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Abstract

We examine rules for predicting whether a point in R generated from a 50–50 mixture of two
different probability distributions came from one distribution or the other, given limited (or no)
information on the two distributions, and—as clues—one point generated randomly from each of
the two distributions. We prove that nearest-neighbor prediction does better than chance when
we know the two distributions are Gaussian densities without knowing their parameter values.
We conjecture that this result holds for general probability distributions and—furthermore—that
the nearest-neighbor rule is optimal in this setting, i.e., no other rule can do better than it if we
do not know the distributions or do not know their parameters, or both.

I. Introduction

This work originated in trying understand—in the most simple setting possible—what
detecting one change-point in a time series truly means. Suppose we know that there is
one (and exactly one) change-point in a real-valued time series of length n, located between
the kth and k + 1th data points; i.e., the first k points are randomly drawn from some
probability distribution fX, and the last n − k points from another, different, probability
distribution fZ. The minimal interesting setting is when n = 3. In it, we know that the
first point X is generated from fX , the third point Z from fZ, and it remains to try to work
out which of the two distributions the middle point Y came from (which is equivalent to
predicting the change-point location).

If we are told that the middle point is more likely to have been drawn from one of the
two distributions, we can already obtain a decision rule that is better than chance: Always
predict the more likely distribution, no matter the values of the three points. However, with real-
world data, we are unlikely to have the slightest clue about which distribution the middle
point comes from. In this case, it makes sense that in the absence of prior knowledge, we
treat the middle point as if it were generated from a 50–50 mixture distribution of the two
distributions: Y ∼ 1

2 fX + 1
2 fZ.

Note that in this setting, if we had full knowledge of the distributions fX and fZ,
knowing the values of the random draws X = x and Z = z would not in fact provide us
with additional information as to whether Y = y was generated from fX or fZ; indeed,
in this case we already have all the information we need to calculate the (optimal) Bayes
classifier, (given Y = y), that is, the classifier that minimizes the probability of incorrect
prediction of the distribution y came from. Again however, in the real world with real
data, we are quite unlikely to know the distributions fX and fZ a priori. That said, in what
follows, we only deal with the n = 3 case, and these results do not generalize to n > 3
or Rd for d > 1. Nevertheless, the results are interesting in their own right, given that
they seem to be highlighting curious connections between probability distributions and
distances between points from these distributions.
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We are interested in two distinct issues: (1) proving that there exists some decision
rule that is better than a coin flip in settings where we have little or no information on the
two probability distributions, and (2) proving that this decision rule is optimal, i.e., that no
other prediction rule has a lower probability of incorrect prediction. In the following, we
have partial answers to (1), but (2) remains completely unanswered. It may seem intuitive
to some that a nearest-neighbor rule cannot be beaten in R, but it is another thing to prove
it.

II. A general conjecture

Let us set the scene with a general conjecture.

Conjecture II.1 Suppose that x and z are drawn from arbitrary unknown probability distributions
fX and fZ which are different in the sense that∫

R
| fX(w)− fZ(w)|dw > 0.

(In some other sense could be possible too.) Suppose also that y is drawn from the mixture model
Y ∼ 1

2 fX + 1
2 fZ. Let the decision rule for deciding whether y was drawn from fX or fY be the

nearest neighbor rule, i.e., predict that y is drawn from the distribution fX if |x − y| < |z − y|, and
vice versa. Then (i) this rule is correct more than half the time, i.e., better than a coin flip, and (2)
this rule minimizes the classification error, i.e., no other rule does better.

Remark II.1 This conjecture, if true, means that knowing only that fX and fZ are different (in the
above sense), we can correctly predict the distribution y came from more than half the time.

This conjecture turns out to be non-trivial, even if we suppose that the two unknown
distributions are also (unknown) probability densities. Hence, in order to take tentative
steps forward, we will initially relax the problem to settings where we at least know that
the two distributions are probability densities, even if we don’t know their precise forms
(parameters, etc.).

III. The Gaussian setting with equal variance

Suppose that we are lucky and know that fX and fZ are Gaussian distributions with
the same variance, but have no information on the value of this variance, nor on that
of the two means, except what little can be gleaned from the three numbers x, y, and
z. Formally, suppose that X ∼ N (µX, σ2) and Z ∼ N (µZ, σ2). In this Gaussian setting,
to simplify notation and proofs, we shall write ϕm,σ2 to mean the Gaussian probability
distribution function (pdf) with mean m and variance σ2, and Φm,σ2 the corresponding
Gaussian cumulative distribution function (cdf).

Given x, y, and z drawn as before, we can ask questions like, “Is there a decision
rule for predicting ϕµX ,σ2 or ϕµZ ,σ2 for y that is better than flipping a coin?”, “Is there an
optimal decision rule given what we know and don’t know about the distributions and
given x, y, and z?", and, “How close can we get to the optimal decision rule that would be
known if we knew the true values of µX , µZ, and σ2?”
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I. The Bayes classifier in this setting

If we do know µX , µZ, and σ2, the Bayes classifier CBayes, i.e., the rule that minimizes the
probability of error when predicting ϕµX ,σ2 vs ϕµZ ,σ2 , is easy to calculate:

CBayes(y) =

{
ϕµX ,σ2 if ϕµX ,σ2(y) > ϕµZ ,σ2(y)
ϕµZ ,σ2 if ϕµX ,σ2(y) < ϕµZ ,σ2(y),

(1)

i.e., predict the distribution of y as that which has the highest density at y.

Remark III.1 Note that when both Gaussian distributions have the same variance, as is the case
here, the Bayes classifier is equivalent to the rule:

Cµ(y) :=

{
ϕµX ,σ2 if |y − µX | < |y − µZ|
ϕµZ ,σ2 if |y − µX | > |y − µZ|,

(2)

where | · | is the absolute value. i.e., predict the distribution whose mean is closest to y. Note that
though this is not exactly a nearest-neighbor rule, since µX and µY are not data points, it is not too
far off one.

II. Better than a coin flip

It turns out that knowing only that we have two Gaussian distributions with the same
variance, and given x, y, and z drawn as before, there exist rules that are better than a coin
flip if the (unknown) means µX and µZ are different. (If the two means are the same, then
the two Gaussian distributions are identical and a coin flip is indeed the optimal rule.)

Theorem III.1 Suppose that X ∼ ϕµX ,σ2 , Z ∼ ϕµX+ϵ,σ2 , and that Y is a 50–50 mixture of the
two, where µX ∈ R, ϵ ̸= 0, and σ2, are all unknown. Suppose we have x, z, and y generated
respectively from these three distributions. Then the decision rule,

Cdist(y) :=

{
ϕµX ,σ2 if |x − y| < |z − y|
ϕµX+ϵ,σ2 if |x − y| > |z − y|,

(3)

has a probability of being correct greater than 1/2.

Remark III.2 We see that it is as if we are roughly estimating µX by x and µX + ϵ by z and then
using these point estimates of the means in the Bayes classifier.

Proof. This decision rule will be correct when either y is closest to x and was drawn from
fX , or closest to z and was drawn from fZ. Thus we want to prove that:

1
2

P(|X − Y| < |Z − Y| | Y ∼ ϕµX ,σ2) +
1
2

P(|X − Y| > |Z − Y| | Y ∼ ϕµX+ϵ,σ2) >
1
2

. (4)

Since the variance of ϕµX ,σ2 and ϕµX+ϵ,σ2 is the same here, by symmetry it suffices to prove
that

P∗ := P(|X − Y| < |Z − Y| | Y ∼ ϕµX ,σ2) > 1/2.

Since the value of µX has no influence on the following calculations, we set µX = 0 to
simplify notation. Let us define the following function of x and z:

f (x, z) = P(|x − Y| < |z − Y| |Y ∼ ϕ0,σ2). (5)

3



The values of the random variable Y for which |x−Y| < |z−Y| are those below (x+ z)/2 if
x < z, or those above (x + z)/2 if x > z. The measure of the set for which |x −Y| < |z −Y|
is therefore:

f (x, z) = Φ0,σ2

(
x + z

2

)
1{x<z} + (1 − Φ0,σ2)

(
x + z

2

)
1{x>z}. (6)

Integrating f (x, z) over x and z will give us the probability we are looking for:

P∗ := P∗
1 + P∗

2 =
∫ ∞

x=−∞

∫ ∞

z=x
Φ0,σ2

(
x + z

2

)
ϕϵ,σ2(z)ϕ0,σ2(x)dzdx

+
∫ ∞

x=−∞

∫ x

z=−∞

(
1 − Φ0,σ2

(
x + z

2

))
ϕϵ,σ2(z)ϕ0,σ2(x)dzdx.

Remarking that

Φ0,σ2

(
x + z

2

)
= Φ0,σ2

(
(x − δ) + (z + δ)

2

)
for all δ ∈ R, the following change of variable greatly simplifies the integration:

• For P∗
1 let r = (x + z)/2 and α = (z − x)/2, i.e., x = r − α and z = r + α.

• For P∗
2 let r = (x + z)/2 and α = (x − z)/2 i.e., x = r + α and z = r − α.

In both cases, the absolute value of the Jacobian is 2. Let us concentrate on calculating the
first double integral P∗

1 above; the second—P∗
2 —involves almost identical calculations. We

have that:

P∗
1 = 2

∫ ∞

r=−∞

∫ ∞

α=0
Φ0,σ2(r)

1√
2πσ

e−
1

2σ2 (r+α−ϵ)2 1√
2πσ

e−
1

2σ2 (r−α)2
dαdr. (7)

We consider the two Gaussian pdfs as if they were functions of α and use the fact that
the product of two Gaussian pdfs is proportional to another Gaussian pdf to rewrite the
double integral as:

P∗
1 =

∫ ∞

r=−∞
Φ0,σ2(r)

1√
2πσ

e−
1

2σ′2
(r− ϵ

2 )
2
(∫ ∞

α=0

1√
2πσ′

e−
1

2σ′2
(α− ϵ

2 )
2
dα

)
dr,

where σ‘2 = σ2/2. The integral in α is nothing other than 1 − Φϵ/2, σ′2(0), or equivalently,
Φ−ϵ/2, σ2/2(0) (which is independent of r). As for the integral in r, recalling the well-known
result: ∫ ∞

u=−∞
Φ0,1

(
u − c

τ1

)
ϕ0,1

(
u − b

τ2

)
du = τ2 Φ0,1

 b − c√
τ2

1 + τ2
2

 ,

it simplifies to Φ0,1

(
ϵ√
6 σ

)
, and thus:

P∗
1 = Φ− ϵ

2 , σ2
2
(0)Φ0,1

(
ϵ√
6 σ

)
.

Essentially identical calculations show that:

P∗
2 = Φ ϵ

2 , σ2
2
(0)
(

1 − Φ0,1

(
ϵ√
6 σ

))
.
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To begin to conclude, note that Φ−ϵ/2, σ2/2(0) = Φ0,1(ϵ/
√

2 σ) and Φϵ/2, σ2/2(0) = 1 −
Φ0,1(ϵ/

√
2 σ), so that:

P∗
1 + P∗

2 = Φ0,1

(
ϵ√
2 σ

)
Φ0,1

(
ϵ√
6 σ

)
+

(
1 − Φ0,1

(
ϵ√
2 σ

))(
1 − Φ0,1

(
ϵ√
6 σ

))
. (8)

If ϵ > 0, the domain of ϕ0,1 can be cut up into three pieces: ]−∞, ϵ/
√

6 σ], ]ϵ/
√

6 σ, ϵ/
√

2 σ],
and ]ϵ/

√
2 σ, ∞[ with respective areas under ϕ0,1 of j, k, and ℓ. Thus (j + k + ℓ) = 1. Hence,

P∗
1 + P∗

2 = (j + k)j + ℓ(k + ℓ) = j + ℓ − 2jℓ, using the fact that (j + k + l)2 = 1 and
expanding and rearranging. Then P∗

1 + P∗
2 > 1/2 is equivalent to j > 1/2 since ϵ > 0 and

ℓ < 1/2. But j > 1/2 also since ϵ > 0. A similar argument works when ϵ < 0. □

Remark III.3 It is easy to see that that as ϵ → 0, the two Gaussians become increasingly indistin-
guishable and this rule tends to a probability of being correct of 1/2, from above. When ϵ → ∞,
both this rule and the Bayes classifier tend to probability of being correct of 1. One could ask whether
we could at least get an approximate idea of how well we might expect to do (between 1/2 and 1) by
roughly estimating ϵ by z − x, but we see in Eq. 8 that the value of P∗

1 + P∗
2 obtained still depends

very much on the (unknown) σ.

Remark III.4 One cannot help suspecting that Eq. 8 is related to products of areas under Gaussian
densities connected to where they (or suitable normalized versions of them) cross over each other.
For instance, the densities ϕ0,σ2 and ϕϵ,σ2 cross once at x = ϵ/2 and their cdfs at this point are
respectively equal to Φ0,1(ϵ/2σ) and 1 − Φ0,1(ϵ/2σ).

Given that we have only three data points, we may ask how this nearest neighbor
classifier compares to other strategies such as maximum likelihood, CUSUM, and so on.
We have the following corollary.

Corollary III.1 Under the same conditions as Theorem III.1, decision rule in Eq. 3 corresponds to
the same solution inferred from the maximum likelihood estimator, the CUSUM method, and linear
and Gaussian kernels when running kernel change-point detection [1]).

Proof. Without loss of generality, suppose that x < z and y < (x + z)/2. If you run
the calculations, the posterior of the maximum likelihood estimator (requiring the EM
algorithm here) essentially says that it is more likely that y came from the same distribution
as x than from the distribution of z, i.e., it picks the closest point to y as its classification
rule. As for the CUSUM method (as described in [4]), some tedious algebra shows that
the maximum absolute value of the CUSUM criterion for the two possible change-point
locations is again equivalent to the rule predicting that y comes from the same distribution
as the point (x or z) closest to it. As for kernel change-point detection, the linear kernel
corresponds exactly to performing least-squares minimisation of a signal with piecewise
constant mean and exactly one change-point, with the same variance in both constant
segments. A few lines of algebra confirm that the change-point location that minimizes
the sum of squared errors is again equivalent to predicting that y comes from the same
distribution as the point (x or z) closest to it. Basic calculations show that the same is also
true with the Gaussian kernel. □

Remark III.5 Though tempted to conjecture that the same is true in general for other kernels, one
quickly finds a counter-example: For the 1-d polynomial kernel of degree 2: k2(u, v) = (uv)2,
if x = 1, y = 2, and z = 2.9, and thus y is closer to z than to x, the minimum of the kernel
change-point criterion occurs when grouping x with y, i.e., when putting a change-point between y
and z. This means that in some sense, in the eyes of the quadratic polynomial kernel, points further
apart can be “more similar” to each other than points closer together.
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This brings us to the heart of our other question: Can we do better than the decision
rule in Theorem III.1, given our hypotheses? Or is it optimal, and why? If we can do
demonstrably better, is this new rule optimal? And if we cannot provide a better rule, how
can we prove that the “nearest neighbor” rule is the best we can do, since we know it is
not equal to the Bayes classifier? Is this finally a question of the geometry of 1-d space? We
leave this as a conjecture.

Conjecture III.1 Under the hypotheses of Theorem III.1, the optimal rule for deciding whether y
came from the same distribution as x or z is the nearest neighbor rule defined in Theorem III.1.

IV. The Gaussian setting with different variances

A natural question to ask after the previous section is whether this nearest neighbor
decision rule is still valid if we know that the variances are—or could be—different for
the two Gaussian distributions. Though intuition suggests that it is still valid, it turns out
that certain steps in the proof of Theorem III.1 no longer work once the two variances are
different. For instance, the symmetry argument whereby

P∗ := P(|X − Y| < |Z − Y| | Y ∼ ϕµX ,σ2) > 1/2

implies
P∗ := P(|X − Y| > |Z − Y| | Y ∼ ϕµX+ϵ ,σ2) > 1/2

no longer holds in general; indeed, it turns out—surprisingly—to be possible that one of
these two terms can in fact be less than 1/2 ! This occurs for example when X ∼ ϕ0,1 and
Z ∼ ϕ0.1,0.5 (see Fig. 1); here the nearest neighbor rule when Y is drawn from ϕ0,1 is correct
only around 44.5% of the time! i.e., if you draw once from ϕ0,1 and once from ϕ0.1,0.5, a
second draw from ϕ0,1 will—more than half the time—be closer to the point from the other
distribution. However, if ϵ ̸= 0, then Eq. 4 turns out to still be true in the Gaussian setting

Figure 1: Two Gaussian densities which do not satisfy a condition used in the proof with equal variance .

with (possibly) different variances (if one of the two probabilities is less than 1/2, the other
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almost magically compensates so that their sum is greater than 1), giving us a more general
result.

Theorem IV.1 Suppose that X ∼ ϕµX ,σ2
X

, Z ∼ ϕµX+ϵ,σ2
Z

, and that Y is a 50–50 mixture of the

two distributions, where µX ∈ R, ϵ ̸= 0, and σ2
X ̸= σ2

Z are all unknown. Suppose we have x, z,
and y generated respectively from these three distributions. Then the decision rule,

Cdist(y) :=

ϕµX ,σ2
X

if |x − y| < |z − y|
ϕµX+ϵ,σ2

Z
if |x − y| > |z − y|,

(9)

has a probability of being correct greater than 1/2.

Outline of the proof. This proof involves two steps near the end which lack rigor; these
are highlighted in the text. Without loss of generality, rewrite σ2

Z as βσ2
X where β is some

unknown positive number (since σ2
X and σ2

Z are unknown). As before, we first calculate

P∗ = P(|X − Y| < |Z − Y| | Y ∼ ϕµX ,σ2
X
)

by separating the calculation into two terms P∗
1 and P∗

2 as in Theorem III.1. P∗
1 is now:

P∗
1 = 2

∫ ∞

r=−∞

∫ ∞

α=0
Φ0,1

(
r

σX

)
1√

2π
√

β σX
e
− 1

2βσ2
X
(r+α−ϵ)2 1√

2πσX
e
− 1

2σ2
X
(r−α)2

dαdr. (10)

We then merge the two Gaussian pdfs into a constant (w.r.t. α) and another Gaussian pdf
(a function of α), and integrate out the latter as before, which gives—after copious algebra,
that:

P∗
1 := 2

∫ ∞

r=−∞
Φ0,1

(
r

σX

)
1√

2π
√

1 + β σX
exp

{
− 1

2(1 + β)σ2
X
(2r − ϵ)2

}
×

× Φ0,1

(
β − 1√

1 + β
√

β σX
r +

1√
1 + β

√
β σX

ϵ

)
dr.

Due to a result we will shortly use, it will be useful to get the exponential term—which is
more or less a Gaussian pdf—in terms of r and not 2r. After some algebra, we find that:

1√
2π
√

1 + β σX
exp

{
− 1

2(1 + β)σ2
X
(2r − ϵ)2

}
=

1
2σ∗ϕ0,1

(
r − ϵ

2
σ∗

)
,

where

σ∗ =
1 + β

2
σ2

X .

To continue, we recall a result from Owen ([3], pg. 407):∫ ∞

m=−∞
Φ0,1(a + bm)Φ0,1(c + dm)ϕ0,1(m)dm = (11)

1
2

Φ0,1

(
a√

1 + b2

)
+

1
2

Φ0,1

(
c√

1 + d2

)
− T

(
a√

1 + b2
,

c + cb2 − abd
a
√

1 + b2 + d2

)
− T

(
c√

1 + d2
,

a + ad2 − bcd
c
√

1 + b2 + d2

)
,
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where T is Owen’s T function (see [2]):

T(u, v) =
1

2π

∫ v

t=0

e−
1
2 u2

(1 + t2)

1 + t2 dt. (−∞ < u, v < +∞)

In order to invoke this result, we make the change of variable m = (r − ϵ/2)/σ∗ and
then calculate a, b, c, and d in our setting, obtaining a = ϵ/(2σX), b =

√
1 + β/2, c =

(
√

1 + β ϵ)/(2
√

β σX), and d = (β − 1)/(2
√

β). Note that if ac were not positive (as it
clearly is in our case), there is an extra term in Eq. 11 which we have not shown for clarity.
Plugging these into Eq. 11, we get that:

P∗
1 =

1
2

Φ0,1

(
ϵ√

5 + β σX

)
+

1
2

Φ0,1

(
ϵ√

1 + β σX

)
− T

(
ϵ√

5 + β σX
,

3√
1 + 2β

)
(12)

− T

(
ϵ√

1 + β σX
,

1√
1 + 2β

)
. (13)

One must then run through essentially the same calculations for P∗
2 , and the result is that

P∗
2 gives the same result as P∗

1 except that ϵ is replaced by −ϵ. To finally calculate P∗ itself,
we first note two things: (i) Φ0,1(δ) = 1 − Φ0,1(−δ) for any δ ∈ R; (ii) Owen’s T function
satisfies T(−u, v) = T(u, v). Using these facts, we obtain:

P∗ = P∗
1 + P∗

2 = 1 − 2T

(
ϵ√

5 + β σX
,

3√
1 + 2β

)
− 2T

(
ϵ√

1 + β σX
,

1√
1 + 2β

)
.

Since we cannot count on symmetry here, we now have to perform this whole process
again to calculate the other term:

P∗∗ = P(|X − Y| > |Z − Y| | Y ∼ ϕµX+ϵ ,σ2
Z
).

Recall that σ2
Z is still equal to βσ2

X and that this is the same fixed unknown β as we have
just worked with. Thus it is also true that σ2

X = (1/β) · σ2
Z. It turns out that the solution

for P∗∗ takes exactly the same form as that of P∗ except that β is replaced—wherever it is
found—by 1/β, and σX by σZ. We then revert the σZ in P∗∗ back to σX by multiplying by
1/
√

β, and thus obtain:

P∗∗ = 1 − 2T

(
ϵ√

1 + 5β σX
,

3√
1 + 2/β

)
− 2T

(
ϵ√

1 + β σX
,

1√
1 + 2/β

)
.

The final probability we are looking for, which is a function of ϵ and β, is given by
P(ϵ, β) = (1/2) · P∗(ϵ, β) + (1/2) · P∗∗(ϵ, β) and we must prove that this is greater than
1/2 if ϵ ̸= 0 and σ2

X ̸= σ2
Z. Let us denote by T (β, ϵ) the sum of the four Owen T function

integrals (ignoring the negative sign and putting aside the factor of 1/2π in front of each of
them). The result will then be true if T < π. Notice that each of the four Owen T function
integrals is of the form: ∫ f (β)

0

e−g(β)ϵ2(1+t2)

1 + t2 dt,

where f and g output only positive numbers. For any β > 0, the largest this integral can
get is when ϵ = 0, but since ϵ ̸= 0, it is more precise to say that as ϵ → 0, this integral is
monotically increasing for fixed β > 0.
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If we want to bound T from above, we can simply bound each of the four integrals
from above by setting ϵ = 0 (lack of rigor #1). Each of the four integrals then takes the
more simpler form ∫ f (β)

0

1
1 + t2 dt,

which is in fact exactly atan( f (β)). Thus:

T (β, 0) = atan

(
3√

1 + 2β

)
+ atan

(
1√

1 + 2β

)
+ atan

(
3√

1 + 2/β

)
+ atan

(
1√

1 + 2/β

)
.

This is a fairly nasty function to maximize analytically (lack of rigor #2). Symbolic
differentiation and root finding using Wolfram Alpha shows (or if you like, suggests) that
this function T (β, 0) has a unique maximum at β = 1, i.e., when σ2

X = σ2
Z, which is the

excluded case in the theorem’s statement. Consequently, for any σ2
X ̸= σ2

Z, T (β, 0) <

T (1, 0) = 2 atan(
√

3) + 2 atan(1/
√

3) = π by elementary properties of the atan function.
Thus P > (1/2π) · π = 1/2 and the result is proved. □

Remark IV.1 The question of the optimality of this nearest-neighbor rule under these conditions
remains entirely open.

V. More general cases

(Below are some notes on more general cases, without proofs and potentially with errors.)
We can now ask whether this kind of result can be extend to other densities or

distributions than Gaussian ones. For example, is this result true in general if fX and fZ have
probability density functions? The following page of calculations leads to Conjecture V.1
below. To try and take a step in the direction of an answer, we first note that the equation
to be proved (Eq. 4) can be rewritten:

P(|X − X′| < |Z − X′|) + P(|X∗ − Z′| > |Z∗ − Z′|) > 1, (14)

where X, X′, and X∗ are independent variables each with density fX, and Z, Z′, and Z∗

independent variables each with density fZ. We then remark that since

P(|X−X′| < |Z−X′|)+P(|X−X′| > |Z−X′|)+P(|X∗−Z′| > |Z∗−Z′|)+P(|X∗−Z′| < |Z∗−Z′|) = 2,

Eq. 14 will be true if and only if

P(|X − X′| > |Z − X′|) + P(|X∗ − Z′| < |Z∗ − Z′|) ≤ 1. (15)

Note that the left-hand side of Eq. 14 can be rewritten as E[W1], where

W1 = 1|X−X′ |<|Z−X′ | + 1|X∗−Z′ |>|Z∗−Z′ |

is a random variable that can take the values 0, 1, or 2. Similarly, the left-hand side of
Eq. 15 can be rewritten as E[W2], where

W2 = 1|X−X′ |>|Z−X′ | + 1|X∗−Z′ |<|Z∗−Z′ |

is also a random variable that can take the values 0, 1, or 2. Thus the statement we wish to
prove will be true if and only if E[W2] ≤ E[W1]. By writing out these two expectations in
the form:

E[W] = 0 · P[W = 0] + 1 · P[W = 1] + 2 · P[W = 2]
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and using independence, we quickly see that E[W2] ≤ E[W1] is equivalent to it being more
likely that points X′ and Z′ are both closer to the other generated point from their own
distribution than both being closer to the generated point from the other distribution. Or,
to put it mathematically, E[W2] ≤ E[W1] if and only if:

P(|X−X′| > |Z−X′|) ·P(|X∗−Z′| < |Z∗−Z′|) ≤ P(|X−X′| < |Z−X′|) ·P(|X∗−Z′| > |Z∗−Z′|).
(16)

Each of the four probabilities in this expression can be expanded as triple integrals and
then simplified into double integrals using the same kind of steps as in the proofs of
Theorems III.1 and IV.1. For instance,

P(|X − X′| > |Z − X′|) =
∫ ∞

x=−∞

∫ ∞

z=−∞

∫ ∞

x′=−∞
1{|x−x′ |>|z−x′ |} fX(x) fZ(z) fX(x′)d fxd fzd fx′

=
∫ ∞

x=−∞

∫ ∞

z=−∞

[(
1 − FX

(
x + z

2

))
1{x<z} + FX

(
x + z

2

)
1{x>z}

]
fX(x) fZ(z)d fxd fz,

where F refers to the cdf of the referenced variable. If you perform this expansion for each
of the four probabilities in Eq. 16 and then multiply out and do some fun algebra, many
terms cancel, and it turns out that the result we wish to prove overall will be true if and
only if the following double integral is non-negative:∫ ∞

r=−∞

∫ ∞

α=0
(FX(r)− FZ(r)) ( fX(r − α) fZ(r + α)− fX(r + α) fZ(r − α)) dαdr ≥ 0.

Let us therefore state this as a conjecture.

Conjecture V.1 Let X ∼ fX and Z ∼ fZ where fX and fZ are densities with cdfs FX and FZ
respectively, and X and Z are independent. Then:∫ ∞

r=−∞

∫ ∞

α=0
(FX(r)− FZ(r)) ( fX(r − α) fZ(r + α)− fX(r + α) fZ(r − α)) dαdr ≥ 0.

Remark V.1 Currently we have made no progress on proving or disproving this statement of the
problem. One gets the feeling that if for a given r, FX(r) > FZ(r) (i.e., FX(r)− FZ(r) is a positive
number), then fX has more density “to the left” of r than fZ and consequently we could expect that—
more often than not—the integral over positive α of fX(r − α) fZ(r + α)− fX(r + α) fZ(r − α)
would also be positive, and vice versa if FX(r) < FZ(r), leading to on average a positive double
integral, but this is not much of an argument.

Remark V.2 Some possible routes to investigate this double integral:

• The Wasserstein-1 distance?

• Convolutions?

• Rewriting the cdfs as integrals of pdfs?

Remark V.3 If this conjecture is true, the question is then whether the result of interest is also true
for general probability distributions and not simply densities.
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