
Sine Activated Low-Rank Matrices for Parameter
Efficient Learning

Yiping Ji1∗, Hemanth Saratchandran1∗, Cameron Gordon1, Zeyu Zhang2,
Simon Lucey1

1 Australian Institute for Machine Learning, The University of Adelaide
2 The Australian National University

yiping.ji@adelaide.edu.au

Abstract. Low-rank decomposition has emerged as a vital tool for en-
hancing parameter efficiency in neural network architectures, gaining
traction across diverse applications in machine learning. These tech-
niques significantly lower the number of parameters, striking a balance
between compactness and performance. However, a common challenge
has been the compromise between parameter efficiency and the accu-
racy of the model, where reduced parameters often lead to diminished
accuracy compared to their full-rank counterparts. In this work, we pro-
pose a novel theoretical framework that integrates a sinusoidal function
within the low-rank decomposition process. This approach not only pre-
serves the benefits of the parameter efficiency characteristic of low-rank
methods but also increases the decomposition’s rank, thereby enhancing
model accuracy. Our method proves to be an adaptable enhancement
for existing low-rank models, as evidenced by its successful application
in Vision Transformers (ViT), Large Language Models (LLMs), Neural
Radiance Fields (NeRF), and 3D shape modeling. This demonstrates the
wide-ranging potential and efficiency of our proposed technique.
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1 Introduction

In the last few years, large-scale machine learning models have shown remark-
able capabilities across various domains, achieving groundbreaking results in
tasks related to vision and natural language processing. However, these mod-
els come with a significant drawback: their training necessitates an extensive
memory footprint. This challenge has spurred the demand for more compact,
parameter-efficient architectures. A prominent solution that has emerged is the
use of low-rank techniques, which involve substituting the large, dense matri-
ces in large-scale models with smaller, low-rank matrices. This substitution not
only simplifies the models but also shifts the computational complexity from
quadratic to linear, making a significant impact on efficiency. In the context
of high-capacity models like Vision Transformers (ViTs) and Large Language
* Equal contribution.
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Models (LLMs) that utilize millions to billions of parameters, transitioning from
dense to low-rank matrices can result in considerable cost savings. Nonetheless,
adopting low-rank architectures does introduce a trade-off, as they typically do
not achieve the same level of accuracy as their full-rank counterparts, presenting
a balance between parameter efficiency and model performance.

Addressing this challenge, our work unveils a novel technique that retains
the parameter efficiency intrinsic to low-rank methods while achieving superior
accuracy. Our method hinges on the realization that augmenting a low-rank
matrix with a high-frequency sinusoidal function can elevate its rank without
inflating its parameter count. We lay out a theoretical framework elucidating
why and how such sinusoidal modulation crucially enhances the matrix’s rank.
By utilizing this non-linearity into low-rank decompositions, we design compact
architectures that not only maintain their streamlined nature but also deliver
improved accuracy across various machine learning tasks.

An example of this insight is depicted in the left image of Fig. 1, revealing
the singular value spectra of low-rank versus full-rank matrices in comparison
to our sinusoidally enhanced matrix. This enhancement allows our matrix to
more closely resemble the spectrum of a full-rank matrix, without an increase in
parameters, laying the foundation for our model’s improved accuracy. Further
validation of our architecture’s performance is demonstrated in the right image
of Fig. 1, which compares three ViT architectures on the ImageNet-1K dataset.
Here, our model maintains the same parameter efficiency as the low-rank version
yet achieves a performance boost of 3-4% underscoring its superior efficacy.

Our approach’s inherited advantages are further corroborated across a range
of machine learning applications, including variations of ViT, Low-Rank Adap-
tation (LoRA) methods for LLMs, Neural Radiance Fields (NeRF) for novel
view synthesis, and 3D shape modeling via binary occupancy fields. Across the
board, our approach not only matches the parameter savings offered by low-rank
methods but also secures an improvement in accuracy, attesting to its broad ap-
plicability and superior performance. The main contributions of our paper are:

1. A parameter-efficient matrix decomposition that rivals traditional low-rank
decompositions in terms of parameter economy while delivering enhanced
accuracy.

2. A comprehensive theoretical framework that substantiates our approach,
providing a solid underpinning for our methodology.

3. Extensive empirical validation has been conducted across a diverse set of
applications, each demonstrating our model’s superior accuracy and effec-
tiveness.

2 Related Work

Low-rank decomposition: stands as a crucial method across disciplines like
information theory, optimization, and machine learning, providing a strategic
approach to reduce memory costs [32, 38]. Notably, [3] uncovered that matrices
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Fig. 1: In this figure, we illustrate the impact of low-rank approximation and our
sine activated low-rank method on the weight matrix spectrum and performance in
the ViT-Base model’s Feed-Forward Network. All singular values are normalized to
1. The left part shows the SVD spectrum for matrices initialized with the Kaiming
uniform method: full-rank, low-rank, and sine activated low-rank matrices. On the
right, we note that while low-rank approximation reduces parameter count, it also
lowers performance. Our sine activated low-rank approach can improve the accuracy
by approximately 4% without increasing the parameter count.

can precisely separate low-rank and sparse components through convex program-
ming, linking to matrix completion and recovery. Expanding its application, [40]
devised a low-rank learning framework for Convolutional Neural Networks, en-
hancing compression while maintaining accuracy. [30] further found that perfor-
mance improvements in Large Language Models could be achieved by eliminating
higher-order weight matrix components without extra parameters or data. In the
realm of neural radiance fields, [34] introduced a rank-residual learning strategy
for optimal low-rank approximations, facilitating model size adjustments. Addi-
tional contributions include [31] with rank-constrained distillation, [5] applying
vector-matrix decomposition, and [29] using soft-gated low-rank decompositions
for compression. More recently, [41] implemented a vector-matrix decomposition
strategy that allows for test-time compression adjustments.

Parameter efficient learning: is an important research area in deep learn-
ing, merging various techniques to enhance model adaptability with minimal
resource demands [22]. Techniques like parameter-efficient fine-tuning (PEFT)
allow pre-trained models to adjust to new tasks efficiently, addressing the chal-
lenges of fine-tuning large models due to high hardware and storage costs. Among
these, Visual Prompt Tuning (VPT) stands out for its minimal parameter alter-
ation—less than 1%—in the input space, effectively refining large Transformer
models while keeping the core architecture unchanged [18]. Similarly, BitFit
offers a sparse-finetuning approach, tweaking only the model’s bias terms for
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cost-effective adaptations [42]. Moreover, LoRA introduces a low-rank adapta-
tion that maintains model quality without additional inference latency or alter-
ing input sequence lengths, by embedding trainable rank matrices within the
Transformer layers [17]. Recent studies also combine LoRA with other efficiency
strategies like quantization, pruning, and random projections for further model
compression [8, 19,21,43]

3 Methodology

In this section, we introduce our technique which we term a sine activated low-
rank matrix. The main purpose of this technique is to increase the rank of an
initial low-rank matrix without adding parameters.

3.1 Notation

Feed-Forward Layer Our technique is defined for feed-forward layers of a
neural architecture. In this section, we fix the notation for such layers. We will
express a feed-forward layer as

y = Wx+ b (1)

where W∈Rm×n is a dense weight matrix, b∈Rm×1 is the bias of the layer, and
x is the input from the previous layer. The output y is then often activated by a
non-linearity σ producing σ(y). The weight matrix W and bias b are trainable
parameters of the layer. In contemporary deep learning models, the feed-forward
layers’ weight matrices, W, are often large and dense yielding a high rank matrix.
While the high-rank property of the weight matrix helps in representing complex
signals, it significantly adds to the overall parameter count within the network
yielding the need for a trade-off between the rank of the weight matrix and
overall architecture capacity.

Low-rank decomposition A full-rank weight matrix W can be replaced by
low-rank matrices UVT , such that W=UVT , where U ∈ Rm×k,V∈Rn×k and
k≪min(m,n).

y = Wx+ b = (UVT )x+ b (2)

This is the most common way to reduce the parameter count in the feed-forward
layer. During the training process, this method performs optimization on U and
V alternatively. Low-rank multiplication then reduces the learnable parameter
count and memory footprint rom O(mn) to O(k·(m+n)). Although UVT has the
same matrix shape as the full-rank matrix W, the rank of UVT is constrained
and rank(UVT )≤ r. Thus while we have significantly decreased the number of
trainable weights in such a layer, we have paid the price by obtaining a matrix of
much smaller rank. In the next section, we address this trade-off by developing a
technique that can raise back the rank of a low-rank decomposition while keeping
its low parameter count.
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3.2 Theoretical Framework

In this subsection, we formally describe the simple design of the naive low-rank
method and our proposed Sine Activated Low-Rank method. The principles
outlined here apply to any dense layers in deep learning models.

Non-linearity low-rank decomposition We introduce non-linearity trans-
formation into low-rank matrices.

y =
ϕ(ω ·UVT )

g
x+ b (3)

where ϕ(·) is the non-linearity function, ω is a non-learnable frequency parame-
ter, and g is a non-learnable parameter to adjust the gain of the transformation.

Main theorem: In this section, we provide a theoretical framework that clearly
shows how to increase the rank of a low-rank decomposition without adding any
parameters. We will show that if we choose the non-linearity, in the decompo-
sition defined in Sec. 3.2, to be a sine function then provided the frequency ω
is chosen high enough, the rank of the matrix ϕ(ω ·UVT ) will be larger than
that of UVT . The proofs of the theorems are given in the supp. material. To
begin with, we fix ω> 0 and let sin(ω ·A) denote the matrix obtained from a
fixed m×n matrix A by applying the function sin(ω ·x) component-wise to A.
Assuming A ̸=0 we define A0

min as:

A0
min = min

i,js.t.Aij ̸=0

|Aij |. (4)

Note that such a quantity is well defined precisely because A has a finite number
of entries and all such entries cannot be zero from the assumption that A ̸=0.

The following theorem relates the rank of sin(ω ·A) to the frequency param-
eters ω and the quantity A0

min.

Proposition 1. Fix an m×n matrix A s.t. A ̸=0. Then

Rank(sin(ω ·A)) ≥ ω

(
A0

min

||
√
|A|||op

)2

if 0 ≤ ω ≤ π

3A0
min

(5)

Prop. 1 shows that if we modulate the matrix sin(ω ·A) by increasing ω> 0
then the rank of the matrix sin(ω ·A) can be increased provided ω< π

3A0
min

.
We can apply Prop. 1 to the context of a low-rank decomposition as defined
in Sec. 3.1. Given a low-rank decomposition UVT with U∈Rm×k and V∈Rn×k

with k≪ min{m,n} the following theorem shows how we can increase the rank
of the decomposition by applying a sin(ω·) function.

Theorem 1. Let U∈Rm×k and V∈Rn×k with k≪ min{m,n}. Assume both
U and V are initialized according to a uniform distribution U(−1/N, 1/N) where
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Full Rank𝑊!" Low Rank𝑊#" = 𝑈𝑉$
Sine Activated Low Rank
𝑊%&'(#") = sin 100 * 𝑈𝑉$

Sine Activated Low Rank
𝑊%&'(#") = sin 2000 * 𝑈𝑉$

Fig. 2: These figures display weight magnitudes for matrices with dimension 128×128.
The first figure showcases a heatmap of a full-rank matrix initialized by the Kaiming
uniform, highlighting linear independence among rows. The second shows a low-rank
matrix Wlr =UVT ∈R128×128, with U,V∈R128×1 initialized by Kaiming uniform il-
lustrating minimal linear independence. The final pair of figures reveal how applying a
sine function element-wise, sin(ω ·UVT ), with varying ω, affects linear independence
in low-rank matrices; specifically, ω=100 and ω=2000 progressively increase linear
independence and thus visually showing such a strategy increases the rank.

N >k. Then there exists an ω0 such that the matrix sin(ω ·A) will satisfy the
inequality

Rank(sin(ω ·UVT ))>Rank(UVT ) (6)

provided ω≥ω0.

We mention that Thm. 1 also holds for the case where we initialize U and V by
a normal distribution of variance N .

Weight matrices within feed-forward layers are typically initialized using a
distribution that is contingent upon the layer’s neuron count. When considering
low-rank decompositions characterized by matrices U∈Rm×k and VT ∈Rk×n,
where k≪ min{m,n}, the variance of this initialization distribution is influenced
by m and n. These dimensions are significantly larger than k, ensuring that the
condition specified in Thm. 1—that N >k—is nearly always met, making this
theorem especially relevant for low-rank decompositions in feedforward layers.
For example the most common initialization schemes such as Kaiming [15] and
Xavier [12] satisfy the requirements of our theorem.

Thm. 1 offers a viable strategy for maintaining a high-rank characteristic in
feed-forward layers while simultaneously minimizing the parameter count. By
introducing a sinusoidal non-linearity with a sufficiently high frequency ω into
a low-rank decomposition, it is possible to elevate the rank without altering the
quantity of trainable parameters. This key insight from our theoretical analysis
aims to highlight a novel approach to optimizing network structure for enhanced
computational efficiency and model performance. In Fig. 2, we give a visualiza-
tion of our method in action. We consider a full-rank matrix, a low-rank matrix,
and two sine activated low-rank matrices with different frequencies. By visualiz-
ing the weight magnitudes in each matrix via a heat map, we can clearly see how
the sine activated low-rank matrix increases rank and furthermore how increas-
ing the frequency of the sine function increases the rank in accord with Thm. 1.
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Fig. 3: In this figure we depict the SVD spectrum of a Kaiming uniform initialized
matrix Wfr ∈ R256×256 and a low-rank k = 5 approximation matrix Wlr = UVT ,
where U,V ∈ R256×5 are initialized using Kaiming uniform [15]. All singular values are
normalized to 1. On the left we depict the spectral advantages of applying a non-linear
function ϕ(ω ·UVT ) where ω is a hyper-parameter. Here we see the natural advantages
of the sine function such that ϕ(x) = sin(ω·x). On the right, we demonstrate empirically
how manipulating ω within the sine function can change these spectral properties.

Building upon Eq. (3), we explore the application of various non-linear func-
tions to a low-rank decomposition, with a particular focus on the sine function.
This choice is inspired by Thm. 1, which theoretically demonstrates that ap-
plying a sine function effectively increases the matrix rank. In Fig. 3 (left), we
present a comparative analysis of the sine function against other common non-
linear functions in machine learning, such as the sigmoid and ReLU. The results
clearly illustrate that the sine function increases the rank, making it an optimal
non-linearity to apply to a low-rank decomposition.

Further, Thm. 1 suggests that augmenting the frequency of the sine function
applied to a low-rank decomposition contributes to a further increase in rank.
To empirically validate this, we conducted experiments applying sine functions
of various frequencies to a constant low-rank matrix. The outcomes, depicted
in Fig. 3 (right), corroborate the theorem’s prediction, showcasing a positive
correlation between the frequency of the sine function and the resultant rank
increase.

4 Experiments

This section is dedicated to validating and analyzing the efficacy of our pro-
posed low-rank methods across a spectrum of neural network architectures. To
demonstrate the broad applicability and versatility of our approach, we exam-
ine its performance in three distinct contemporary applications. Specifically, we
explore its integration into the pretraining of Vision Transformers (ViT) [10],
the reconstruction of scenes using neural radiance fields (NeRF) [25], the fine-
tuning of large language models through low-rank adaptation (LoRA) [17], and
the 3D shape modeling. This collectively underscores our model’s adaptability to
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Table 1: Top-1 Accuracy and training loss of ViT-Base and sine-ViT-Base training
from scratch on the ImageNet-1k dataset with different rank levels k. The Compression
Rate represents the percentage of parameters used in comparison to the original model’s
total number of parameters.

Top-1 Change Training Change Compression
Accuracy Loss Rate

Baseline 80.49 - 2.41 - 100%

ViT-Bk=1 72.70
1.05

x 3.51
0.03

x 33.9%sine-ViT-Bk=1 73.75 3.54

ViT-Bk=5 73.57
2.41

x 3.51
0.28

y 34.5%sine-ViT-Bk=5 75.98 3.23

ViT-Bk=10 73.78
3.09

x 3.43
0.31

y 35.1%sine-ViT-Br=10 76.87 3.14

ViT-Bk=30 75.54
2.74

x 3.13
0.04

y 37.3%sine-ViT-Bk=30 78.28 3.09

ViT-Bk=60 78.26
0.94

x 3.12
0.23

y 40.3%sine-ViT-Bk=60 79.20 2.89

ViT-Bk=100 79.37
0.56

x 2.81
0.03

y 44.5%sine-ViT-Bk=100 79.93 2.78

ViT-Bk=150 80.31
0.94

x 2.70
0.05

y 49.8%sine-ViT-Bk=150 80.71 2.65

ViT-Bk=250 80.48
0.57

x 2.63
0.01

x 60.3%sine-ViT-Bk=250 81.05 2.64

a diverse array of low-rank frameworks, highlighting its potential to significantly
impact various domains within the field of computer vision.

4.1 Pretraining Vision Transformers (ViTs)

Vision Transformers (ViTs) have risen to prominence as powerful models in the
field of computer vision, demonstrating remarkable performance across a va-
riety of tasks. When pretrained on large-scale datasets such as ImageNet-21K
and JFT-300M, ViTs serve as robust foundational architectures, particularly
excelling in feature extraction tasks [7, 33]. A critical observation regarding the
architecture of ViTs is that the two feedforward layers dedicated to channel mix-
ing contribute to nearly 66% of the total model parameter count. In light of this,
focused experiments on these specific layers have been conducted to rigorously
assess the impact and effectiveness of our proposed method, facilitating a direct
comparison with the baseline model.

Experimental setup. We trained the ViT-Small and ViT-Base models from
scratch, utilizing the CIFAR-100 and ImageNet-1k datasets, respectively, to es-
tablish our baseline performance metrics [7, 20]. The ViT-Small model, charac-
terized by its two MLP layers with input/output dimensions of 384 and hidden
dimensions of 1536, was modified by replacing the full-rank weight matrices with
low-rank matrices across a range of ranks (k). Similarly, the ViT-Base model,
which features two MLP layers with input/output dimensions of 768 and hidden
dimensions of 3072, underwent a parallel modification, where its full-rank weight
matrices were substituted with low-rank matrices for a range of ranks (k). For
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Table 2: This figure illustrates the Top-1 Accuracy and training loss for the ViT-Small
and sine-ViT-Small models, both trained from scratch on the CIFAR-100 dataset across
varying rank levels (k). It also includes the compression rate, indicating the proportion
of parameters utilized relative to the total parameter count of the baseline model,
thereby detailing the parameter usage versus model performance at different levels of
model complexity.

Top-1 Change Training Change Compression
Accuracy Loss Rate

Baseline 65.99 - 1.22 - 100%

ViT-Sk=1 54.50
3.64

x 2.66
0.08

y 33.9%sine-ViT-Sk=1 58.14 2.58

ViT-Sk=5 56.04
3.48

x 2.63
0.14

y 34.8%sine-ViT-Sk=5 59.52 2.49

ViT-Sk=10 56.98
4.23

x 2.60
0.23

y 35.8%sine-ViT-Sk=10 61.19 2.37

ViT-Sk=30 58.69
8.46

x 2.52
0.79

y 40.0%sine-ViT-Sk=30 67.15 1.73

ViT-Sk=60 62.07
5.64

x 2.33
0.63

y 46.6%sine-ViT-Sk=60 67.71 1.70

the training of the ViT-Base model, we adhered to the training methodology
described in the Masked Autoencoder (MAE) methodology [14], implementing
a batch size of 1024. This structured approach allows us to rigorously evaluate
the impact of introducing low-rank matrices to these model architectures.

Results. Tab. 1 and Tab. 2 showcase the outcomes of training Vision Trans-
former (ViT) models from scratch on the ImageNet-1k and CIFAR100 datasets,
respectively. These findings are juxtaposed with those of conventional baseline
training of ViT models, which demonstrate that employing aggressive low-rank
levels (k) notably compromises accuracy. Remarkably, the ViT-Base model, even
when operating at a rank of 250 with only 50% of its parameters in comparison to
the baseline, attains the performance metrics of the baseline on the ImageNet-
1k dataset, albeit at the cost of increased training loss. Additionally, the in-
corporation of sine-activated low-rank matrices consistently yields substantial
improvements in test accuracy across all examined rank levels for both datasets.
This suggests that the sine function significantly bolsters the representational
capacity of low-rank weight matrices, as suggested by our theory in Sec. 3.2.

Analysis. Large models, such as ViT-Base, with an excessively large number
of parameters, are prone to overfitting, where they perform well on training
data but poorly on unseen data, especially when trained on relatively "small"
datasets like ImageNet-1k [44] [39]. Low-rank learning techniques can help in
designing models that generalize better to new data by encouraging the model
to learn more compact and generalizable representations to reduce overfitting.
Additionally, while ViT architectures often underperform on smaller datasets,
this method introduces a novel approach for efficiently training ViT models using
small data collections.
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Table 3: This figure compares the performance and parameter count of LoRA and sine-
LoRA models across varying kmax settings on the GLUE benchmark. In every metric,
higher scores signify superior performance. Notably, sine-LoRA models consistently
outperform their counterparts, demonstrating enhancements in numerous specific met-
rics and delivering an overall average improvement across all evaluated ranks.

Method #Params COLA MRPC STSB SST2 RTE QNLI MNLI QQP Avg. Change

LoRAk=1 36.9K 66.31 90.15 90.15 94.70 78.80 93.06 88.18 87.61 85.63
0.32

x
sine-LoRAk=1 67.99 90.44 90.85 94.79 78.05 92.76 88.35 87.90 85.95

LoRAk=2 73.7K 68.38 89.42 89.19 95.02 78.27 93.32 89.15 88.57 85.99
0.45

x
sine-LoRAk=2 68.93 90.79 90.94 94.81 79.10 93.29 88.26 88.70 86.44

LoRAk=4 147.5K 68.56 89.69 88.79 95.23 80.39 93.34 89.78 88.70 86.41
0.73

x
sine-LoRAk=4 68.93 90.86 90.87 95.25 82.00 93.53 89.68 89.18 87.14

LoRAk=8 294.9K 68.62 89.82 89.50 95.25 80.37 93.56 89.86 88.83 86.57
0.42

x
sine-LoRAk=8 68.54 90.22 90.85 95.11 81.82 93.58 89.69 89.38 86.99

4.2 Large Language Model

Low-Rank Adaptation (LoRA) emerges as a highly effective strategy for finetun-
ing large pre-trained models, as elucidated in [17]. LoRA specifically targets the
adaptation of pre-trained weight matrices W0 ∈ Rm×n by limiting updates to
a low-rank representation, expressed as W0x+∆Wx = W0x+UVTx, where
U ∈ Rm×k and V ∈ Rn×k with the rank k ≪ min{m,n}. This method does not
introduce additional inference latency or necessitate reducing the input sequence
length, thus preserving the model quality. We conduct thorough experiments
to evaluate the performance of our novel approach, termed sine-LoRA, against
the standard LoRA framework, demonstrating the enhanced effectiveness of our
method.
Dataset. We evaluate the natural language understanding(NLU) task perfor-
mance on the RoBERTa V3 base model [27]. Specifically, we adopt the widely
recognized GLUE benchmark [35], including CoLA [36], MRPC [9], QQP, STS-
B [4], MNLI [37], QNLI [26], and RTE [1,6, 11,13].
Setting. In the Transformer architecture, there are four weight matrices in the
self-attention module (Wq,Wk,Wv,Wo) and two in the MLP module. We fol-
low up the LoRA architecture and implement low-rank adaptation only on Wq
and Wv. We study the performance of LoRA and sine-LoRA in terms of different
rank k = 1, 2, 4, 8.
Results. We replicated the experimental framework of naive LoRA to establish a
baseline, and then evaluated our sine-LoRA, as detailed in Tab. 3, using averages
from five random seeds to ensure statistical robustness. Our results reveal that
sine-LoRA surpasses the performance of the standard LoRA at different rank
levels (k), highlighting the effectiveness of the sine function in enhancing the
representation capabilities of low-rank matrices. Notably, sine-LoRA at k = 4
not only exceeds LoRA’s performance at k = 8 by 0.57 but also halves the
parameter count, illustrating significant efficiency and parameter savings.
Analysis. Within the LoRA framework, featuring a low-rank multiplication
component ∆W = UV, we enhance this low-rank component with a sine func-
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Table 4: Quantitative results for NeRF evaluated on the LLFF dataset [24, 25]. Our
sine-Low-Rank method outperforms the naive low-rank method across all levels k.
For multiple instances (Fern, Flower, Leaves, Orchids, Room), the k=1 sine-Low-Rank
model is able to outperform the k=5 model. We report the peak signal-to-noise ratio
(PSNR) with the compression rate representing the percentage of parameters used in
comparison to the parameter count of the Full-Rank NeRF model.

PSNR↑

Fern Flower Fortress Horn Leaves Orchids Room Trex Average Change Compression
Rate

Full-Rank 26.38 27.54 30.93 28.20 21.79 21.33 30.96 27.68 26.85 - 100%

Low-Rankk=1 15.03 14.60 14.74 13.66 12.89 12.50 15.04 13.54 14.00
5.77

x 1.3%sine-Low-Rankk=1 20.77 20.14 24.13 19.00 15.92 16.25 25.53 16.42 19.77

Low-Rankk=5 20.64 19.81 24.90 20.40 15.74 16.07 22.74 19.79 20.01
3.12

x 4.7%sine-Low-Rankk=5 23.50 23.27 26.78 23.99 18.49 18.90 27.05 22.96 23.11

Low-Rankk=10 22.83 22.18 25.96 22.76 17.36 18.12 26.12 21.69 22.12
2.27

x 8.7%sine-Low-Rankk=10 24.56 24.61 28.01 25.39 19.62 20.02 28.70 24.21 24.39

Low-Rankk=30 24.48 24.68 28.10 25.54 19.36 20.04 38.92 24.24 24.42
1.45

x 24.6%sine-Low-Rankk=30 25.71 26.01 29.46 27.16 20.95 21.17 30.18 26.27 25.86

Low-Rankk=60 25.26 26.16 29.50 26.74 20.39 20.85 30.00 25.81 25.59
0.74

x 48.6%sine-Low-Rankk=60 26.09 26.70 29.75 27.78 21.56 21.37 30.54 27.16 26.36

tion and assess the efficacy of our method. This adaptation amplifies the update
significance due to the "intrinsic rank" increase, facilitated by the sine activation.
Consequently, our approach attains superior performance at reduced rank levels
k, compared to LoRA, effectively decreasing the count of learnable parameters.

4.3 NeRF

Neural Radiance Field (NeRF) represents 3D scene signals by utilizing a set
of 2D sparse images [25]. The 3D reconstruction is obtained by a forward pass
fθ(x, y, z, θ, ϕ), involving position (x, y, z) and viewing direction (θ, ϕ). We eval-
uate our methods by training a NeRF model on the standard benchmarks LLFF
dataset, which consists of 8 real-world scenes captured by hand-held cameras [24].
To evaluate our method on NeRF we substitute each fully dense layer with low-
rank decomposition and use a range of rank levels (k).
Results. Tab. 4 demonstrates that employing low-rank matrices in NeRF learn-
ing reduces parameter count while significantly enhancing compression. However,
performance dips with very low rank levels (k), where models capture minimal
information. Our methods, nevertheless, substantially elevate performance. For
instance, with k = 1, our sine-Low-Rank approach yields an average PSNR of
19.77, outperforming the naive low-rank by 5.77 and achieving a compression rate
of merely 1.3%. Even at a 48% compression rate, it surpasses the basic low-rank
model by 0.8 PSNR, narrowly trailing the baseline by just 0.45 PSNR, as shown
in Figs. 4 and 5. Our rate-distortion analysis, applying Akima interpolation for
Bjøntegaard Delta calculation, reveals a BD-Rate of −64.72% and BD-PSNR of
2.72dB, signifying marked improvements in compression efficiency [2, 16].
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Fig. 4: Qualitative NeRF results for the LLFF dataset [24, 25] using rank k = 1 and
k = 5. Using a Low-Rank model leads to a complete loss of signal for k = 1, however,
applying sine is able to reconstruct details even at the extreme low-rank case. At k = 5
the sine-Low-Rank model is noticeably sharper and clearer than using the Low-Rank.
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Fig. 5: Rate-Distortion curve for NeRF results (average over the LLFF dataset). The
sine-Low-Rank NeRF models show significant rate-distortion improvement relative to
the naive low-rank NeRF. Evaluating the Bjøntegaard Delta between the models us-
ing Akima interpolation shows BD-Rate: -64.72% and BD-PSNR: 2.72dB, indicating
substantial improvement in compression quality from using the sine-Low-Rank model.

Analysis. NeRF models, to a certain degree, tend to overfit entire 3D scenes,
and a high training PSNR usually leads to a high testing PSNR. Employing
structured weight matrices could result in a drop in performance due to the
inherent constraints imposed by their structural design. Increasing the matrices’
rank enhances their memorization abilities significantly, especially when using
a very low rank level k. Starting from a low frequency, there is a rapid and
consistent increase in PSNR. Consequently, as we elevate the rank level k, our
results gradually align with the baseline NeRFs, which serve as the upper bound.

4.4 3D shape modeling

For this experiment, we evaluate the binary occupancy task, which involves
determining whether a given space or environment is occupied [23]. Following
[28], we sampled over a 512 × 512 × 512 grid with each voxel within the volume
assigned a 1, and voxels outside the volume assigned a 0. We evaluate intersection
over union (IoU) for the occupancy volumes. We used a coordinate-based MLP
that includes two hidden layers, each with a width of 256 neurons, and employed
the Gaussian activation function. The full-rank model achieves an accuracy of
97 (IoU) and further details are presented in supplementary materials. Fig. 6
shows the 3D mesh representation of the Thai Statue, visualized using the low-
rank method and the sine-Low-Rank method for k = 1, 2, 5. Applying the sine
function to the low-rank matrix resulted in a significant enhancement and more
precise shape delineation.
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k = 1 k = 2
Low-Rank Low Ranksine-Low-Rank (Ours) sine-Low-Rank (Ours)
(IoU : 84.3) (IoU : 90.8) (IoU : 88) (IoU : 92)

k = 5
Low-Rank sine-Low-Rank (Ours)
(IoU : 93.4) (IoU : 94.4)

Fig. 6: Binary occupancy field reconstruction on the Thai Statue instance from the
Stanford Scanning Repository. Note that without a sine function, the Low-Rank model
is unable reconstruct any finer details for the k = 1 case; however, even at that level
the sine-Low-Rank model is able to reconstruct fine structural details of the statue,
including the trunks of the elephants. The k = 1, k = 2 and k = 5 model utilizes only
2.1%, 2.9% and 5.2%, respectively, of the parameters of the full-rank model.

5 Limitations

Our exploration into sine-activated low-rank matrices illuminates their promis-
ing capabilities, yet it also has a limitation: notably, while these matrices can
reach rank levels comparable to their full-rank counterparts upon the applica-
tion of a sine function, their accuracy falls short. This highlights an ongoing
challenge in finding the optimal balance between the need for sufficient param-
eterization to ensure high accuracy and the preferable rank of matrices. Over-
parameterization is widely recognized in the literature as vital for deep learning
models to achieve strong generalization and optimization outcomes. However,
our approach, despite increasing the rank, does not provide a clear pathway to
achieving an efficient representation that can equal the accuracy of a full-rank
model. Moving forward, developing strategies that not only enhance the rank but
also clearly define the necessary degree of overparameterization will be crucial
for creating cost-effective deep learning architectures, presenting an intriguing
avenue for future research.

6 Conclusion

In this work, we developed a strategy that elevates the efficacy of general machine
learning models, that employ feedforward layers, through parameter-efficient
learning without additional parameter costs. Employing low-rank matrices re-
duces parameter cost, yet overly aggressive reductions, such as to rank=1, can
detrimentally impact performance. Our method integrates a sine function within
low-rank matrix decompositions to increase the rank of the decomposition lead-
ing to yielding an effective method to surmount their constrained representa-
tional capacity, thereby boosting model performance while maintaining the pa-
rameter cost. We gave a theoretical argument detailing why this method works
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and went on to validate the theory empirically on a variety of large-scale deep
learning models over a broad set of applications. Furthermore, our findings re-
veal that learning with low-rank matrices contributes to mitigating overfitting,
thereby facilitating the effective training of models even on limited datasets.
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A Theoretical Framework

In this section we give the proof of Prop. 1 and Thm. 1 from Sec. 3.2 of the
paper.

We recall from Sec. 3.2 the following notation: For fixed fixed ω> 0, let
sin(ω ·A) denote the matrix obtained from a fixed m×n matrix A by applying
the function sin(ω ·x) component-wise to A. Assuming A ̸=0 we define A0

min as:

A0
min = min

i,js.t.Aij ̸=0

|Aij |. (7)

Note that such a quantity is well defined precisely because A has a finite number
of entries and all such entries cannot be zero from the assumption that A ̸=0.

Before we give the proof of Prop. 1, we will prove two lemmas.

Lemma 1. For a fixed m×n matrix A. We have

||sin(ωA)||2F ≥ ω2(A0
min) if 0 < ω <

π

3A0
min

(8)

where A0
min is defined as follows:

A0
min = min

i,js.t.Aij ̸=0

|Aij | (9)

for 1≤ i≤m and 1≤ j≤n.

Proof. Observer by definition of the Frobenius norm that

||sin(ωA)||2F =

m∑
i=1

n∑
j=1

sin(ωAij)
2. (10)

Now observe that if Aij =0 then the term sin(ωAij)
2 =0 and hence does not

contribute to the above sum. Therefore, we find that

||sin(ωA)||2F ≥ sin(ωA0
min)

2. (11)

The goal is to now find a lower bound on sin(ωA0
min)

2. In order to do this
consider the function f(ω)= sin(ωx)− ωx

2 , where x∈R is fixed and positive.
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Differentiating this function we have

f ′(ω) = xcos(ωx)− x

2
. (12)

To find a critical point we solve the equation f ′(ω)= 0 to find

cos(ωx) =
1

2
. (13)

Eq. (13) has the solution ωx= π
3 . In order to check what type of critical point

ωx= π
3 we need to look at f ′′(ω)

f ′′(ω) = −x2sin(ωx) < 0 (14)

when ω= π
3x implying that the critical point ω= π

3x is a maximum point.
Observe that f(0)= 0 it thus follows that f(ω)≥ 0 on the interval [0, π

3x ].
Applying this to the function sin(ωA0

min) we obtain that

sin(ωA0
min) ≥

ωA0
min

2
if 0 ≤ ω ≤ π

3A0
min

. (15)

Substituting the lower bound in Eq. (15) into Eq. (11), we obtain the proposition.

The next lemma establishes an upper bound on the operator norm of sin(ωA).
We remind the reader that the operator norm of A

Lemma 2. Let A be a fixed m×n matrix. Then

||sin(ωA)||2op ≤ ||
√
ω
√

|A|||2op (16)

where
√
|A| denotes the matrix obtained from A by taking the absolute value and

then square root component wise.

Proof. By definition we have

||sin(ωA)||2op = sup
||x||2=1

||sin(ωA)x||22 (17)

where || · ||2 denotes the 2-norm of a vector.
For any fixed unit vector x we will show how to upper bound the quantity

||sin(ωA)x||22. In order to do this we will use the fact that for x≥ 0, we have the
bound sin(x)≤

√
|x|.

||sin(ωA)x||22 =

m∑
i=1

( n∑
j=1

sin(ωAij)xj

)2

(18)

≤
m∑
i=1

( n∑
j=1

√
ω
√
|Aij |xj

)2

(19)

= ||(
√
ω)

(√
|A|

)
x||22. (20)
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It follows that

sup
||x||=1

||sin(ωA)x||22 ≤ sup
||x||=1

||
√
ω
√
|A|x||22 (21)

which implies
||sin(ωA)||2op ≤ ||

√
ω
√

|A|||2op. (22)

We can now give the proof of Prop. 1 of the main paper. In order to do so we
will need the definition of the stable rank of a matrix. Assume A is a non-zero
m×n matrix. We define the stable rank of A by

SR(A) :=
||A||2F
||A||2op

. (23)

It is easy to see from the definition that the stable rank is continuous, unlike the
rank, and is bounded above by the rank

SR(A) ≤ Rank(A). (24)

Proof (of Prop. 3.1 from Sec. 3.2 of main paper). Observe that from Eq. (24) it
suffices to prove the lower bound on SR(A). This is immediate from lemma 1
and lemma 2.

We can also give the proof of Thm. 1.

Proof (of Thm. 1 from Sec. 3.2 of main paper). From the assumption of the Thm. 1,
we have that N ≫ k. Further, we are assuming that both U and V have entries
sampled from U(−1/N, 1/N). This means if we let A=UVT , then there exists
a C > 0 such that

A0
min =

C

N2
. (25)

Furthermore, observe that

||
√
|A|||op ≤ ||

√
|A|||F ≤ ||A||F (26)

which implies

ω

(
A0

min

||
√

|A|||op

)2

≥ ω

(
C

N4

)(
N4

mn

)
= ω(

C

mn
). (27)

Now observe that from Prop. 1 we have that

Rank(sin(ωA)) ≥ ω
A0

min

||
√
|A|||op

(28)

if 0≤ω≤ π
3A0

min
. We can rewrite this last condition to say that Eq. (28) holds if

0≤ω≤ πN2

3 . In particular, by using Eq. (27) we find that there exists ω0 within
the interval 0≤ω0 ≤ πN2

3

Rank(sin(ω0A))≥ω0
A0

min

||
√
|A|||op

≥ k≥Rank(A). (29)

This completes the proof.
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Table 5: This table illustrates the Top-1 Accuracy in pretraining the ViT-Small model
with rank=1 on the CIFAR100 dataset using different frequencies, ω, of sin(ω·)

PSNR

Low-Rankk=1 54.5

sine-Low-Rankk=1,ω=100 55.0
sine-Low-Rankk=1,ω=200 55.8
sine-Low-Rankk=1,ω=300 56.8
sine-Low-Rankk=1,ω=400 58.0
sine-Low-Rankk=1,ω=500 58.1
sine-Low-Rankk=1,ω=600 57.6
sine-Low-Rankk=1,ω=700 57.5

Fig. 7: Ablation NeRF results for the LLFF dataset. These two figures show PSNR of
NeRF using different frequencies when k=1 (on the left) and k=5 (on the right)

B Ablation study

In this section, we present additional results from ViT-Small, NeRF, and 3D
shape modeling to demonstrate the superiority of our methods.

B.1 ViT-Small on CIFAR100

In Tab. 5, we examine the performance of our method on training the ViT-Small
model from scratch on the CIFAR100 dataset using different frequencies, when
rank=1.

B.2 NeRF

In Fig. 7, we illustrate the impact of varying frequency on PSNR for cases where
k=1 (shown on the left) and k=5 (shown on the right).
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Table 6: This table illustrates Intersection over Union (IoU) for 3D shape modeling
across different rank levels (k). It also includes the compression rate, indicating the
proportion of parameters utilized relative to the total parameter count of the baseline
model, thereby detailing the parameter usage versus model performance at different
levels of model complexity.

Intersection Compression
over Union Rate

Full-Rank 97.2 100%

Low-Rankk=1 84.3 2.1%Sine-Low-Rankk=1 90.8

Low-Rankk=2 88.0 2.9%Sine-Low-Rankk=2 92.0

Low-Rankk=5 93.4 5.2%Sine-Low-Rankk=5 94.3

Low-Rankk=20 95.4 16.8%Sine-Low-Rankk=20 95.4

Fig. 8: Ablation binary occupancy results for Thai Statue. This figure shows IoU ac-
curacy of 3D shape modeling using different frequencies, when k=1.

B.3 3D shape modelling

Tab. 6 reports the Itersection over Union (IoU) and Compression Rate of the
binary occupancy task using different rank levels (k). Fig. 8 illustrates IoU using
different frequencies when k=1.
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