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Regularized dynamical parametric approximation

Michael Feischl1, Caroline Lasser2,
Christian Lubich3, Jörg Nick4

Abstract This paper studies the numerical approximation of evolution equa-
tions by nonlinear parametrizations u(t) = Φ(q(t)) with time-dependent pa-
rameters q(t), which are to be determined in the computation. The motiva-
tion comes from approximations in quantum dynamics by multiple Gaussians
and approximations of various dynamical problems by tensor networks and
neural networks. In all these cases, the parametrization is typically irregular:
the derivative Φ′(q) can have arbitrarily small singular values and may have
varying rank. We derive approximation results for a regularized approach in
the time-continuous case as well as in time-discretized cases. With a suitable
choice of the regularization parameter and the time stepsize, the approach can
be successfully applied in irregular situations, even though it runs counter to
the basic principle in numerical analysis to avoid solving ill-posed subprob-
lems when aiming for a stable algorithm. Numerical experiments with sums
of Gaussians for approximating quantum dynamics and with neural networks
for approximating the flow map of a system of ordinary differential equations
illustrate and complement the theoretical results.
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1 Introduction

1.1 Nonlinear parametric approximation of evolution problems

We consider the numerical approximation of a possibly high-dimensional initial-
value problem of ordinary or partial differential equations

ẏ = f(y), y(0) = y0 (1.1)

via a nonlinear parametrization

y(t) ≈ u(t) = Φ(q(t)), 0 ≤ t ≤ t, (1.2)

with time-dependent parameters q(t). Here, Φ is a smooth map from a pa-
rameter space into the solution space. We are interested in the situation of
irregular parametrizations: the derivative matrix Φ′(q) may have arbitrarily
small singular values and possibly also varying rank. This is a typical situa-
tion of over-approximation that frequently arises in applications and causes
severe numerical difficulties. Our motivation for studying such problems orig-
inated from the following areas, for which references are given and discussed
in Subsection 1.3.

– Multi-Gaussian approximations in quantum dynamics: Here the param-
eters are the evolving complex width matrices, positions, momenta, and
phases in a sum of complex Gaussians.

– Tensor network approximations in quantum dynamics: Here the parameters
are the evolving connection tensors and bases.

– Deep neural network approximations of dynamical problems: Here the pa-
rameters are the evolving weight matrices and biases of the various layers
of the neural network.

In all these cases, the derivative matrix Φ′(q) typically has numerous very
small singular values.

1.2 Regularized dynamical parametric approximation

In the numerical approach considered in this paper, we determine the time
derivatives q̇(t) and u̇(t) = Φ′(q(t))q̇(t) by solving the regularized linear least
squares problem (we omit the argument t)

∥u̇− f(u)∥2 + ε2∥q̇∥2 = min! (1.3)

with a possibly time-dependent regularization parameter ε(t) > 0. This yields
a differential equation for the parameters q, and then u = Φ(q). We refer to
this approximation as a regularized dynamical parametric approximation. The
resulting differential equation for q is solved numerically by a standard time-
stepping method, where each function evaluation solves a linear least squares
problem (1.3).
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This algorithmic approach is studied here even though the differential equa-
tion for the parameters q is severely ill-conditioned for small ε. Errors in the
initial value q(0) can increase by a factor ect/ε (with a constant c > 0 indepen-
dent of ε) to errors in q(t) at times t > 0. The approach thus appears to run
counter to a basic principle of numerical analysis: to avoid solving ill-posed
subproblems when aiming for a stable algorithm.

As a consequence of the ill-posedness in the parameters, also the error
propagation in the solution approximation u(t) = Φ(q(t)) is ill-behaved, but
nevertheless the problem turns out to be what might be called well-posed up to
the order of the defect size O(δ), where δ = max0≤t≤t̄ δ(t) and δ(t)

2 is the min-
imum value attained in (1.3) at time t. This beneficial behaviour is found both
in the differential equation that results from (1.3) and in its numerical time
discretization, and this makes the regularization (1.3) a viable computational
approach. Its analysis adds new aspects to that of the underlying differential
equation (1.1) and the time discretization.

One possibly obvious finding from our analysis is that good pointwise ap-
proximability of the solution y(t) by parametrized functions is not sufficient. It
is important that the time derivative ẏ(t) can be well approximated in the tan-
gent spaces at parametrized functions u = Φ(q) near y(t). This suffices when f
is Lipschitz-continuous. In the case of a dominant term Ay in f(y) = Ay+g(y)
with an unbounded operator A that maps parametrized functions into their
tangent space (a situation encountered for the Schrödinger equation), we need
that ẏ(t) − Ay(t) can be well approximated in the tangent space, and the
regularized least-squares problem (1.3) should be slightly modified.

Remark 1.1 (Truncation vs. regularization) As an alternative to regularizing
the least-squares problem as in (1.3), small singular values of the matrix A =
Φ′(q) below a threshold ε > 0 are set to zero, yielding a truncated matrix
Aε with smallest nonzero singular value at least ε. Instead of (1.3), the time
derivative q̇ is then determined to be of minimal norm such that

∥Aε(q)q̇ − f(Φ(q))∥2 = min! (1.4)

Because of discontinuities in Aε(·) when singular values cross the threshold,
the resulting differential equation q̇ = Aε(q)

+f(Φ(q)) with the Moore–Penrose
pseudo-inverse A+

ε has a discontinuous right-hand side and is problematic to
analyse. After time discretization, however, this approach can be analysed by
arguments that are entirely analogous to the regularized approach (1.3) and
it is found to behave in a very similar way, since A+

ε behaves similarly to
the matrix (A⊤A+ ε2I)−1A⊤ that appears in the normal equations for (1.3).
Both matrices have the same singular vectors and the singular values are σ−1

i if
σi ≥ ε and zero else, and (σ2

i + ε
2)−1σi, respectively, where σi are the singular

values of A.
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1.3 Related work

In quantum dynamics, the non-regularized approach (1.3) with ε = 0 is known
as the Dirac–Frenkel time-dependent variational principle and has been widely
used in computational chemistry and quantum physics over the past decades;
see the books [15, 17] for dynamic, geometric and approximation aspects and
among countless papers see e.g. [12, 28, 23] with Gaussian wavepackets, [19, 27]
and [25, 8] with tensor networks and [4, 11, 24] with artificial neural networks.
This approach usually leads to ill-conditioned least squares problems which
cause numerical difficulties1. Ad hoc regularization is often used in computa-
tions in such cases, but a systematic foundation and analysis appear to be
missing in the literature. The regularization chosen in [23] corresponds pre-
cisely to (1.3) but is not further investigated there. The work [13] analyzes
and proposes several regularization schemes in the context of Krylov-subspace
projections of the original problem. This is of interest if one additionally wants
to analyze the solution process of the arising linear systems, which we do not
study here.

In recent years, an extensive amount of research has been invested in non-
linear approximations of differential equations, in particular in the context
of neural networks. The majority of the literature relies on minimizing the
residual in space-time, which yields a nonlinear optimization problem for the
parameters globally in time. Prominent examples of such a strategy include the
“deep Ritz method” [29] as well as “weak generative adversarial networks” [30]
and both were successfully applied to a wide range of partial differential equa-
tions (see e.g. [31, 1, 2, 14]). The nonlinear optimization process is, however,
difficult to analyse and the existing theory consequently focuses on the expres-
sivity properties of neural networks, i.e., what approximation is theoretically
possible (see e.g. [22, 20, 16]). This of course excludes the much harder task
of training the network and explaining the success of these methods remains
evasive.

An alternative approach in the literature is to use Galerkin based methods
to obtain differential equations for the parameters, see e.g. [30]. The Dirac–
Frenkel time-dependent variational principle has been used outside the realm
of quantum dynamics in the context of deep neural networks, for example in
[7] (referred to as “evolutional deep neural network”) and in [3] (referred to
as “neural Galerkin schemes”).

1.4 Outline

After establishing notation and framework in Section 2, we derive a posteriori
and a priori error bounds for the time-continuous regularized approach (1.3)

1 The case of tree tensor networks, which includes low-rank matrices, Tucker tensors and
tensor trains as special cases, is exceptional since its multilinear geometry allows for time
integration algorithms that are robust to arbitrarily small singular values [5, 18].
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in Section 3, where we also study the sensitivity of approximations to initial
values.

In Section 4 we study the error behaviour of the time discretization by the
explicit and implicit Euler methods, where we observe in particular the inter-
play between the time stepsize and the regularization parameter. In Section 5
the result is extended to Runge-Kutta discretizations, for which we prove an
optimal-order error bound up to the defect size δ. In Section 6 we propose
an adaptive selection of the regularization parameter and the stepsize that is
based on the previous error analysis.

In Section 7 we study the effect of enforcing conserved quantities, which
are typically not preserved by the regularized parametric approach.

In Section 8 we study the regularization approach for the time-dependent
Schrödinger equation as an important exemplary case of an evolutionary par-
tial differential equation.

Finally, in Section 9 we present two numerical examples that illustrate
the behaviour of the regularized parametric approximation: first by a neu-
ral network to approximate the flow map of a system of ordinary differential
equations, and second by a linear combination of complex Gaussians to ap-
proximate quantum dynamics.

In an appendix we collect some useful results on regularized least-square
problems.

2 Regularized dynamical parametric approximation

We start with the formulation of the framework. Let the state space H be
a Hilbert space (finite- or infinite-dimensional) with the inner product ⟨·, ·⟩H
and corresponding norm ∥ · ∥H and let the parameter space Q be a finite-
dimensional vector space equipped with the inner product ⟨·, ·⟩Q and corre-
sponding norm ∥ · ∥Q. The parametrization map Φ : Q → H is assumed to
be twice continuously differentiable. It need not be one-to-one, not even lo-
cally. The derivative Φ′(q) may have arbitrarily small singular values and a
nontrivial nullspace of varying dimension.

The initial value in (1.1) is assumed to be in parametrized form: y(0) =
Φ(q(0)) for some q(0) ∈ Q. We take u(0) = y(0) = Φ(q(0)).

For t ≥ 0, let ε(t) > 0 be the regularization parameter. For u(t) ∈ H and
q(t) ∈ Q with u(t) = Φ(q(t)), the time derivatives u̇(t) = Φ′(q(t))q̇(t) ∈ H and
q̇(t) ∈ Q are determined by requiring that

δ(t)2 := ∥u̇(t)− f(u(t))∥2H + ε(t)2∥q̇(t)∥2Q is minimal. (2.1)

In this regularized linear least squares problem, q̇(t) is uniquely determined,
which it would not necessarily be without the regularization.

The graph

M = {(u, q) : u = Φ(q)} ⊂ H ×Q
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need not be a manifold, but at (u, q) ∈ M it has the tangent space

T(u,q)M = {(u̇, q̇) : u̇ = Φ′(q)q̇} ⊂ H ×Q.

Remark 2.1 With respect to the ε-weighted inner product on H × Q that
is defined by ⟨·, ·⟩H + ε2⟨·, ·⟩Q, we consider the orthogonal projection onto
T(u,q)M, denoted

P ε(u,q) : H×Q → T(u,q)M.

Then, (2.1) is equivalent to (omitting the argument t)

(u̇, q̇) = P ε(u,q)
(
f(u), 0

)
. (2.2)

While this reformulation is reminiscent of the useful interpretation of the
Dirac–Frenkel time-dependent variational principle as a projection, see [17,
Section II.1], the difficulty here is that P ε(u,q) has no moderate Lipschitz con-

stant with respect to (u, q) under our assumptions, as is quantified in Propo-
sition 3.4 below. The Lipschitz-continuity of the projection onto the tangent
space was an essential condition in the proof of quasi-optimality of the approx-
imation obtained from the Dirac–Frenkel time-dependent variational principle
in [17, Section II.6]. This is not available here, and so the question arises as to
what alternative kind of error analysis can still be done.

3 Error bounds

In this section we assume that the vector field f : H → H in the differential
equation (1.1) is a Lipschitz-continuous map, with the one-sided Lipschitz
constant ℓ and the Lipschitz constant L : for all v, w ∈ H,

Re ⟨v − w, f(v)− f(w)⟩H ≤ ℓ ∥v − w∥2H,
∥f(v)− f(w)∥H ≤ L ∥v − w∥H.

(3.1)

The real part is taken in the case of a complex-linear space H.

3.1 A posteriori error bound

For the defect d(t) of the approximation u = Φ(q) we have

u̇(t) = f(u(t)) + d(t) with ∥d(t)∥H ≤ δ(t) (3.2)

for δ(t) of (2.1). There is the following error bound in terms of δ.

Proposition 3.1 In the situation of Section 2 and with the one-sided Lip-
schitz condition (3.1), the error is bounded by

∥u(t)− y(t)∥H ≤
∫ t

0

eℓ(t−s) δ(s) ds.
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Proof The proof is standard and is included for the convenience of the reader.
We subtract (1.1) from (3.2) and take the inner product with u − y and its
real part (if H is a complex space). On the left-hand side this yields, omitting
the omnipresent argument t,

Re ⟨u− y, u̇− ẏ⟩ = 1

2

d

dt
∥u− y∥2 = ∥u− y∥ · d

dt
∥u− y∥

and on the right-hand side

Re ⟨u− y, f(u)− f(y) + d⟩ ≤ ∥u− y∥
(
ℓ ∥u− y∥+ δ

)
.

Dividing both sides by ∥u − y∥ and using Gronwall’s inequality yields the
result. ⊓⊔

While δ(t) can be monitored during the computation and is thus avail-
able a posteriori, we have not bounded it a priori from known or assumed
approximability properties of the exact solution. This is done next.

3.2 A priori error bound

We will bound the defect size δ(t) by a quantity that measures the approx-
imability of the solution derivative ẏ(t) in the tangent spaces T(u,q)M for all
u = Φ(q) in a neighbourhood of y(t). We fix a radius ρ > 0 such that there
exist parametrized functions u = Φ(q) with ∥u− y(t)∥H ≤ ρ, and define

δ̄ρ(t)
2 := sup

q∈Q:∥Φ(q)−y(t)∥H≤ρ
min
q̇∈Q

(
∥Φ′(q)q̇ − ẏ(t)∥2 + ε2∥q̇∥2

)
. (3.3)

We can bound δ(t) of (2.1) in terms of δ̄ρ(t).

Lemma 3.1 Provided that ∥u(t)− y(t)∥ ≤ ρ, we have

δ(t) ≤ δ̄ρ(t) + ∥f(u(t))− f(y(t))∥H.

Proof We omit the argument t in the following. We have u = Φ(q) and u̇ =
Φ′(q)q̇. Let q̇+ ∈ Q be such that

∥Φ′(q)q̇+ − ẏ∥2H + ε2∥q̇+∥2Q is minimal.

We obtain from (2.1), (3.3) and ẏ = f(y)

δ2 = ∥Φ′(q)q̇ − f(u)∥2H + ε2∥q̇∥2Q
≤ ∥Φ′(q)q̇+ − f(u)∥2H + ε2∥q̇+∥2Q

≤
(
∥Φ′(q)q̇+ − ẏ∥H + ∥f(y)− f(u)∥H

)2

+ ε2∥q̇+∥2Q
≤ δ̄ 2

ρ + 2δ̄ρ ∥f(y)− f(u)∥H + ∥f(y)− f(u)∥2H

=
(
δ̄ρ + ∥f(y)− f(u)∥H

)2

.

Taking square roots yields the result. ⊓⊔
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We construct a reference approximation u∗(t) = Φ(q∗(t)) with q∗(t) ∈ Q
from the exact solution such that its derivative is a regularized best approx-
imation in the tangent space at (u∗(t), q∗(t)) to the solution derivative ẏ(t).
The derivatives u̇∗(t) = Φ′(q∗(t))q̇∗(t) and q̇∗(t) are determined such that

δ∗(t)
2 := ∥u̇∗(t)− ẏ(t)∥2H + ε2∥q̇∗(t)∥2Q is minimal. (3.4)

Here we have the immediate error bound

∥u∗(t)− y(t)∥H ≤
∫ t

0

∥u̇∗(s)− ẏ(s)∥H ds ≤
∫ t

0

δ∗(s) ds ≤
∫ t

0

δ̄ρ(s) ds (3.5)

as long as this bound does not exceed ρ. The following result bounds the error
of the numerical approximation u(t) by a multiple of the bound in (3.5).

Proposition 3.2 In the situation of Section 2 and under the Lipschitz con-
dition (3.1), the error is bounded by

∥u(t)− y(t)∥H ≤ e(ℓ+L)t
∫ t

0

δ̄ρ(s) ds

as long as this does not exceed ρ.

Proof The bound follows from Lemma 3.1 inserted into the proof of Proposi-
tion 3.1 and using the Lipschitz condition on f and the Gronwall lemma. ⊓⊔

3.3 Sensitivity to initial values

Given two initial values y0, ỹ0 ∈ H, the difference of the correponding solutions
y(t) and ỹ(t) of the differential equation (1.1) are bounded, under the one-sided
Lipschitz condition (3.1), by

∥y(t)− ỹ(t)∥H ≤ eℓt ∥y0 − ỹ0∥H, t ≥ 0;

see e.g. [10, IV.12]. There is no analogous result for the regularized approx-
imations u(t) = Φ(q(t)) and ũ(t) = Φ(q̃(t)) with initial values u0 = Φ(q0)
and ũ0 = Φ(q̃0), not even with the Lipschitz constant L instead of ℓ. We only
obtain the following bound.

Proposition 3.3 Under the one-sided Lipschitz condition (3.1) we have

∥u(t)− ũ(t)∥H ≤ eℓt ∥u0 − ũ0∥H +

∫ t

0

eℓ(t−s)
(
δ(s) + δ̃(s)

)
ds, t ≥ 0, (3.6)

with the defect size δ(t) of (2.1) and analogously δ̃(t) corresponding to ũ(t).

Proof This bound is obtained by the argument of Proposition 3.1 and estimat-
ing the difference of the defects d(t) = u̇(t)− f(u(t)) of (3.2) and analogously

d̃(t) in a rough way by ∥d(t)− d̃(t)∥H ≤ δ(t) + δ̃(t). ⊓⊔
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Note that the right-hand side of (3.6) does not tend to zero as u0− ũ0 → 0.
The difference of the defects is bounded in this rough way because there does
not seem to be a better way that does not introduce negative powers of ε
into the bound. The difficulty becomes apparent in the following bound for
u̇(t) − ˙̃u(t), where the second term on the right-hand side is a multiple of
∥q(t) − q̃(t)∥Q, which cannot be avoided and cannot be estimated by an ε-
independent multiple of ∥u(t)− ũ(t)∥H, as we would like.

Proposition 3.4 As a function of q, we denote by q̇(q) the solution of the
regularized least squares problem

δ(q)2 = ∥Φ′(q)q̇(q)− f(Φ(q))∥2H + ε2∥q̇(q)∥2Q is minimal. (3.7)

Then, for all q, q̃ ∈ Q and associated u = Φ(q), ũ = Φ(q̃) and u̇ = Φ′(q)q̇(q),
˙̃u = Φ′(q̃)q̇(q̃),

∥u̇− ˙̃u∥H ≤ L∥u− ũ∥H + 5
2β

δ̄

ε
∥q − q̃∥Q,

∥εq̇(q)− εq̇(q̃)∥Q ≤ L∥u− ũ∥H + 5
2β

δ̄

ε
∥q − q̃∥Q,

and |δ(q)− δ(q̃)| ≤ 3L∥u− ũ∥H + 5β
δ̄

ε
∥q − q̃∥Q,

where β is an upper bound on second order derivatives of Φ and δ̄ an upper
bound on δ on the line segment between q and q̃, and L is the Lipschitz constant
of f in (3.1).

Proof We use the adjoint Φ′(q)∗ ∈ L(H,Q) of the linear map Φ′(q) ∈ L(Q,H)
and the normal equations Mε(q)q̇(q) = Φ′(q)∗f(Φ(q)) with Gramian matrix
Mε(q) = Φ′(q)∗Φ′(q) + ε2IQ. We denote

Φ′(q)q̇(q) = Φ′(q)Mε(q)
−1Φ′(q)∗f(Φ(q))

=: Pε(q)f(Φ(q)).

By Lemma A.2, we have ∥Pε(q)∥L(H) ≤ 1 and therefore

∥Pε(q̃)(f(Φ(q))− f(Φ(q̃)))∥H ≤ L∥Φ(q)− Φ(q̃)∥H. (3.8)

As for the sensitivity of Pε(q) with respect to q, we consider the regularized
least squares problem with fixed right hand side b ∈ H and its normal equation

Mε(q)q̇b(q) = Φ′(q)∗b.

We differentiate

∂qMε(q)q̇b(q) +Mε(q)∂q q̇b(q) = ∂qΦ
′(q)∗b

and obtain

Φ′(q)∂q q̇b(q) = Φ′(q)Mε(q)
−1 (∂qΦ

′(q)∗b− ∂qMε(q)q̇b(q))

= Φ′(q)Mε(q)
−1 (∂qΦ

′(q)∗ (b− Φ′(q)q̇b(q))− Φ′(q)∗∂qΦ
′(q)q̇b(q)) .
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By Lemma A.2, we have ∥Φ′(q)Mε(q)
−1∥L(Q,H) ≤ 1

2ε and consequently

∥Φ′(q)∂q q̇b(q)∥H ≤ β

2ε
∥b− Φ′(q)q̇β(q)∥H + β∥q̇b(q)∥Q ≤ 3β

2ε
δb(q)

with

δb(q)
2 = ∥Φ′(q)q̇b(q)− b∥2H + ε2∥q̇b(q)∥2Q.

This implies, for

∂q(Pε(q)b) = ∂q(Φ
′(q)q̇b(q)) = ∂qΦ

′(q)q̇b(q) + Φ′(q)∂q q̇b(q),

the bound

∥∂q(Pε(q)b)∥H ≤ 5β

2ε
δb(q).

Using this bound for the right-hand side b = f(Φ(q)) and combining it with
the Lipschitz estimate (3.8), we obtain

∥Φ′(q)q̇(q)− Φ′(q̃)q̇(q̃)∥H

≤ ∥(Pε(q)− Pε(q̃))f(Φ(q))∥H + ∥Pε(q̃)(f(Φ(q))− f(Φ(q̃)))∥H

≤ 5βδ̄

2ε
∥q − q̃∥Q + L∥Φ(q)− Φ(q̃)∥H,

which is the first of the stated bounds. The second one follows in the same
way. Finally, with u = Φ(q) and u̇ = Φ′(q)q̇ and analogously ũ and ˙̃u we have
by the Cauchy–Schwarz inequality and (3.7)

|δ(q)2 − δ(q̃)2| =
∣∣〈(u̇− f(u)) + ( ˙̃u− f(ũ)), (u̇− ˙̃u)− (f(u)− f(ũ))

〉
H

+ ε2
〈
q̇ + ˙̃q, q̇ − ˙̃q

〉
Q

∣∣
≤

(
δ(q) + δ(q̃)

) (
∥u̇− ˙̃u∥H + ∥f(u)− f(ũ)∥H

)
+

(
δ(q) + δ(q̃)

)
ε∥q̇ − ˙̃q∥Q,

which yields

|δ(q)− δ(q̃)| ≤ ∥u̇− ˙̃u∥H + L∥u− ũ∥H + ε∥q̇ − ˙̃q∥Q,

and the stated bound follows from the first two bounds. ⊓⊔

Remark 3.1 As far as the inverse powers with respect to ε are concerned, the
previous estimates are sharp, as the following one-dimensional example with
H = Q = R, Φ(q) = 1

2q
2, and f(u) = 1 illustrates. In this case we have

q̇(q) =
q

q2 + ε2
, d(q) = Φ′(q)q̇(q)− f(u) = − ε2

q2 + ε2

and

∂q q̇(q) = − q2

q2 + ε2
+

ε2

(q2 + ε2)2
= − d(q)

q2 + ε2
− q2

q2 + ε2
.
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Moreover,

|u̇− ˙̃u| =
∣∣∣∣ q

q2 + ε2
d(q̃) +

q̃

q̃2 + ε2
d(q)

∣∣∣∣ |q − q̃|

= |δ(q)− δ(q̃)|

which implies

|u̇− ˙̃u| = |δ(q)− δ(q̃)| ≤ δ̄

ε
|q − q̃|

|εq̇(q)− εq̇(q̃)| ≤
(
ε+

δ̄

ε

)
|q − q̃|.

These tight estimates exhibit the factor δ̄/ε in the same way as the general
bounds of Proposition 3.4.

Remark 3.2 Using Proposition 3.4 and Gronwall’s lemma, we obtain the bound

∥u(t)− ũ(t)∥H + ε∥q(t)− q̃(t)∥Q ≤ eωt (∥u0 − ũ0∥H + ε∥q0 − q̃0∥Q)

with the exponent ω = max
(
βδ̄/ε2, L

)
. For nonlinear parametrizations (where

β ̸= 0), which is our main interest in this paper, this is not a useful estimate
for small ε. For linear parametrizations (β = 0), however, we even obtain

∥u(t)− ũ(t)∥H ≤ eLt∥u0 − ũ0∥H

without any dependence on ∥q0 − q̃0∥Q. Hence, with respect to error propaga-
tion, linear and nonlinear near-singular parametrizations behave very differ-
ently.

4 Time discretization by the regularized Euler method

We study time-stepping methods in the framework of Sections 2 and 3, first
based on the Euler method and in the next section on general Runge–Kutta
methods. The unusual feature is that the differential equation for the param-
eters q, which is the equation that is actually discretized, is ill-behaved, but
nevertheless we find better behaviour of u = Φ(q). We only assume that the
vector field f in the original differential equation (1.1) for y is sufficiently dif-
ferentiable, and that the parametrization map Φ has bounded second deriva-
tives (but a regular parametrization is not assumed). These properties will be
used to derive error bounds for the discrete approximations un = Φ(qn) at
tn = t0 + nh, for stepsizes h > 0 that need to be suitably restricted in terms
of the defect in the regularized least squares problem and the regularization
parameter. No error bounds are derived for the parameters qn.
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4.1 The regularized explicit Euler method

A step of the explicit Euler method applied to the differential equation for the
parameters q, starting from qn at time tn with the regularization parameter
εn, reads

qn+1 = qn + hq̇n, un+1 = Φ(qn+1), (4.1)

where q̇n is the solution of the regularized linear least squares problem

δ2n := ∥Φ′(qn)q̇n − f(un)∥2H + ε2n∥q̇n∥2Q is minimal. (4.2)

4.2 Local error bound

We first consider the local error, that is the error after one step u1 − y(t1),
where y(t) is the solution of (1.1) starting from y(t0) = u0 = Φ(q0).

Lemma 4.1 Under the stepsize restriction

hδ0 ≤ c ε20, (4.3)

the local error of the regularized Euler method starting from y(t0) = u0 is
bounded by

∥u1 − y(t1)∥H ≤ c1hδ0 + c2h
2 (4.4)

with c1 = 1 + cβ, where β is a bound of the second derivative of Φ in a
neighbourhood of q0, and c2 = 1

2 maxt0≤t≤t1 ∥ÿ(t)∥H.

Proof We have by Taylor expansion

y(t1)− y(t0) = hẏ(t0) +

∫ t1

t0

(t1 − t) ÿ(t) dt

= hf(u0) +O(h2)

and we have

u1 − u0 = Φ(q1)− Φ(q0)

= Φ′(q0)(q1−q0) +
∫ 1

0

(1−θ)Φ′′(q0+θ(q1−q0))[q1−q0, q1−q0] dθ

= Φ′(q0)hq̇0 +O(∥hq̇0∥2Q)

= hf(u0) +O(hδ0) +O

((hδ0
ε0

)2
)
,

where the last line results from the definition of δ0, which is an upper bound of
both ∥Φ′(q0)q̇0 − f(u0)∥H and ε0∥q̇0∥Q. This implies ∥hq̇0∥Q ≤ hδ0/ε0. Under
the stepsize restriction hδ0 ≤ cε20, the last term is also O(hδ0). Subtracting
the two formulas and tracing the constants in the O(·) terms yields the stated
result. ⊓⊔
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Remark 4.1 The result of Lemma 4.1 holds without any fixed bound on q̇0. If,
however, ∥q̇0∥Q ≤ γ with a moderate constant γ, which is satisfied if δ0 ≤ γε0,
then the above proof shows that the error bound (4.4) is satisfied with c1 = 1
and c2 = 1

2 maxt0≤t≤t1 ∥ÿ(t)∥H + βγ2 with the same β as in the lemma. This
clearly indicates that while the stepsize restriction (4.3) is sufficient for the
stated error bound, it is not always necessary.

Remark 4.2 A local error estimate of a similar structure, without any restric-
tion on the step size h or the defect δ0, is readily available by keeping an
additional a posteriori error term. Comparing the explicit Euler approxima-
tion y1 = y0 + hf(y0) as an intermediate term with u1 = Φ(q1) yields

∥u1 − y(t1)∥H ≤ ∥u1 − y1∥H + ∥y1 − y(t1)∥H
≤ ∥u1 − y0 − hΦ′(q0)q̇0∥H + h∥Φ′(q0)q̇0 − f(u0)∥H + ∥y1 − y(t1)∥H
≤ ∥u1 − y0 − hΦ′(q0)q̇0∥H + hδ0 +O(h2). (4.5)

The first term in the last line is computable with the quantities derived during
the time integration of the scheme and comes at the cost of evaluating an
additional H-norm. Under the step size restriction of Lemma 4.1, or in the
case of Remark 4.1, the term is of the optimal order O(hδ0 + h2).

4.3 Global error bound (using stable error propagation by the exact flow)

Using the standard argument of LadyWindermere’s fan with error propagation
by the exact flow, see the book by Hairer, Nørsett & Wanner [9, II.3], we obtain
the following global error bound from Lemma 4.1 and condition (3.1).

Proposition 4.1 Under condition (3.1) and the stepsize restriction

hδn ≤ c ε2n, 0 ≤ n ≤ N,

the error of the regularized Euler method (4.1)–(4.2) with initial value y0 =
u0 = Φ(q0) is bounded, for tn = nh ≤ tN ≤ t̄, by

∥un − y(tn)∥H = O(δ + h) with δ = max
n

δn,

or more precisely (compare with Proposition 3.1),

∥un − y(tn)∥H ≤ h

n−1∑
j=0

eℓ(tn−1−tj)
(
c1δj + c2h),

where c1 = 1 + cβ with β a bound of the second derivative of Φ in a neigh-
bourhood of the solution, and c2 is a bound of f ′f in a neighbourhood of the
solution y(t), i.e. a bound of second derivatives of solutions ỹ of the differen-

tial equation ˙̃y = f(ỹ) with initial values in a neighbourhood of the solution
trajectory {y(t) : 0 ≤ t ≤ t̄}.
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4.4 Error propagation by the numerical method

The Euler method applied to (1.1) is stable in the sense that the numerical
results y1 and ỹ1 obtained from starting values y0 and ỹ0, respectively, differ
by

∥y1 − ỹ1∥H ≤ (1 + hL)∥y0 − ỹ0∥H,

where L is again the Lipschitz constant of f . For the regularized Euler method
we only obtain, similarly to the proof of Lemma 4.1, a discrete analogue of
(3.6):

∥u1 − ũ1∥H ≤ (1 + hL)∥u0 − ũ0∥H + hδ0 + hδ̃0. (4.6)

This is not good enough to be used in Lady Windermere’s fan with error
propagation by the numerical method, which is the most common way to
prove error bounds for numerical methods for nonstiff differential equations;
see [9].

4.5 A priori error bound for the regularized explicit Euler method

The bound in Proposition 4.1 is partly a priori (in its dependence on ℓ, c1 and
c2) and partly a posteriori (in its dependence on the defect sizes δj). In terms
of the method-independent defect sizes δ̄ρ(t) ρ-near to the exact solution as
defined in (3.3), we have the following discrete analogue of Proposition 3.2.

Proposition 4.2 In the situation of Proposition 4.1 we have the a priori error
bound, for 0 ≤ tn = nh ≤ t̄,

∥un − y(tn)∥H ≤ C1h

n∑
j=1

δ̄ρ(tj) + C2h,

where C1 and C2 depend on Lt̄ but are independent of h and ε. This bound is
valid as long as the right-hand side does not exceed ρ.

Proof We still have the bound of Lemma 3.1,

δn ≤ δ̄ρ(tn) + ∥f(un)− f(y(tn))∥H.

Inserting this bound in the local error bound of Proposition 4.1 and using the
Lipschitz condition on f yields

∥un − y(tn)∥H ≤ c1h

n∑
j=1

δ̄ρ(tj) + c1h

n∑
j=1

L ∥uj − y(tj)∥H + c2h,

and the discrete Gronwall inequality yields the result. ⊓⊔
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4.6 Regularized implicit Euler method

A step of the implicit Euler method, starting from qn at time tn reads

qn+1 = qn + hq̇n+1, un+1 = Φ(qn+1),

where q̇n+1 is the solution of the regularized linear least squares problem

δ2n+1 = ∥Φ′(qn+1)q̇n+1 − f(un+1)∥2H + ε2n+1∥q̇n+1∥2Q is minimal.

The defining equation for qn+1 is a fixed point equation qn+1 = φn(qn+1) for
the function

φn(q) := qn + h argminq̇∈Q
(
∥Φ′(q)q̇ − f(Φ(q))∥2H + ε2n+1∥q̇∥2Q

)
.

This is a contraction for h sufficiently small due to the bound of Proposi-
tion 3.4, which implies

∥φn(q)− φn(q̃)∥Q ≤ h

(
β2δ̄

ε2n+1

+
β1L

εn+1

)
∥q − q̃∥Q

for δ̄ > 0 an upper bound on the residual size in a neighbourhood of q, q̃. The
constants β1, β2 > 0 depend on first order and second order derivatives of Φ,
respectively. Hence, with a step-size restriction of the form

h

(
β2δ̄

ε2n+1

+
β1L

εn+1

)
< 1,

where δ̄ > 0 is an upper bound on the residual size in the vicinity of the
numerical solution, the fixed point iteration is contractive and thus converging.

The local error satisfies

∥u1 − y(t1)∥H ≤ βh2∥q̇1∥2H + hδ1 + c2h
2,

as is seen by repeating the proof of Lemma 4.1 with obvious adaptations. This
leads to global error bounds as in Propositions 4.1 and 4.2.

5 Regularized explicit Runge–Kutta methods

A step of an explicit Runge–Kutta method of order p with coefficients aij and
bj applied to the differential equation for the parameters q reads as follows.
Starting from qn at time tn with the regularization parameter εn, we first
compute consecutively the internal stages (for i = 1, . . . , s)

qn,i = qn + h

i−1∑
j=1

aij q̇n,j , un,i = Φ(qn,i), (5.1)

and q̇n,i as the solution of the regularized linear least squares problem

δ2n,i := ∥Φ′(qn,i)q̇n,i − f(un,i)∥2H + ε2n∥q̇n,i∥2Q is minimal. (5.2)
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Finally, the new value is computed as

qn+1 = qn + h

s∑
j=1

bj q̇n,j , un+1 = Φ(qn+1). (5.3)

We first bound the local error.

Lemma 5.1 Let δ0 = maxi δ0,i. Under the stepsize restriction

hδ0 ≤ c ε20, (5.4)

the local error of the regularized p-th order Runge–Kutta method starting from
y(t0) = u0 = Φ(q0) is bounded by

∥u1 − y(t1)∥H ≤ c1hδ0 + c2h
p+1, (5.5)

where c1 is a constant times 1 + cβ with the bound β of the second derivative
of Φ in a neighbourhood of q0, and c2h

p+1 is the bound for the local error of
the p-th order Runge–Kutta method applied to (1.1).

Proof We note that (5.2) implies ∥ε0q̇0,j∥Q ≤ δ0 and hence ∥hq̇0,j∥Q ≤ hδ0/ε0.
Moreover, (5.2) also implies ∥Φ′(q0,j)q̇0,j − f(u0,j)∥H ≤ δ0. This yields

u0,i − u0 = Φ(q0,i)− Φ(q0) = Φ′(q0)h

i−1∑
j=1

aij q̇0,j +O

((hδ0
ε0

)2
)

= h

i−1∑
j=1

aijΦ
′(q0,j)q̇0,j −

i−1∑
j=1

aij
(
Φ′(q0,j)− Φ′(q0)

)
hq̇0,j +O

((hδ0
ε0

)2
)

= h

i−1∑
j=1

aijf(u0,j) +O(hδ0) +O

((hδ0
ε0

)2
)
+O

((hδ0
ε0

)2
)

and in the same way

u1 − u0 = h

s∑
j=1

bjf(u0,j) +O(hδ0) +O

((hδ0
ε0

)2
)
.

Apart from the O(·) terms, these formulae are those that define the result y1
of one step of the Runge–Kutta method applied to (1.1). So we obtain, using
also the Lipschitz continuity of f ,

u1 − y1 = O(hδ0) +O

((hδ0
ε0

)2
)
.

Since the method is of order p and f is sufficiently differentiable, we have

y1 − y(t1) = O(hp+1).

Noting that under the stepsize restriction (5.4) we have (hδ0/ε0)
2 ≤ chδ0, the

error bound (5.5) follows. ⊓⊔
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As before, using the local error bound in Lady Windermere’s fan with error
propagation by the exact solutions, we obtain the following global error bound
for the p-th order Runge method. We formulate the result for variable stepsizes
hn, so that tn+1 = tn + hn and tN = t̄.

Proposition 5.1 Under condition (3.1) and the stepsize restriction

hnδn,i ≤ c ε2n, 0 ≤ n ≤ N, i = 1, . . . , s,

the error of the regularized p-th order Runge–Kutta method (5.1)–(5.3) with
initial value y0 = u0 = Φ(q0) is bounded, for tn ≤ t̄, by

∥un − y(tn)∥H = O(δ + hp)

with δ = maxn,i δn,i and h = maxn hn. The constants symbolized by the O-
notation are independent of δ and the regularization parameters εn (under the
given stepsize restriction), and of the stepsize sequence (hk) and n with tn ≤ t̄.

6 Choice of the regularization parameter and the stepsize

The algorithm below chooses the regularization parameter εn in the nth time
step as large as possible such that the defect δn is within a given factor of the
defect attained for tiny ε or within a prescribed tolerance. The stepsize hn is
chosen such that the critical quadratic error terms are of size hnδn.

For arbitrary ε > 0, in the nth time step we let q̇n(ε) be the solution of the
regularized linear lest squares problem with regularization parameter ε such
that

δn(ε)
2 := ∥Φ′(qn)q̇n(ε)− f(un)∥2H + ε2∥q̇n(ε)∥2Q is minimal.

Let ε0n and h0n be initializations of the regularization parameter and the step-
size, respectively. These might be the values from the previous time step. Let
ε⋆ be a tiny reference parameter such that δn(ε⋆) can still be computed reliably
(just so). Let δmin > 0 be a given threshold.

6.1 Choice of the regularization parameter εn

Compute δn(ε⋆) and set δtoln = max(17 δn(ε⋆), δmin) as the target defect size2.
We aim at having δn(εn) ≈ δtoln . We use 1 or 2 Newton iterations for the
equation δn(εn)

2 − (δtoln )2 = 0 (except in the very first step where a good
starting value is not available and more iterations might be needed). In view
of Lemma A.1, which shows that this is a monotonically increasing concave

2 The factor 17, chosen in honour of Gauß, can be replaced by a different factor ad libitum.
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smooth function with the derivative dδ2n/dε
2 = ∥q̇n(ε)∥2Q, we have the Newton

iteration

(
εk+1
n

)2
=

(
εkn

)2 − δn(ε
k
n)

2 −
(
δtoln

)2
∥q̇n(εkn)∥2Q

.

Alternatively, we can proceed in a Levenberg–Marquardt style, cf. [21]:
Initialize εn = ε0n.
If δn(εn) ≤ δtoln

then while δn(3εn) ≤ δtoln set εn := 3εn
else while δn(εn) > δtoln set εn := εn/3.

In the following we set q̇n = q̇n(εn) and δn = δn(εn).

6.2 Choice of the stepsize hn

The stepsize hn is chosen such that ∥Φ′′(qn)[hnq̇n, hnq̇n]∥H ≈ hnδn. This is
satisfied for the choice

hn =
h0nδn

∥(Φ′(qn + h0nq̇n)− Φ′(qn))q̇n∥H
.

6.3 Regularized Runge–Kutta step with εn and hn

We compute qn+1 and un+1 = Φ(qn+1) by a regularized Runge–Kutta step (see
Section 5) with the proposed regularization parameter εn and the proposed
stepsize hn. We can use an embedded pair of Runge–Kutta methods that gives
a local error estimate that should not substantially exceed hnδn (else the step
is rejected and repeated with a reduced stepsize).

7 Conserved quantities

7.1 Conserved quantities and regularized dynamical approximation

Let g = (g1, . . . , gm)⊤ : H → Rm be an m-vector of real-valued functions that
are conserved along the flow of the differential equation (1.1):

g(y(t)) = g(y(0)) for all t

for every choice of initial value y(0) ∈ H. Differentiating this equation w.r.t. t,
this is seen to be equivalent to

G(y(t))ẏ(t) = 0,

where G = g′ = ∂g/∂y, and hence to

G(y)f(y) = 0 for all y.
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However, g is no longer a conserved quantity for the regularized dynamical
approximation (2.1), not even for linear g. We use the notation

A = Φ′, Mε = A⊤A+ ε2I, Pε = AM−1
ε A⊤

where we omitted the argument q for all appearing matrices3. For the regular-
ized least squares problem (2.1) we have the normal equations (now omitting
the argument t)

Mε(q)q̇ = A(q)⊤f(Φ(q)) (7.1)

and for u = Φ(q), the time derivative u̇ = Φ′(q)q̇ becomes

u̇ = Pε(q)f(u) = f(u) + d with d = −(I − Pε(q))f(u), (7.2)

where the defect d is bounded by ∥d∥H ≤ δ in view of (2.1). As G(u)f(u) = 0,
we obtain

d

dt
g(u) = G(u)u̇ = G(u)d,

which in general is different from zero, so that g(u(t)) is not conserved. We
note, however, the bound

|g(u(t))− g(u(0))| ≤ K

∫ t

0

δ(t) dt,

where K is an upper bound of the norm of G(u) along the trajectory u(·).

7.2 Enforcing conservation

We can enforce conservation of g along the approximation u(t) = Φ(q(t))
by adding the condition G(u(t))u̇(t) = 0 as a constraint, i.e. (omitting the
argument t)

G(Φ(q))A(q)q̇ = 0,

and we minimize in (2.1) under this constraint. With the notation

C(q) := G(Φ(q))A(q) = g′(u)Φ′(q),

we obtain instead of (7.1) the constrained system with a Lagrange multiplier
λ(t) ∈ Rm,

Mε(q)q̇ + C(q)⊤λ = A(q)⊤f(Φ(q))

C(q)q̇ = 0.
(7.3)

Inserting q̇ from the first equation into the second equation, we find λ from
the equation (omitting the argument q or u of the matrices)

CM−1
ε C⊤λ = CM−1

ε A⊤f(u)

3 In the infinite-dimensional case, the linear map A : Rk → H can be viewed as a quasi-
matrix A = (a1, . . . , ak) with ai ∈ H, see e.g. [26], for which A⊤ is to be interpreted as the
adjoint of A. For v, w ∈ H we interpret v⊤w as the inner product (v, w)H. In the following
we will use the familiar matrix notation throughout.
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or equivalently, since C = GA and Pε = AM−1
ε A⊤ imply CM−1

ε C⊤ = GPεG
⊤

and CM−1
ε A⊤ = GPε, and since (Pε − I)f(u) = d and G(u)f(u) = 0, we find(

G(u)Pε(q)G(u)
⊤)λ = G(u)d. (7.4)

The symmetric positive semi-definite matrix Pε = AM−1
ε A⊤ has the eigenval-

ues λi = σ2
i /(σ

2
i +ε

2) and 0, where σi are the singular values of A. Eigenvalues
are very small if they correspond to very small singular values σi ≪ ε of A,
but are larger than 1

2 for σi ≥ ε. To understand under which condition the
symmetric positive semi-definite matrix GPεG

⊤ has a moderately bounded in-
verse, let Λ be the diagonal matrix of eigenvalues of Pε and U the orthogonal
matrix of eigenvectors, and for θ > 0 let Uθ be the matrix composed of those
eigenvectors of Pε that correspond to the eigenvalues λi ≥ θ. If the smallest
singular value of GUθ equals ρ > 0, then

∥(GPεG⊤)−1∥2 ≤ 1

θρ2
, (7.5)

because v⊤GUΛ(GU)⊤v ≥ v⊤GUθΛθ(GUθ)
⊤v ≥ θ∥(GUθ)⊤v∥22 ≥ θρ2∥v∥22 for

all v ∈ Rm. Here, Λθ is the diagonal matrix of those eigenvalues of Pε that
are larger than θ. We remark that in the case of just one conserved quantity
(m = 1), the inverse of GPεG

⊤ ∈ R is moderately bounded if ∇g is not near-
orthogonal to all those singular vectors of A that correspond to singular values
σi ≥ ε. This appears to be a very mild requirement.

Inserting λ from (7.4) into the first equation of (7.3) and using the defini-
tion of the defect d yields u̇ = Aq̇ as

u̇+ PεG
⊤(GPεG

⊤)−1Gd = f(u) + d.

With the projection onto the null-space of G(u) for u = Φ(q) that is given by

Π(q) = I − Pε(q)G(u)
⊤(G(u)Pε(q)G(u)

⊤)−1G(u),

we thus obtain for u(t) = Φ(q(t)), instead of (7.2), the differential equation
with the projected defect,

u̇ = f(u) +Π(q)d. (7.6)

7.3 Constrained regularized Euler method

We now ensure the condition g(un+1) = g(un) by adding it as a constraint
to the regularized least squares problem (4.2). A step of the constrained reg-
ularized Euler method, starting from qn at time tn with the regularization
parameter εn, reads

qn+1 = qn + hq̇n, un+1 = Φ(qn+1), (7.7)
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where q̇n is the solution of the constrained regularized linear least squares
problem

δ̂ 2
n := ∥Φ′(qn)q̇n − f(un)∥2H + ε2n∥q̇n∥2Q is minimal

subject to g(un+1) = g(un).
(7.8)

Note that while δn of (4.2) depends only on qn, the defect size δ̂n ≥ δn depends
also on the stepsize h. With the notation of the previous subsections, a step of
the unconstrained regularized Euler method of Section 4 reads (with ε = εn)

Mε(qn)q̇n = A(qn)
⊤f(un)

together with q̃n+1 = qn+hq̇n and ũn+1 = Φ(qn+1). The minimality condition
for the constrained problem (7.8) now determines (a different) q̇n together
with the Lagrange multiplier λn+1 from the nonlinear system of equations

Mε(qn)q̇n + C(qn)
⊤λn+1 = A(qn)

⊤f(un)

g
(
Φ(qn + hq̇n)

)
= g(un).

(7.9)

We then set qn+1 = qn + hq̇n and un+1 = Φ(qn+1). Inserting q̇n from the first
equation into the second equation, we get a nonlinear equation for λn+1: with
q̃n+1 = qn+hMε(qn)

−1A(qn)
⊤f(un) (which is the result of the unconstrained

Euler method) we have

g
(
Φ(q̃n+1 − hMε(qn)

−1C(qn)
⊤λn+1)

)
− g(un) = 0.

A modified Newton method applied to this equation determines the (k + 1)st

iterate λ
(k+1)
n+1 = λ

(k)
n+1 +∆λ

(k)
n+1 by solving the linear system

− hC(qn)Mε(qn)
−1C(qn)

⊤∆λ
(k)
n+1

= −g
(
Φ(q̃n+1 − hMε(qn)

−1C(qn)
⊤λ

(k)
n+1)

)
+ g(un).

(7.10)

The starting value is chosen as λ
(0)
n+1 = 0. The matrix CM−1

ε C⊤ = GPεG
⊤ is

the same as in (7.4). It is assumed to be invertible, see the bound (7.5) of the
inverse.

Lemma 7.1 If the matrix G(un)Pε(qn)G(un)
⊤ has a moderately bounded in-

verse, then the modified Newton iteration (7.10) with starting value λ
(0)
n+1 = 0

converges under the stepsize restriction

h(δn + h) ≤ cε

with a sufficiently small c that is independent of h, ε and δ. Moreover,

λn+1 = O(δn + h).
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Proof The modified Newton iteration is a fixed-point iteration for the map
(omitting the argument un of G and qn of A,Mε, Pε and letting z = hλ)

φ(z) = z − (GPεG
⊤)−1

(
g
(
Φ(q̃n+1 −M−1

ε A⊤G⊤z
)
− g(un)

)
.

Using the O(h(δn + h)) local error bound of the regularized Euler method as
given in Lemma 4.1 and the conservation of g by the exact flow from tn to
tn+1, we obtain for ũn+1 = Φ(q̃n+1) that g(ũn+1) − g(un) = O(h(δn + h))
and hence z(1) = O(h(δn + h)) for the starting value z(0) = 0. Using that
∥M−1

ε A⊤∥ ≤ 1/(2ε), we find that in a ball of radius O(h(δn + h)) centered at
0 we have

φ′(z) = O
(
h(δn + h)/ε

)
,

which is strictly smaller than 1 under the given stepsize restriction. The stated
result then follows with the Banach fixed-point theorem. ⊓⊔

7.4 Error analysis

The local error has a bound similar to Lemma 4.1 with the only difference
that the constants now also depend on a bound of the inverse of the matrix
in (7.4) and on bounds of derivatives of g. Note that the following local error
bound is in terms of the defect size δ0 of the unconstrained regularized Euler
method, as in Section 4, not just of the larger δ̂0 of the constrained method
(7.8).

Lemma 7.2 Assume that the matrix G(u0)Pε(q0)G(u0)
⊤ (with ε = ε0) has

an inverse bounded by
∥∥(G(u0)Pε(q0)G(u0)⊤)−1∥∥ · ∥G(u0)∥2 ≤ γ. Under the

stepsize restriction (cf. (4.3))

hδ̂0 ≤ cε20 (7.11)

with a sufficiently small c (inversely proportional to γ), we have

δ̂0 ≤ ĉ δ0,

where ĉ is proportional to γ but independent of h and ε0. The local error of
the regularized Euler method starting from y(t0) = u0 = Φ(q0) is then bounded
by

∥u1 − y(t1)∥H ≤ ĉ1hδ0 + ĉ2h
2, (7.12)

where ĉ2 equals c2 of Lemma 4.1 and ĉ1 is proportional to γ, depends on a
bound of the second derivative of Φ in a neighbourhood of q0 and on a bound
of the second derivative of g in a neighbourhood of u0.
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Proof As in the proof of Lemma 4.1, we write y(t1)− y(t0) = hf(u0)+O(h2),
and we have again

u1 − u0 = A(q0)hq̇0 +O(h2∥q̇0∥2Q),

and further

0 = g(u1)− g(u0) = G(u0)(u1 − u0) +O(h2∥q̇0∥2Q).

From the first equation of (7.9) we have

A(q0)q̇0 + Pε(q0)G(u0)
⊤λ1 = f(u0) + d0,

where d0 = −(I − Pε(q0))f(u0) is the defect of the unconstrained regularized
Euler method, which is bounded by δ0. From the constraint, usingG(u0)f(u0) =
0, we thus find

0 = g(u1)− g(u0) = G(u0)A(q0)hq̇0 +O(h2∥q̇0∥2Q)
= −hG(u0)Pε(q0)G(u0)⊤λ1 + hG(u0)d0 +O(h2∥q̇0∥2Q),

which yields λ1 = O(δ0)+O(h∥q̇0∥2Q) and, with the projection Π(q) appearing
in (7.6),

u1 − u0 = hf(u0) + hΠ(q0)d0 +O(h2∥q̇0∥2Q).

Hence we obtain the error bound

u1 − y(t1) = O(hδ0) +O(h2∥q̇0∥2Q) +O(h2). (7.13)

It remains to show that the second term on the right-hand side is also O(hδ0)
under the stepsize restriction (7.11). So far we only know from (7.8) that

ε∥q̇0∥Q ≤ δ̂0 and δ0 ≤ δ̂0. From the first equation of (7.9) we obtain

εq̇0 + εMε(q0)
−1A(q0)

⊤G(u0)
⊤λ1 = εMε(q0)

−1A(q0)
⊤f(u0).

We estimate

∥εMε(q0)
−1A(q0)

⊤G(u0)
⊤λ1∥Q ≤ ∥G(u0)⊤λ1∥H = O(δ0) +O(h∥q̇0∥2Q).

We write f(u0) = A(q0)q̇
uncon
0 − d0, where q̇

uncon
0 is the derivative approxi-

mation in the unconstrained regularized Euler method, which is bounded by
ε∥q̇uncon0 ∥Q ≤ δ0. Using further that ∥Mε(q0)

−1A(q0)
⊤A(q0)∥ ≤ 1, this yields

the bound

ε∥q̇0∥Q ≤ ∥G(u0)⊤λ1∥H + ε∥q̇uncon0 ∥Q + ∥d0∥H = O(δ0) +O(h∥q̇0∥2Q).

Under the stepsize restriction (7.11) we have

h∥q̇0∥2Q ≤ h(δ̂0/ε)
2 ≤ cδ̂0 with a small factor c,

so that
ε∥q̇0∥Q ≤ Cδ0 +

1
4 δ̂0.
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We further note that the obtained bound on λ1 implies

A(q0)q̇0 − f(u0) = −Pε(q0)G(u0)⊤λ1 + d0 = O(δ0) +O(h∥q̇0∥2Q),

so that also
∥A(q0)q̇0 − f(u0)∥H ≤ Cδ0 +

1
4 δ̂0.

Together with the estimate for εq̇0 this shows that

δ̂ 2
0 = ∥A(q0)q̇0 − f(u0)∥2H + ε2∥q̇0∥2Q ≤ C ′δ20 +

1
2 δ̂

2
0 ,

so that
δ̂0 = O(δ0).

Tracing the constants in the O-notation yields the stated result. ⊓⊔

From this local error bound we again obtain a global O(h+ δ) error bound
as in Proposition 4.1, using Lady Windermere’s fan with error propagation by
the exact flow.

8 Case study: the Schrödinger equation

The time-dependent Schrödinger equation is arguably the evolution equation
for which nonlinear approximations have been first and most often used, ever
since Dirac’s paper of 1930 [6]. Gaussians and tensor networks are nowadays
the most prominent examples of nonlinear approximations in quantum dy-
namics. As a partial differential equation with an unbounded operator, the
Schrödinger equation does not fall into the Lipschitz framework considered so
far. In this section we study what remains and what needs to be changed in
the regularized approach.

8.1 Preparation

The Schrödinger equation determines the complex-valued wave function ψ(x, t)
that depends on spatial variables x ∈ Rd and time t:

iψ̇ = −∆ψ + V ψ, (8.1)

where i is the imaginary unit, ψ̇ = ∂tψ is the time derivative, ∆ is the Lapla-
cian on Rd and V = V (x) is a real-valued potential that multiplies the wave
function. The Schrödinger equation is considered as an evolution equation on
the Hilbert space H = L2(Rd) for the wave function ψ(t) = ψ(·, t) ∈ H.

Consider a continuously differentiable map Φ from a parameter space Q
into H. We aim to approximate

ψ(t) ≈ u(t) = Φ(q(t)) ∈ H for some q(t) ∈ Q

by the regularized dynamical nonlinear approximation (2.1) with the linear
operator f(u) = i∆u − iV u. Since the Laplacian is an unbounded operator,
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the Lipschitz framework of the previous section does not apply here. However,
we still have the one-sided Lipschitz condition with ℓ = 0 and from this we
obtain the a posteriori error bound of Proposition 3.1, with the same proof.

To obtain an a priori error bound, we need to modify the construction of
the regularized approximation u = Φ(q). We will use the property that the
Laplacian maps into the tangent space:

If u = Φ(q), then ∆u = Φ′(q)q∆ for some q∆ ∈ Q. (8.2)

This holds true for Gaussians and tensor networks but not for neural networks.
We assume (8.2) throughout this section.

8.2 A modified regularized dynamical approximation

Instead of (2.1), we now choose (omitting the argument t) u̇ = Φ′(q)q̇ and
q̇ ∈ Q such that

u̇− i∆u = v and q̇ − iq∆ = p, (8.3)

where v = Φ′(q)p with p ∈ Q is chosen such that

δ2 := ∥v + iV u∥2H + ε2∥p∥2Q is minimal. (8.4)

Inserting (8.3) into (8.4) and comparing with (2.1), we find that the term
ε2∥q̇∥2 in (2.1) is now replaced by ε2∥q̇ − iq∆∥2, everything else being equal.
In contrast to (2.1), the free Schrödinger equation (i.e., with V = 0) is solved
exactly with (8.3)–(8.4) for every ε > 0. Indeed, p = 0 provides q̇ = iq∆ and
u̇ = i∆u. We have

∂t(u− ψ) = i∆(u− ψ)− iV (u− ψ) + d with ∥d∥H ≤ δ,

and as in the proof of Proposition 3.1 (with ℓ = 0), we obtain the a posteriori
error bound

∥u(t)− ψ(t)∥H ≤
∫ t

0

δ(s) ds. (8.5)

Remark 8.1 Multiplying a sum of complex Gaussians u = Φ(q) =
∑
j φ(zj)

by a subquadratic potential V , we have

V u =
∑
j

V φ(zj) =
∑
j

(Uj +Wj)φ(zj),

where Uj denotes the second order Taylor polynomial of V centered around the
position center of the jth Gaussian and Wj the cubic remainder. Therefore,

V u = Φ′(q)qU + χ(q) for some qU ∈ Q

and χ(q) =
∑
jWjφ(zj) with ∥χ(q)∥H ≤ β3∥(1 + |x|2)u∥H for some constant

β3 > 0 depending on third order derivative bounds of V . Working with q∆ +
qU instead of q∆ extends the above approximation and makes it exact for
harmonic oscillators.
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8.3 A priori error bound

We can bound the defect size δ(t) by a quantity that measures the uniform
approximability of ψ̇ − i∆ψ in the tangent spaces T(u,q)M for all u = Φ(q) in
a neighbourhood of ψ(t). We fix a radius ρ > 0 and define

δ̄ρ(t)
2 := sup

q∈Q:∥Φ(q)−ψ(t)∥H≤ρ
min
q̇∈Q

(
∥Φ′(q)q̇ − (ψ̇ − i∆ψ)∥2H + ε2∥q̇∥2Q

)
. (8.6)

We can bound the defect size δ(t) of (8.4) in terms of δ̄ρ(t).

Lemma 8.1 Provided that ∥u(t)− ψ(t)∥H ≤ ρ, we have

δ(t) ≤ δ̄ρ(t) + ∥V u(t)− V ψ(t))∥H.

Proof The proof is similar to that of Lemma 3.1. We omit the argument t in
the following. We have u = Φ(q) and u̇ = Φ′(q)q̇. Let p+ ∈ Q be such that

∥Φ′(q)p+ − (ψ̇ − i∆ψ)∥2H + ε2∥p+∥2Q is minimal.

By (8.1)–(8.4),

δ2 = ∥Φ′(q)p+ iV u∥2H + ε2∥p∥2Q
≤ ∥Φ′(q)p+ + iV u∥2H + ε2∥p+∥2Q

≤
(
∥Φ′(q)p+ − (ψ̇ − i∆ψ)∥H + ∥ − iV ψ + iV u∥H

)2

+ ε2∥p+∥2Q

≤
(
δ̄ρ + ∥V u− V ψ∥H

)2

.

Taking square roots yields the result. ⊓⊔

We construct a reference approximation u∗ = Φ(q∗) from the exact wave
function ψ by choosing u̇∗ = Φ′(q∗)q̇∗ and q̇∗ ∈ Q such that

u̇∗ − i∆u∗ = v∗ and q̇∗ − iq∆∗ = p∗, (8.7)

where v∗ = Φ′(q∗)p∗ with p∗ ∈ Q is chosen as a regularized best approximation
to ψ̇ − i∆ψ in the tangent space:

δ2∗ := ∥v∗ − (ψ̇ − i∆ψ)∥2H + ε2∥p∗∥2Q is minimal. (8.8)

With (8.8) we have

∂t(u∗ − ψ) = i∆(u∗ − ψ) + d∗ with ∥d∗∥H ≤ δ∗,

and as before it follows that

∥u∗(t)− ψ(t)∥H ≤
∫ t

0

δ∗(s) ds ≤
∫ t

0

δ̄ρ(s) ds (8.9)

as long as this is bounded by ρ. The error of the numerical approximation
u(t) = Φ(q(t)) is bounded by a multiple of the bound in (8.9).
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Proposition 8.1 If condition (8.2) is satisfied and supx |V (x)| ≤ ν, then the
error of u(t) defined by (8.3)–(8.4) is bounded by

∥u(t)− ψ(t)∥H ≤ eνt
∫ t

0

δ̄ρ(s) ds

as long as this is bounded by ρ.

Proof The bound follows from Lemma 8.1 inserted into (8.5) and using the
Gronwall lemma. ⊓⊔

8.4 Energy conservation

With the Hamiltonian H = −∆ + V , which is a self-adjoint linear operator
on H = L2(Rd) with domain D(H) = H2(Rd), the total energy is defined as
⟨u,Hu⟩H for u ∈ D(H). The energy is conserved along the exact wave function
ψ(t) ∈ D(H) of (8.1), since (omitting in the following the argument t and the
subscript H in the inner product)

d

dt
⟨ψ,Hψ⟩ = 2Re ⟨Hψ, ψ̇⟩ = 2Re ⟨Hψ,−iHψ⟩ = 0.

We show that the energy is also conserved along the regularized approximation
(2.1). We adapt the notation of Section (7) to the complex setting and let
Pε(q) = A(q)Mε(q)

−1A(q)∗ with A = Φ′ and Mε = A∗A+ ε2I. We note that
(2.1) yields iu̇ = Pε(q)Hu. Since both H and Pε(q) are self-adjoint, we have
(omitting the arguments q(t) or t)

d

dt
⟨u,Hu⟩ = 2Re ⟨Hu, u̇⟩ = 2Re ⟨Hu,−iPεHu⟩ = 0.

However, the modified approximation u defined by (8.3)–(8.4) satisfies the
differential equation iu̇ = −∆u+ PεV u and thus

d

dt
⟨u,Hu⟩ = 2Re ⟨Hu, u̇⟩ = 2Re ⟨−∆u+ V u, i∆u− iPεV u⟩

= 2Re ⟨∆u, iPεV u⟩+ 2Re ⟨V u, i∆u⟩
= 2Re ⟨∆u, i(I − Pε)V u⟩,

which in general is nonzero. Moreover, the norm ∥u(t)∥H is not preserved
by either regularized approximation. Norm and energy conservation can be
enforced simultaneously as described in Section 7.

9 Numerical experiments

We close the paper with a collection of numerical experiments, both for the
approximation of flow maps for ODEs and the Schrödinger equation.
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9.1 Approximating the flow map of a Lotka–Volterra model

As a simple nonlinear initial value problem, we consider the classical predator–
prey model

ẋ = αx− βxy.

ẏ = δxy − γy,
(9.1)

where α, β, γ, δ are positive constants, which are all set to 1 in our experiments.

The region of interest in our experiments is the square D =
[
1
2 ,

5
2

]2
.

The flow map φt : D → R2 at time t, which to every initial value (x0, y0) ∈
D associates the corresponding solution value (x(t), y(t)) of (9.1), is considered
as an element of the Hilbert space H = L2(D)2. It satisfies the differential
equation on H

d

dt
φt = f(φt), φ0 = Id,

where f is given by the right-hand side of (9.1) and Id is the identity on H.

We use the Tensorflow library to approximate the flow map φt by a small
feedforward neural network with three fully connected hidden layers, each
with a depth of four neurons. Overall, the network architecture requires only
62 parameters. As the activation function on each layer, we use the sigmoid
function

σ(x) =
ex

1 + ex
.

The metric installed on the weight space Q is the standard euclidian norm.

As the initial nonlinear parametrization at t = 0, we require a network that
approximates the identity on D with a high accuracy. For our experiments,
this was realized by pretraining an initial approximation u0 : D → R2 with a
standard optimizer and then applying the regularized procedure (2.1) to the
initial value-problem

u̇(·, t) = Id− u0

with time-independent right-hand side. At t = 1, we then obtain an approx-
imation u(·, 1) ≈ Id. For the presented experiments, we used the classical
Runge–Kutta method of order 4 with the regularization parameter ε = 10−6

and N = 2000 time steps.

Remark 9.1 (Connection to the Gauß–Newton method) We note that the ap-
proach above can be used to construct neural networks (or any nonlinear pa-
rameterization) approximating any given arbitrary function g, instead of the
identity Id. The implementation of such methods generalizes the Gauß–Newton
method applied to ∥Φ(q)−g∥ = min, which would be obtained by applying the
Euler method (with ε = 0 and h = 1) to the differential equation that results
from the (non-regularized) least squares problem ∥Φ′(q)q̇− (g−Φ(q))∥ = min.
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Fig. 9.1 Time convergence plot for the Lotka–Volterra system, computed with a fixed
neural network architecture with three hidden layers and four neurons each, which is fully
described by q ∈ R62. We fix the regularization parameter ε and observe the error behaviour
of the classical Runge–Kutta approximation to the regularized flow (2.1). On the right-hand
side, we plot the projection error term of the error bound described in Proposition 5.1.

The assembly of the Jacobian Φ′(qn,i), for the given parameters at the
internal stages qn,i of the Runge–Kutta method, is efficiently realized by the
automatic differentiation routines provided by the Tensorflow framework. For
the numerical quadrature, we choose a composite Gaussian quadrature with 4
nodes on each subinterval and 10 subintervals in each direction.

We now apply the classical Runge–Kutta method of order 4 and observe
the error behaviour for varying step size h and regularization parameter ε.

In Figure 9.1, we fix several values of the regularization parameter ε and
vary the time step size to observe the time convergence behaviour. The H-
norm (i.e. the L2-norm) on D is the natural error measure, which is taken
at the fixed time t = 1. As predicted by the theory, we observe a step size
restriction depending on the parameter ε. For smaller values of ε, we require
a smaller time step size h in order to achieve convergence. The observed time
step restriction is, however, milder than the restriction in Proposition 5.1. On
the right-hand side, we visualize the a posteriori bounds for the projections.
As expected, these bounds are quite stable with respect to the time step size
and estimate the possible accuracy for a fixed parameter ε and the underlying
nonlinear approximation.

In Figure 9.2, we conversely fix the number of time steps and observe the er-
ror and the projection errors for a varying regularization parameter ε. Overall,
we observe a convergence of the order of O(ε), when the number of time steps
is sufficiently large. When the number of time steps is not sufficiently large,
we again observe the effect of the time step restriction. The a posteriori terms
of the error bound capture the effects of the regularization parameter ε, but
are by construction almost invariant with respect to the time discretization.
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Fig. 9.2 The ε− convergence of the same network architecture, with the same time dis-
cretization. We fix the number of time steps and vary the regularization parameter.

9.2 Approximating double-well quantum dynamics

We consider a one-dimensional Schrödinger equation iψ̇ = Hψ formulated
within the setting of the complex Hilbert space H = L2(R,C). The equation
serves as a model for tunneling dynamics. The Schrödinger operator

H = −1

2
∂2x + α2x

2 + α4x
4, ψ0(x) = π−1/4e−(x−qℓ)2/2,

contains a quartic double-well potential with polynomial parameters α2 = − 1
8

and α4 = α2
2. The initial condition ψ0 is a single normalized Gaussian, whose

width stems from the standard harmonic oscillator H0 = − 1
2∂

2
x +

1
2x

2, placed
at the left minimum qℓ = −2 of the double well potential. During the time
interval [0, T ] = [0, 12] the wave packet travels from the left to the right well,
see also [12]. The approximation ansatz is a frozen sum of M = 36 Gaussians,

u(t, x) =

M∑
m=1

cm(t)e−x
2/2−κm(t)x,

with 2M complex parameters (cm(t), κm(t)) ∈ Q = C2. For the initialization
u0 ∈ M, we put a non-uniform grid of Gauß–Hermite quadrature nodes (xi, ξj)
with origin at (qℓ, 0) on R2, reformulate the corresponding Gaussian wave

packets e−(x−xi)
2/2+iξj(x−xi) in the complex algebraic format e−x

2/2−κm(0)x,
and determine the optimal linear expansion coefficients cm(0) by solving the
linear least squares problem

∥u(0)− ψ0∥H = min!

The matrices for the initial minimization and the ones involving the parameter
Jacobian Φ′(q) are evaluated via analytical formulas for Gaussian integrals of
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Fig. 9.3 Time convergence plot for the double-well system, computed with a sum of M = 36
complex Gaussians, which is fully described by q ∈ C72. We fix the regularization param-
eter ε and observe the error behaviour of the classical Runge–Kutta approximation to the
regularized flow (2.1). On the left-hand side, we plot the energy error |E(u(T ))− E(u(0))|, on
the right-hand side the projection error term of the error bound described in Proposition 5.1.

the type ∫
R
xke−βx

2−λx, β > 0, λ ∈ C.

The time integrator is the classical Runge–Kutta scheme of order four. As
before, we observe the error behaviour for varying step size h and regularization
parameter ε.

In Figure 9.3, we fix several values of the regularization parameter ε and
vary the time step size h to observe the time convergence behaviour. Since
energy E(ψ(t)) = ⟨ψ(t), Hψ(t)⟩H, t ∈ R, is a conserved quantity of the
Schrödinger evolution, we evaluate the approximate energy E(u(t)) at the final
time t = T and compare with the value at initial time t = 0, see the left-hand
side. We observe, that the simulations with the smallest regularization pa-
rameter ε = 10−5 have large errors and even prematurely terminate for the
particular step size h = 4 · 10−3. For the other choices of the regularization
parameter, the errors follow the order of the time integrator without the pre-
dicted step size restriction. On the right-hand side, we show the a posteriori
error bounds for the projections. As before for the Lotka–Volterra model, these
bounds are stable with respect to the time step size and estimate the accuracy
of the underlying approximation.

In Figure 9.4, we conversely fix the size of the time step h and present
errors for a varying regularization parameter ε. The Schrödinger dynamics are
unitary, and thus conserve the norm ∥ψ(t)∥H, t ∈ R, of the solution (mass con-
servation). On the left hand-side we compare the approximate norm ∥u(T )∥H
at the final time T with the exact unit value. We observe decay of the mass er-
ror only for relatively large values of the regularization parameter. Depending
on the time step size, less regularization results in larger errors. The right-hand
side shows the a posteriori terms of the error bound. Again, they capture the
effects of the regularization parameter ε, but are by construction insensitive
with respect to the time discretization.
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Fig. 9.4 The ε−convergence of the same sum of Gaussians, with the same time discretiza-
tion. We fix the number of time steps and vary the regularization parameter. On the left-hand
side, we plot the norm error |∥u(T )∥2H − 1|, on the right-hand side the projection error.
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A Appendix: Note on the regularized least squares problem

To study the sensitivity with respect to the regularization parameter, we consider the linear
least squares problem to find x = x(α) such that

ϑ(α) := ∥Ax− b∥2 + α∥x∥2 is minimal,

where we take the Euclidean norms. Note that ϑ = δ2 and α = ε2 in the setting of the
paper. The dependence of ϑ on α is remarkably simple.

Lemma A.1 We have
ϑ′(α) = ∥x(α)∥2.

Moreover,

ϑ′′(α) =
d

dα
∥x(α)∥2 ≤ 0 and

d

dα

ϑ(α)

α
≤ 0.

Proof With M = M(α) = (A⊤A+αI) we have the normal equations Mx = A⊤b and hence

x = M−1A⊤b.

Since M ′ = I, we have Mx′ + x = 0 and hence

x′ = −M−1x.

We have
ϑ′ = 2⟨Ax− b, Ax′⟩+ 2α⟨x, x′⟩+ ∥x∥2,

which becomes

⟨Ax− b, Ax′⟩ = ⟨Ax− b,−AM−1x⟩ = −⟨x,A⊤AM−1x⟩+ ⟨M−1A⊤b, x⟩

= −⟨x,A⊤AM−1x⟩+ ⟨x, x⟩ = ⟨x, (I −A⊤AM−1)x⟩ = ⟨x, αM−1x⟩,

and
α⟨x, x′⟩ = ⟨x,−αM−1x⟩,

so that
ϑ′ = 2⟨x, αM−1x⟩+ 2⟨x,−αM−1x⟩+ ∥x∥2 = ∥x∥2,
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which is the stated result for the first derivative. The second derivative is

ϑ′′ =
d

dα
∥x(α)∥2 = 2⟨x, x′⟩ = −2⟨x,M−1x⟩,

which is negative (unless x = 0), since M is positive definite. Finally,(
ϑ

α

)′
=

αϑ′ − ϑ

α2
=

α∥x∥2 − ϑ

α2
= −

∥Ax− b∥2

α2
,

which is non-positive. ⊓⊔

The following matrix estimates are often used in the paper.

Lemma A.2 Denote Mε = A⊤A+ ε2I. We have in the matrix 2-norm

∥AM−1
ε A⊤∥ ≤ 1, ∥AM−1

ε ∥ ≤
1

2ε
, ∥M−1

ε ∥ ≤
1

ε2
.

Proof The bounds follow from the singular value decomposition A = UΣV ⊤ with U a linear
isometry, V unitary and Σ diagonal. Then,

AM−1A⊤ = UΣ
(
Σ2 + ε2I

)−1
ΣU⊤.

Since U is a linear isometry, we have

∥AM−1
ε A⊤∥ ≤ ∥Σ

(
Σ2 + ε2I

)−1
Σ∥ ≤ sup

σ≥0

σ2

σ2 + ε2
= 1.

Similarly, AM−1 = UΣ(Σ2 + ε2I)−1U⊤, so that

∥AM−1
ε ∥ = ∥Σ(Σ2 + ε2)−1∥ ≤ sup

σ≥0

σ

σ2 + ε2
=

1

2ε
,

and further

∥M−1
ε ∥ = ∥(Σ2 + ε2)−1∥ ≤ sup

σ≥0

1

σ2 + ε2
=

1

ε2
,

as stated. ⊓⊔
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