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ABSTRACT

The mainstream paradigm of speech emotion recognition
(SER) is identifying the single emotion label of the entire
utterance. This line of works neglect the emotion dynam-
ics at fine temporal granularity and mostly fail to leverage
linguistic information of speech signal explicitly. In this pa-
per, we propose Emotion Neural Transducer for fine-grained
speech emotion recognition with automatic speech recog-
nition (ASR) joint training. We first extend typical neural
transducer with emotion joint network to construct emotion
lattice for fine-grained SER. Then we propose lattice max
pooling on the alignment lattice to facilitate distinguishing
emotional and non-emotional frames. To adapt fine-grained
SER to transducer inference manner, we further make blank,
the special symbol of ASR, serve as underlying emotion indi-
cator as well, yielding Factorized Emotion Neural Transducer.
For typical utterance-level SER, our ENT models outperform
state-of-the-art methods on IEMOCAP in low word error
rate. Experiments on IEMOCAP and the latest speech emo-
tion diarization dataset ZED also demonstrate the superiority
of fine-grained emotion modeling. Our code is available at
https://github.com/ECNU-Cross-Innovation-Lab/ENT.

Index Terms— Speech emotion recognition, speech
emotion diarization, automatic speech recognition

1. INTRODUCTION

Speech emotion recognition (SER) aims to identify emotional
states of human speech signals. Many works follow the recipe
of classifying the whole utterance into single emotion cate-
gory [1, 2, 3, 4, 5, 6]. Fueled by various datasets containing
emotional labels at utterance level [7, 8], such sequence-to-
label methods have made great progress in recent years. How-
ever, emotional states inherently exhibit diverse temporal dy-
namics, often leading to alternating shifts between emotional
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and non-emotional states within a single utterance [9]. Con-
sequently, recognizing emotions at a fine temporal granularity
is desirable for better emotion understanding [10, 11].

For fine-grained SER, another line of previous works con-
sider this task as a sequence-to-sequence problem. These
methods can be thought of as aligning frames and emotional
labels in a weakly supervised manner. Frame-wise meth-
ods simply assign overall emotional label to each frame [12]
while segment-wise methods identify emotional regions ac-
cording to contribution of salient parts with attention mecha-
nism [13]. Connectionist temporal classification (CTC) meth-
ods [14] first construct emotion sequence heuristically and
then align emotionally relevant segments within the utterance
automatically [9]. Though driven by the common motivation
for fine-grained SER, these approaches only consider acous-
tic information of speech signals and evaluate performance at
utterance level. Thanks to the latest proposed benchmark of
speech emotion diarization [10], the frontier of distinguishing
emotions at a fine temporal granularity is to be uncovered.

Motivated by the nature of neural transducer for sequence
alignment conditioning on both linguistic tokens and acoustic
units [15, 16], we explore SER and fine-grained SER based on
transducer models with automatic speech recognition (ASR)
joint training. To date, recent paradigms for joint SER and
ASR at utterance level include cascading off-the-shelf ASR
model [17] as well as adopting multi-task learning frame-
work, where intermediate [18, 19] or task-specific output lay-
ers [20] are supervised by CTC loss. Despite the huge suc-
cess of transducer family in the field of ASR [15, 16, 21],
existing extension on RNN-T for additional SER function-
ality solely focuses on modifying target transcriptions with
emotion tags [22]. Moreover, these ASR-based methods view
SER as a typical utterance-level classification problem, disre-
garding the temporal granularity of emotion.

In this paper, we aim to bridge the gap between ASR-
based SER and fine-grained SER, allowing generating rich
transcripts along with emotion synchronously. We propose
Emotion Neural Transducer (dubbed ENT) for fine-grained
speech emotion recognition with ASR joint training. We first
build the emotion joint network upon the typical acoustic

ar
X

iv
:2

40
3.

19
22

4v
1 

 [
cs

.S
D

] 
 2

8 
M

ar
 2

02
4

https://github.com/ECNU-Cross-Innovation-Lab/ENT/


encoder and vocabulary predictor and thus enable modeling
emotion categorical distribution through the alignment lattice
as standard neural transducer [15]. Since fine-grained SER
operates under a a weakly-supervised learning paradigm,
we propose lattice max-pooling loss for the emotion lattice
to distinguish emotional and non-emotional timestamps au-
tomatically. Motivated by the inference manner of neural
transducer, we further extend emotion neural transducer to
the factorized variant (called FENT). The key concept behind
FENT is to utilize the blank symbol as both a time separa-
tor and an underlying indicator of emotion. Specifically, we
disentangle emotion and blank prediction from vocabulary
prediction with separate predictors and share the predictor
for both blank and emotion prediction. Our proposed ENT
models outperform previous state-of-the-arts on the bench-
mark IEMOCAP dataset with low word error rate. Moreover,
we validate fine-grained emotion modeling with ASR on the
newly proposed emotion diarization dataset ZED.

2. NEURAL TRANSDUCER

Standard neural transducer consists of three components, the
acoustic encoder, prediction network and joint network [15,
16]. Considering the acoustic input x with duration T and
target label sequence y with length U , the acoustic encoder
takes acoustic features x≤t as input and produces hidden fea-
tures ht for each timestamp. The prediction network gener-
ates label representations gu conditioning on previous tokens
y≤u. The joint network integrates the outputs of acoustic en-
coder and prediction network as zt,u to compute vocabulary
label distribution. The procedure can be formulated as

ht = Encoder(x≤t)

gu = Predictor(y≤u)

zt,u = Joint(ht, gu)

(1)

Then the probability of next token can be computed as

P (yu+1 | x≤t, y≤u) = softmax(zt,u). (2)

To address the length difference between acoustic features
x and token sequences y, transducer models add a special
blank symbol to the vocabulary for alignment and optimize
log probability over all possible alignments as

Ltrans = −log
∑

α∈β−1(y)

(P (α | x)), (3)

where α denotes the alignment, each containing T+U to-
kens and β is the mapping from alignment to target sequence
by removing blank symbols.

3. EMOTION NEURAL TRANSDUCER

In this section, we present two key components of ENT and
subsequently extend it to its factorized variant FENT. First,
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Fig. 1. Emotion Neural Transducer.

we construct the emotion joint network to integrate represen-
tations from the encoder and predictor to yield emotion lat-
tice. To further enhance emotional and non-emotional aware-
ness at temporal granularity, we then devise lattice max pool-
ing loss to the generated emotion lattice. Next, we make the
blank symbol work as an emotion indicator for FENT by dis-
entangling blank from vocabulary and meanwhile sharing the
same predictor for both blank and emotion prediction.

3.1. Joint Emotion Prediction

To integrate both acoustic and linguistic tokens for emotion
recognition at a fine temporal granularity, we build emotion
joint network upon the typical acoustic encoder and vocab-
ulary predictor (Figure 1). Formally, the emotion represen-
tation zEt,u given speech and text history can be obtained by
substituting jointE into Equation 1. Similar to standard neu-
ral transducer modeling sequence alignment via lattice [15],
our emotion joint network models emotion emission proba-
bility through the T × U alignment lattice. As shown in Fig-
ure 1, each node pt,u denotes the emotion probability distri-
bution having output u tokens by frame t, where pkt,u is the
probability of emotion k with darker color indicating higher
probability, orange/grey denoting emotional/non-emotional.

3.2. Lattice Max Pooling

Given the utterance-level emotion label k∗, our goal is to
identify the emotional and non-emotional frames automati-
cally through the lattice. Inspired by max pooling loss used
in keyword spotting [23, 24], we extend the frame-level max
pooling loss on the emotion lattice, thus leveraging acoustic
and linguistic alignment. For each utterance, we select the
node with the highest predicted posterior probability of target
emotion pk

∗

t,u and the node with the minimum non-emotional
or neutral category probability pk

−

t,u. In Figure 1, the selected
nodes are indicated by dashed borderline. Our proposed lat-
tice max pooling loss can be formulated as

Llattice = −logmax
t,u

(pk
∗

t,u)− logmin
t,u

(pk
−

t,u). (4)
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Fig. 2. Factorized Emotion Neural Transducer.

From the view of positive and negative samples as max
pooling loss, the first term optimizes the most positive frame
while the second term selects the hardest negative sample
through the emotion lattice. See Appendix A for variants.

To maintain the capability of conventional SER at utter-
ance level, we do mean pooling for the representations from
acoustic encoder and predictor, optimized by cross entropy
loss Lemotion at utterance level.

3.3. Factorized Emotion Neural Transducer

Our intuition for the factorized variant is based on the natural
inference manner of neural transducer. At each timestamp,
the standard transducer model consumes one frame and then
outputs multiple non-blank tokens until the blank is emitted.
We assume the blank symbol as accumulation of both acous-
tic and linguistic information and thus we allocate temporal
emotion awareness to blank representations. Inspired by re-
cent advances in language model adaptation [21, 25], we first
disentangle blank from vocabulary prediction by using two
separate predictors. The overall architecture of FENT is de-
scribed in Figure 2. Specifically, the vocabulary predictorV

is dedicated to predicting label vocabulary representations gVu
excluding blank while the blank predictor predictorB pro-
duces blank representations gBu as the right part of Figure 2.
Then the corresponding joint network fuses acoustic features
ht with predictor outputs similar to Equation 1, yielding zVt,u
and zBt,u respectively. The whole vocabulary label distribution
can be computed by softmax and concatenation as

P (yu+1 | x≤t, y≤u) = softmax([zBt,u; z
V
t,u]). (5)

To bias the blank symbol towards emotion, we employ a
shared predictor for emotion and blank prediction and adopt
aforementioned emotion joint network as shown in left part
of Figure 2. For each time step during inference, the acoustic
encoder takes one frame as input and the vocabulary predictor
outputs the most probable tokens iteratively until the blank is
emitted. At this point, the emotion joint network fuses acous-
tic and blank representation to predict current emotion.

Method Year WA (%) UA (%)

Wav2vec2-PT [1] 2021 67.90 -
Corr Attentive [2] 2023 - 70.01
DCW+TsPA [3] 2023 72.08 72.17
Shiftformer [4] 2023 72.10 72.70
MSTR [5] 2023 70.60 71.60
EmotionNAS [6] 2023 69.10 72.10

ENT (ours) 2023 72.43 73.88
FENT (ours) 2023 71.84 72.37

Table 1. Comparison with utterance-level SER methods us-
ing wav2vec 2.0 as feature extractor on IEMOCAP.

4. EXPERIMENTS

In this section, we first demonstrate the superiority of ENT
models on the benchmark dataset IEMOCAP for utterance-
level SER. Next we validate the capability of fine-grained
speech emotion recognition on the speech emotion diariza-
tion dataset ZED and meanwhile ablate key components.

4.1. Experimental Setup

Dataset and evaluation. Interactive emotional dyadic mo-
tion capture database (IEMOCAP) [7] is a widely-used
benchmark SER dataset, where each utterance is annotated
with the transcript and single emotion category label. We
adopt leave-one-session-out 5-fold cross-validation, follow-
ing the typical evaluation protocol. The unweighted accuracy
(UA) and weighted accuracy (WA) for utterance-level SER
are computed by averaging the results obtained from the 5
folds. The average word error rate (WER) across the 5 folds
is reported to measure ASR performance.

Zaion Emotion Dataset (ZED) [10] is a recently pro-
posed dataset for fine-grained SER, named as speech emotion
diarization, including 180 utterances annotated with emo-
tional boundaries for each. It is worth noting that due to its
limited scale, ZED is primarily suitable for evaluating the
fine-grained SER capability rather than serving as a compre-
hensive training set in a fully supervised manner. Thus we
train our ENT models on IEMOCAP and validate on ZED.
We adopt emotion diarization error rate (EDER) for fine-
grained SER, which assesses the temporal alignment between
predicted emotion intervals and the actual emotion intervals.
Lower EDER indicates better fine-grained SER ability.

Implementation Details. We take wav2vec 2.0 Base [26]
as feature extractor for input speech signals, where the pre-
trained model is frozen for training efficiency and the features
from different layers are performed weighted sum in line with
SUPERB [27]. The acoustic encoder and the predictors are
one-layer LSTM with a hidden dimension of 640. The joint
network combines features of encoder and predictor by addi-
tion operation, followed by a linear layer.



4.2. Utterance-level Speech Emotion Recognition

Comparison with state-of-the-arts. We compare our pro-
posed models with recent state-of-the-art methods in Table 1.
ENT outperforms all the strong baselines, showing the effec-
tiveness of leveraging linguistic information and fine-grained
temporal modeling. While FENT achieves competitive results
as well, the factorization technique degrades its utterance-
level SER performance slightly compared with ENT just as
its counterpart in language adaptation [21]. This phenomenon
indicates that factorization of predictor partially compromises
the integrity of whole vocabulary modeling, resulting in infe-
rior representation for utterance-level discrimination.

Comparison with ASR-based methods. We evaluate the
SER and ASR performance in Table 2. For fair comparison,
all the methods take features from self-supervised or ASR
pre-trained models. Although ASR joint training enables the
model to predict emotions along with transcriptions, previous
attempts fail to balance the mutual influence between ASR
and SER. Taking RNN-T method as an example, appending a
special emotion tag to the target text is conductive to the orig-
inal ASR output manner, yet deteriorating SER ability (only
58.2% WA). In contrast, the family of ENT attains better per-
formance in both ASR and SER (+3% UA and meanwhile -
0.7% WER). Notably, the top performance of FENT in WER
validates the effectiveness of factorization of emotion from
vocabulary, preserving the modularity of the transducer for
ASR capability [28, 29] while endowing SER capability.

Type Method WA (%) WER (%)

CTC
e2e-ASR [18] 68.60 35.70
wav2vec 2.0+co-attention [19] 63.40 32.70

RNN-T Emotion tag [22] 58.20 26.70

ENT
ENT (ours) 72.43 26.47
FENT (ours) 71.84 25.99

Table 2. Comparison with ASR-based utterance-level SER
methods on IEMOCAP.

4.3. Fine-Grained Speech Emotion Recognition

Table 3 is split into 3 parts to compare with frame-wise meth-
ods and ENT variants. It is noteworthy that the weak super-
vision paradigm based on utterance-level annotation and ab-
sence of an appropriate training set makes fine-grained SER
validation on SED benchmark extremely challenging. Inter-
estingly, standard ENT without lattice loss, though utilizing
text information explicitly, lags behind frame-wise baseline
by nearly 3% EDER, suffering from degraded ASR capability
as well as imperfect transcripts. Thanks to disentangling emo-
tion and blank from vocabulary prediction, our FENT reaches
much lower EDER (about -4.6%) while enjoying speech tran-
scription functionality along with fine-grained emotion.

Method IEMOCAP ZED

UA ↑ WER ↓ EDER ↓ WER ↓

Frame-wise 68.43 - 59.73 -

ENT 73.88 26.47 56.60 39.37
-w/o Llattice 71.76 26.06 62.47 39.19

-w. LT
lattice 73.11 26.42 61.88 39.39

-w. LU
lattice 69.86 26.14 61.40 38.82

-w. Lall
lattice 71.85 26.19 61.12 39.28

-w. mixing - - 52.76* 42.54*
-w. BPE 71.37 30.13 67.68 47.42

FENT 72.37 25.99 55.07 39.34
-w/o Llattice 71.84 26.69 60.86 39.14

-w. LT
lattice 72.52 26.28 59.18 39.48

-w. LU
lattice 69.67 26.23 60.86 39.17

-w. Lall
lattice 69.61 26.18 59.38 39.11

-w. mixing - - 54.41* 39.93*
-w. BPE 70.33 30.96 65.63 47.26

Table 3. Comparison of ENT varaints performance on
IEMOCAP and ZED. * denotes training models with concate-
nated IEMOCAP audio segments like [10] and Lall

lattice.

4.4. Ablation Studies

We investigate key components of ENT models in Table 3.
Overall, FENT architecture excels at fine-grained SER on
SED regardless of Llattice while ENT obtains better UA in
typical utterance-level SER. Compared with character units,
text encoded with byte-pair encoding (BPE) degrades WER
as well as emotion recognition performance significantly,
which may be attributed to vocabulary sparsity for relatively
small SER dataset, further yielding negative mutual impact of
speech and emotion recognition. We then compare our lattice
max pooling to some straightforward variants, where LT

lattice

selects the entire timestamp (target row of emotion lattice in
Figure 1) while LU

lattice selects the target token column. And
Lall
lattice applies supervision on the whole emotion lattice.

We can observe that LT
lattice achieves on-par performance

as original Llattice, signifying the importance of temporal
localization. More importantly, the improvement of mod-
els with lattice max pooling on IEMOCAP also verifies that
fine-grained emotion modeling helps utterance-level SER.
Moreover, improvement by mixing different audio segments
shows compatibility of our lattice loss to supervised data.

5. CONCLUSION

In this paper, we present Emotion Neural Transducer mod-
els for fine-grained speech emotion recognition, with a favor-
able capability of predicting transcripts along with emotion
at fine temporal granularity for practice. We hope our work
will draw more attention from the community toward more
comprehensive fine-grained emotion benchmarks.
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A. VARIANTS OF LATTICE MAX POOLING

As mentioned in our experiment, the lattice max pooling loss can be
extended to some variants based on the groups of selected node and
the supervision manner. We define the indices of the nodes with the
highest predicted probability of the target emotion as t∗ and u∗, and
the indices of the nodes with the minimum non-emotional probabil-
ity as t− and u−.

t∗, u∗ = argmax
t,u

(pk
∗

t,u),

t−, u− = argmin
t,u

(pk
−

t,u).
(6)
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(a) Temporal Lattice Max
Pooling LT

lattice.
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Fig. 3. Temporal and Token Lattice Max Pooling Loss.

Temporal Lattice Max Pooling LT
lattice (see Figure 3(a)) first

selects the nodes within the entire timestamp row instead of a single
node and then calculates the loss as follows

LT
lattice = −

∑
u

log(pk
∗

t∗,u)−
∑
u

log(pk
−

t−,u). (7)

Token Lattice Max Pooling LU
lattice (see Figure 3(b)) first se-

lects the nodes within the entire token column and then calculates
the loss as follows

LU
lattice = −

∑
t

log(pk
∗

t,u∗)−
∑
t

log(pk
−

t,u−). (8)

Mixing method (see Figure 4) concatenates neutral speech
recordings with other emotional speech recordings to create training
samples that contain emotional intervals. Subsequently, we can
apply supervision to each interval.
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𝑘𝑘2
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𝑡𝑡6

Fig. 4. Mixing on Emotion lattice.
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