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Abstract

Graph representation learning has rapidly emerged as a pivotal field of study.

Despite its growing popularity, the majority of research has been confined

to embedding single-layer graphs, which fall short in representing complex

systems with multifaceted relationships. To bridge this gap, we introduce

MPXGAT, an innovative attention-based deep learning model tailored to

multiplex graph embedding. Leveraging the robustness of Graph Attention

Networks (GATs), MPXGAT captures the structure of multiplex networks

by harnessing both intra-layer and inter-layer connections. This dual ex-

ploitation facilitates accurate link prediction within and across the network’s

multiple layers. Our comprehensive experimental evaluation, conducted on

various benchmark datasets, confirms that MPXGAT consistently outper-
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forms state-of-the-art competing algorithms.

Keywords: Multiplex Graphs, GAT, Link prediction, Multiplex embedding

1. Introduction and Related Works

In the last decades, graphs have proved to be a fundamental mathemat-

ical tool to model various real-world complex systems. From transportation

systems to power grids, from the network of our social relationships to that of

neurons in our brains, complex networks are all around us. Due to such ubiq-

uity, network and graph theory have imposed themselves in many research

fields, from engineering to physics, social science, and biology [1, 2, 3, 4].

A topic that has recently received considerable interest in computer sci-

ence is that of how to efficiently represent large-scale graphs [5, 6, 7]. Partic-

ularly, graph embedding methods, which consist in projecting the elements of

a graph, i.e., vertices, edges, and motifs, to a low-dimensional vector space by

preserving some of the graph properties, have shown to be very successful in

graph representation [8]. These embedding techniques are suitable for multi-

ple applications, as they can be used in downstream learning tasks, including

node classification [9], link prediction [10], and community detection [11].

We can broadly categorize graph embedding methods into traditional

graph embedding and graph neural networks (GNNs) based embedding meth-

ods [8]. The first group consists of algorithms that represent graphs relying

on techniques such as random walks [12, 13, 14] and matrix factorization

methods. These shallow approaches have several drawbacks that limit their

efficiency and effectiveness. First, they do not share any parameters between

the nodes in the encoder function, which maps each node to a vector rep-
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resentation, making them statistically and computationally inefficient. Sec-

ond, they ignore the node attributes during the encoding process, leading to

a lower quality of the embeddings. Third, they are transductive, meaning

they can only generate embeddings for the nodes seen during the training

phase [15].

Embedding methods based on GNNs go beyond such limitations using

more sophisticated encoders accounting for the graph structure and the node

attributes. The key feature of a GNN is that the embedding of a node in

the graph is obtained by aggregating the embeddings of the node’s neigh-

bors [8]. In the last few years, a large variety of methods have been de-

veloped [6, 16, 17, 18], with the most notable examples including Graph

Convolutional Networks (GCNs) [19], GraphSAGE [20] and Graph Atten-

tion networks (GATs) [16].

Although graphs are widely recognized for their versatility in modeling

complex systems, traditional graph structures are limited to depicting a sin-

gular relationship type among system entities. This simplistic representation

is insufficient for systems where entities engage in diverse interactions [3]. For

example, social systems often involve individuals connected through various

relationships such as friendship, kinship, or professional collaboration, and

they may communicate through multiple channels like direct contact, phone,

or online platforms [21, 22]. Similarly, in biological systems, proteins may

interact genetically, physically, or through spatial proximity [23].

To encapsulate the complexity of such systems, advanced mathematical

structures like multidimensional and multiplex graphs are employed [24, 25,

26]. Multidimensional graphs, or edge-labeled multigraphs, feature vertices
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connected by edges of different labels, each signifying a distinct interaction

type within the system. Multiplex graphs, on the other hand, consist of mul-

tiple interconnected layers, with each layer dedicated to a specific relationship

type.

The key distinction between multigraphs and multiplex networks lies in

the representation of system units. In multigraphs, a unit is depicted as

a single node linked to others through various connection types. Multiplex

networks [27, 22], however, represent units as a set of nodes distributed across

different layers, connected by inter-layer links. Typically, a unit is represented

in only a subset of layers, indicating connections through certain relationship

types. Furthermore, it is often the case that only a portion of the inter-layer

links connecting the multiple representations of the same unit is known [26].

Multi-relational network embedding is a challenging problem recently gar-

nering significant research interest. Various methods to embed networks

with multiple types of nodes and links, such as multidimensional networks

and multiplex networks, have been proposed. Some of these methods are

based on shallow embedding approaches [28, 29, 30, 31], while others use

graph convolutional networks (GCNs) [32, 33, 34] or graph attention net-

works (GATs) [35]. However, none of these methods can solve the problem

of predicting links between different layers of a multilayer network. This

problem is important when the network structure is incomplete or heteroge-

neous. For example, some methods assume that all nodes are present in every

layer, which is not realistic in many cases. Other methods (such as [36]; [37];

[38]) do not distinguish between intra-layer and inter-layer links, ignoring

the diversity and complexity of multilayer networks. Very recently, Multi-
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plexSAGE, a generalization of GraphSAGE aimed at embedding multiplex

networks by relaxing these hypothesis, have been proposed [39], yet there

is still a need for new methods that can address the problem of predicting

inter-layer links in a general, flexible and more reliable way.

The inter-layer link prediction problem finds many crucial applications:

i) linking user identities across different online social networks (OSNs), an

emerging task in social media that has attracted increasing attention in recent

years [40]. User identity linkage finds potential impact in different domains,

from recommendation systems to cybersecurity [41]; ii) identifying the same

genes or proteins across different biological networks, such as gene expression,

protein interaction, metabolic pathways, etc. This can help to discover the

molecular mechanisms of diseases and to find potential drug targets [42]; iii)

matching the same entities across different knowledge graphs [43], which can

help to enrich the semantic information and to improve query answering and

reasoning capabilities. The range of possible applications of inter-layer link

prediction ultimately motivates the development of embedding algorithms

for multiplex networks that are able to distinguish between intra-layer and

inter-layer links, and to reconstruct both connectivity patterns.

Predicting inter-layer connections in multiplex networks differs from graph

matching or alignment. Graph matching [44] identifies isomorphisms between

graphs, ensuring identical topology. In contrast, inter-layer prediction uncov-

ers missing links between nodes representing the same unit across layers, with

diverse connectivity. Global graph alignment [45] finds optimal correspon-

dences between multiple graphs, considering both structure and node labels.

However, inter-layer link prediction focuses on a specific bijection between
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two graphs, i.e., layers of a multiplex network. Also, while graph alignment

is general, inter-layer prediction is specific to multiplex networks.

In this paper, we introduce MPXGAT, an attention based deep learning

model for multiplex graphs embedding. Our methodology, based on GATs,

consists in embedding the nodes of a multiplex network by leveraging the

information about their intra-layer and inter-layer connections, allowing for

link prediction tasks both within the same layer and across different layers.

We carry out a thorough experimental analysis on three benchmark datasets,

showing that MPXGAT out-performs state-of-the-art competing algorithms.

We conclude with an in-depth study of the model main features, proving how

their use positively impacts the performance of the algorithm itself.

2. Methods

In this section, we provide details of our model, MPXGAT , which can em-

bed multiplex networks, namely networks where multiple types of link exist.

We first provide some preliminary notions, next, we introduce the mathe-

matical formulation of the model, and finally, we describe the algorithmic

implementation.

2.1. Preliminary Notions

We start by defining the basic concepts of simple and multiplex graphs

A graph (network) is a mathematical structure consisting of a set of vertices

(nodes) and a set of edges (links), where each edge represents a relation be-

tween a pair of vertices. Simple graphs are able to capture only one kind

of relationship, so they are limited when it comes to characterizing systems

where multiple types of interactions coexist. The need of a higher degree of
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expressiveness motivates the use of multiplex graphs. We can define multi-

plex graphs as a graphs composed by two different sub-networks, which we

refer to as horizontal and vertical. The horizontal network consists of a col-

lection of simple graphs, called (horizontal) layers. In this setup, each unit

of a system can be represented as a node in one or more layers, with each

layer referring to a certain type of relationship. We refer to the connections

within a given layer as intra-layer links. The second sub-network, namely

the vertical network, consists of a single-layer graph formed by the set of

edges connecting nodes across different layers. We assume that a node i on

a layer α can be connected to at most one node j on another layer β, i.e.,

the two nodes represent the same unit of the system. Also, we assume that

if node i on layer α is connected to node j on layer β, and if node j is con-

nected to node k on layer γ, then nodes i and k are also connected. Under

these hypothesis, the vertical network consists in a collection of connected

components, which can be either cliques or isolated nodes. The edges in the

vertical network will be referred to as inter-layer links.

Formally, a multiplex graph is a set V of N nodes that are connected

through L different layers. We assume that Nα nodes are present in each

layer α ∈ {0, 1, . . . , L}, such that N1 + · · · + NL = N . Each layer α is a

graph Gα = (Vα, Eα) where Vα ∈ V is the set of the Nα nodes and Eα is

the set of edges connecting them. The node sets for each layer are disjoint,

i.e., Vα ∩ Vβ = ∅ for α ̸= β, and their union makes the set of all nodes

V. The set of intra-layer links for the horizontal network can be defined as

Eintra =
⋃L

α=1 Eα. Hence, we define the horizontal network as GH = (V, Eintra).

The vertical network can be instead defined as GV = (V, Einter), where Einter =
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{(i, j) ∈ V× V | ∃α, β ∈ {0, 1, . . . , L} s.t. (i, j) ∈ Eα × Eβ} is the set of inter-

layer edges. Figure 1 shows an illustration of a multiplex graph.

Figure 1: A toy example of a multiplex network with 2 horizontal layers. The solid edges

represent the intra-layer connections while the dashed edges are the inter-layer edges.

2.2. The MPXGAT General Framework

The main idea of MPXGAT is to generate two separate embeddings for

each node in two different phases. In the first phase, each node is embedded

according to the horizontal layers, where it has multiple types of relation

with other nodes. In the second phase, nodes are embedded according to

the vertical network, where they are linked to their counterparts on different

layers. In the following, we will use the superscript ·H when we refer to the

horizontal network, while the superscript ·V will refer to the vertical one.

The notation used, together with the most relevant variables of our model,

are reported in Table 1.

Our algorithm uses two sub-models, one for each embedding phase: MPXGAT-

H and MPXGAT-V (an illustration of the model structure is shown in Fig-

ure 2). In the most general framework, MPXGAT-H applies a series of GAT
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Figure 2: The structure of the MPXGAT model. In this toy example, it is applied on

a multiplex network with 2 horizontal layers where the solid blue edges represent the

intra-layer connections while the dashed red edges are the inter-layer edges. The data

is provided to the MPXGAT-H throughout the dot-and-dash blue lines. Once processed

these are used to feed theMPXGAT-V together with the inter-layer links (the dotted green

lines). The output of the model consists of both horizontal and vertical nodes embedding.

convolutional layers independently to each layer of the horizontal network
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Mathematically, the embedding is described by the following equations:

eHk
i,j = LeakyReLU

([
WHk · hHk

i · (vHk)T ||WHk · hHk
j · (vHk)T

])
(1a)

αHk
i,j = softmax(eHk

i,j ) =
exp(eHk

i,j )∑
z∈NHk

i
exp(eHk

i,z )
(1b)

h
′Hk
i = σ

 ∑
j∈NHk

i

αHk
i,j ·WHk · hHk

j

 (1c)

Equations 1 govern the convolutional layer as described in the GAT model

[16]. In particular, in Equation 1c, h′Hk
i represents the horizontal embedding

of the node i that belongs to the layer k, while Equation 1b describes the

self attention mechanism in layer k.

Leveraging the horizontal embeddings, MPXGAT-V generates the verti-

cal embeddings by making use of a custom mechanism inspired by the one

applied in the GAT model, which we call GAT-V. The equations to compute

the vertical embedding of node i are the following:

eV
k,q

i,j = LeakyReLU
([
W V · hV

i · (vV )T ||W V · hV
j · (vV )T

])
(2a)

αV k,q

i,j = softmax(eV
k,q

i,j ) =
exp(eV

k,q

i,j )∑
z∈NV

i
exp(eVi,z)

(2b)

h
′V
i = σ

 ∑
j∈NV

i

g
([

αV
i,j ·W V · hV

j

]
, f(hHk

i ,h
Hq

j )
) (2c)

Equations 2 contain two novel elements. The first is the function f , which

transforms the final horizontal embeddings to the same dimensional space

of the vertical embeddings. Such a function can be a simple linear trans-

formation of the node horizontal embeddings, or it can be more complex,

depending on the specific task considered. The second feature we introduce
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is the function g, which combines the data obtained from the current vertical

embedding with the results of the the function f .

2.3. MPXGAT Implementation for Link Prediction

We now present an implementation of MPXGAT that is suitable for link

prediction. We customize the attention mechanisms of both MPXGAT-H

and MPXGAT-V , which are described in Equations 1a, 1b and 2a, 2b, re-

spectively. In particular:

• in Equations 1a and 2a, instead of a single weight matrix for both i

and j nodes, i.e., WH , two different weight matrices,
(
WH

i ,WH
j

)
, are

used. By doing that, we improve the representation capabilities of the

model, at the expense of a greater number of parameters. The same

choice is done for the weight vector, where instead of a single vector

vH , we use two,
(
vH
i ,vH

j

)
. Moreover, to improve the generalization

capabilities of the model, the concatenation operator || is implemented

as a sum +, and both parts of this operation are augmented with the

introduction of a bias vector;

• in Equations 1b and 2b an additional dropout mechanism is applied to

the attention coefficients. In this way, we sub-sample the paths present

in the graph, granting the model a better generalization capability.

A further addition is the use of multiple attention heads, consisting in

calculating different embeddings of the same nodes applying multiple times

the convolutional layer. This generates multiple node representations that

highlight different kinds of patterns about the nodes, as each attention head

can be seen as a distinct information channel representing a certain aspect of

11



nodes. The implemented sub-models concatenates the embeddings for each

attention head in the hidden convolutional layers of the model, and uses a

mean operation for the final one.

Finally, for both sub-models the activation function σ in Equations 1c

and 2c we consider the LeakyReLU.

The general MPXGAT framework rely on the f and g functions for the

embedding, which can be specified according to the particular task we want

to solve. Here, the two functions f and g introduced in Equation 2c have the

following characteristics:

• f performs a linear transformation of the horizontal embedding of the

source node, hH
i , to the same dimensional space of its vertical embed-

ding, hV
i , here described with xH

i . This is done through an additional

weight matrix ZH . The result is then multiplied by a vector of pa-

rameters vH
i , whose role is to enhance the patterns from the horizontal

embeddings. Finally, the LeakyReLU function is applied.

• The function g performs a weighted sum of the output of the function

f (see Equation 3c) and the data computed with the convolutional

layer for the vertical network (see Equation 3d). A scalar parameter β,

automatically inferred during the learning process, is introduced to tune

the information coming from the horizontal and vertical embeddings,

respectively. In particular when β = 0 the horizontal embedding is not

considered, while for β = 0.5 both the components are considered with

the same weight.

Formally, the equations describing the implementation of MPXGAT
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for link predictions are:

xH
i = hH

i ·ZH + bhi
(3a)

αH
i = LeakyReLU

(
xH
i · vH

i

)
(3b)

mH
i = f(xH

i ) = αH
i ∗ xH

i (3c)

mV
i,j = αV

i,j · xV
j (3d)

g
(
mV ,mH

)
=

(
mV

i,j ∗ (1− ReLU (β))
)
+
((
mH

i

)
∗ ReLU (β)

)
(3e)

A few aspects of our model are worth remarking. First, we assume nei-

ther to have the same number of nodes in each horizontal layer nor to have

all possible inter-layer links, making our algorithm a valuable tool for recon-

structing inter-layer connectivity. Second, MPXGAT is quite flexible, as it

supports the use of node features and edge weights. In particular, differ-

ent features can be used by the two sub-models, since the horizontal and

the vertical networks are defined and processed as separated entities. As we

will show in the next section, these characteristics guarantee our model good

performances even in datasets where the edge density in the horizontal or

vertical networks is high, which represents a strong limit of algorithms based

on GraphSAGE [39].

3. Results

In this section, we present the results obtained byMPXGAT in predicting

both intra-layer and inter-layer links. We first present the datasets studied,

as well as the experimental setup used for the analysis, and the competing

methods considered as benchmarks for our algorithm. Then, we test the
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performances of MPXGAT in the link prediction task. We round up the

analysis by assessing the impact of the horizontal and vertical sub-models on

the embedding procedure.

3.1. Dataset

To assess the performance ofMPXGAT in predicting both intra-layer and

inter-layer connections, we employ the same datasets that have been origi-

nally used to test MultiplexSAGE [39]. These include data relative to three

types of real-world multiplex networks, namely a collaboration, a biologi-

cal, and an online social networks. Specifically, we considered the following

datasets.

arXiv [46]. The arXiv multiplex network represents collaborations in

various research topics published on the pre-print archive. Each layer of the

network corresponds to a different research category or theme. The network

was obtained by selecting papers published before May 2014 that contain the

keyword networks in their titles or abstracts.

Drosophila [47]. This multiplex network represents the interactions be-

tween proteins and genes in the common fruit fly, i.e., Drosophila melanogaster,

with each layer corresponding to interactions of various types. The dataset

was collected from the Biological General Repository for Interaction Datasets

(BioGRID), with data updated until January 2014.

ff-tt-yt [48]. This multiplex network is derived from Friendfeed (ff), a

social media aggregation platform where users can link their accounts from

various online social networks (OSNs). The network comprises users who

have registered a single Twitter (tw) account and a sole YouTube (yt) account

on Friendfeed. Additionally, the Twitter and YouTube accounts are linked

14



to a single Friendfeed account.

For each empirical dataset, we consider exclusively the largest connected

component of the multiplex networks and we treat all networks as undirected

and unweighted. Details about the largest connected component for each of

these datasets are provided in Table 2.

We remark that, for all datasets considered in our analysis, nodes are not

provided with any external features. Hence, we associate to each node, n, a

one-hot encoding vector defined by the Kronecker function, δi,n.

3.2. Experimental setup

To assess the performance of MPXGAT , we consider the experimental

setup delineated in [39]. We partition the data following a multiple step pro-

cedure. First, we randomly select 20% of the network nodes, labeling them

as marked nodes. We then define test and training sets. Both sets encom-

pass positive and negative examples, the former corresponding to actual links

within the network, while the latter consisting in pairs of unconnected nodes.

In the test set, positive examples comprise a subset of 20% of the intra-layer

links and all inter-layer links among the marked nodes. Conversely, positive

examples in the training set include all remaining intra-layer and inter-layer

links in the multiplex network. As negative examples within the test set,

we include 20% of all possible negative intra-layer links among the marked

nodes, as well as all possible inter-layer links between them. The negative ex-

amples in the training set correspond to the remaining pairs of unconnected

nodes.

To test the performance of our algorithm, instead of conducting a single

experiment for each dataset, we repeat the embedding procedure multiple
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times. For each repetition, we randomly select a subset of marked nodes,

defining the training and test sets accordingly. To obtain the best parameter

settings, we apply a grid search method.

3.3. Competing Methods

We conduct a comparative analysis of MPXGAT against three competing

methodologies, specifically GraphSAGE , GATNE and MultiplexSAGE .

GraphSAGE [20]. GraphSAGE is an inductive node embedding algo-

rithm that leverages node features to learn an embedding function capable of

generalizing to unseen nodes. It was originally designed for single-layer net-

work embeddings, so in our experiments, we apply it without distinguishing

between intra-layer and inter-layer links.

GATNE [35]. GATNE is an embedding algorithm for attributed het-

erogeneous networks, encompassing multigraphs with diverse node and edge

types. To adapt GATNE to our specific task, we introduced two categories

of edges, denoted as intra-layer and inter-layer links. This adjustment allows

us to create a multigraph that the algorithm can learn to embed effectively.

MultiplexSAGE [39]. MultiplexSAGE represents an extension of the

GraphSAGE algorithm, specifically tailored for embedding multiplex net-

works. Its key feature is the distinction made between inter-layer and intra-

layer links that allows for the prediction of both intra-layer and inter-layer

connectivity patterns.

Other relevant methods such as [31], [33], [28], [49], [29], [30] and [34] can

not be used as competing methods, as they assume that each layer has the

same number of nodes and that all inter-layer connections are known. There-

fore, as we are interested in predicting both intra-layer and inter-layer links,
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these methods are not suitable benchmarks for evaluating the performance

of MPXGAT .

3.4. Embedding Multiplex Networks

Our first analysis concerns the prediction of both intra-layer and inter-

layer links when embedding a multiplex network. For each embedding, we

evaluate the Area Under the Receiveing Operating Characteristic (ROC)

Curve (AUC), and take an average over the different repetitions as a per-

formance metric. We consider the standard deviation as an indicator of

statistical error. Table 3 provides an overview of the performances obtained

with MPXGAT , GraphSAGE , GATNE , and MultiplexSAGE . We note that

GATNE outperforms GraphSAGE and MultiplexSAGE in intra-layer link

prediction, having a higher average AUC for all three datasets. However,

MPXGAT has comparable performances with GATNE on the ff-ww-tt and

the Drosophila dataset, while the latter performs better on the arXiv dataset.

Yet, with regards to inter-layer link prediction, MPXGAT clearly performs

better than all other algorithms, including MultiplexSAGE , which is explic-

itly designed for that task. Overall, if we consider the general performance

of the methods without distinguishing intra- and inter-layer connections, our

algorithm emerges as the best solution, as reported in Table 4.

As described in Section 2, MPXGAT employs two distinct embeddings,

dealing with the horizontal, i.e., intra-layer, and vertical, i.e., inter-layer,

embeddings, respectively. In contrast, the other models rely on a single

embedding that serves both tasks. As we will further investigate in the next

section, it is this architectural difference that allows MPXGAT to predict

with a certain reliability both intra-layer and inter-layer links.
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3.5. Measure the impact of Horizontal Embeddings

We now establish the impact of the horizontal embeddings on the perfor-

mance of MPXGAT . To do so, we conduct two experiments. In the first, we

perform the embedding with MPXGAT , but instead of using MPXGAT-V,

which leverages the horizontal embeddings generated by MPXGAT-H, for

embedding the vertical network, we consider a standard GAT [16], thus ig-

noring the contribution of MPXGAT-H. Table 5 reports the average AUC

for the inter-layer link prediction in both configurations. We observe that

neglecting the horizontal embeddings leads to worse performances across all

datasets, suggesting that including the MPXGAT-V submodel increases the

algorithm adaptability and predictive power.

To validate the significance of these findings we performed a Welch’s

T-test. The p-values are 6.00 × 10−7, 9.10 × 10−10, and 1.10 × 10−7 for

the Drosophila, arXiv, and ff-tw-yt datasets, respectively, confirming the

statistical significance of our finding.

In the second experiment, we keep the original model architecture but

instead of providing MPXGAT-V with the horizontal embeddings generated

by MPXGAT-H, we replace them with random embeddings, i.e., vectors

whose components are random values.

Table 6 shows the results of the comparison with regards to the inter-layer

link prediction. We note that for both the ff-tw-yt and the arXiv dataset,

using the horizontal embeddings increases the performance of the prediction

task, while we observe similar values of the average AUC for the Drosophila

dataset. The statistical significance of this result is confirmed by the Welch’s

T-test, for which we obtain p-values equal to 6.10 · 10−6, 0.75, 3.60 · 10−4 for
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the arXiv, Drosophila, and ff-ww-tt datasets, respectively.

We conjecture that this outcome is due to the structure of the multiplex

network, both in terms of the size of the different layers, i.e., the number

of nodes laying on them, and of the connectivity patterns, both within the

same layer (e.g., randomness, clustering and community organization, and

across different ones, i.e., overlapping).

4. Conclusions

In this paper we have introduced MPXGAT , an attention based deep

learning model for the embedding of multiplex graphs. Through a com-

prehensive experimental analysis we showed that MPXGAT out-performs

state-of-the-art competing algorithms. Future work will be aimed at better

understanding how the community structure withing each layer influences

the performances of the algorithm in terms of the reliability of predicted

inter-layer relations. An implementation of MPXGAT in Python is available

at https://github.com/MarcoB46/MPXGAT.
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Table 1: Description of the variables involved in this work. Note that superscripts ·H and

·V are omitted for the sake of readability

VARIABLE DESCRIPTION

N ∈ N Number of nodes in the multiplex graph

V Set of nodes in the multiplex graph

L ∈ N Total number of horizontal layers of the multiplex graph

α ∈ N Index of the horizontal layer in the multiplex graph

Nα Number of nodes within the horizontal layer of index α

Vα Set of nodes within the horizontal layer of index α

Eα Set of edges within the horizontal layer α

Gα Layer of index α in the horizontal network

Eintra Set of intra-layer edges for the horizontal network

Einter Set of inter-layer edges for the horizontal network

GH Horizontal network of the multiplex graph

GV Vertical network of the multiplex graph

F ∈ N Initial node feature dimensionality

F ′ ∈ N Final node feature dimensionality

i ∈ N Source node

j ∈ N Destination node

k ∈ N Source node horizontal layer’s index

q ∈ N Destination node horizontal layer’s index

Ni Set of nodes connected to node i

hi ∈ RF Embedding of node i

v ∈ RF ′
Attention weight vector

W ∈ RF ′×F Weight matrix, used to linearly transform the node embeddings

ei,j ∈ R Attention coefficient between node i and j

αi,j ∈ R Normalized attention coefficient between nodes i and j

hi ∈ RF ′
Updated embedding of node i after a forward pass

σ Activation function (in our case LeakyReLU)

f Function used to transform the horizontal embeddings

to the same dimensional space of the vertical embedding

g Function used to combine the data obtained from the vertical network

with the result of the application of the function f
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Table 2: Dataset Information including the number of nodes, edges, and average degree

for the largest connected component of each dataset (arXiv, Drosophila, and ff-tw-yt)

Dataset Nodes Edges Avg. Degree

arXiv 19,310 20,738 1.07

Drosophila 11,867 5,171 0.44

ff-tw-yt 11,827 6,028 0.51

Table 3: Performance comparison on intra-layer and inter-layer link prediction across the

three distinct datasets: ff-tw-yt, Drosophila, and arXiv. The assessment is based on the

AUC metric, using the standard deviation as error metric. The best performing tool is

highlighted in boldface

Algorithm ff-tw-yt Drosophila arXiv

intra inter intra inter intra inter

GraphSAGE 0.47 (± 0.02) 0.56 (± 0.02) 0.54 (± 0.02) 0.63 (± 0.02) 0.72 (± 0.02) 0.70 (± 0.01)

GATNE 0.83 (± 0.01) 0.47 (± 0.01) 0.78 (± 0.01) 0.55 (± 0.01) 0.91 (± 0.01) 0.63 (± 0.01)

MultiplexSAGE 0.48 (± 0.02) 0.62 (± 0.02) 0.51 (± 0.01) 0.77 (± 0.02) 0.71 (± 0.02) 0.83 (± 0.01)

MPXGAT 0.76 (± 0.06) 0.83 (± 0.01) 0.76 (± 0.05) 0.86 (± 0.02) 0.80 (± 0.02) 0.84 (± 0.01)

Table 4: Overall AUC performaces calculated as a weighted sums of the results shown in

Table 3, based on the number of edges used to evaluate the models.

Algorithm ff-tw-yt Drosophila arXiv

GraphSAGE 0.49 (± 0.02) 0.57 (± 0.01) 0.70 (± 0.01)

GATNE 0.72 (± 0.01) 0.69 (± 0.02) 0.72 (± 0.01)

MultiplexSAGE 0.52 (± 0.02) 0.61 (± 0.01) 0.79 (± 0.01)

MPXGAT 0.78 (± 0.03) 0.80 (± 0.03) 0.82 (± 0.04)
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Table 5: Results of the ongoing experiment aimed at assessing the impact of excluding hor-

izontal embeddings on inter-layer link prediction. The performance is evaluated in terms

of AUC across the three datasets. The second model, which omits horizontal embeddings,

exhibits lower performance in inter-layer link prediction across all datasets.

Algorithm ff-tw-yt Drosophila arXiv

MPXGAT-V (layer GAT-V) 0.83 ± (0.01) 0.86 ± (0.01) 0.84 ± (0.01)

GAT(layer GAT) 0.72 ± (0.02) 0.78 ± (0.02) 0.78 ± (0.01)

Table 6: Results of the experiment investigating the impact of replacing meaningful hor-

izontal embeddings with random embeddings. The performance is evaluated in terms

of AUC. The model with random embeddings performs worse in two out of the three

datasets compared to the model with actual embeddings, indicating a significant decrease

in predictive accuracy.

Algorithm ff-tw-yt Drosophila arXiv

MPXGAT-V (actual embedding) 0.83 ± (0.01) 0.86 ± (0.01) 0.84 ± (0.01)

MPXGAT-V (random embedding) 0.80 ± (0.02) 0.86 ± (0.01) 0.81 ± (0.01)
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