracy of generated
captions. For measuring diversity, we use 4-gram
repetition (R@4) (Xiong et al., 2018) following
Liu and Wan (2021) and Yamazaki et al. (2022a,b).
Besides these metrics based on n-gram matching
commonly used in previous works, we also report
advanced model-based metrics in § 5.1.

Benchmarks We conduct main experiments on
YouCook2 (Zhou et al., 2018a) and ActivityNet
Captions (Krishna et al., 2017), two widely stud-
ied VPC benchmarks containing paragraph-level
captions and annotated event boundaries. We re-
port the evaluation metrics on the validation set
of YouCook2 and the as-test split of ActivityNet
Captions (see Appendix A for details).

Acquisition of ASR Data For ActivityNet Cap-
tions, we adopt the ASR data provided by Iashin
and Rahtu (2020) from the YouTube ASR system.
For YouCook2, we obtain the ASR data using the
whisper-timestamped tool (Louradour, 2023) based
on Whisper (Radford et al., 2022) (the small.en
model with 244M parameters) and dynamic time
warping (Giorgino, 2009).

Model Training and Inference We train the
model for 40 epochs on YouCook2 and 20 epochs
on ActivityNet Captions using a batch size of 32.
The model is trained with the Adam (Kingma and
Ba, 2015) optimizer to minimize cross-entropy
loss with an initial learning rate of 2e-4 with
cosine annealing. For training efficiency, we freeze
the image encoder in our experiments unless
otherwise mentioned, so the number of trainable
parameters is 314M. The weight decay is 5e-2
and we clip the maximum norm of the gradient to
1.0. We uniformly sample 100 frames at resolution
224×224 pixels for the video input and the ASR
text sequence is truncated at the max length
of 1000. Temporally consistent random spatial
augmentation (Qian et al., 2021) is applied. The
inference beam search size is 4 and the repetition
penalty is 1.2. See more details in Appendix B.

Model
Training Strategies Test Modalities

DropAM DistillAM V+E+A V+E V+A V

MVPC % % 74.13/23.11 8.77/12.46 59.55/21.05 3.42/6.79
- ! % 60.40/22.67 35.17/16.94 64.87/22.54 36.73/16.53
MR-VPC ! ! 69.51/22.83 39.03/16.97 69.37/22.59 38.37/16.86

Table 2: The effect of our training strategies with differ-
ent available modalities at test time on the YouCook2
dataset. CIDEr / METEOR metrics are reported.

Evaluation Settings We mainly report results in
three representative test settings: (1) the modality-
complete setting where the auxiliary modalities
A and E are not affected by any noise; (2) the
video-only setting where both A and E are miss-
ing, which is a harsh but realistic setting (in the
real world, most users do not enter the video’s
event boundaries E; A is also possibly missing,
e.g., when the ASR system does not support the
conversation language); (3) the random-missing
setting where A and E are both randomly missing
at the probability of 50% independently.

Baselines We compare our models with a wide
array of baselines and categorize them according
to the input modalities in their original settings:
● V: The Vid2Seq model finetuned on only

the video modality, named Vid2Seq (V); Soft-
NMS (Bodla et al., 2017), ESGN (Mun et al., 2019),
Memory Transformer (Song et al., 2021), and VPC-
Sum (Liu and Wan, 2021); MART, MARTCOOT,
Vanilla Transformer, and Transformer-XL. The
last four models use event boundaries generated by
ESGN at test time as done in Liu and Wan (2021).
● V+E: VLTinT (Yamazaki et al., 2022b), VL-

Cap (Yamazaki et al., 2022a), MART (Lei et al.,
2020), MARTCOOT (Ging et al., 2020), Vanilla
Transformer (Zhou et al., 2018b), and Transformer-
XL (Dai et al., 2019).
● V+A: Vid2Seq (Yang et al., 2023b).

4.2 Results and Analysis
4.2.1 Comparing MVPC and MR-VPC
Our training strategies remarkably boost the
model’s robustness to missing modality while
maintaining the performance in the modality-
complete setting. Before comparing our model
with baselines, we first examine the effectiveness
of our training strategies described in § 3.3.
As the results displayed in Table 2, the vanilla
MVPC model without these training strategies
is extremely susceptible to missing modality at
test time, but the MR-VPC model equipped with
these techniques shows substantially improved
robustness to missing modality with only minimal



BERTScore↑ YouCook2 ActivityNet

MVPC 82.37 91.72
MR-VPC 91.30 94.16

Table 3: The average BERTScore similarities between
captions generated in modality-complete and video-only
test scenarios.
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Figure 4: Visualization of the SimCSE embeddings of
the captions generated under modality-complete and
modality-missing (video-only) scenarios.

performance sacrifice on the modality-complete
test data. For instance, MVPC disastrously fails
in the video-only setting (the CIDEr falls to 3.42),
while MR-VPC yields a CIDEr value of 38.37.
We also affirm the validity of each strategy by
comparing MR-VPC with the model trained with
only the DropAM strategy (the last two rows of
Table 2). As shown, although DropAM boosts the
model robustness on modality-incomplete data, it
significantly hurts the performance on modality-
complete data (the CIDEr declines from 74.13
to 60.40); DistillAM not only further advances
the robustness to missing modality, but also help
preserve the performance in the modality-complete
setting, as it raises the CIDEr metric to 69.51.

Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 74.13 23.11 0.82 43.14 13.91 0.67
MR-VPC (Ours) 69.51 22.83 0.57 41.01 13.84 0.51

Baselines
Vid2Seq 68.25 23.01 0.75 30.77 12.51 0.82
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.57
VLTinT 48.70 17.94 4.29 31.13 17.97 4.75
VLCap 49.41 17.95 5.16 30.29 17.48 4.18
MART 35.74 15.90 4.39 22.16 15.57 5.44
MARTCOOT 46.06 18.17 6.30 28.19 15.99 6.64
Vanilla Trans. 38.00 11.55 - 21.33 15.54 7.45
Memory Trans. - - - 26.55 15.64 2.75
Trans.-XL 26.40 14.80 - 21.71 14.91 8.79
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54

Table 4: Evaluation results under the modality-complete
setting. ↑ indicates larger is better and ↓ indicates lower
is better. The best result is highlighted in bold.

MR-VPC shows higher prediction consistency
between modality-complete and modality-
missing scenarios. To intuitively understand the
impact of our training strategies, we compare the
BERTScore (Zhang et al., 2019) similarities be-
tween the captions generated on modality-complete
and video-only data by the vanilla MVPC and
MR-VPC models. As listed in Table 3, MR-VPC
exhibits substantially higher similarity scores,
which indicates that it is capable of generating more
consistent predictions, regardless of the availability
of auxiliary modalities. Furthermore, we visualize
the SimCSE embeddings (Gao et al., 2021) 4

of the generated captions on YouCook2 using
t-SNE (Van der Maaten and Hinton, 2008) in Fig-
ure 4, where we observe that the captions generated
by MVPC form two distinct clusters depending on
whether modality-missing occurs, but those pro-
duced by MR-VPC appear in pairs and seem hard
to distinguish based on the test scenario. The visual-
ization further proves that DropAM and DistillAM
contribute to the consistency of the predictions.

4.2.2 Comparison with Advanced Systems
Our MVPC and MR-VPC obtain superior
performance in the modality-complete setting.
We present the evaluation results in the modality-
complete setting in Table 4 and observe that our
models markedly advance the state-of-the-art on
most metrics. In terms of captioning accuracy, we
elevate the CIDEr metric from 68.25 (Vid2Seq)
to 74.13 on YouCook2 and from 31.13 (VLTinT)
to 43.14 on ActivityNet; regarding diversity, we
achieve the lowest R@4 repetition scores below 1.0.
These results support the necessity to fully leverage

4We use the unsup-simcse-roberta-large model.



Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 3.42 6.79 2.31 26.08 11.64 0.60
MR-VPC (Ours) 38.37 16.86 0.57 31.37 12.06 0.58

Baselines
Vid2Seq 3.39 6.81 2.80 30.01 12.18 0.73
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.58
Memory Trans. - - - 26.55 15.64 2.75
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54
SoftNMS 18.18 13.67 4.94 22.58 14.93 10.17
ESGN 21.85 15.74 6.51 17.01 13.37 4.94
Vanilla Trans. 20.95 15.11 7.04 16.88 13.37 2.85
Trans.XL 14.24 12.67 3.20 20.73 14.89 7.45
MART 16.56 13.44 4.63 20.16 14.94 6.09
COOT 19.67 14.21 5.99 21.83 14.67 1.54

Table 5: Evaluation results under the video-only setting.

Model
YouCook2 ActivityNet

C ↑ M ↑ R@4 ↓ C ↑ M ↑ R@4 ↓

MVPC (Ours) 33.31 15.70 1.55 33.55 12.86 0.59
MR-VPC (Ours) 51.13 20.15 0.74 37.05 13.01 0.56

Baselines
Vid2Seq 33.46 14.19 1.46 29.93 12.48 0.75
Vid2Seq (V) 36.33 16.79 0.79 28.87 12.38 0.58
VPCSum 23.92 15.11 0.65 24.33 15.84 1.54

Table 6: Results under the random-missing setting.

the auxiliary modalities A and E (issue-1) and the
effectiveness of our MVPC model frameowork.
We notice that VLTinT and some earlier baselines
do better in terms of METEOR on AcitivyNet than
Vid2Seq and our models, but we contend that ours
and Vid2Seq are better models for two reasons:
(1) CIDEr is a more reasonable metric because it
accounts for the importance of different n-grams
and has shown higher consistency with human
evaluation (Shi et al., 2022); (2) model-based
metrics in § 5.1 and human study results in § 5.3
further corroborate the advantages of our models.

Our MR-VPC model performs significantly bet-
ter in modality-missing settings than previous
SOTA models. Given the figures displayed in
Table 5 and Table 6, MR-VPC yields the best per-
formance in the video-only and random-missing
setting with substantial margins over baselines in-
cluding those specially trained for the video-only
setting such as Vid2Seq (V) (Yang et al., 2023b),
VPCSum (Liu and Wan, 2021), and Memory Trans-
former (Song et al., 2021). This suggests that MR-
VPC fulfills our objective of developing a robust
VPC model capable of leveraging available auxil-
iary modalities while maintaining robustness even
when they are missing in real-world scenarios.

Our MR-VPC shows the best cross-dataset
generalization performance on the video-only
Charades dataset. To further examine the

Model CIDEr BERTScore BARTScore

MVPC 6.79 87.08 -4.56
MR-VPC 8.74 87.22 -4.47
Vid2Seq 4.74 86.83 -4.62
Vid2Seq (V) 6.01 87.00 -4.48

Table 7: Zero-shot evaluation results on Charades (the
model weights are trained on ActivityNet Captions).

Method
Test Modalities

Avg.
V+E+A V+E V+A V

WordKD 64.50 30.62 65.33 27.21 46.92
MASD 67.95 32.98 68.72 33.47 50.78
MASD+WiSE-FT 68.90 34.96 69.54 32.54 51.49
MR-VPC (Ours) 69.51 39.03 69.37 38.37 54.07

Table 8: Comparison with other robustness-oriented
methods with different available modalities at test time
on YouCook2. CIDEr metrics are reported.

cross-dataset generalization capability, we assess
the models trained on ActivityNet Captions on the
test set of the Charades (Sigurdsson et al., 2016),
where only the video modality is available. As
the results listed in Table 7, MR-VPC outperforms
baselines in the zero-shot scenario where domain
shift and missing modality occur simultaneously,
further validating the strength of our approach.

Our MR-VPC beats the SOTA robustness-
oriented training methods in classification prob-
lems. As shown in Table 8, MR-VPC remarkably
outperforms the state-of-the-art solutions towards
robustness to missing modality in classification
problems, i.e., MASD and MASD+Wise-FT (McK-
inzie et al., 2023). This illustrates that our cus-
tomized approaches for the VPC task make signifi-
cant strides compared to simply incorporating ex-
isting techniques studied for other tasks previously.
Besides, we observe that replacing the SeqKD with
Word-KD leads to significant performance drops
in all scenarios, which supports the rationality of
using SeqKD in our DistillAM component.

4.3 Qualitative Results

Besides the above quantitative results, we provide
qualitative evidence to support the superiority
of our models. First, we find that MVPC and
Vid2Seq tend to produce degenerated captions
in the modality-missing setting, whereas the
prediction of MR-VPC remains almost unchanged,
as exemplified by the instance given in Table 14
in Appendix H. Moreover, even in the modality-
complete setting, the Vid2Seq and VLTinT
baselines often predict concepts that are not



Model
YouCook2 ActivityNet Captions

PPL ↓ BERT ↑ BART ↑ PPL ↓ BERT ↑ BART ↑ EMS ↑ EMSref ↑

VLTinT (Yamazaki et al., 2022b) 21.99 89.01 -3.91 30.97 88.03 -3.94 28.94 36.88
Vid2Seq (Yang et al., 2023b) 15.89 90.58 -3.08 24.68 88.71 -3.78 29.54 36.99
MVPC (Ours) 15.50 90.56 -3.08 18.77 88.98 -3.56 29.37 37.21
MR-VPC (Ours) 15.11 89.51 -3.49 17.17 88.85 -3.58 29.10 36.90

Table 9: The model-based metrics evaluated under the modality-complete setting. ↑ indicates higher is better and
↓ indicates lower is better. We highlight the best model in bold. We do not report EMScore on YouCook2 as the
captions of YouCook2 are longer than the max length limit of CLIP, the backbone of the EMScore metric.

Noise Type Low-Quality ASR ASR Sentence Deletion Event Deletion Boundary Perturbation Generated Boundary

Metric CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART CIDEr BERT BART

Vid2Seq 60.39 90.35 -3.12 48.01 89.62 -3.31 68.25 90.58 -3.08 68.25 90.58 -3.08 68.25 90.58 -3.08
MVPC (Ours) 59.58 90.36 -3.13 48.95 89.66 -3.29 63.43 90.54 -3.11 72.60 90.57 -3.07 61.71 90.58 -3.07
MR-VPC (Ours) 63.69 90.63 -3.08 53.59 90.04 -3.24 70.72 90.85 -3.02 69.11 90.86 -3.03 67.02 90.84 -3.03

Table 10: The evaluation results under five forms of noise in auxiliary modalities.

Group1
MVPC VLTinT Equal

56.0% 20.7% 23.3%

Group2
MR-VPC VLTinT Equal

56.0% 18.7% 25.3%

Table 11: The average percentage of human preferences.

present in the video; in contrast, our MVPC and
MR-VPC model produces fewer such hallucina-
tions, as illustrated in Figure 5 in Appendix H.

5 Further Evaluation

5.1 Evaluation with Model-Based Metrics

Besides the n-gram-based metrics reported in
§ 4.2, we further compare our models with
competitive baselines (Vid2Seq and VLTinT)
using the following model-based metrics (details
in Appendix C), as they align better with human
preference (Shi et al., 2022): (1) Perplexity (PPL)
for fluency; (2) BERTScore (Zhang et al., 2019)
and BARTScore (Yuan et al., 2021) measuring
prediction-reference similarity; (3) EMScore (Shi
et al., 2022) for the matching extent of the predic-
tion and the video frames and its extension EMSref.
We present the results in Table 9 and find that our
MVPC and MR-VPC obtain the best performance
across most of these metrics. Notably, although
VLTinT reaches the highest METEOR on Activ-
ityNet, it falls behind our models and Vid2Seq on
these metrics. We will further show the advantage
of our models through human evaluation in § 5.3.

5.2 Generalization on Other Forms of Noise

Besides completely missing, the auxiliary modali-
ties in the real world may also be affected by other
weaker forms of noise, such as variations in ASR

quality between the training and test phases. We
further test our models and VidSeq under five types
of noise: lower ASR quality and sentence deletion
for A; event deletion, boundary perturbation, and
generated boundaries for E (details in Appendix F).
We present the results in Table 10 and see that al-
though these forms of noise are not seen during
training, our MR-VPC shows the best robustness
in most cases, which again substantiates the gen-
eralizability of our training strategies. We believe
that we will achieve even better robustness to these
types of noises if we consider them in the choice of
the proxy noise functions N̂A and N̂E in DropAM.

5.3 Human Evaluation

We conduct two groups of human evaluation,
in which three annotators compare the captions
generated by VLTinT and MVPC (or MR-VPC)
in the modality-complete setting for 50 randomly
sampled videos from the AcitivityNet Captions test
set. They need to choose a caption showing higher
consistency with the video content or mark that two
captions are equally good (details in Appendix I).
As shown in Table 11, our MVPC and MR-
VPC significantly surpass VLTinT in pair-wise
comparison, which again proves their superiority.

6 Conclusion

We present MR-VPC, a multimodal video
paragraph captioning model capable of utilizing
three input modalities (video, transcribed speech,
and event boundaries) and keeping robust in the
presence of missing modality. The MR-VPC frame-
work comprises two key contributions: (1) the
MVPC architecture, which seamlessly processes
inputs from all three modalities in an end-to-end



manner; (2) the incorporation of two training tech-
niques, DropAM and DistillAM, which enhance the
model’s robustness when faced with missing modal-
ity. Through exhaustive experimental evaluation
on YouCook2 and ActivityNet Captions datasets,
we demonstrate the superiority of MR-VPC in
various test scenarios, highlighting its practicality
and efficacy in addressing the challenges of video
paragraph captioning in real-world settings.

Limitations

We discuss the limitations of our work as follows.
(1) Despite the outstanding performance of MR-
VPC in modality-missing settings, it slightly lags
behind our vanilla MVPC in the modality-complete
setting. This is comprehensible because the opti-
mization of the regularization targets introduced
in DropAM and DistillAM may conflict with the
learning on modality-complete data to some extent.
We will conduct more explorations to reduce this
gap. (2) We primarily study the absence (discussed
in most of the main text) and other forms of
noise (studied in § 5.2) in two main auxiliary
modalities, namely transcribed speech and event
boundaries, which do not cover all possible harsh
test conditions in the wild. For future work, we
intend to investigate the robustness of VPC models
to other forms of data noise, such as video frame
blurring, for a more comprehensive evaluation.

Ethics Statement

We believe that our proposal would contribute to
the robustness and security of video captioning
systems deployed in the open-world environment,
as the absence and quality reduction of auxiliary
modalities are common in practice. Our proposal
also applies to other multimodal natural language
generation tasks, e.g., multimodal machine trans-
lation, on which we plan to conduct more studies
in the future. Moreover, all pretrained models used
in this work are publicly available, ensuring trans-
parency and accessibility. Although we do not
expect any direct negative consequences resulting
from this paper, we hope to continue to build on
our MR-VPC framework and develop stronger and
safer multimodal VPC models in our future work.
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A Dataset Statistics

We conduct main experiments on YouCook2 (Zhou
et al., 2018a) and ActivityNet Captions (Krishna
et al., 2017). YouCook2 consists of 1,333 videos in
the training set and 457 ones in the validation set.
Each instance in YouCook2 has 7.7 event segments
on average. ActivityNet Captions comprises
10,009 samples in the training set and 4,917 ones
in the original validation set. Following the prac-
tice of Lei et al. (2020) and most of the baselines,
we split the validation set to the as-val set of 2,460
videos and the as-test split of 2,457 videos. Each
sample in ActicityNet Captions has 3.65 event seg-
ments on average. The average video length is 2.0
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YouCook2. Also, we test the cross-dataset perfor-
mance on the test set of the Charades (Sigurdsson
et al., 2016) dataset consisting of 1,760 videos.
The average video length of Charades is 30s.

B More Implementation Details

Vid2Seq and Vid2Seq (V) We notice that the
original Vid2Seq paper (Yang et al., 2023b) also
reports the performance of Vid2Seq on the VPC
task, but we have confirmed that the results are ob-
tained by removing timestamp outputs from dense
captioning outputs and they are inferior to the re-
sults we get by fine-tuning the Vid2Seq weight
specifically on the VPC task where the inputs are
V and A. Therefore, we report our fine-tuning re-
sults as the performance of Vid2Seq in the main
text. Moreover, to get a competitive baseline in the
video-only setting, we fine-tune the Vid2Seq pre-
trained weight in this setting and report the results
as the performance of Vid2Seq (V) in the main text.
The training schemes for Vid2Seq and Vid2Seq (V)
follow the setup stated in § 4.1.

Our MVPC and MR-VPC During inference,
we apply a length penalty of 1.0 for YouCook2
and ActivityNet Captions, and a length penalty of
0.6 for Charades. In the DistillAM strategy, when
utilizing the MVPC model to generate training data
for training the MR-VPC model, we keep the same
inference hyperparameters. Notably, we notice that
unfreezing top CLIP layers has minimal impact
on the performance of MVPC and VidSeq in our
preliminary experiments, but the choice signifi-
cantly boosts the performance of MR-VPC. Thus,
we unfreeze the last six CLIP layers in the video
encoder when training MR-VPC models. In this
situation, the total trainable parameters are 390M.

C Details of Model-Based Metrics

We use the following model-based automatic eval-
uation metrics:

• Perplexity (PPL): To assess the fluency of
the generated paragraph-level captions, we
adopt the perplexity score produced by a pre-
trained language model gpt2-large (Radford
et al., 2019) (774M parameters).

• BERTScore (Zhang et al., 2019) and
BARTScore (Yuan et al., 2021) are two text
generation metrics based on the similarities
of BERT (Devlin et al., 2019) embed-
dings and the generation probabilities of the

BART (Lewis et al., 2020) model, respectively.
We use them for evaluating the consistency
between generated captions and reference cap-
tions. Specifically, for BERTScore, we use the
F1 score given by the roberta-large (Liu et al.,
2019) pretrained model (335M parameters);
for BART score, we use the facebook/bart-
large-cnn model (406M parameters) trained
on ParaBank2 (Hu et al., 2019). 5

• EMScore (Shi et al., 2022) is an automatic
video captioning metric derived by match-
ing the video frame embeddings and the
text token embeddings produced by the
CLIP (Radford et al., 2021) model. Besides
the reference-free version EMScore (EMS
for short), we also report the reference-based
version EMSref additionally considering the
similarity of the prediction and the reference
annotation. Concretely, we use the clip-
vit-base-patch32 pretrained model (151M
parameters) following Shi et al. (2022).

D Effect of Drop Rates pA and pE

Recall that pA and pE are the probabilities to be
nullified for the ASR modality A and the event
boundary modality E in our DropAM strategy in
§ 3.3.1. We enumerate the values of these two
hyperparameters (called drop rates) in DropAM
and report the CIDEr results on the validation set
of YouCook2 in Table 12. We observe that large
drop rates hamper performance in the modality-
complete setting and small drop rates result in poor
performance in the modality-incomplete setting.
Generally, setting pA and pE around 0.5 strikes
the balance relatively well and performs the best
in terms of the average performance with different
available modalities. Moreover, we have made
similar observations on ActivityNet Captions in
preliminary explorations. Therefore, we use pA =
pE = 0.5 in our main experiments.

E Comparison with Yang et al. (2023a)

Concurrent to our work, Yang et al. (2023a) extend
Vid2Seq to incorporate both A and E for VPC
(called “video chapter generation given ground-
truth boundaries” in their paper). Specifically,
they trim long videos into short clips given the
ground-truth event boundaries E, train Vid2Seq on
the short clips for sentence-level captioning, and

5Available at https://github.com/neulab/BARTScore.

https://github.com/neulab/BARTScore


pA pE

Test Modalities
Avg.

V+E+A V+E V+A V

0.1 0.1 23.15 13.50 21.80 10.76 17.30
0.3 0.3 23.04 15.76 22.52 15.39 19.18
0.5 0.5 22.67 16.94 22.54 16.53 19.67
0.7 0.7 22.24 17.10 22.30 17.03 19.67
0.9 0.9 19.86 17.52 19.84 17.57 18.70

Table 12: The effect of the choice of drop rate pA and
pE with different available modalities at test time on
the YouCook2 dataset. Only the DropAM strategy is
applied and METEOR metrics are reported.

Model
Test Modalities

Avg.
V+E+A V+E V+A V

VidSeq-Concat 22.35 14.08 21.92 12.12 17.62
MR-VPC (Ours) 22.83 16.97 22.59 16.86 19.81

Table 13: Comparison with Vid2Seq-Concat (Yang
et al., 2023a) on YouCook2. METEOR metrics are
reported. When testing Vid2Seq-Concat without E,
we trim the video into seven consecutive clips of the
same length (seven is the average number of events in
YouCook2).

concatenate the predictions on each clip to form
paragraph-level captions. The proposal by Yang
et al. (2023a) (named as “Vid2Seq-Concat” by us)
has two weaknesses: (1) Vid2Seq-Concat simply
divides the VPC task into video captioning on short
clips and fails to model the inter-event dependence
in each long video; (2) the video and ASR input of
Vid2Seq-Concat is determined by the given event
boundaries, which makes the system vulnerable
when the event boundaries are noisy or absent. In
comparison, our MVPC and MR-VPC schemes
model all input modalities in an end-to-end man-
ner, bringing two key advantages: (1) effective
modeling of inter-event dependence in long videos;
(2) no information loss in A and V when E is noisy.
The experimental results on YouCook2 in Table 13
empirically validate the advantage of our proposals
over Vid2Seq-Concat (Yang et al., 2023a)6.

F Noise Besides Missing Modality

In § 5.2, we discuss five types of noise in auxiliary
modalities. Here are the details of them:

• Low-quality ASR: In real-world scenarios,
ASR systems may have hardware limitations,
resulting in inferior ASR data compared to the
ASR texts used during training generated by
state-of-the-art ASR models. To simulate this

6We uniformly sample 15 frames for each clip in our im-
plementation of Vid2Seq-Concat to keep the total input frames
of each video close to 100.

situation, we replace the Whisper small.en
model (244M parameters) with the tiny.en
model (39M) and reduce the inference beam
size from 5 to 1.

• ASR Sentence Deletion: To simulate the cor-
ruption of ASR data, we randomly delete 50%
of all sentences in each test instance.

• Event Deletion: In order to simulate the cor-
ruption of event boundary data, we randomly
delete 50% of the events in the event boundary
data of each test instance.

• Boundary Perturbation: To introduce per-
turbations to the event boundaries, we add
random uniform noise ranging from -5 to +5
units (percentage points) to each timestamp in
the event boundaries of each instance.

• Generated Boundary: Considering that
event boundaries predicted by models are
more realistic noisy inputs than perturbed
ground-truth boundaries, we leverage the
PDVC (Wang et al., 2021) dense captioning
model to generate event boundaries.

G Software and Hardware Requirements

We implement our code based on the PyTorch
(Paszke et al., 2019) and HuggingFace Transform-
ers (Wolf et al., 2020) Python libraries. All experi-
ments in this paper are conducted on a server with
8 NVIDIA A40 GPUs (48 GB memory per GPU).

H Qualitive Example

We present a qualitative case study in Figure 5
to highlight the strengths of our MVPC and MR-
VPC models in the modality-complete setting. As
shown, VidSeq and VLTinT baselines tend to pro-
duce hallucinations and predict concepts inconsis-
tent with the video content. For example, although
there is only one man moving and performing mar-
tial arts in the video, Vid2Seq predicts “The men
continue moving around one another” and VLTinT
generates “another man is seen walking around
him”. In contrast, our MVPC and MR-VPC mod-
els show almost no hallucinations. The generated
captions are more accurate and closely aligned with
the content of the video.



Reference: A man is seen speaking to the camera and pans out into more men standing behind him. The 
first man then begins performing martial arts moves while speaking to he camera. He continues moving 
around and looking to the camera.
MVPC (Ours): A man is talking to the camera in a gym. Several martial arts are shown as he demonstrates 
them. A man is then seen performing several martial arts moves while the camera captures him from 
several angles.
MR-VPC (Ours): A man in a white t-shirt is talking to the camera. He is doing several martial arts moves on 
the mat. He does several kicks on the mat.
Vid2Seq: A man is seen speaking to the camera and leads into several shots of people performing martial 
arts moves. The men continue moving around one another while the camera captures their movements.
VLTinT: A man is seen speaking to the camera while standing in front of a large crowd. He is talking to the 
camera while another man is seen walking around him. He then does several martial arts moves while the 
camera captures his movements.

  

Figure 5: The captions produced by our models and baselines in the modality-complete setting on an ActivityNet
Captions test sample (id: “bXdq2zI1Ms0”). The wrongly predicted concepts are highlighted in red by the author.

Model Predictions Modality-Complete Setting Video-Only Setting

Reference pick the ends off the verdalago. combine lemon juice sumac garlic salt and oil in a bowl. chop lettuce and place it in a bowl. ⋯

Vid2Seq
wash the leaves of verdolago. add lemon juice sumac crushed
garlic salt and olive oil to a bowl and mix. ⋯

um, i’ma add some sea salt to the bowl. add some black
pepper and mix it well. ⋯

MVPC
wash the pita bread slices. mix lemon juice sumac garlic salt and
olive oil in a bowl. ⋯

tv.sv.svs.svv.svv on svvvm.svvm on svhvm on the svvm.

MR-VPC
wash the romaine lettuce leaves. add lemon juice sumac crushed
garlic salt and olive oil to a bowl. ⋯

wash the romaine lettuce leaves. add lemon juice sumac
crushed garlic salt and olive oil to a bowl. ⋯

Table 14: The predictions given by the models on a YouCook2 instance (id: “xHr8X2Wpmno”) in the modality-
complete setting (the second column) and the video-only setting (the third column). We only show the first two
sentences of the predictions due to the limit of space and the degenerated predictions are highlighted in red.

Figure 6: The human annotation interface.

I Details of Human Evaluation

Three voluntary annotators, who are graduate
students fluent in English, are asked to choose a
caption that they deem more coherent with the
video content from a pair of model predictions
or choose the “equal” option if they consider
the two predictions to be equally good in terms
of coherence. The data collection protocol is
approved by an internal ethics review. We depict

the layout of the annotation webpage in Figure 6.
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