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Abstract

Weakly-supervised action segmentation is a task of
learning to partition a long video into several action seg-
ments, where training videos are only accompanied by tran-
scripts (ordered list of actions). Most of existing methods
need to infer pseudo segmentation for training by serial
alignment between all frames and the transcript, which is
time-consuming and hard to be parallelized while training.
In this work, we aim to escape from this inefficient align-
ment with massive but redundant frames, and instead to di-
rectly localize a few action transitions for pseudo segmen-
tation generation, where a transition refers to the change
from an action segment to its next adjacent one in the
transcript. As the true transitions are submerged in noisy
boundaries due to intra-segment visual variation, we pro-
pose a novel Action-Transition-Aware Boundary Alignment
(ATBA) framework to efficiently and effectively filter out
noisy boundaries and detect transitions. In addition, to
boost the semantic learning in the case that noise is in-
evitably present in the pseudo segmentation, we also intro-
duce video-level losses to utilize the trusted video-level su-
pervision. Extensive experiments show the effectiveness of
our approach on both performance and training speed.1

1. Introduction
Action segmentation aims to partition a long untrimmed
video into several segments and classify each segment into
an action category [8, 12, 13, 15, 16, 31, 34, 37, 40, 46].
It is an important yet challenging task for instructional or
procedural video understanding. Although fully-supervised
action segmentation (FSAS) methods [1, 6, 13, 14, 27] have
achieved great progress, they require frame-wise dense an-

*Corresponding author.
1Code is available at https : / / github . com / iSEE -

Laboratory/CVPR24_ATBA.
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Figure 1. Comparison of performance and training time of WSAS
methods on the Breakfast dataset. MoF-The main metric of the
task, the higher the better. *-Alignment-free methods. Our ATBA
achieves the best performance with a very short training time.

notation, which is labor-intensive and time-consuming to
collect. As a result, many works [5, 9, 25, 30, 36, 40, 48] ex-
plore the weakly-supervised action segmentation (WSAS)
only requiring the transcript annotation, which refers to the
ordered list of actions occurring in the video without their
start and end times. The transcripts are less costly to obtain
and can be accessed directly from video narrations or other
meta data [2, 9, 18, 30, 32, 35, 49].

Most of previous WSAS methods have to infer the
pseudo segmentation (pseudo frame-wise labels) for train-
ing via a sequence alignment process between the video and
given transcript, such as Viterbi [22, 23, 25, 30, 35, 36] or
Dynamic Time Warping (DTW) [4, 5]. These alignment
algorithms are usually designed in a recursive form which
needs to be performed serially frame-by-frame and hard to
be parallelized, resulting in very slow training process.

In this work, we argue that the frame-by-frame align-
ment is NOT necessary, since the pseudo segmentation is
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Figure 2. The necessity of proposed ATBA. The example is P54-
webcam01-P54-coffee in Breakfast dataset. GT-The ground-truth
segmentation. C.A.Bdy.-Only class-agnostic boundary detection
is applied (Exp.1 of Table 3). Acc.-The accuracy of pseudo seg-
mentation. In the video clip around the “star” point, the coffee
pot undergoes a change from being picked up to tilted pouring
within the segment “Pour Coffee”, and this noisy visual change is
incorrectly detected. In addition, although two boundaries are cor-
rectly detected by the “C.A.Bdy.” (diamonds), they correspond to
incorrect transitions due to one false positive error (star), resulting
in complete dislocation of segments within the dashed box. Best
viewed in color.

fundamentally determined by the locations of a small num-
ber of action transitions (i.e., the change from an action seg-
ment to its next adjacent action segment in the transcript).
Hence, the pseudo segmentation generation can be viewed
as a transition detection problem, implying the way to more
efficient designs. Intuitively, action transitions are often ac-
companied by significant visual changes, and there are al-
ready many approaches that can detect class-agnostic action
boundaries based on these changes [12, 20]. However, due
to the intra-segment visual variation and sub-segments un-
der finer granularity, there are numerous noisy boundaries
not corresponding to any transitions. Moreover, as the class-
agnostic way cannot guarantee correct correspondence be-
tween the boundaries and transitions, even slight errors in
the detection can result in severe deviation (Fig. 2).

To overcome the above noisy boundary issue, we
propose an efficient and effective framework for WSAS,
termed Action-Transition-Aware Boundary Alignment
(ATBA), which directly detects the transitions for faster
and effective pseudo segmentation generation. To tol-
erate the noisy boundaries, the ATBA generates more
class-agnostic boundaries than the number of transitions
as candidates, and then determines a subset from candi-
dates that optimally matches all desired transitions via a
drop-allowed alignment algorithm. Furthermore, to fortify
the semantic learning under the inevitable noise in pseudo
segmentation, we also introduce video-level losses to make
use of the trusted video-level supervision. Our ATBA is
efficient, because the number of generated candidates will
be proportional to the length of the transcript, and therefore
the complexity of alignment is now independent of the
very long video length. Moreover, other computations

required by ATBA, i.e., measuring how likely a frame is to
be a boundary and how likely a candidate corresponds to
a desired transition, are both built on a convolution-like
algorithm inspired by [20], which can be parallelized on
GPUs efficiently.

For inference, we directly adopt the results from the
trained frame-wise classifier, without the need for any align-
ment processing with retrieved or predicted transcript (the
ground-truth transcript is not available during inference)
like previous WSAS methods [4, 5, 25, 30, 36, 40], which
also improves the inference efficiency.

In summary, our contributions are as follows. (1) We
propose to directly localize the action transitions for effi-
cient pseudo segmentation generation during training, with-
out the need of time-consuming frame-by-frame alignment.
(2) For robustness to noisy boundaries, we propose a novel
ATBA framework to effectively determine boundaries cor-
responding to each transition. Video-level losses are also
introduced to regularize the semantic learning involving
the unavoidable noise in the pseudo segmentation. Exper-
iments are conducted on three popular datasets to evalu-
ate our approach: Breakfast [21], Hollywood Extended [2]
and CrossTask [49]. Our ATBA achieves state-of-the-art
or comparable results with one of the fastest training speed
(Fig. 1), demonstrating the effectiveness of ours.

2. Related Work
Weakly-supervised action segmentation methods learn to
partition a video into several action segments from training
videos only annotated by transcripts [2, 4, 5, 9, 18, 22, 23,
25, 30, 35, 36, 40, 41, 48]. Despite different optimization
objectives, most of them generate the pseudo segmentation
for training by solving alignment objectives between two
sequences (video and transcript) via Connectionist Tempo-
ral Classification (CTC) [18], Viterbi [22, 23, 25, 30, 35, 36]
or Dynamic Time Warping (DTW) [4, 5].

Specifically, [18] proposes an extended version of CTC
to evaluate all valid alignments between videos and tran-
scripts, which additionally takes the visual similarities of
frames into account. Inspired by speech recognition, [22,
23, 35] all use the Hidden Markov Model (HMM) to model
the relationship between videos and actions. [9] always
generates uniform segmentation but iteratively adjusts the
boundaries by inserting repeating actions into the transcript.
[36] proposes an alignment objective based on explicit con-
text and length models, which can be solved by Viterbi, and
the solved optimal alignment would serve as pseudo labels
to train the frame-wise classifier. [25] and [30] both focus
on novel learning objectives, but still require the optimal
pseudo segmentation produced by Viterbi. [4, 5] both learn
from the contrast of aligning the video to the ground-truth
transcript and negative transcripts, where the alignment is
performed by DTW. Whether using CTC, Viterbi or DTW,
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Figure 3. The overall framework. We propose an Action-Transition-Aware Boundary Alignment (ATBA) framework, which takes the
class-agnostic boundary pattern and action transition pattern together into account to efficiently generate pseudo labels. The trusted video-
level supervision is also utilized to further enhance the performance.

the above approaches except [9] require frame-by-frame se-
rial calculation, which are inefficient.

Recently, some efficient methods are proposed with
alignment-free design. [40] learns from the mutual con-
sistency between two forms of a segmentation (i.e., frame-
wise classification and category/length pairs). [31] pro-
poses a loss to enforce the output order of any two ac-
tions to be consistent with the transcript.2 In this work, we
also propose an efficient framework with different technical
roadmap, and our performance is better at the same level of
training speed.

3. Approach
3.1. Problem Statement

Action segmentation is a task of partitioning a video into
several temporal segments with action labels, which is
equivalent to predicting the action categories of each frame.
Formally, given a sequence of T d-dimensional frame-wise
features X = [x1, ...,xT ] ∈ RT×d for a video with T
frames, the goal is to predict a sequence of actions Ŷ =
[ŷ1, ..., ŷT ], where ŷt ∈ C and C = {1, 2, ..., |C|} is the
set of action categories across the dataset (including the
background). Under the setting of WSAS, the frame-wise
ground-truth Y = [y1, ..., yT ] is NOT available during train-
ing. Instead, the ordered list of actions called transcript
A = [a1, ..., aM ] is provided (including the background
segments), where am ∈ C and M is the total number of
action segments in the video. The action transitions of A

2POC [31] is a set-supervised method but can be extended to transcript
supervision naturally, so we cite its corresponding results for comparison.

are naturally formulated as R = {(ar, ar+1)}M−1
r=1 .

3.2. Overview

Our proposed framework is illustrated in Fig. 3. At first, the
input sequence X is further encoded by a temporal network
to generate more task-relevant representations X ′ ∈ RT×d′

(Sec. 3.3), then a classifier shared along the temporal axis
followed by a category softmax activation will predict the
frame-wise class probabilities P = [p1, ...,pT ] ∈ RT×|C|

from X ′. After that, the Action-Transition-Aware Bound-
ary Alignment (ATBA) module takes P and the transcript
A as input to infer the pseudo frame-wise labels Ỹ =
[ỹ1, ..., ỹT ], where ỹt ∈ C (Sec. 3.4). Finally, Ỹ is used
back to supervise P by a standard cross entropy:

Lcls = − 1

T

T∑
t=1

|C|∑
c=1

I(ỹt = c) logP t,c, (1)

where I(·) is the indicator function which returns 1 if the
condition is satisfied and 0 otherwise. Note that the pseudo
frame-wise labels are inferred at each iteration for a batch of
data and used immediately for current training at the same
iteration. The additional video-level losses are stated in
Sec. 3.5, and the training and inference processes are de-
scribed in Sec. 3.6.

3.3. Temporal Network

We employ a slightly modified pre-norm [44] Transformer
[42] encoder with learnable positional embeddings as the
temporal network for feature learning. Following [11, 47],
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(a) (b)

Figure 4. (a) A 7×7 template for class-agnostic boundary scoring.
(b) A 2×7 template for action transition scoring.

the vanilla full self-attention is replaced with a pyramid hier-
archical local attention to better adapt to the action segmen-
tation task (see supplemental material for more details).

3.4. Action-Transition-Aware Boundary Alignment

The ATBA is the core component of our framework. It
generates the pseudo frame-wise labels Ỹ by inferring the
boundaries corresponding to M − 1 action transitions from
the predicted class probabilities P . Once they are found, Ỹ
can be naturally generated by assigning the action labels of
A one-by-one into the intervals between these boundaries.

Briefly, the ATBA first generates a set of candidate
boundaries via a class-agnostic way, and then finds M − 1
points from this set that optimally match all transitions of A
via a dynamic programming (DP) algorithm. We describe
the details in the following.
- Class-Agnostic Boundary Scoring. Firstly, the ATBA
calculates the class-agnostic boundary scores Vb =
[vb

1, ..., v
b
T ] for each timestamp. We employ a pattern-

matching-based scoring method proposed by a generic
event boundary detection approach termed UBoCo [20],
which considers the pattern of each frame’s neighborhood.
Specifically, for timestamp t, a pairwise similarity matrix
Γ(t) ∈ Rwb×wb

is calculated within a local window with
sizewb centered at t, whose (i, j)-entry represents the class-
agnostic similarity between i-th and j-th frames inside the
window, with values ranging from -1 to 1 (see the compu-
tational details in supplementary material). Clearly, if t is a
boundary, the frame feature should change dramatically at t
and keep stable elsewhere, so its Γ(t) should show the pat-
tern of that the values in the upper-left and lower-right areas
are close to 1 and otherwise close to -1. Hence a template
Ωb ∈ Rwb×wb

like Fig. 4(a) is designed to capture this pat-
tern and output the class-agnostic boundary score for each t
by a correlation operation:

vb
t =

1

wb × wb

wb∑
i=1

wb∑
j=1

Ωb
i,jΓ

(t)
i,j . (2)

- Candidate Boundary Selection. After calculating Vb, we
select a set ofK candidate boundaries B̃ = {bk}Kk=1, where

�ℬ

ℛ

(a) (b)

Figure 5. Illustration of the alignment between action transitions
R and candidate boundaries B̃. Blue circles are aligned and gray
ones are dropped. (a) A valid alignment. (b) An invalid align-
ment. The red dashed arrow violates the ordering consistency.
Best viewed in color.

1 < b1 < ... < bK ≤ T and K > M − 1. The selection is
performed by a simple greedy strategy with non maximum
suppression inspired by [12], i.e., each time we select one
timestamp with current highest score vb

t , and invalidate its
neighborhood to avoid selecting multiple timestamps cor-
responding to one same boundary, until the number of se-
lected timestamps reach an upper bound or all remaining
timestamps are invalid. The radius of the invalid interval is
set adaptively to µT

M , where µ ∈ [0, 1] is a hyper-parameter,
and in practice, the upper bound for K is set to λ(M − 1),
where λ ∈ N+ is also a hyper-parameter.
- Action Transition Scoring. As mentioned in Sec. 1, the
class-agnostic scores Vb are not enough to detect action
transitions. To this end, we then calculate an action transi-
tion score matrix V a ∈ RK×(M−1), where V a

k,r measures
the possibility that the k-th candidate boundary corresponds
to the r-th transition, i.e., separates the r-th and (r + 1)-th
action segments. This matrix is also calculated via pattern
matching. Clearly, if candidate bk corresponds to the r-th
transition, the classifier’s activation for class ar should drop
sharply after bk, while rise for class ar+1. Hence, a tem-
plate Ωa ∈ R2×wa

with temporal size wa like Fig. 4(b) is
employed to detect this pattern around bk:

V a
k,r =

1

2wa

2∑
i=1

wa∑
j=1

Ωa
i,jP inda(bk,j), ar+i−1

,

inda(bk, j) = bk − ⌊w
a

2
⌋+ j − 1,

(3)

where inda(bk, j) is the index transform from the index j
of the local window centered at bk to the global timestamp
index. Finally, the class-agnostic scores Vb are added back
to V a to produce the final score matrix V ∈ RK×(M−1):

V k,r = V a
k,r + vb

bk
. (4)

The above equation means that the class-agnostic bound-
ary score of the k-th boundary vb

bk
is added to all transition

scores corresponding to the k-th boundary V a
k,r,∀r.

- Action Transition Alignment. The final step is to find ex-
act M − 1 optimal boundaries from the candidates B̃ based

4
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Figure 6. An example of action transition alignment between B̃ of
length 5 andR of length 3. (a) The cost matrix ∆. (b) The cumu-
lative cost matrix D. Blue areas are directly initialized. Yellow
areas correspond to optimal alignment. Red arrows are allowed
path directions. (c) The optimal alignment. Best viewed in color.

on the score matrix V . It is equivalent to seek an one-to-one
alignment with lowest cost between the transitions R and
candidates B̃ while requiring K −M + 1 candidates to be
dropped (Fig. 5). Formally, if we denote the optimal aligned
boundary set as B = {bkr

}M−1
r=1 , where bkr

corresponds to
the r-th transition and 1 ≤ k1 < ... < kM−1 ≤ K. It
should satisfy:

B = argmin
B′

ψ(B′), ψ(B′) = −
M−1∑
r=1

V k′
r,r
, (5)

where ψ(B′) is the cost function of an alignment and B′ is
any feasible aligned boundary set such as B.

To solve Eq. (5), we propose a DP algorithm, of which
an example is shown in Fig. 6. To allow some candi-
dates in B̃ to be dropped, inspired by [38], we first ex-
pand the transition sequence R by inserting the empty sym-
bol ϕ interleaved with transition symbols, obtaining R′ =
[ϕ, (a1, a2), ϕ, (a2, a3), ϕ, ..., ϕ, (aM−1, aM ), ϕ]. Now the
candidate boundary matched to ϕwill be discarded. Then, a
cost matrix ∆ ∈ RK×(2(M−1)+1) is constructed (Fig. 6(a)),
whose (k, r′)-th entry is the cost of aligning the bk with the
r′-th symbol in R′. For even number of r′ (transition sym-
bols), it is clear that ∆k,r′ = −V k,r′/2 from Eq. (5). Odd
r′ means dropping the candidate, and the cost is set to 0.

A valid alignment is represented by a path from the
top-left to bottom-right of ∆ with constraint on direc-
tions. Specifically, the allowed start positions are (1, 1) and
(1, 2), respectively corresponding to two cases where b1 is
dropped and b1 is matched with the first transition. Simi-
larly, there are two allowed end positions: (K, 2(M − 1))
and (K, 2(M − 1)+1). Then for the position (k, r′) on the
path, if r′ is odd, its previous position is either (k−1, r′) or
(k−1, r′−1). It means that if bk is dropped, the bk−1 is also
dropped or matched with the previous transition. On the
other hand, the previous position is either (k− 1, r′ − 1) or
(k−1, r′−2) if r′ is even, with the similar meaning. These
allowed directions are indicated by red arrows in Fig. 6(b).

The DP algorithm generally finds the optimal solution
by computing a cumulative cost matrix D with the same
shape as ∆ (Fig. 6(b)), where Dk,r′ represents the mini-
mum cumulative cost of all valid paths ending at (k, r′). It

is computed by the following recursive equation, consider-
ing paths coming from valid directions aforementioned:

Dk,r′ = ∆k,r′+

{
min(Dk−1,r′ ,Dk−1,r′−1), r

′is odd,
min(Dk−1,r′−1,Dk−1,r′−2), r

′is even.
(6)

The above equation is not applicable to the first row and the
first two columns of D. They are directly initialized before
the computation (blue areas of Fig. 6(b)). We set the cost of
invalid positions to ∞ (inf) and others are copied from ∆.

The cumulative cost of the optimal alignment is
min(DK,2(M−1),DK,2(M−1)+1), The complete align-
ment, i.e., the optimal boundary set B can be obtained by
starting from the corresponding position of the above min
operation and backtracking (Fig. 6(b/c)). More details can
be found in the supplementary material.
- Complexity. Clearly, the class-agnostic boundary scor-
ing and action transition scoring can be implemented by the
unfold operator and matrix operations, thus can be par-
allelized on GPUs. The action transition alignment must
be performed serially with a time complexity of O(KM)
or O(λM2). Compared with the previous alignment meth-
ods such as Viterbi (O(T 2M) [25, 30, 36]) and DTW
(O(TM)), it decreases from a function involving video
length T to one of only transcript length M (M << T ).

3.5. Video-Level Losses

Inevitably, the inferred pseudo segmentation contains some
degree of noise, which can be unexpectedly fit by the net-
work. To improve the semantic robustness, we propose to
jointly train a video-level multi-label classification task that
predicts whether each action appears in the video, which is
precisely indicated by the transcript. Specifically, inspired
by the common practice of Transformer [7, 10, 19, 24, 45],
the input sequence X is augmented by a set of |C| learn-
able class tokens which are fed into the same network and
responsible for predicting action occurrence. The outputs,
denoted as {e′c}

|C|
c=1, are then used to predict the action oc-

currence probability via ξc = σ(wT
c e

′
c + ϵc) for each cat-

egory c, where wc and ϵc are the weight vector and bias
scalar for class c in the classifier shared with frame-wise
classification. σ(·) is the sigmoid activation. These predic-
tions are supervised by the binary cross entropy:

Lvid = − 1

|C|

|C|∑
c=1

[yvid
c log ξc + (1− yvid

c ) log(1− ξc)], (7)

where yvid
c ∈ {0, 1} is the binary label indicating whether

action c appears in the video. Through the shared network
and the interactions between tokens, the semantics learned
from video-level training can benefit the main task.

Moreover, we treat the class tokens with global informa-
tion as the prototypes of each action and attempt to align the
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frame features to them for semantic consistency. Specifi-
cally, we first calculate the feature centroid of each category
c that appears in the video by averaging the output frame
features with the corresponding pseudo labels:

xc =

∑T
t=1 I(ỹt = c)x′

t∑T
t=1 I(ỹt = c)

, c ∈ Set(A), (8)

where the Set(·) operator converts a list into an unordered
set and removes duplicates. These centroids will move to-
wards the corresponding e′c under the guidance of a global-
local contrastive loss in the form of InfoNCE [17, 33]:

Lglc = − 1

|Set(A)|
∑

c∈Set(A)

log
exp(⟨xc⟩T ⟨e′c⟩/τ)∑|C|

c′=1 exp(⟨xc⟩T ⟨e′c′⟩/τ)
,

(9)
where ⟨x⟩ = x/∥x∥2 is the l2-normalization operator, and
τ is the temperature hyper-parameter.

3.6. Training and Inference

- Training. Since the pseudo labeling always requires a
relatively good initialization, we utilize a two-stage train-
ing strategy. The first stage only uses the reliable labels,
i.e., the video-level labels, to pretrain the network. Hence
the loss function is LI = Lvid. The loss for the second
stage further includes the frame-wise losses on both clas-
sification and representation using pseudo labels: LII =
αLvid + βLcls + γLglc, where α, β and γ are all hyper-
parameters.
- Inference. For inference, we obtain the action label ŷt
for frame t directly from the frame-wise class probabilities:
ŷt = argmaxc P t,c. Note that we do not require any align-
ment processing during inference, which is performed by
previous WSAS methods for smoother predictions. How-
ever, since the ground-truth transcript is not available dur-
ing inference, these methods either run alignment with ev-
ery transcript from the training set [4, 5, 25, 30, 36], or pre-
dict the transcript via another model [40], which makes the
pipeline more time-consuming and less practical.

4. Experiments
4.1. Experimental Setup

- Datasets. We perform experiments on three datasets. The
Breakfast [21] dataset contains 1712 videos of breakfast
cooking with 48 different actions. On average, each video
has 6.8 segments and 7.3% frames are background. The
Hollywood Extended [2] dataset contains 937 videos taken
from movies with 16 categories of daily actions such as
walk or sit. On average, each video has 5.9 segments and
60.9% frames are background. The CrossTask [49] dataset
contains videos from 18 primary tasks. Following [30], 14
cooking-related tasks are selected, which have 2552 videos

and 80 action categories. On average, each video has 14.4
segments and 74.8% frames are background. For Breakfast,
we use the released 4 training/test splits and report the aver-
age. For Hollywood, we perform a 10-fold cross-validation.
For CrossTask, we use the released training/test split. These
evaluation protocols are consistent with previous methods.

- Metrics. To evaluate our method, we use 4 standard
metrics, following [5, 9, 25, 30]. (1) The Mean-over-
Frames (MoF) is the percentage of frames whose labels
are correctly predicted. (2) The Mean-over-Frames without
Background (MoF-Bg) is the MoF over non-background
frames. It is more suitable than MoF for the datasets with
high background rate such as Hollywood and CrossTask.
(3) The Intersection-over-Union (IoU) is defined as |I ∩
I∗|/|I∪I∗| while (4) the Intersection-over-Detection (IoD)
is |I ∩ I∗|/|I|, where I∗ and I are the ground-truth (GT)
segment and the predicted segment with the same class, re-
spectively. For each GT segment, the highest IoU/IoD with
one predicted segment are preserved, and the average of all
GT segments is reported. Note that the definition of the
IoU/IoD in [30] is different from other works [5, 9, 25], and
will be indicated with special symbols when used.

- Input Features. As the input features X for Breakfast
and Hollywood, we use the 2048-dimensional RGB+flow
I3D features [3] adopted by MuCon [40] and most FSAS
methods [13, 26, 27, 47], while some WSAS methods
[5, 25, 30, 36] still use the iDT features [43]. Since re-
cent studies [39, 40] have found that they perform worse
with more advanced I3D features, we still report the perfor-
mance with the iDT features for them following [40]. For
CrossTask, the officially released 3200-dimensional fea-
tures are adopted, but we do not perform dimension reduc-
tion via PCA as with [30]. For GPU memory efficiency, we
perform a 10× temporal downsampling for Breakfast and
5× for Hollywood. During inference, the output is upsam-
pled to match the original video/ground-truth length.

- Implementation Details. We adopt a 6-layer Transformer
[42] with single-head self-attention as the temporal net-
work, and the latent dimension d′ is 256. For the ATBA,
we set wb = 7 and λ = 4 for all datasets. wa is set to 31
for Breakfast/CrossTask and 23 for Hollywood. µ is set to
0.3 for Breakfast/Hollywood and 0.1 for CrossTask. The
loss weights α, β are set to 1.0 and γ is 0.1. τ in Eq. (9)
is set to 0.2. Besides, to alleviate the issue that the pre-
dictions on Hollywood/CrossTask are overly dominated by
background, we lower the sample weights of pseudo back-
ground frames to 0.8 in Eq. (1) for these datasets.

- Multiple Runs. Due to the alternating nature of learning
from weak supervision, there are often fluctuations in the
results of WSAS methods [30, 40]. Hence, following [40],
we report the average and standard deviation over 5 runs
with different random seeds for better evaluation.
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Breakfast

Method MoF±std MoF-Bg±std IoU±std IoD±std

HMM+RNN [35] 33.3 - - -
[35]+Length [23] 36.7 - - -
TCFPN+ISBA [9] 38.4

/
36.4±1.0* 38.4 24.2 40.6

NN-Viterbi [36] 43.0
/

39.7±2.4* - - -
D3TW [4] 45.7 - - -
CDFL [25] 50.2

/
48.1±2.5* 48.0 33.7 45.4

DPDTW [5] 50.8 - 35.6 45.1
TASL [30] ♠ 47.8 - 35.2† 46.1†

MuCon [40] ♠ 48.5±1.8 50.3* 40.9* 54.0*
POC [31] ♠ 45.7 - 38.3† -
AdaAct [48] 51.2 48.3 36.3 46.4

ATBA ♠ 53.9±1.2 54.4±1.2
41.1±0.7 61.7±1.1

(Ours) 39.5±0.8† 55.9±1.0†

Hollywood Extended

Method MoF±std MoF-Bg±std IoU±std IoD±std

HMM+RNN [35] - - 11.9 -
[35]+Length [23] - - 12.3 -
TCFPN+ISBA [9] 28.7 34.5 12.6 18.3

D3TW [4] 33.6 - - -
CDFL [25] 45.0 40.6 19.5 25.8
DPDTW [5] 55.6 25.6♯ 33.2 43.3
TASL [30] 42.1♯ 27.2♯ 23.3†♯ 33.0†♯

MuCon [40] ♠ - 41.6 13.9* -

ATBA ♠ 47.7±2.5 40.2±1.6
30.9±1.6 55.8±0.8

(Ours) 28.5±1.6† 44.9±0.5†

CrossTask

Method MoF±std MoF-Bg±std IoU±std IoD±std

NN-Viterbi [36] ♠ 26.5* - 10.7†* 24.0†*
CDFL [25] ♠ 31.9* - 11.5†* 23.8†*
TASL [30] ♠ 40.7 27.4♯ 14.5† 25.1†
POC [31] ♠ 42.8 17.6♯ 15.6† -

ATBA ♠ 50.6±1.3 31.3±0.7
20.9±0.4 44.6±0.7

(Ours) 15.7±0.3† 24.6±0.4†

Table 1. Comparisons of ours with other WSAS methods on three
datasets. std is the standard deviation of multiple runs (if any). †-
The metric is computed by the definition of [30]. *-Results are re-
ported by other works. Please refer to the supplementary material
for detailed sources. ♯-Results are obtained by us via rerunning the
open sources (The TASL [30] does not follow the common 10-fold
evaluation protocol for Hollywood so we re-produce the results).
♠-The reported results are the average of multiple runs. Best re-
sults are in bold, second best are underlined.

4.2. Comparison with the State-of-the-Art

- Performance. In Table 1, we compare our proposed
method with previous WSAS methods. Our ATBA achieves
state-of-the-art (SOTA) by a clear margin (+2.7% MoF) on
the Breakfast [21], demonstrating the effectiveness of fo-
cusing on action transitions. Moreover, comparing the stan-
dard deviation with other methods, it can be found that our
method is also relatively stable.

Our ATBA also achieves comparable performance on the
Hollywood [2]. The reason why our method does not show
significant advantage is probably because this dataset is col-
lected from movies and so contains many shot changes, re-

Method Tr.A. MoF Training Inference
(Hours) (Seconds)

TCFPN+ISBA [9] ✗ 33.3 12.75* 0.01*
NN-Viterbi [36] V 43.0 11.23* 56.25*

CDFL [25] V 50.2 66.73* 62.37*
DPDTW [5] D 50.8 31.02♯ 0.69♯
TASL [30] V 47.8 24.66♯ 54.99♯

MuCon [40] ✗ 48.5 4.57 3.03
POC [31] ✗ 45.7 2.28♯ 0.01♯

ATBA (Ours) B 53.9 3.45 0.01

Table 2. Comparison of accuracy, training and inference time on
the Breakfast. The training time is measured as the entire train-
ing duration on the split 1, and the inference time is measured
as the average time for inferring a video from the test set of the
split 1. Tr.A.-The alignment algorithm adopted during training
(✗-No Alignment. V-Viterbi. D-DTW. B-Boundary Alignment).
*-Measured by [40]. ♯-Measured by us. Best results are in bold,
second best are underlined.

sulting in more noisy boundaries. Note that although the
DPDTW [5] achieves significantly high MoF, this metric
is severely biased in case of highly imbalanced categories
(60.9% frames are background). We report the MoF-Bg
metric for it, on which it performs poorly, proving that it
cannot recognize real actions very well. In contrast, the per-
formance of our method is more balanced.

For the more difficult dataset CrossTask [49] with the
most segments and highest background rate, our approach
also outperforms previous methods whether or not the met-
ric involves background (+7.8% MoF and +3.9% MoF-Bg).

- Efficiency. Besides of the performance, we also com-
pare the training time of our approach with previous WSAS
methods to show the efficiency of ours. Following [40], we
train our model on an Nvidia GeForce GTX 1080Ti GPU,
and the training time is measured as the wall time over
the whole training phase, during which any irrelevant op-
erations such as intermediate evaluation and saving check-
points are removed. As all the WSAS methods directly load
pre-computed features, the time measurement also does not
include the time to extract features from raw videos. As
shown in Table 2, our ATBA achieves the best performance
with the second shortest training time, which demonstrates
the effectiveness of our design. Specifically, the training
speed of ours is on average 10 times (varying from 3 to 20)
faster than methods performing frame-by-frame alignment
[5, 25, 30, 36]. Compared to the alignment-free methods
with comparable training speed [31, 40], ours achieves bet-
ter performance.

We also compare the time to infer a single test video. As
mentioned in Sec. 3.6, ours does not require any alignment
processing, which makes it the fastest during inference.
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Exp. Vb Cost Mat. P.L. MoF IoU IoD
V a V

1 ✓ 38.6 32.3 23.1 52.5
2 ✓ ✓ 51.7 41.3 30.2 47.8

3 ✓ ◦ ✓ 67.9 54.0 41.1 62.3

Table 3. Ablation studies of ATBA on the Breakfast. Exp.-
Different experiment configurations. Cost Mat.-Different choices
for the cost matrix in action transition alignment. ◦-According to
Eq. (4), V contains V a. P.L.-The accuracy of pseudo labels dur-
ing training. Exp.1 means that only the class-agnostic boundary
detection is adopted to localize action transitions. Exp.3 is our de-
fault setting. Best results are in bold.

4.3. Ablation Studies

- Effect of ATBA. In Table 3, we conducted an in-depth
evaluation of our proposed ATBA. From Exp.1, the pseudo
label quality and the evaluation performance are both very
poor when only using the class-agnostic boundary scores Vb

to directly select M − 1 boundaries for transitions via the
greedy strategy stated in Sec. 3.4, showing that it is critical
to take the class-specific transition pattern into account as
with our design to suppress the noisy boundaries for more
precise pseudo segmentation. Fig. 2 provides an intuitive
example. In addition, comparing Exp.2 and 3, it’s better
to involve the class-agnostic boundary scores in the action
transition alignment. We think it is because that some can-
didates can have very low boundary scores (unlikely to be a
boundary) as the candidate selection only depends on rank-
ing, and when the transition patterns are not discriminative
at the beginning of training, these candidates may be unex-
pectedly aligned if the boundary scores are not involved.
- Effect of Video-Level Losses. In Table 4, we evalu-
ate the Lvid and Lglc. Comparing Exp.1 and 2, the model
with Lvid achieves higher performance (+6.5% MoF) at the
same level of pseudo label accuracy, demonstrating that the
video-level supervision can promote the learning of pre-
cise action semantics. In Exp.3, the explicit representation
alignment (Lglc) further improves the quality of frame fea-
tures and thus the performance (+1.6% MoF). Moreover,
Exp.4 shows that whether or not to share the classifier be-
tween frame-/video-level classification has little impact.

We also provide the analysis on the effect of important
hyper-parameters in the supplementary material, including
wb, wa, µ and λ in the ATBA.

4.4. Qualitative Results

We show the qualitative inference result compared with two
recent open source WSAS methods, i.e., MuCon [40] and
TASL [30], in Fig. 7. Our ATBA achieves significantly
more accurate result in this challenging video with many
segments. The result of TASL shows order reversal (“Crake

Exp. Lvid Lglc D.Cls. P.L. MoF IoU IoD

1 67.5 45.9 40.5 61.9
2 ✓ 66.6 52.4 38.8 61.4

3 ✓ ✓ 67.9 54.0 41.1 62.3

4 ✓ ✓ ✓ 68.1 53.7 40.1 61.7

Table 4. Ablation studies of video-level losses on the Breakfast.
Exp.-Different experiment configurations. D.Cls.-Different classi-
fiers for frame-wise prediction and action occurrence prediction.
P.L.-The accuracy of pseudo labels during training. Exp.3 is our
default setting. Best results are in bold.

Ground-Truth

MuCon (31.5% MoF)

TASL (55.0% MoF)

Ours (90.7% MoF)

Background Crack Egg Spoon Flour Pour Milk Stir Dough Pour Oil

Pour Dough to Pan Fry Pancake Take Plate Put Pancake to Plate Butter Pan

Figure 7. Qualitative results on the Breakfast. The example test
video is P15-stereo01-P15-pancake. We compare our inference
result with two recent methods. Best viewed in color.

Egg” and “Spoon Flour”) and hallucination (“Butter Pan”).
The MuCon predicts the correct action ordering, but the re-
sult deviates severely. In contrast, ours successfully predicts
an accurate segmentation, indicating the action semantics
are well learned. More qualitative results are provided in
supplementary material.

5. Conclusion

In this work, we propose to directly localize action tran-
sitions for efficient pseudo segmentation generation in the
WSAS task, thus avoiding the time-consuming frame-by-
frame alignment. Due to the presence of noisy bound-
aries, a novel Action-Transition-Aware Boundary Align-
ment (ATBA) framework is proposed to efficiently and ef-
fectively filter out noise and detect transitions. Moreover,
we also design some video-level losses to utilize video-level
supervision to improve the semantic robustness. Extensive
experiments show the effectiveness of our ATBA.
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Efficient and Effective Weakly-Supervised Action Segmentation via
Action-Transition-Aware Boundary Alignment

Supplementary Material

7. Details of Temporal Network
As the recent works [11, 47] have pointed out, the vanilla
self-attention mechanism is not suitable for action segmen-
tation task, since it is hard to be learned to focus on mean-
ingful temporal positions over a very long video. Hence, we
replace the vanilla self-attention with a pyramid hierarchical
local attention as in [47] to achieve a local-to-global learn-
ing pattern which is similar to CNNs. Specifically, each
frame only performs self-attention with the frames in a lo-
cal window centered at itself, and the window size increases
in the deeper layers. The radius of the window is set to 2l−1

in the l-th (beginning from 1) encoder layer.

8. Construction of Pairwise Similarity Matrix
In the class-agnostic boundary scoring step of our Action-
Transition-Aware Boundary Alignment (ATBA), a pairwise
similarity matrix Γ(t) ∈ Rwb×wb

is calculated within the
local window with size wb centered at t, from the model
output P :

Γ
(t)
i,j = 1− 2 JS(pindb(t,i),pindb(t,j)), 1 ≤ i, j ≤ wb,

indb(t, i) = t− ⌊w
b

2
⌋+ i− 1,

(10)

where indb(t, i) is the index transform from the index i of
the local window centered at t to the global timestamp in-
dex, JS(·, ·) is the Jensen–Shannon divergence and pindb(t,i)

is the class probability distribution of the frame at times-
tamp indb(t, i). Γ

(t)
i,j represents the output similarity be-

tween indb(t, i)-th and indb(t, j)-th frames, of which the
range is [−1, 1].

9. Details of Action Transition Alignment
To help better understand the action transition alignment al-
gorithm in our ATBA, we provide the pseudo code in Alg. 1.
The algorithm consists of three stages, i.e., initialization
(Line 1-20), calculation by dynamic programming (Line 21-
30), and backtracking (Line 31-45). The middle stage is
stated in the main paper.
- Initialization. The first row and the first two columns
of the cumulative cost matrix D can not be calculated via
the recursive equation, and need to be directly initialized
before the computation. The rules for the initialization are
following:
• For the first column, the path through (k, 1) means the k-

th candidate is matched with the first empty symbol, i.e.,

the first k candidates are all dropped. However, there are
only K −M + 1 candidates can be dropped, so a valid
path cannot pass through the last M − 1 positions of the
first column, so their values are set to ∞ (Line 2-9).

• The situation in the second column is similar to the first
column, where a path through (k, 2) means that the k-th
candidate is matched with the first transition. To ensure
that the remaining M − 2 transitions can be matched, at
least the last M − 2 candidates cannot be matched with
the first transition. Hence the values of the last M − 2
entries of the second column are set to ∞ (Line 10-17).

• For the first row, as mentioned in the main paper, only
(1, 1) and (1, 2) are valid, so the values of other entries in
the first row are set to ∞ (Line 18-20).

• The remaining valid positions can be initialized with the
values of corresponding entries in ∆, as these positions
are all in the first two columns, and so relevant to at most
one transition matching without accumulating multiple
costs.

- Backtracking. After filling the matrix D, we find out the
optimal boundary set B (i.e., an alignment path) from it us-
ing backtracking. Clearly, any valid path has exactly one
point in each row, meaning that each candidate is matched
with one symbol (transition or ϕ). As mentioned in the
main paper, the end position of the optimal path is one
of (K, 2(M − 1)) and (K, 2(M − 1) + 1) depending on
whose D value is minimal (Line 35 in the first loop, i.e.,
i = K). The backtracking starts from this end position, and
runs from bottom to top until the first row. The Line 34-39
calculate the column position in current row i based on the
determined position in the next row (i.e., next point in the
path). Similar to the forward process, if the column posi-
tion j of the next row i + 1 is odd, i.e., the candidate bi+1

is dropped, then in current row i, candidate bi can be either
dropped (new j = j) or matched with the previous tran-
sition (new j = j − 1) depending on the cumulative cost
(Line 34-36). The meaning of Line 37-39 (j is even) is sim-
ilar. If the point of current row is matched with a transition,
we add it into B (Line 40-42).

10. Additional Training Details
During training, the batch size is 32 and the AdamW
[29] optimizer is adopted. We train the model for
400/300/300 epochs for Breakfast [21], Hollywood [2] and
CrossTask [49], respectively, of which the first 40 epochs
are the first stage. The initial learning rate is set to 5e-4.
The cosine annealing strategy [28] is used only for the sec-

11



Algorithm 1: Action Transition Alignment

Input: Candidate boundary set B̃ = {bk}Kk=1; Cost
matrix ∆ ∈ RK×(2(M−1)+1)

/* Initialize the cumulative cost
matrix D */

1 D ← RandomMatrix ∈ RK×(2(M−1)+1);
/* Initialize the 1st column */

2 for i← 1 to K do
3 if i ≤ K − (M − 1) then
4 Di,1 ←∆i,1;
5 end
6 else
7 Di,1 ←∞;
8 end
9 end
/* Initialize the 2nd column */

10 for i← 1 to K do
11 if i ≤ K − (M − 1) + 1 then
12 Di,2 ←∆i,2;
13 end
14 else
15 Di,2 ←∞;
16 end
17 end

/* Initialize the 1st row */
18 for j ← 3 to 2(M − 1) + 1 do
19 D1,j ←∞;
20 end

/* Dynamic programming */
21 for i← 2 to K do
22 for j ← 3 to 2(M − 1) + 1 do
23 if j is odd then
24 Di,j ←∆i,j +min(Di−1,j ,Di−1,j−1);
25 end
26 else
27 Di,j ←∆i,j +min(Di−1,j−1,Di−1,j−2);
28 end
29 end
30 end

/* Backtracking */
31 Initialize the optimal boundary set B = ϕ;
32 j ← 2(M − 1) + 1;
33 for i← K to 1 do
34 if j is odd then
35 new j ← argmin{j,j−1}(Di,j ,Di,j−1);
36 end
37 else
38 new j ← argmin{j−1,j−2}(Di,j−1,Di,j−2);
39 end
40 if new j is even then
41 Add bi into B;
42 end
43 j ← new j;
44 end
45 Reverse B;

Output: Optimal boundary set B
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Figure 8. The Effect of (a) the size of class-agnostic boundary
pattern template wb, (b) the size of action-transition pattern tem-
plate wa, (c) λ, which controls the upper bound of the number of
candidate boundaries, and (d) µ, which controls the size of non
maximum suppression (NMS) area. The case of λ = ∞ means
that the candidate selection process terminates only when all re-
maining timestamps are invalid. Experiments are all conducted on
the Breakfast.

ond stage to lower the learning rate to 1/100 of the initial
value finally, while the warmup strategy is used for the first
10 epochs of both two stages, beginning from 1/100 and
1/10 of the initial learning rate, respectively.

11. Detailed Sources of Results
In Table 1 of the main paper, some results are not reported
by the original paper, and the detailed sources are as fol-
lows:
- Breakfast. The MoF results with standard deviation of
ISBA [9], NN-Viterbi [36] and CDFL [25] are from [40].
The MoF-Bg, IoU and IoD results of MuCon [40] are from
[41].
- Holloywood Extended. The IoU result of MuCon [40]
are from [41].
- CrossTask. All the results of NN-Viterbi [36] and CDFL
[25] are from [30].

12. Analysis of Hyper-parameters
- Effect of wb. Fig. 8(a) shows the effect of the size of
class-agnostic boundary pattern template wb. The model
performs bad with too small wb, possibly because it is more
susceptible to noise interference. On the other hand, the
large wb can also lead to performance decrease due to the
poor ability of capturing local changes.
- Effect ofwa. The effect of the size of action transition pat-
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tern template wa is also shown in Fig. 8(b). Our method is
insensitive to it over a wide range (at least 23-29). Note that
these feasible values are much higher than that of wb, since
the action transition scoring aims to capture two adjacent
segments which both lasts for a period of time.
- Effect of λ. We investigate the effect of λ in Fig. 8(c),
which controls the upper bound of the number of candidate
boundaries. Note that λ = 1 is equivalent to not applying
action transition alignment (i.e., Exp.1 of the ablation study
on ATBA in the main paper), so the performance is poor.
When λ > 1, the performance can be maintained at a high
level and keep stable as the number of candidates increases,
since the additional candidates may be unambiguous non-
boundary points and have little effect.
- Effect of µ. Fig. 8(d) shows the effect of µ, which con-
trols the size of non maximum suppression (NMS) area.
Our ATBA prefers relatively small NMS area, since the
large NMS area will lead to missing the transitions involv-
ing short segments.

13. More Qualitative Results
To help more intuitively understand the advantage of our
method, we provide more qualitative results on three
datasets: Breakfast [21], Hollywood [2] and CrossTask [49]
in Fig. 9. Our method is significantly more accurate in lo-
cating actions than MuCon [40] and TASL [30]. Note that
in Fig. 9(e), there is indeed a shot of espresso in the video
(the 2nd picture, but without a pouring action) after action
“Pour Milk” (the 1st picture), so the activation on action
“Pour Espresso” in our result is not exactly a hallucination
compared to the result of TASL [30].

Ground-Truth

MuCon (60.2% MoF)

TASL (62.9% MoF)

Ours (85.2% MoF)

Background Take Bowl Pour Cereals Pour Milk Stir Cereals

(a) P03-webcam02-P03-cereals on Breakfast.

Ground-Truth

MuCon (77.0% MoF)

TASL (18.3% MoF)

Ours (82.5% MoF)

Background Pour Oil Crack Egg Fry Egg Add Salt and Pepper

Butter Pan Pour Egg to Pan Take PlatePut Egg to Plate

(b) P10-webcam01-P10-friedegg on Breakfast.

Ground-Truth

TASL (66.8% MoF)

Ours (84.6% MoF)

Background Open Door Sit Down Hug Person

(c) 0896 on Hollywood.

Ground-Truth

TASL (57.1% MoF)

Ours (84.4% MoF)

Background Sit down Stand up Open Door Eat

(d) 0146 on Hollywood.

Ground-Truth

TASL (55.1% MoF)

Ours (66.1% MoF)

Background Pour Milk Steam Milk Pour Espresso

(e) Make-a-Latte.2qhBLFc5CqM on CrossTask.

Figure 9. More qualitative results. The names of example test
videos are shown below each visualization. Best viewed in color.
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