
RTracker: Recoverable Tracking via PN Tree Structured Memory

Yuqing Huang1,2, Xin Li2,∗, Zikun Zhou2, Yaowei Wang2, Zhenyu He1,∗, and Ming-Hsuan Yang3,4

1Harbin Institute of Technology, Shenzhen 2Peng Cheng Laboratory
3UC Merced 4Yonsei University

{domaingreen2, xinlihitsz, zhouzikunhit, minghsuanyang}@gmail.com,
wangyw@pcl.ac.cn, zhenyuhe@hit.edu.cn

Abstract

Existing tracking methods mainly focus on learning bet-
ter target representation or developing more robust pre-
diction models to improve tracking performance. While
tracking performance has significantly improved, the target
loss issue occurs frequently due to tracking failures, com-
plete occlusion, or out-of-view situations. However, con-
siderably less attention is paid to the self-recovery issue
of tracking methods, which is crucial for practical appli-
cations. To this end, we propose a recoverable tracking
framework, RTracker, that uses a tree-structured memory
to dynamically associate a tracker and a detector to enable
self-recovery ability. Specifically, we propose a Positive-
Negative Tree-structured memory to chronologically store
and maintain positive and negative target samples. Upon
the PN tree memory, we develop corresponding walking
rules for determining the state of the target and define a
set of control flows to unite the tracker and the detector in
different tracking scenarios. Our core idea is to use the
support samples of positive and negative target categories
to establish a relative distance-based criterion for a reli-
able assessment of target loss. The favorable performance
in comparison against the state-of-the-art methods on nu-
merous challenging benchmarks demonstrates the effective-
ness of the proposed algorithm. All the source code and
trained models will be released at https://github.
com/NorahGreen/RTracker.

1. Introduction
Visual object tracking aims to estimate the location and ex-
tent of a target in a video sequence based on the bound-
ing box annotation of the target given in the initial frame,
which is a fundamental vision task with a wide range of
applications, such as surveillance and autonomous naviga-
tion. The challenges in visual object tracking stem from

∗ corresponding author

O
ut

 o
f V

ie
w

Vi
ew

po
in

t C
ha

ng
e

#78 #136 #182

Fu
ll

O
cc

lu
si

on
Fu

ll
O

cc
lu

si
on

#1 #1030 #1032

#3829 #3854 #3881

#3348 #3372 #3393

Target lostTarget visible Target recovering

—— RTracker —— MixViT —— SeqTrack ——OSTrack —— Ground-truth

Figure 1. Performance on challenging sequences involving full
occlusion, out-of-view, and viewpoint change. The proposed
RTracker can accurately re-track the targets in these sequences af-
ter their reappearance.

the dramatic variations of the target (e.g. rotation, defor-
mation, and fast motion) and the various influences from
the background (e.g. occlusion, illumination variation, and
out-of-view) [35]. Existing tracking methods usually fo-
cus on learning robust target representation [4, 6, 21–23]
or developing robust prediction models [2, 20, 30, 31, 41]
to handle these tracking challenges and prevent target loss.
However, target loss, which can be caused by full occlu-
sion, out-of-view, or tracking failure, is usually inevitable,
especially during long-term tracking in complex real-world
application scenarios. Currently, considerably less attention
is paid to the issue of how to recover tracking from target
loss, which is becoming a bottleneck limiting the practical
application of tracking algorithms.

Enabling self-recovery capability in a tracking model
is challenging since it first needs to accurately determine

1

ar
X

iv
:2

40
3.

19
24

2v
1

 [
cs

.C
V

]
 2

8
M

ar
 2

02
4

 https://github.com/NorahGreen/RTracker
 https://github.com/NorahGreen/RTracker

whether a target is present or absent and then provide the
correct target information for re-initialization. A few track-
ing methods [25] assess the presence or absence of a target
based on the similarity between its current appearance and
that of reference from the initial frame using a fixed thresh-
old. However, these may fail due to significant changes in
target appearance over time and do not generalize well to
different tracking scenarios. Earlier trackers [17] explore
bolstering the self-recovery of trackers by employing online
adaptation, which can adjust the tracker in response to any
deviation in the appearance of the target given at the begin-
ning of tracking. However, due to the substantial computa-
tional requirements and many training samples, performing
effective online updates for deep learning tracking methods
is impractical.

The key to addressing the above challenges lies in effec-
tively modeling the continuously changing target over time,
thus accurately determining the target presence/absence and
re-initializing the tracking algorithm. Instead of judging tar-
get states based on fixed thresholds, our core idea is to con-
struct a relative measurement grounded in the positive and
negative support vector of the target. To enhance the re-
liability of target state evaluation, we should continuously
refine the latest support vector to reflect the appearance
changes and identify a closely matched complicated neg-
ative support vector for comparison.

To this end, we propose a recoverable tracking frame-
work that dynamically associates detection and tracking via
a specifically developed tree-structured memory to achieve
tracking with self-recovery capability. Specifically, we con-
struct the Positive-Negative Tree Memory (PN tree), which
archives appearance features relevant to the target, main-
tained according to temporal tracking results, as well as
background information as negative samples that closely re-
semble the appearance of the target. Upon the PN tree mem-
ory, we develop a series of walking rules to find the optimal
support vector (target/background samples) for the current
target and to ascertain its state (present or absent). With the
state identified, we apply pre-defined associating processes
tailored to various tracking scenarios for achieving self-
recovery for the tracker after target loss. We conduct exten-
sive experiments on a variety of challenging benchmarks,
including VideoCube [15], LaSOT [10], LaSOText [11],
TNL2K [32], and GOT-10k [16]. The favorable perfor-
mance against the state-of-the-art methods on all the bench-
marks demonstrates the effectiveness of our proposed re-
coverable tracking algorithm.

We make the following contributions in this work:
• We propose a novel tracking framework capable of

self-recovery for the tracker after target loss. The
proposed framework performs recoverable tracking
guided by the established distinct control flows that in-
tegrate tracking and detection to manage the various

states of tracking targets.
• We develop a Positive-Negative Tree Memory that

stores and maintains positive and negative target sam-
ples over time. Additionally, we design a series of
walking rules upon the PN tree to find the ‘support vec-
tors’ for determining the target present/absent.

• We achieve state-of-the-art performance across numer-
ous tracking benchmarks. Extensive experiments, in-
cluding ablation studies, are conducted to demonstrate
the effectiveness of our proposed method and the effect
of each component.

2. Related Work

We discuss the closely related studies, including deep track-
ing methods, online adaptation trackers, and target search
schemes for visual tracking.

Deep tracking methods. Deep tracking methods can be di-
vided into Siamese-based and transformer-based categories
based on the used backbone model. Siamese-based track-
ers [1, 5, 20, 30] first compute the correlated features be-
tween the reference image and the test image, then pre-
dict the target state upon the correlated features. In con-
trast, the transformer-based [3, 6, 22, 41] trackers use suc-
cessive transformer blocks to model the relationship be-
tween the reference and test images, thus achieving a more
comprehensive correlation between them. Siamese and
transformer-based trackers only locate the tracked object
in the current frame depending on the similarity between
the reference and test images. This may result in track-
ing failure when the target is fully occluded or out of view.
Unlike the above trackers, our approach develops a tree-
structured memory to dynamically model the target appear-
ance by maintaining positive and negative target samples.

Online adaptation trackers. The main tracking chal-
lenges are caused by the variations of both the target and
the background over time. To combat that, several on-
line adaptation techniques are developed, including online
learning [18, 24], template updating [28], and memory net-
works [29, 40]. Online learning tracking methods [2, 9]
continuously learn and model the targets throughout the
tracking period, effectively adapting to changes in their ap-
pearance. However, these methods may cause high compu-
tational costs due to the depth of neural networks. Other
online adaptation methods [14, 23, 28] mitigate this by pe-
riodically re-initializing the tracking template based on a
comparison to the reference with a fixed threshold. Besides,
several methods [13, 40] utilize dynamic memory networks
to merge the initial template with historical tracking infor-
mation for enhanced adaptability. However, previous on-
line adaptation tracking methods depend on fixed thresholds
for updates, which does not generalize well to different se-
quences. Our proposed method improves the accuracy in

2

determining the target state by comparing the relative dis-
tances between positive and negative samples stored in a
PN tree memory structure, which adaptively saves target in-
formation and offers a more reliable adaptation.

Tracking aided by detection. To address the problem of
target loss, several tracking methods [17, 27, 37] explore a
global detector to aid tracking by detecting the target after
its reappearance. Kalal et al. propose a tracking-learning-
detection algorithm (TLD) [17] for handling target loss,
which utilizes bidirectional optical flow matching as the lo-
cal tracker and an online detector based on ensemble learn-
ing for global detection. TLD also employs a nearest neigh-
bor classifier to determine the target state and then uses a
learning module to associate the tracker and detector based
on the target state. Ma et al. [25] use a discriminative cor-
relation filter based on the histogram of orientation gradient
features for local tracking and implement global detection
using an online random fern classifier. Unlike these meth-
ods that mainly relied on a classifier to associate trackers
and detectors, our proposed method includes constructing
relative measurements based on positive and negative target
samples to evaluate the target state and associate trackers
and detectors more reliably.

3. Proposed Algorithm

The goal of our method is to dynamically associate a tracker
with a detector to achieve recoverable tracking based on tar-
get states (i.e. presence or absence) over time, where the
tracker accounts for precise target localization in successive
frames and the detector accounts for the global searching.
To this end, we propose a Positive-Negative Tree (PN tree)
structured memory equipped with a set of walking rules to
achieve a reliable determination of the target state. We then
associate the tracker and detector using the pre-defined con-
trol flows based on the target states to perform tracking.
Figure 3 depicts the overall flow of the proposed method,
which includes the control flows for the normal case, the
target missing case, and the target recovering case.

3.1. PN Tree Structured Memory

The primary issue in self-recovery tracking is to determine
whether the target is present or missing in a test frame. In-
stead of judging target states based on fixed thresholds, our
core idea is to construct a relative measurement based on
positive and negative target samples to enable a more reli-
able assessment of the target states. The Positive-Negative
Tree is constructed to maintain the ‘support vectors’ for pos-
itive and negative target samples over time, which is akin to
the SVM algorithm. In addition, we propose a set of walk-
ing rules for exploiting the PN tree memory to determine
the current target state. Figure 2 depicts the structure and
updating operation of the proposed PN tree.

R

P1

P2

Pn

N1

N2

Nm

R

P1

Pn

P

N1

Nm

N

P

merge

add

root

positive branch negative branch new P node new N nodeP N

(a) Structure of the PN tree

R

P1

P2

Pn

N1

N2

Nm

R

P1

Pn

P

N1

Nm

N

P

merge

add

root

positive branch negative branch new P node new N nodeP N

a) Structure of the PN-tree b) Updating of the PN-tree(b) Updating of the PN tree

Figure 2. Definition of the PN tree. R, P, and N denote the root
node, positive nodes, and negative nodes, respectively. New nodes
are added to the tree through two ways: addition and merging. The
walking paths are used for finding the support samples for target
state determination.

PN tree definition. We define the PN tree as a specialized
variant of the binary tree, characterized by a root node and
two distinct branches: the positive and the negative. The
root node stores the features of the target template given in
the initial frame, and its two branches maintain the target-
relevant information as the positive branch and the target-
irrelevant samples as the negative one. Each node in the
tree structure stores the features of a representative target
sample at a specific stage extracted by a similarity percep-
tion model [12].

Operations of the PN tree. To meet the target modeling
requirements of visual tracking, we define the initialization,
update, and deletion operations of the PN tree. Initializa-
tion. The root and the first positive child node of the PN
tree are initialized using the features of the target template
given in the initial frame. Simultaneously, the initial neg-
ative node is constructed with target-irrelevant information
(i.e. features of a background sample). Update. For an ef-
ficient PN tree memory, we adopt two different sample up-
date strategies based on whether the target sample contains
a new target appearance. For the updated sample without
a new target appearance, we merge the new node with the
existing child node (excluding the root) via Equation 1. Af-
ter merging, we move the node to the deepest node in the
positive branch. For the updated sample with a new target
appearance, we directly append the new node as the deep-
est positive node in the PN tree. The merging process is
formalized as follows:

Fnew = (Fx + Fold ×N)/(N + 1), (1)

where Fnew and Fold are the features of the node before
and after the merge operation, N denotes the number of up-
dates applied to this node, and Fx is the feature of the new
sample to be updated. For the negative branch, we add the
new negative sample as the deepest negative node. Hence,
within the PN tree, the depth of a node serves as an indi-
cator of its temporal updated order, where nodes situated at
greater depths correspond to more recent updating. Dele-

3

tion. When a branch exceeds N nodes, the earliest node is
deleted. This study sets N to 10, balancing memory effi-
ciency and tracking accuracy.

Walking rules of the PN tree. Our key idea is to identify
the type (positive or negative) of the test node based on its
similarity to the nodes in the PN tree. To this end, we define
the walking rules with three elements: walking operation,
stopping condition, and walking path. Walking operation.
For each node walked by, we compute its similarity against
the test node using the cosine similarity defined as:

S = cos(Fx, Fnode), (2)

where Fx and Fnode denote the test node and the candidate
node, respectively. Walking path. We define a positive
path to identify whether the node transitions from a posi-
tive label to a negative label and a negative path to identify
transitions from a negative to a positive label. The positive
path goes from the leaf nodes of the positive branch up to
the root node and then descends from the root node to the
leaf nodes of the negative branch. The negative path goes
in reverse. Stopping conditions. For the positive cases, the
walking process stops when a node more similar to the test
node than the root is encountered after walking through both
positive and negative branches. The label of the test node is
then determined based on the label of the branch where the
walking stops. If such a node is not encountered, the label
of the test node is determined as positive. For the negative
path, the walking process continues until the entire route is
completed, and the label of the test node is predicted as the
label of the node with the highest similarity encountered
along the entire path. The walking rules guarantee a reli-
able classification of nodes by employing relative similarity
measurements between positive and negative nodes.

3.2. Associating Tracking and Detection

In this section, we use the proposed PN tree to predict the
state of the target and dynamically associate the tracker and
detector based on the target states. According to differ-
ent tracking scenarios, we define three processes, including
normal case flow, target missing flow, and target recovery
flow to control the operation of the tracker and the detector,
which is shown in Figure 3.
Target State Prediction. We use the PN tree, incorporating
defined operations and walking rules, to model the target
appearance and identify the target state. The PN tree models
the tracking target by forming a node of the target using the
extracted features based on the tracking or detection results.
We then identify the type of the newly formed node and up-
date it into the PN tree using the walking rules and update
operation, respectively. A positive node signifies successful
tracking (normal case), while a negative node indicates tar-
get loss (missing target case). We then handle these cases
using the following processes.

Normal case. As shown in the top line of Figure 3, we
only exploit the tracker to follow the target object. Figure 3
shows the process of the normal case in the top-left part.
For each frame, we use the tracker to predict the location of
the target object and use the PN tree to identify the state of
the target. If the target is present, we continue tracking and
update the PN tree memory with the new tracking results.

Missing target case. The tracker stops if the state predic-
tion infers the target is missing within the search region, as
shown in the top-right of Figure 3. We then activate the de-
tector for a global search at this point. Concurrently, the lat-
est tracking result, classified as a negative sample, is added
to the PN tree memory as a new negative node. This step en-
riches the PN tree memory with the most recent information
and improves state prediction by incorporating examples of
failed tracking.

Recovering target case. For the target recovering flow,
shown in the bottom part of Figure 3, the detection task
continues until the target is detected in a frame. When the
target reappears, the labels of the nodes corresponding to
the successive frames will change from negative to positive.
Therefore, we select the negative path to traverse the PN
tree and determine the state of the target. Upon confirm-
ing the recovery of the target, we add the new target into
the PN tree memory. Simultaneously, we deactivate the de-
tector, activate the tracker, and provide the tracker with the
location of the current target for the following tracking.

3.3. Recoverable Tracking

We illustrate the proposed recoverable tracking pipeline in
Figure 3 and provide the pseudo-code in Algorithm 1. In
the initial frame, we initialize the tracker, detector, and PN
tree memory using the given target exemplar. For every fol-
lowing frame, we perform target state prediction and then
handle different cases using the corresponding processes
defined in Section 3.2 to perform tracking, detection, and
updating dynamically.

4. Experiments

In this section, we present the experimental results of our
proposed RTracker. We first compare the overall perfor-
mance on five large-scale challenging tracking benchmarks
against the state-of-the-art trackers. We then conduct a
comprehensive ablation study to analyze the contribution of
each component. A recovery ability evaluation is performed
to demonstrate the effectiveness of our tracking method in
successfully recovering the tracking target once it has been
lost. Finally, the visualized results on several challenging
sequences are provided to present an exhaustive qualitative
analysis. More detailed results and experimental settings
can be found in the supplemental materials.

4

T
ra

c
k
in

g

recovering target

Template

F t1

F

t2

R

P N

t1

D
e
te

c
ti
o

n

d1 F

missing target

Keep

detection

Target states

Target State Prediction F Feature Extractor

R

P N

R

P N

t1 t2

Activate

Detector

Keep Tracking

S

t2

present

missing

Normal Cases Missing Target Cases

Recovering Target Cases

Stop Detector

S The target is present or missing ?

Figure 3. Overall flow of the proposed algorithm. Our proposed tracking method dynamically associates the tracker and detector based
on the target state. It contains three associating processes: 1) normal case flow, which validates the target state normal, utilizing only
the tracker for tracking; 2) target missing flow, which confirms the target as lost, activating the detector for global searching; 3) target
recovering flow, which detecting until the lost target recovering, the detector stopped and reactivating the tracker.

Algorithm 1 Recovering Tracking Algorithm
Require: Video V = (I0, I1, . . . , It), Tracker T , Detector D, Reference

R
1: M ← INITMEM(R) ▷ Init PN tree M with R
2: S ← 1 % Init target State S as present
3: Initialize T and D with R
4: while frame Ii in V do
5: Results← T (R, Ii)
6: S ← WALKING(M,Results)
7: if S = 1 then
8: M ← UPDATE(M,Results)
9: continue

10: else
11: M ← UPDATE(M,Results)
12: while S = 0 do % Target is missing
13: Results← D(Ii)
14: S ← WALKING(M,Results)
15: if S = 0 then
16: i← i+ 1
17: else
18: M ← UPDATE(M,Results)
19: T ← REINIT(Results) ▷ Reinit tracker
20: end if
21: end while
22: end if
23: i← i+ 1
24: end while

4.1. Implementation Details

Our experiments are conducted using 4 NVIDIA Tesla
V100 GPUs. We employ the MixViT-L (ConvMAE) [8] as
the base tracker in conjunction with the MITS [36] model
as the based detector. For the tracking model, we crop the
search image that is 4.5 times the area of the target box from
the test frame and resize it to a resolution of 384× 384 pix-
els. The template is cropped as twice that of the target box

and has a resolution of 192×192. We train a similarity per-
ception model following the setting of dreamsim [12] on the
LaSOT and NIGHTS [12] datasets as the feature extractor
in the PN tree.

4.2. State-of-the-Art Comparison

We compare our tracker with the state-of-the-art tracking al-
gorithms on five challenging tracking benchmarks, includ-
ing VideoCube, LaSOT, LaSOText, TNL2K, and GOT-10k.
Table 1 presents all the tracking results.

VideoCube [15]. VideoCube is a comprehensive and chal-
lenging long-term visual tracking benchmark designed to
reflect the complexities of the real world, such as object oc-
clusion and disappearances. It comprises 500 video seg-
ments, each containing at least 4,008 frames, averaging
about 14,920. This benchmark introduces a novel global in-
stance tracking task, where the tracker should locate a speci-
fied instance in a video without assuming consistent camera
or motion patterns. Our tracker is evaluated solely on its
test set, comprising 100 sequences. As shown in Table 1,
our approach achieves the best performance compared to
the state-of-the-art methods. Compared to the second-best
tracker MixViT [8], our method achieves a 2.8% increase in
normalized precision (NP) and a 2.4% gain in success rate
(SUC). The positive performance highlights the promising
potential of our tracker to effectively address challenges
related to camera switching and occlusion, which bene-
fits from the association between the tracker and detector
through accurate target state prediction.

LaSOT [10]. LaSOT is a high-quality, large-scale bench-
mark for long-term single-object tracking, featuring an av-

5

Table 1. State-of-the-art comparisons on the datasets of VideoCube, TNL2K, LaSOT, LaSOText, and GOT-10k. The best two results
are shown in red and blue color. Our approach performs favorably against the state-of-the-art methods on all datasets.

Method
VideoCube [15] LaSOT [10] LaSOText [11] TNL2K [32] GOT-10k [16]

P NP SUC AUC NP AUC NP P P SUC AO SR0.75 SR0.5

SiamFC [1] 3.1 12.9 6.1 33.6 42.0 23.0 31.1 26.9 28.6 29.5 34.8 39.8 35.3
RPN++ [19] - - - 49.6 56.9 34.0 41.6 39.6 41.2 41.3 51.7 32.5 61.6
Ocean [42] 18.3 51.9 32.5 56.0 65.1 - - - 37.7 38.4 61.1 47.3 72.1
TransT [6] - - - 64.9 73.8 - - - 51.7 50.7 67.1 60.9 76.8
KeepTrack [26] 35.9 68.7 50.6 67.1 77.2 48.2 - - - - - - -
GlobalTrack [26] 29.3 63.1 44.8 51.7 59.7 35.6 43.6 41.1 38.6 40.5 - - -
Stark [38] - - - 67.1 77.0 - - - - - 68.8 64.1 78.1
OSTrack [41] - - - 71.1 81.1 50.5 61.3 57.6 - 55.9 73.7 70.8 83.2
CiteTracker [22] - - - 69.7 78.6 - - - 59.6 57.7 74.7 73.0 84.3
DropTrack [34] - - - 71.8 81.8 52.7 63.9 60.2 57.9 56.9 75.9 72.0 86.8
MITS [36] 36.9 66.7 46.6 72.1 80.1 50.3 60.1 58.6 58.5 55.5 80.4 75.9 89.7
SwinTrack [23] - - - 71.3 - 49.1 - 55.6 55.7 55.6 72.4 67.8 80.5

SeqTrack-L [7] 60.9 77.4 66.1 72.5 81.5 50.7 61.6 57.5 - 57.8 74.8 72.2 81.9
MixViT-L [8] 59.9 78.7 67.2 73.3 82.8 50.9 61.0 57.9 61.7 59.0 75.7 75.1 85.3
ARTrack-L [33] 31.3 53.2 39.5 73.1 82.2 52.8 62.9 59.7 - 60.3 78.5 77.8 87.4
UNINEXT-H [39] - - - 72.2 80.8 56.2 63.8 63.8 62.8 59.3 - - -

RTracker-L 63.2 81.5 69.6 74.7 84.5 54.9 65.5 62.7 63.7 60.6 77.9 76.9 87.0

erage video length exceeding 2,500 frames. It offers di-
verse real-world challenges, including scenarios where tar-
get objects can intermittently disappear and reappear in
view. As shown in Table 1, our tracker improves all met-
rics, e.g. 1.4% in Area Under the Curve (AUC) compared
with MixViT and ARTrack. The encouraging performance
demonstrates that our tracker can tackle the object disap-
pearing and reappearing situation, which shows the self-
recovery ability.

LaSOText [11]. LaSOText extends LaSOT with 150 ad-
ditional videos, introducing the tracking challenges due to
similar distractors. UNINEXT employs a more robust back-
bone, ViT-Huge, and diverse training datasets for feature
extraction, achieving a promising 56.2% AUC score. In
comparison, our approach only uses the ViT-Large as the
backbone to save computation costs while delivering a com-
parable performance with a 54.9% AUC score. This bene-
fits from the PN tree memory, adeptly storing target-relevant
and irrelevant samples like similar distractors in the back-
ground, to reliably ascertain the target states for associating
the tracker and detector.

TNL2K [32]. TNL2K is a challenging tracking benchmark
that employs template patches and language descriptions to
locate target objects in video sequences, facilitating the con-
nection between local and global searches. However, we
only use the bounding box for evaluation. Compared to
UNINEXT with a more robust backbone, our approach still
demonstrates improvements with a 0.9% increase in preci-
sion and a 1.3% increase in SUC, attributed to the RTrack-
ing framework that facilitates the connection between local

Table 2. Ablation study of the proposed algorithm on the
VideoCube, LaSOText, and TNL2K datasets. The best re-
sults are marked in bold.

Method VideoCube LaSOT ext TNL2K

AUC NP AUC NP AUC NP

Base T 67.2 78.7 50.7 61.6 59.0 75.5
Base D 46.6 66.7 50.3 60.1 55.5 69.7

Fixed THR 60.9 72.1 50.7 59.9 56.5 71.5
W/O WR 62.6 73.6 49.0 58.0 57.4 73.3

RTracker 69.6 81.5 54.9 65.5 60.6 76.9

and global search.
GOT-10k [16]. GOT-10k is a large-scale tracking bench-
mark covering most categories for over 560 real-world mov-
ing objects. The ground truths for the test set are withheld,
and we assess our approach using the evaluation platform
provided by the authors. We follow the one-shot rule with
zero overlapping in object classes between the training and
test sets and use the tracker and the detector trained only
on the GOT-10k training set. Our RTracker also achieves
competitive results, comparable to the most recent track-
ers MITS [36] and ARTrack [33]. The good performance
shows that our tracker has a good generalization ability to
the tracking scenarios involving class-agnostic targets.

4.3. Ablation Study

To evaluate the effect of each individual component of our
tracker, we carry out ablation studies on five different vari-
ants of the RTracker:
RTracker, our intact model dynamically associates a

6

0

10

20

30
40

50

60

70

80

90

100

0 2 6 10 14 18 22 26 30

S
u

cc
es

s
R

a
te

 (
%

)

Frame numbers needed for recovery

SeqTrack MixViT OSTrack RTracker

80%

63%

53%
54%

Figure 4. Evaluation of the recovery ability on LaSOT. The suc-
cess rate is the percentage at which a tracker successfully recovers
disappeared targets within specific frame numbers.

tracker and a detector that offers global search capabilities
to achieve recoverable tracking based on the changing tar-
get states predicted by relative measurements utilizing the
PN tree memory.

Base Tracker (T), which employs only the tracker in
RTracker to track targets. In this work, we use the MixViT-
L [8] as our base tracker.

Base Detector (D), which employs only the detector in
RTracker to track targets. In this work, we use the
MITS [36] as our base detector.

Fixed Threshold (THR), which predicts the current state of
the target by comparing the tracking confidence score with
a pre-set fixed threshold in place of the state prediction by
the PN tree.

W/O Walking Rules (WR), which determines the current
state of the target based on the relative distances to tempo-
rally adjacent positive and negative samples instead of the
state prediction through the walking rules.

Table 2 presents the experimental results of these
variants on the VideoCube [15], LaSOText [11], and
TNL2K [32] datasets.

Effect of associating tracking and detection. By compar-
ing our RTrack with the base tracker, it is clear that the pro-
posed tracking algorithm improves tracking performance
by 2.8%, 3.9%, and 1.4% in terms of NP on VideoCube,
LaSOText and TNL2K, respectively. While compared with
the base detector, our tracker achieves performance gain
of 23%, 4.6%, and 5.1% in terms of AUC on VideoCube,
LaSOText and TNL2K, respectively. The gap performance
between the base tracker, the base detector, and our pro-
posed method demonstrates the effectiveness of our ap-
proach in associating the tracker and detector.

Effect of the PN tree. With the relative measurement be-
tween the positive and negative features stored in the PN
tree, RTrack achieves performance gains of 8.7%, 4.2%,
and 4.1% in AUC on VideoCube, LaSOText, and TNL2K,
while 9.4%, 5.6% and 5.4% in NP, respectively. The en-

hancements observed validate the benefits of relative mea-
surements. Unlike a fixed threshold for ascertaining the
target state, relative measurements provide favorable adapt-
ability to target changes during tracking, enhancing the ro-
bustness of target state predictions.

Effect of using the walking rules. Without the walking
rules, RTracker decrease by 7%, 5.9% and 3.2% in pre-
cision on VideoCube, LaSOText and TNL2K. The results
confirm the effectiveness of our method in employing walk-
ing rules to continually update memory, capture appearance
changes, and accurately determine target states.

4.4. Recovery Ability Evaluation

We assess the recovery ability of the proposed method on
the LaSOT dataset by measuring the number of frames re-
quired to relocate a lost target. A recovery is deemed suc-
cessful if the overlap between the predicted bounding box
and its ground truth exceeds 0.5. As illustrated in Figure 4,
RTracker can recover more lost targets within the same time
as other trackers. Notably, RTracker achieves a high suc-
cess rate, successfully recovering targets in 80% of the test
cases where they were lost. In comparison, MixViT has
a 63% success rate in recovering targets, while SeqTrack
and OSTrack exhibit average performance, managing suc-
cessful recovery in about half of the target loss cases. The
comparison shows that RTracker, combining tracking and
detection with PN tree memory, has enhanced target recov-
ery ability in challenging situations and is more effective
than other methods reliant solely on tracking.

4.5. Qualitative Study

To demonstrate the self-recovery capability of our proposed
method, we visualize the tracking results of several chal-
lenging sequences with MixViT, SeqTrack, and OSTrack.
In the CartoonSlamDUNK sequence, RTracker can imme-
diately relocate to the position of the target after it gets lost
at the 104th frame and recovers at the 106th frame, whereas
other trackers can only relocate the target after the 130th
frame. In the CrashCar series, our tracker accurately tracks
the target despite shifts in the tracking viewpoint, whereas
other trackers may not. The visualized results demonstrate
that RTracker can recover from the missing or out-of-view
targets due to the association of the tracker and detector via
the target states. Moreover, our RTracker can accurately
locate the target even if the target undergoes drastic appear-
ance changes or is blurred. In the paddle sequence, the
color of the target changes from red to black by the 29th
frame. Our tracker still tracks the target correctly, whereas
other trackers might locate the area more similar to the first
frame. Despite the fast motion and full occlusion in the
jianzi sequence, our tracking method still performs well.

7

#104 #106 #130#1 #136 #256

CartoonSlamDUNK_video_05_done Out of View, Viewpoint Change, Full Occlusion

#95 #469 #471#1 #538 #587

CrashCar_video_24-Done Out of View, Viewpoint Change, Drastic Appearance Change

#29 #112 #126#1 #496 #502

paddle-3 Out of View, Full Occlusion, Fast Motion, Motion Blur

jianzi-9 Full Occlusion, Fast Motion, Out of View, Motion Blur

#3 #44 #81#1 #205 #406
—— RTracker ——MixViT —— SeqTrack ——OSTrack ——Ground-truth

Figure 5. Visualized results of the proposed algorithm, MixViT, OSTrack, and SeqTrack method on four challenging sequences
with drastic changes. This indicates that our RTracker performs well with the support of detection through PN tree memory, whereas the
other method that relies only on the tracker faces difficulties with these sequences.

#1 #145 #205

Figure 6. Failure case of the proposed method. The target
disappears at frame 145 and recovers in a completely different ap-
pearance at frame 205, with similar distractors in the background.

4.6. Limitations

Due to the additional computational loads for evaluating the
present state of the target and facilitating integration with
the detector, RTracker runs at a speed of 0.75 times that
of the baseline method. We intend to reduce the effects of
this extra cost by using lightweight techniques. In addition,
RTracker may not be able to recover tracking correctly and
timely in a few extreme scenarios where the target reappears
with a totally different appearance, and there are also simi-
lar background distractors simultaneously. Figure 7 shows
an example where the target disappears at frame 145 and
reappears at frame 205, where all trackers fail to track accu-
rately. To address this issue, our future work will incorpo-
rate semantic descriptors to guide the tracker in effectively
adapting to targets with entirely different appearances.

5. Conclusion

In this work, we present a recoverable tracking frame-
work, RTracker, that dynamically associates a tracker and
a detector for self-recovery. Specifically, we construct a
Positive-Negative Tree Structured memory, which main-
tains the samples relevant and irrelevant to the tracking
target chronologically. In addition, we formulate a set of
walking rules for the PN tree memory, enabling the reli-
able determination of the target state by assessing the rela-
tive distances between positive and negative samples. Upon
this target state, we define three control flows to associate
the tracker and the detector adaptively for robust tracking.
Both qualitative and quantitative assessments demonstrate
that our approach performs favorably against state-of-the-
art methods, highlighting the effectiveness of dynamically
integrating trackers and detectors with PN tree memory for
improving tracking performance.

6. Acknowledgments

The paper is supported by the Major Key Project of PCL
(PCL2023A08), the National Natural Science Foundation
of China (62172126, 62002241, U20B2052), and the Shen-
zhen Research Council (No. JCYJ20210324120202006).

8

References
[1] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese
networks for object tracking. In ECCVW, 2016. 2, 6

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In ICCV, 2019. 1, 2

[3] Philippe Blatter, Menelaos Kanakis, Martin Danelljan, and
Luc Van Gool. Efficient visual tracking with exemplar trans-
formers. In WACV, pages 1571–1581, 2023. 2

[4] Boyu Chen, Peixia Li, Lei Bai, Lei Qiao, Qiuhong Shen, Bo
Li, Weihao Gan, Wei Wu, and Wanli Ouyang. Backbone
is all your need: a simplified architecture for visual object
tracking. In ECCV. Springer, 2022. 1

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 2

[6] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In CVPR, 2021. 1,
2, 6

[7] Xin Chen, Houwen Peng, Dong Wang, Huchuan Lu, and Han
Hu. Seqtrack: Sequence to sequence learning for visual ob-
ject tracking. In CVPR, 2023. 6, 1

[8] Yutao Cui, Cheng Jiang, Gangshan Wu, and Limin Wang.
Mixformer: End-to-end tracking with iterative mixed atten-
tion, 2023. 5, 6, 7, 1

[9] Martin Danelljan, Luc Van Gool, and Radu Timofte. Proba-
bilistic regression for visual tracking. In CVPR, 2020. 2

[10] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
Lasot: A high-quality benchmark for large-scale single ob-
ject tracking. In CVPR, 2019. 2, 5, 6, 1

[11] Heng Fan, Hexin Bai, Liting Lin, Fan Yang, Peng Chu,
Ge Deng, Sijia Yu, Harshit, Mingzhen Huang, Juehuan Liu,
Yong Xu, Chunyuan Liao, and Haibin Ling. Lasot: A high-
quality large-scale single object tracking benchmark. IJCV,
2021. 2, 6, 7, 1

[12] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy
Chai, Richard Zhang, Tali Dekel, and Phillip Isola. Dream-
sim: Learning new dimensions of human visual similarity
using synthetic data, 2023. 3, 5, 1

[13] Zhihong Fu, Qingjie Liu, Zehua Fu, and Yunhong Wang.
Stmtrack: Template-free visual tracking with space-time
memory networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13774–13783, 2021. 2

[14] Kaijie He, Canlong Zhang, Sheng Xie, Zhixin Li, and Zhi-
wen Wang. Target-aware tracking with long-term context
attention. arXiv preprint arXiv:2302.13840, 2023. 2

[15] Shiyu Hu, Xin Zhao, Lianghua Huang, and Kaiqi Huang.
Global instance tracking: Locating target more like humans.
IEEE TPAMI, 2022. 2, 5, 6, 7

[16] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
large high-diversity benchmark for generic object tracking in
the wild. IEEE TPAMI, 2019. 2, 6

[17] Zdenek Kalal, Krystian Mikolajczyk, and Matas Jiri.
Tracking-learning-detection. IEEE TPAMI, 2012. 2, 3

[18] Junseok Kwon and Kyoung Mu Lee. Tracking by sampling
trackers. In ICCV, 2011. 2

[19] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. Siamrpn++: Evolution of siamese visual
tracking with very deep networks. In CVPR, 2018. 6

[20] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In CVPR, 2018. 1, 2

[21] Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-
Hsuan Yang. Target-aware deep tracking. In CVPR, 2019.
1

[22] Xin Li, Yuqing Huang, Zhenyu He, Yaowei Wang, Huchuan
Lu, and Ming-Hsuan Yang. Citetracker: Correlating image
and text for visual tracking. In ICCV, 2023. 2, 6

[23] Liting Lin, Heng Fan, Zhipeng Zhang, Yong Xu, and Haibin
Ling. Swintrack: A simple and strong baseline for trans-
former tracking. In NeurIPS, 2022. 1, 2, 6

[24] Baiyang Liu, Junzhou Huang, Casimir Kulikowski, and Lin
Yang. Robust visual tracking using local sparse appearance
model and k-selection. In PAMI, 2012. 2

[25] Chao Ma, Xiaokang Yang, Chongyang Zhang, and Ming-
Hsuan Yang. Long-term correlation tracking. In ICCV, 2015.
2, 3

[26] Christoph Mayer, Martin Danelljan, Danda Pani Paudel, and
Luc Van Gool. Learning target candidate association to keep
track of what not to track. In ICCV, 2021. 6

[27] Georg Nebehay and Roman Pflugfelder. Clustering of static-
adaptive correspondences for deformable object tracking. In
CVPR, 2015. 3

[28] Yibing Song, Chao Ma, Lijun Gong, Jiawei Zhang, Ryn-
son WH Lau, and Ming-Hsuan Yang. Crest: Convolutional
residual learning for visual tracking. In ICCV, pages 2574–
2583, 2017. 2

[29] Mingjie Sun, Jimin Xiao, Eng Gee Lim, Bingfeng Zhang,
and Yao Zhao. Fast template matching and update for video
object tracking and segmentation. In CVPR, 2020. 2

[30] Paul Voigtlaender, Jonathon Luiten, Philip H.S. Torr, and
Bastian Leibe. Siam r-cnn: Visual tracking by re-detection.
In CVPR, 2020. 1, 2

[31] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In CVPR, 2021. 1

[32] Xiao Wang, Xiujun Shu, Zhipeng Zhang, Bo Jiang, Yaowei
Wang, Yonghong Tian, and Feng Wu. Towards more flexible
and accurate object tracking with natural language: Algo-
rithms and benchmark. In CVPR, 2021. 2, 6, 7

[33] Xing Wei, Yifan Bai, Yongchao Zheng, Dahu Shi, and Yi-
hong Gong. Autoregressive visual tracking. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9697–9706, 2023. 6, 1

[34] Qiangqiang Wu, Tianyu Yang, Ziquan Liu, Baoyuan Wu,
Ying Shan, and Antoni B. Chan. Dropmae: Masked autoen-
coders with spatial-attention dropout for tracking tasks. In
CVPR, 2023. 6

[35] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object
tracking: A benchmark. In CVPR, 2013. 1

9

[36] Yuanyou Xu, Zongxin Yang, and Yi Yang. Integrat-
ing boxes and masks: A multi-object framework for uni-
fied visual tracking and segmentation. arXiv preprint
arXiv:2308.13266, 2023. 5, 6, 7, 1

[37] Bin Yan, Haojie Zhao, Dong Wang, Huchuan Lu, and Xi-
aoyun Yang. ‘skimming-perusal’ tracking: A framework for
real-time and robust long-term tracking. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019. 3

[38] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
Huchuan Lu. Learning spatio-temporal transformer for vi-
sual tracking. In ICCV, 2021. 6

[39] Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Universal instance perception as
object discovery and retrieval. In CVPR, 2023. 6

[40] Tianyu Yang and Antoni B. Chan. Learning dynamic mem-
ory networks for object tracking. In ECCV, 2018. 2

[41] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and
Xilin Chen. Joint feature learning and relation modeling
for tracking: A one-stream framework. In ECCV. Springer,
2022. 1, 2, 6

[42] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and
Weiming Hu. Ocean: Object-aware anchor-free tracking. In
ECCV, 2020. 6

10

RTracker: Recoverable Tracking via PN Tree Structured Memory

Supplementary Material

This document provides additional information on the
experimental implementation and results.

A. Implementation Details
A.1. Feature Extractor in the PN tree

We use the features extracted by a similarity perception
model [12] to describe the state of the tracking targets as
they are more robust to changes in the target.
Datasets. To adapt the similarity perception model for
tracking tasks, we train it on two datasets: Novel Image
Generations with Human-Tested Similarity (NIGHTS) [12]
dataset and LaSOT [10] training set. NIGHTS comprises
human similarity judgments for image triplets, each con-
sisting of a reference image and two altered versions, along
with human assessments about which version is most simi-
lar to the reference. For LaSOT, we employ the target found
in the initial frame of each sequence as the template. Subse-
quently, we crop the ground truth area of the tracking target
from the following frames as A, ensuring that it pertains to
the same object as the template. We also extract targets from
other sequences of the same category as B, which is simi-
lar to the template. In total, we exploit 20,000 triplets from
NIGHTS and generate an additional 4,000 triplets from La-
SOT as our training datasets.
Training Settings. We denote the distance between two
samples as D computed as follows:

D1 = 1− cos(fθ(Template), fθ(A)), (3)
D2 = 1− cos(fθ(Template), fθ(B)), (4)

where fθ represents the feature extractor, D1 is the distance
between the template and A samples while D2 is the dis-
tance between the template and B samples. To improve
target state assessment, especially in scenarios with simi-
lar noise to tracking targets, we aim to maximize the differ-
ence between the distances, D1 and D2, while simultane-
ously minimizing D1 for the tracking target from the same
sequence within the triplet (Template,A,B). Therefore,
we follow the training settings of dreamsim [12] and use a
hinge training loss can be formulated as:

L = max(0,m−∆D · ȳ),∆D = D0 −D1,

ȳ =

{
1 =D1 < D0

0 =D0 < D1,

where ȳ is the relative distance judgment between the tem-
plate and A/B and m equals to 0.05.

∗ corresponding author

Template

A

B

L
o

s
s

D1

D2

F
e
a
tu

re

E
x
tr

a
c
to

r

F
e
a

tu
re

E
x
tr

a
c
to

r

F
e

a
tu

re

E
x
tr

a
c
to

r

Cosine

Distance

Minimize D1

Maximize D2-D1

Figure 7. Training method. Given a triplet, we have a template,
A and B samples. we compute the cosine distances, D1 and D2,
between the features of the Template and A/B. Our training objec-
tive is to minimize D1 and maximize the gap between D1 and D2.

B. More Detailed Experimental Results

B.1. Detailed results on VideoCube

Table 1 shows the evaluation results on the VideoCube
benchmark. We conduct tests on the VideoCube dataset
using the provided checkpoints from SeqTrack-Large [7],
MixViT-Large [8], and MITS [36]. However, for AR-
Track [33], since the authors did not release the checkpoint
of ARTrack-Large, we independently train ARTrack-Large
on our own machine to conduct the testing.

B.2. Detailed results on LaSOT

The AUC score under different attributes of LaSOT [10]
test set is shown in Figure 8 and Figure 9. Compared to the
second-best tracker MixViT, our proposed method achieves
an improvement of 3.2% in out-of-view cases and 2.6%
AUC scores in full-occlusion cases on the LaSOT test set.
This demonstrates that our tracker possesses a robust self-
recovery capability, attributed to our approach of combining
detection with tracking based on the target states, enabling
the tracker to handle situations where the target is missing
and swiftly relocate the target.

B.3. Detailed results on LaSOText

The AUC score under different attributes of LaSOText [11]
test set is shown in Figure 10 and Figure 11. It is worth
noting that compared to the second-best tracker, our pro-
posed method achieves an improvement of 5.1% and 4.4%
AUC scores in fast-motion and low-resolution cases on the
LaSOText test set, which benefits from the effective aid of
the detection.

1

B.4. Detailed results on TNL2K

The AUC score under different attributes of TNL2K [32]
test set is shown in Figure 12 and Figure 13. TNL2K has
introduced a novel challenge involving adversarial samples.
Compared to other trackers, our proposed method shows
a 1.3% increase in AUC scores, highlighting the effective-
ness of our target state prediction in distinguishing the target
from similar objects.

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Fast Motion (53)
[0.649] Ours

[0.624] MixViT

[0.591] OSTrack

[0.582] SeqTrack

[0.456] DiMP

[0.435] LTMU

[0.414] ATOM

[0.396] GlobalTrack

[0.316] SiamRPN++

[0.312] SPLT

[0.290] C-RPN

[0.233] ECO

[0.195] SiamFC

[0.163] MEEM

[0.161] LCT

[0.156] CFNet

[0.146] HCFT

[0.143] TLD

[0.140] CSRDCF

[0.125] SAMF

[0.118] fDSST

[0.106] SCT4

[0.104] ASLA

[0.089] KCF

[0.086] CN

[0.066] CSK

[0.055] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Full Occlusion (118)
[0.683] Ours

[0.651] MixViT

[0.630] SeqTrack

[0.628] OSTrack

[0.475] DiMP

[0.461] LTMU

[0.438] GlobalTrack

[0.415] ATOM

[0.366] SiamRPN++

[0.349] SPLT

[0.348] C-RPN

[0.254] ECO

[0.245] SiamFC

[0.215] MEEM

[0.199] CFNet

[0.189] HCFT

[0.188] SAMF

[0.182] TLD

[0.167] CSRDCF

[0.166] LCT

[0.158] SCT4

[0.142] fDSST

[0.140] KCF

[0.138] ASLA

[0.127] CN

[0.105] CSK

[0.094] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Aspect Ration Change (249)
[0.734] Ours

[0.716] MixViT

[0.709] SeqTrack

[0.696] OSTrack

[0.545] DiMP

[0.515] LTMU

[0.507] GlobalTrack

[0.479] ATOM

[0.472] SiamRPN++

[0.435] C-RPN

[0.411] SPLT

[0.308] SiamFC

[0.288] ECO

[0.243] MEEM

[0.243] CFNet

[0.234] HCFT

[0.215] CSRDCF

[0.211] SAMF

[0.198] LCT

[0.192] TLD

[0.171] SCT4

[0.168] fDSST

[0.163] ASLA

[0.158] KCF

[0.149] CN

[0.128] MIL

[0.127] CSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Background Clutter (100)
[0.684] Ours

[0.665] MixViT

[0.659] SeqTrack

[0.627] OSTrack

[0.497] DiMP

[0.466] LTMU

[0.449] SiamRPN++

[0.438] ATOM

[0.434] GlobalTrack

[0.409] C-RPN

[0.351] SPLT

[0.319] ECO

[0.308] SiamFC

[0.271] CFNet

[0.254] SAMF

[0.246] HCFT

[0.238] MEEM

[0.233] CSRDCF

[0.231] LCT

[0.222] fDSST

[0.213] TLD

[0.212] SCT4

[0.198] KCF

[0.197] ASLA

[0.185] CN

[0.170] CSK

[0.138] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Low Resolution (141)
[0.693] Ours

[0.667] MixViT

[0.652] SeqTrack

[0.650] OSTrack

[0.491] DiMP

[0.483] LTMU

[0.452] GlobalTrack

[0.445] ATOM

[0.385] SiamRPN++

[0.358] SPLT

[0.355] C-RPN

[0.267] ECO

[0.252] SiamFC

[0.195] CFNet

[0.194] MEEM

[0.185] HCFT

[0.180] TLD

[0.177] CSRDCF

[0.170] SAMF

[0.170] LCT

[0.147] fDSST

[0.143] SCT4

[0.137] ASLA

[0.126] KCF

[0.117] CN

[0.095] CSK

[0.084] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Partial Occlusion (187)
[0.725] Ours

[0.704] MixViT

[0.697] SeqTrack

[0.685] OSTrack

[0.521] DiMP

[0.504] LTMU

[0.491] GlobalTrack

[0.466] SiamRPN++

[0.459] ATOM

[0.432] C-RPN

[0.397] SPLT

[0.306] SiamFC

[0.290] ECO

[0.246] CFNet

[0.244] MEEM

[0.233] HCFT

[0.212] SAMF

[0.211] CSRDCF

[0.198] LCT

[0.189] TLD

[0.177] SCT4

[0.175] fDSST

[0.174] ASLA

[0.161] KCF

[0.149] CN

[0.131] CSK

[0.129] MIL

Figure 8. Success plots of different attributes on LaSOT.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Deformation (142)
[0.751] Ours

[0.749] SeqTrack

[0.743] MixViT

[0.717] OSTrack

[0.566] DiMP

[0.531] GlobalTrack

[0.529] LTMU

[0.528] SiamRPN++

[0.511] ATOM

[0.479] C-RPN

[0.447] SPLT

[0.351] SiamFC

[0.279] ECO

[0.271] CFNet

[0.257] HCFT

[0.256] MEEM

[0.235] CSRDCF

[0.229] SAMF

[0.209] LCT

[0.180] ASLA

[0.178] SCT4

[0.174] KCF

[0.173] TLD

[0.163] CN

[0.162] fDSST

[0.149] MIL

[0.148] CSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Out-of-View (104)
[0.704] Ours

[0.678] MixViT

[0.672] SeqTrack

[0.664] OSTrack

[0.499] GlobalTrack

[0.499] LTMU

[0.495] DiMP

[0.416] ATOM

[0.416] SiamRPN++

[0.393] SPLT

[0.365] C-RPN

[0.256] SiamFC

[0.239] ECO

[0.209] MEEM

[0.189] HCFT

[0.183] CFNet

[0.175] CSRDCF

[0.173] LCT

[0.167] TLD

[0.159] SAMF

[0.139] SCT4

[0.137] fDSST

[0.130] KCF

[0.115] ASLA

[0.113] CN

[0.105] MIL

[0.092] CSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Scale Variation (273)
[0.744] Ours

[0.727] MixViT

[0.724] SeqTrack

[0.708] OSTrack

[0.558] DiMP

[0.535] LTMU

[0.516] GlobalTrack

[0.494] ATOM

[0.494] SiamRPN++

[0.452] C-RPN

[0.428] SPLT

[0.332] SiamFC

[0.318] ECO

[0.267] CFNet

[0.250] MEEM

[0.244] HCFT

[0.239] CSRDCF

[0.226] SAMF

[0.215] LCT

[0.204] TLD

[0.195] fDSST

[0.187] ASLA

[0.184] SCT4

[0.171] KCF

[0.163] CN

[0.141] CSK

[0.136] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Motion Blur (89)
[0.736] Ours

[0.717] MixViT

[0.705] SeqTrack

[0.690] OSTrack

[0.546] DiMP

[0.529] LTMU

[0.497] GlobalTrack

[0.493] ATOM

[0.442] SiamRPN++

[0.413] C-RPN

[0.413] SPLT

[0.308] SiamFC

[0.305] ECO

[0.251] MEEM

[0.238] CFNet

[0.226] CSRDCF

[0.222] HCFT

[0.220] SAMF

[0.217] LCT

[0.202] TLD

[0.193] fDSST

[0.173] SCT4

[0.161] KCF

[0.150] CN

[0.150] ASLA

[0.128] CSK

[0.114] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Rotation (175)
[0.734] Ours

[0.724] SeqTrack

[0.717] MixViT

[0.700] OSTrack

[0.545] DiMP

[0.513] LTMU

[0.510] GlobalTrack

[0.485] SiamRPN++

[0.468] ATOM

[0.438] C-RPN

[0.424] SPLT

[0.310] SiamFC

[0.285] ECO

[0.247] CFNet

[0.245] MEEM

[0.239] HCFT

[0.221] CSRDCF

[0.212] SAMF

[0.196] LCT

[0.189] TLD

[0.174] ASLA

[0.172] SCT4

[0.172] fDSST

[0.158] KCF

[0.156] CN

[0.135] CSK

[0.131] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Camera Motion (86)
[0.784] Ours

[0.775] MixViT

[0.746] SeqTrack

[0.740] OSTrack

[0.593] DiMP

[0.581] LTMU

[0.547] ATOM

[0.543] GlobalTrack

[0.513] SiamRPN++

[0.483] SPLT

[0.482] C-RPN

[0.358] ECO

[0.333] SiamFC

[0.289] CFNet

[0.266] MEEM

[0.261] HCFT

[0.251] CSRDCF

[0.248] SAMF

[0.234] LCT

[0.223] TLD

[0.206] SCT4

[0.202] fDSST

[0.180] KCF

[0.170] ASLA

[0.159] CN

[0.140] CSK

[0.139] MIL

Figure 9. Success plots of different attributes on LaSOT.

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Fast Motion (88)
[0.418] Ours

[0.367] OSTrack

[0.363] MixViT

[0.353] SeqTrack

[0.285] LTMU

[0.242] DiMP

[0.235] GlobalTrack

[0.226] ATOM

[0.172] SiamRPN++

[0.138] SPLT

[0.130] C-RPN

[0.113] SiamFC

[0.105] MEEM

[0.098] ECO

[0.079] TLD

[0.076] CFNet

[0.073] HCFT

[0.067] CSRDCF

[0.063] SAMF

[0.062] LCT

[0.055] SCT4

[0.052] fDSST

[0.045] CN

[0.045] KCF

[0.045] ASLA

[0.036] CSK

[0.032] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Full Occlusion (94)
[0.420] Ours

[0.378] OSTrack

[0.369] MixViT

[0.353] SeqTrack

[0.287] LTMU

[0.274] DiMP

[0.247] ATOM

[0.240] GlobalTrack

[0.203] SiamRPN++

[0.152] SPLT

[0.149] C-RPN

[0.126] SiamFC

[0.121] ECO

[0.117] MEEM

[0.086] HCFT

[0.083] CFNet

[0.076] TLD

[0.076] CSRDCF

[0.075] LCT

[0.074] SAMF

[0.070] SCT4

[0.064] fDSST

[0.062] KCF

[0.059] CN

[0.057] ASLA

[0.044] MIL

[0.043] CSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Aspect Ration Change (129)
[0.515] Ours

[0.472] SeqTrack

[0.472] MixViT

[0.469] OSTrack

[0.381] LTMU

[0.354] DiMP

[0.341] ATOM

[0.324] GlobalTrack

[0.297] SiamRPN++

[0.236] SPLT

[0.231] C-RPN

[0.186] SiamFC

[0.167] ECO

[0.156] MEEM

[0.142] CFNet

[0.124] HCFT

[0.122] CSRDCF

[0.111] SAMF

[0.110] TLD

[0.103] LCT

[0.095] fDSST

[0.093] SCT4

[0.092] ASLA

[0.090] KCF

[0.080] CN

[0.070] MIL

[0.069] CSK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Background Clutter (68)
[0.428] Ours

[0.407] OSTrack

[0.406] SeqTrack

[0.383] MixViT

[0.348] LTMU

[0.344] DiMP

[0.310] ATOM

[0.276] SiamRPN++

[0.257] GlobalTrack

[0.225] C-RPN

[0.206] ECO

[0.202] SPLT

[0.195] MEEM

[0.195] SiamFC

[0.151] CSRDCF

[0.148] HCFT

[0.147] CFNet

[0.141] LCT

[0.135] SAMF

[0.133] SCT4

[0.131] TLD

[0.129] fDSST

[0.128] ASLA

[0.123] CN

[0.123] KCF

[0.106] CSK

[0.101] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Low Resolution (104)
[0.436] Ours

[0.392] OSTrack

[0.385] MixViT

[0.377] SeqTrack

[0.318] LTMU

[0.296] DiMP

[0.279] ATOM

[0.244] GlobalTrack

[0.226] SiamRPN++

[0.166] C-RPN

[0.166] SPLT

[0.148] ECO

[0.140] SiamFC

[0.129] MEEM

[0.105] CFNet

[0.093] CSRDCF

[0.091] HCFT

[0.086] TLD

[0.085] SAMF

[0.082] LCT

[0.072] fDSST

[0.071] SCT4

[0.061] ASLA

[0.061] KCF

[0.059] CN

[0.049] CSK

[0.041] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Partial Occlusion (98)
[0.516] Ours

[0.492] MixViT

[0.486] SeqTrack

[0.484] OSTrack

[0.390] DiMP

[0.389] LTMU

[0.355] ATOM

[0.348] GlobalTrack

[0.324] SiamRPN++

[0.257] C-RPN

[0.241] SPLT

[0.210] SiamFC

[0.201] MEEM

[0.199] ECO

[0.166] CFNet

[0.148] HCFT

[0.139] LCT

[0.135] CSRDCF

[0.135] SAMF

[0.123] TLD

[0.122] SCT4

[0.122] fDSST

[0.120] KCF

[0.119] ASLA

[0.112] CN

[0.096] CSK

[0.091] MIL

Figure 10. Success plots of different attributes on LaSOText.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Viewpoint Change (59)
[0.589] Ours

[0.548] SeqTrack

[0.537] MixViT

[0.537] OSTrack

[0.456] LTMU

[0.424] DiMP

[0.383] ATOM

[0.382] GlobalTrack

[0.342] SiamRPN++

[0.282] SPLT

[0.276] C-RPN

[0.219] SiamFC

[0.171] ECO

[0.163] CFNet

[0.155] MEEM

[0.142] CSRDCF

[0.137] HCFT

[0.124] SAMF

[0.105] TLD

[0.094] LCT

[0.089] fDSST

[0.081] CN

[0.080] SCT4

[0.080] KCF

[0.079] ASLA

[0.073] CSK

[0.063] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Out-of-View (32)
[0.436] Ours

[0.393] MixViT

[0.379] OSTrack

[0.347] SeqTrack

[0.250] GlobalTrack

[0.248] LTMU

[0.219] DiMP

[0.197] ATOM

[0.165] SiamRPN++

[0.133] SPLT

[0.117] C-RPN

[0.087] MEEM

[0.083] SiamFC

[0.074] ECO

[0.065] CFNet

[0.064] TLD

[0.057] HCFT

[0.050] SCT4

[0.050] CSRDCF

[0.049] LCT

[0.048] KCF

[0.045] SAMF

[0.042] fDSST

[0.037] CN

[0.035] ASLA

[0.029] CSK

[0.025] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Scale Variation (141)
[0.528] Ours

[0.486] MixViT

[0.484] SeqTrack

[0.483] OSTrack

[0.404] LTMU

[0.376] DiMP

[0.363] ATOM

[0.342] GlobalTrack

[0.323] SiamRPN++

[0.255] C-RPN

[0.254] SPLT

[0.211] SiamFC

[0.203] ECO

[0.175] MEEM

[0.169] CFNet

[0.141] HCFT

[0.138] CSRDCF

[0.133] SAMF

[0.122] LCT

[0.121] TLD

[0.113] fDSST

[0.107] SCT4

[0.105] KCF

[0.104] ASLA

[0.099] CN

[0.088] CSK

[0.077] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Motion Blur (67)
[0.360] Ours

[0.339] MixViT

[0.333] OSTrack

[0.327] SeqTrack

[0.249] DiMP

[0.242] LTMU

[0.231] GlobalTrack

[0.219] ATOM

[0.196] SiamRPN++

[0.146] C-RPN

[0.132] SPLT

[0.118] SiamFC

[0.114] MEEM

[0.096] ECO

[0.086] HCFT

[0.083] CFNet

[0.074] TLD

[0.071] LCT

[0.069] SAMF

[0.068] CSRDCF

[0.059] SCT4

[0.057] KCF

[0.055] CN

[0.053] fDSST

[0.049] ASLA

[0.048] CSK

[0.041] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Rotation (39)
[0.586] Ours

[0.572] SeqTrack

[0.551] MixViT

[0.543] OSTrack

[0.502] LTMU

[0.437] GlobalTrack

[0.426] DiMP

[0.413] SiamRPN++

[0.412] ATOM

[0.320] C-RPN

[0.285] SPLT

[0.280] SiamFC

[0.249] ECO

[0.244] MEEM

[0.228] CFNet

[0.192] HCFT

[0.175] CSRDCF

[0.172] LCT

[0.168] TLD

[0.161] SAMF

[0.147] ASLA

[0.143] CN

[0.135] fDSST

[0.133] KCF

[0.130] SCT4

[0.129] CSK

[0.108] MIL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u

c
c
e

s
s
 r

a
te

Success plots of OPE - Camera Motion (18)
[0.739] Ours

[0.660] OSTrack

[0.658] SeqTrack

[0.638] MixViT

[0.612] LTMU

[0.490] ATOM

[0.426] DiMP

[0.408] GlobalTrack

[0.395] SPLT

[0.378] SiamRPN++

[0.350] C-RPN

[0.276] ECO

[0.246] SiamFC

[0.196] CFNet

[0.185] CSRDCF

[0.157] MEEM

[0.150] SAMF

[0.135] HCFT

[0.127] TLD

[0.127] fDSST

[0.116] KCF

[0.107] CN

[0.101] SCT4

[0.098] LCT

[0.091] CSK

[0.066] ASLA

[0.056] MIL

Figure 11. Success plots of different attributes on LaSOText.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Fast Motion (168)
[0.607] Ours

[0.592] MixViT

[0.574] SeqTrack

[0.566] OSTrack

[0.491] LTMU

[0.476] PrDiMP50

[0.442] DiMP50

[0.411] GlobalTrack

[0.393] TNL2K-II

[0.381] SiamRPN++

[0.377] ATOM

[0.375] CLNet

[0.363] Ocean

[0.328] SPLT

[0.302] SiamKPN

[0.288] Meta-tracker

[0.276] SiamRPN

[0.270] SiamDW

[0.260] MemTracking

[0.258] ECO

[0.247] FenglangTrackarxiv

[0.246] SiamFC

[0.237] FenglangTrackwacv

[0.203] KCF

[0.188] UDT

[0.186] VisGrounding

[0.124] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Full Occlusion (97)
[0.501] Ours

[0.481] OSTrack

[0.480] MixViT

[0.470] SeqTrack

[0.393] LTMU

[0.391] PrDiMP50

[0.345] DiMP50

[0.333] GlobalTrack

[0.302] TNL2K-II

[0.282] ATOM

[0.276] Ocean

[0.270] SiamRPN++

[0.266] CLNet

[0.250] SPLT

[0.246] SiamKPN

[0.230] Meta-tracker

[0.210] SiamFC

[0.194] SiamDW

[0.188] SiamRPN

[0.186] ECO

[0.183] MemTracking

[0.172] FenglangTrackarxiv

[0.155] FenglangTrackwacv

[0.140] UDT

[0.121] VisGrounding

[0.100] KCF

[0.072] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Aspect Ration Change (241)
[0.650] Ours

[0.642] MixViT

[0.631] SeqTrack

[0.615] OSTrack

[0.519] LTMU

[0.488] PrDiMP50

[0.462] DiMP50

[0.445] GlobalTrack

[0.416] TNL2K-II

[0.413] SiamRPN++

[0.405] CLNet

[0.397] Ocean

[0.387] ATOM

[0.347] SPLT

[0.309] SiamKPN

[0.295] Meta-tracker

[0.276] SiamRPN

[0.273] SiamDW

[0.269] SiamFC

[0.258] ECO

[0.256] MemTracking

[0.238] KCF

[0.234] FenglangTrackwacv

[0.234] FenglangTrackarxiv

[0.209] UDT

[0.206] VisGrounding

[0.149] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Background Clutter (420)
[0.575] Ours

[0.566] SeqTrack

[0.561] MixViT

[0.542] OSTrack

[0.458] LTMU

[0.438] PrDiMP50

[0.422] DiMP50

[0.388] TNL2K-II

[0.382] GlobalTrack

[0.381] SiamRPN++

[0.376] CLNet

[0.371] ATOM

[0.358] Ocean

[0.320] SiamKPN

[0.315] Meta-tracker

[0.308] SPLT

[0.305] ECO

[0.297] SiamDW

[0.284] MemTracking

[0.275] SiamRPN

[0.266] SiamFC

[0.251] UDT

[0.238] FenglangTrackarxiv

[0.232] FenglangTrackwacv

[0.194] KCF

[0.142] VisGrounding

[0.100] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Low Resolution (74)
[0.435] Ours

[0.434] SeqTrack

[0.386] OSTrack

[0.384] MixViT

[0.379] DiMP50

[0.372] LTMU

[0.370] PrDiMP50

[0.365] TNL2K-II

[0.361] CLNet

[0.359] SiamKPN

[0.355] ECO

[0.346] SiamRPN++

[0.346] ATOM

[0.332] Meta-tracker

[0.312] MemTracking

[0.309] Ocean

[0.284] SiamDW

[0.266] SiamRPN

[0.259] GlobalTrack

[0.257] SPLT

[0.256] SiamFC

[0.238] UDT

[0.181] FenglangTrackwacv

[0.175] FenglangTrackarxiv

[0.074] KCF

[0.062] VisGrounding

[0.057] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Partial Occlusion (376)
[0.565] Ours

[0.549] SeqTrack

[0.546] MixViT

[0.531] OSTrack

[0.454] LTMU

[0.440] PrDiMP50

[0.408] DiMP50

[0.385] TNL2K-II

[0.371] SiamRPN++

[0.367] CLNet

[0.365] ATOM

[0.359] GlobalTrack

[0.348] Ocean

[0.328] SiamKPN

[0.313] Meta-tracker

[0.312] SPLT

[0.299] ECO

[0.298] SiamDW

[0.276] SiamRPN

[0.269] MemTracking

[0.265] SiamFC

[0.232] UDT

[0.211] FenglangTrackarxiv

[0.210] FenglangTrackwacv

[0.155] KCF

[0.133] VisGrounding

[0.093] TNL2K-I

Figure 12. Success plots of different attributes on TNL2K.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Viewpoint Change (310)
[0.580] Ours

[0.570] SeqTrack

[0.569] MixViT

[0.549] OSTrack

[0.468] LTMU

[0.457] PrDiMP50

[0.418] DiMP50

[0.388] GlobalTrack

[0.371] TNL2K-II

[0.367] ATOM

[0.365] SiamRPN++

[0.355] CLNet

[0.348] Ocean

[0.318] SPLT

[0.286] SiamKPN

[0.277] SiamDW

[0.270] Meta-tracker

[0.255] SiamRPN

[0.250] FenglangTrackarxiv

[0.242] FenglangTrackwacv

[0.240] MemTracking

[0.240] SiamFC

[0.239] ECO

[0.196] UDT

[0.189] KCF

[0.176] VisGrounding

[0.129] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Out-of-View (234)
[0.473] Ours

[0.459] MixViT

[0.437] OSTrack

[0.433] SeqTrack

[0.365] LTMU

[0.350] PrDiMP50

[0.324] DiMP50

[0.316] GlobalTrack

[0.275] TNL2K-II

[0.259] Ocean

[0.256] SiamRPN++

[0.255] ATOM

[0.249] CLNet

[0.237] SPLT

[0.198] Meta-tracker

[0.196] SiamKPN

[0.189] SiamDW

[0.177] SiamFC

[0.171] ECO

[0.169] SiamRPN

[0.165] MemTracking

[0.146] FenglangTrackarxiv

[0.133] FenglangTrackwacv

[0.130] UDT

[0.126] KCF

[0.116] VisGrounding

[0.089] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Scale Variation (406)
[0.582] Ours

[0.568] MixViT

[0.557] SeqTrack

[0.547] OSTrack

[0.469] LTMU

[0.449] PrDiMP50

[0.430] DiMP50

[0.383] TNL2K-II

[0.380] SiamRPN++

[0.379] GlobalTrack

[0.375] ATOM

[0.374] CLNet

[0.358] Ocean

[0.319] SPLT

[0.308] SiamKPN

[0.290] Meta-tracker

[0.288] SiamDW

[0.280] ECO

[0.271] SiamRPN

[0.267] MemTracking

[0.258] SiamFC

[0.236] FenglangTrackarxiv

[0.230] FenglangTrackwacv

[0.224] UDT

[0.166] KCF

[0.156] VisGrounding

[0.113] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Motion Blur (49)
[0.590] Ours

[0.578] MixViT

[0.565] SeqTrack

[0.549] OSTrack

[0.508] LTMU

[0.478] PrDiMP50

[0.452] DiMP50

[0.420] GlobalTrack

[0.407] TNL2K-II

[0.405] SiamRPN++

[0.389] CLNet

[0.378] Ocean

[0.357] ATOM

[0.344] SPLT

[0.316] SiamKPN

[0.299] SiamRPN

[0.291] Meta-tracker

[0.282] MemTracking

[0.280] FenglangTrackarxiv

[0.279] SiamDW

[0.252] ECO

[0.250] FenglangTrackwacv

[0.249] SiamFC

[0.227] KCF

[0.207] UDT

[0.167] VisGrounding

[0.122] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Adversarial Samples (100)
[0.677] Ours

[0.664] MixViT

[0.664] SeqTrack

[0.651] OSTrack

[0.556] LTMU

[0.545] PrDiMP50

[0.514] DiMP50

[0.488] SiamRPN++

[0.479] TNL2K-II

[0.476] ATOM

[0.472] CLNet

[0.448] GlobalTrack

[0.445] Ocean

[0.426] SiamKPN

[0.410] SPLT

[0.403] SiamDW

[0.403] Meta-tracker

[0.383] MemTracking

[0.378] ECO

[0.367] SiamRPN

[0.362] SiamFC

[0.348] FenglangTrackarxiv

[0.343] FenglangTrackwacv

[0.322] UDT

[0.255] KCF

[0.222] VisGrounding

[0.142] TNL2K-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s
 r

a
te

Success plots of OPE - Camera Motion (228)
[0.609] Ours

[0.600] SeqTrack

[0.595] MixViT

[0.576] OSTrack

[0.485] LTMU

[0.484] PrDiMP50

[0.445] DiMP50

[0.414] TNL2K-II

[0.403] ATOM

[0.402] GlobalTrack

[0.402] CLNet

[0.399] SiamRPN++

[0.375] Ocean

[0.341] SPLT

[0.338] SiamKPN

[0.316] SiamDW

[0.315] ECO

[0.314] Meta-tracker

[0.297] MemTracking

[0.293] SiamRPN

[0.271] SiamFC

[0.239] UDT

[0.227] FenglangTrackarxiv

[0.223] FenglangTrackwacv

[0.182] KCF

[0.166] VisGrounding

[0.123] TNL2K-I

Figure 13. Success plots of different attributes on TNL2K.

8

