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Hadwiger’s conjecture holds for strongly monotypic

polytopes

Vuong Bui∗

Abstract

In this short note, we prove Hadwiger’s conjecture for strongly monotypic poly-
topes.

1 Introduction

Hadwiger’s conjecture is an old and curious problem on the covering of a convex body C

by a number of translates of a slightly smaller homothety (1−ǫ)C. The necessary number
of translates in the worst case was conjectured to be 2n by Hadwiger [1] in 1972, where
n is the dimension of C. While it was proved to hold for every convex body on the plane
by Levi [2] in 1955, little is known even in dimension 3. (We should remark that Levi
also studied the problem before Hadwiger, and it is sometimes called the Levi–Hadwiger
conjecture.) In particular, we only know that the conjecture holds for centrally symmetric
polyhedra [3] and bodies of constant width in R

3 [4], and zonotopes for every dimension
[5] (see also the survey in [6, Chapter 3] for some more information). One has the right
to doubt the conjecture, as the evidences so far are not rich, while Borsuk’s conjecture,
a problem on the covering of convex bodies with respect to the diameters, was disproved
in rather high dimensions [7].

In this article, we try to supply more evidences by proving Hadwiger’s conjecture
for strongly monotypic polytopes. As one may guess that Hadwiger’s conjecture for
polytopes may be not much easier than that for all convex bodies, simple polytopes
appear to be the candidate to tackle. We however even narrow down the scope further
to strongly monotypic polytopes, a subclass of monotypic polytopes. These notions were
first introduced in [8]: A polytope P is monotypic if every polytope with same set of
normals as P is combinatorially equivalent to P . One can see that a monotypic polytope
is necessarily a simple polytope, but the converse is not always true (e.g. we translate
a facet of a square pyramid so that the apex is the intersection of only 3 facets to
obtain a simple polytope but not a monotypic polytope). On the other hand, a polytope
P is strongly monotypic if any other polytope Q with the same set of normals as P

satisfies that the arrangements of the hyperplanes containing the facets of P and Q are
combinatorially equivalent. One would notice that the monotypy and strong monotypy of
polytopes depend only on the sets of normals (one can see that Theorem 2 and Theorem
5 emphasize this). A recent interesting fact is that strongly monotypic polytopes are
equivalent to polytopes with the generating property [9]. (We remind that a convex body
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C has the generating property if for every nonempty intersection I of translates of C,
there exists a convex body J so that the Minknowskii sum I + J is C.) Examples of
strongly monotypic polytopes can be found in the original article [8], which partially
characterized these polytopes in R

3. All strongly monotypic polytopes in R
3 were later

fully characterized in [10].
At first, we should state precisely Hadwiger’s conjecture.

Conjecture 1 (Hadwiger’s conjecture [1]). Every convex body C in R
n can be covered

by at most 2n translates of (1− ǫ)C for some ǫ > 0.

There is an equivalent problem to Hadwiger’s conjecture that was introduced by
Boltyanski.

Conjecture 2 (Boltyanski’s illumination conjecture [11]). For every convex body C, there
exists a set V of at most 2n vectors so that for every point x on the boundary of C, there
is a vector v ∈ V so that x− v is in the interior of C.

A discussion on the equivalence of the two conjectures can be found in [6, Chapter 3].
We use the illumination conjecture of Boltyanski in the proofs.

2 The proof for strongly monotypic polytopes

The following characterization of monotypic polytopes was given in the same article
[8], which introduces the notion. (The original definition is still by the combinatorial
equivalence of polytopes taking the same set of normals.)

Theorem 1 (McMullen–Schneider–Shephard 1974 [8]). A polytope P is monotypic if
and only if every two disjoint primitive subsets V1, V2 of the set of normals N(P ) satisfies
posV1 ∩ posV2 = {0}.

Note that a subset of normals V ⊆ N(P ) is primitive if the normals in V are linearly
independent and the positive hull of V is empty of other normals of P .

The combinatorial equivalence between monotypic polytopes of the same set of nor-
mals suggests the following observation. It is a corollary of the above characterization.

Proposition 1. There is only one simplicial fan by the normals of a monotypic polytope
P , which is therefore also the normal fan of P .

Proof. Suppose we have two different simplicial fans, that is there are two distinct prim-
itive subsets V1, V2 of N(P ) so that the positive hulls of V1 and V2 intersect at a point in
the relative interior of both, that is

∑

xi∈V1

λixi =
∑

yj∈V2

θjyj

where all the coefficients λi, θj are positive.
We can assume that V1, V2 are disjoint, since otherwise, say xi∗ = yj∗, we can remove

it from one of two sides, or both, by

(λi∗ −min{λi∗ , θj∗})xi∗ +
∑

xi∈V1\{xi∗}

λixi = (θj∗ −min{λi∗ , θj∗})yj∗ +
∑

yj∈V2\{yj∗}

θjyj,
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where the coefficients λi∗ −min{λi∗ , θj∗} and θj∗−min{λi∗ , θj∗} are still nonnegative with
at least one of them being zero. After removing, the new subsets (containing the points
with positive coefficients) are still distinct and primitive, but with one less point in the
intersection. (Note that the positive hulls still intersect each other.)

However, when V1, V2 are both primitive and disjoint, we have a contradiction to the
monotypy of P . Therefore, every simplicial fan by the normals N(P ) is identical. The
conclusion follows.

In [9], another characterization was given for monotypic and strongly monotypic poly-
topes, with the one for strongly monotypy given below. (The one for monotypy is given
in Theorem 5.)

Theorem 2 (Bui 2023 [9]). An n-dimensional polytope P is strongly monotypic if and
only if every n + 1 normals of P are not in conical position.

A clarification on terminology: A set of points is said to be in conical position if it is
separated from 0 and none of the points is in the positive hull of the others. (A set of
points is said to be separated from 0 if there is a hyperplane strictly separating the set
from 0.)

One can easily verify the following observation.

Observation 1. Suppose we have n linearly independent points a1, . . . , an and a point x
in the linear span of these points with the unique representation x =

∑

i λiai. Then we
have:

• The points x, a1, . . . , an are not separated from 0 if and only if all the coefficients
λi are nonpositive.

• One of the points x, a1, . . . , an is in the positive hull of the others if and only if
either (i) all the coefficients λi are nonnegative or (ii) some λi > 0 and all other
λj ≤ 0 (j 6= i).

We omit the proof since it is obvious by the uniqueness of the representation
While the characterization in Theorem 2 is somewhat local, it actually allows us to

specify a global picture of the normals of a strongly monotypic polytope.

Theorem 3. The set X of the normals of an n-dimensional strongly monotypic polytope
P contains some k disjoint subsets X1, . . . , Xk such that

(i) each Xi is the set of vertices of a simplex whose relative interior contains 0,
(ii) the linear spaces spanned by each Xi are linearly independent,
(iii) these linear spaces directly sum up to R

n.

Proof. Among the elements of X take a set of points B such that B is in conical position,
B spans an n-dimensional space and its positive hull is maximal in the sense that no
other such points have the positive hull being a strict superset of the positive hull of B.
Since every n+1 points of X are not in conical position by Theorem 2, it follows that B
is a set of n linearly independent points b1, . . . , bn.

Consider any other point x =
∑n

i=1 λibi in X . The n + 1 points x, b1, . . . , bn either
(iv) have the convex hull containing 0, for which all λi are nonpositive or (v) have one of
them in the positive hull of the others. In the case (v), we can conclude that all λi are
nonnegative, since we cannot have the other possibility as in Observation 1 that there
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is only one positive coefficient, say λi > 0, and other nonpositive coefficients. Indeed,
suppose otherwise, we have bi ∈ pos({x, b1, . . . , bn} \ {bi}), which is a contradiction by
the strict inclusion

pos({x, b1, . . . , bn} \ {bi}) ⊃ pos{b1, . . . , bn}.

Note that the former positive hull contains x while the latter does not (at least some
λj < 0 with j 6= i, otherwise x and bi are the same normal). So, it is always either (iv)
with all nonpositive λi or (v) with all nonnegative λi.

Let the Cartesian support of a point x be the set {bi : λi 6= 0} for x =
∑n

i=1 λibi.
We show that the Cartesian supports of two points of X both in pos{b1, . . . , bn} or

both in pos{−b1, . . . ,−bn} are either disjoint or one is a subset of the other. Let the two
points be x, y with x =

∑n

i=1 λibi and y =
∑n

i=1 θibi. Suppose the Cartesian support of x
be {b1, . . . , bk2} and the Cartesian support of y be {bk1 , . . . , bk3} with 1 < k1 ≤ k2 < k3.
Since the points in {y, b1, . . . , bn} \ {bk1} are linearly independent, the linear relation

x =

(

k1−1
∑

i=1

λibi

)

+
λk1

θk1
y +

k2
∑

i=k1+1

(

λi −
λk1

θk1
θi

)

bi −

k3
∑

i=k2+1

λk1

θk1
θibi

is unique. It raises a contradiction as the n + 1 points {x, y} ∪ {b1, . . . , bn} \ {bk1}
are in conical position, with either two positive and one negative coefficients (if x, y ∈
pos{b1, . . . , bn}) or two negative and one positive coefficients (if x, y ∈ pos{−b1, . . . ,−bn})
of the points b1, y, bk2+1 on the right hand side (by Observation 1).

Since 0 ∈ int convX , there must be some k points x1, . . . , xk all in pos{−b1, . . . ,−bn}
and their Cartesian supports are disjoint while the union of the Cartesian supports is
{b1, . . . , bn}. Let Xi for each i = 1, . . . , k be the union of the Cartesian support of xi and
the point xi itself, we obtain the desired sets X1, . . . , Xk, which complete the proof.

Now we are ready to prove Hadwiger’s conjecture for strongly monotypic polytopes.

Theorem 4. For every strongly monotypic polytope P with the sets X1, . . . , Xk as in
Theorem 3, there exists a set V of |X1| . . . |Xk| vectors so that for every point x on the
boundary of P , there is a vector v ∈ V so that x−v is in the interior of P . In particular,
Hadwiger’s conjecture holds for strongly monotypic polytopes since |X1| . . . |Xk| ≤ 2n for
P ⊂ R

n.

Note that the proof below uses Boltyanski’s illumination version of the conjecture.

Proof. For each x1 ∈ X1, . . . , xk ∈ Xk, we consider the cone C = pos{(X1 \ {x1}) ∪ · · · ∪
(Xk \ {xk})}. The union of these q = |X1| . . . |Xk| cones C1, . . . , Cq is R

n and they are
disjoint except at the boundaries. For each cone Ci, we have a vector vi so that 〈vi, y〉 > 0
for any y ∈ Ci.

In each cone Ci, we continue to triangulate further into smaller simplicial cones with
the normals in N(P )∩Ci. There is a unique way to triangulate these cones C1, . . . , Cq due
to Proposition 1, which also states that the resulting simplicial fan is also the normal fan
of P . Each cone K in the resulting simplicial fan corresponds to a face F of P , in the
sense that

K = {~n ∈ R
n | F ⊆ argmax

x∈P
〈~n, x〉}.

To finish the proof, we show that the set V = {εv1, . . . , εvq} for any sufficiently small
ε satisfies the requirements of the theorem.
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Given some δ > 0, we define Hδ(x) for a point x on the boundary of P to be the set
of normals ~n ∈ N(P ) so that the distance of x to the facet of ~n is at most δ, that is

Hδ(x) = {~n ∈ N(P ) : hP (~n)− 〈~n, x〉 ≤ δ},

where we use the standard notation hP (~n) = supp∈P 〈~n, p〉.
We can choose δ sufficiently small so that Hδ(x) for any x ∈ ∂P is contained in a cone

of the normal fan. Indeed, assume we cannot choose such a δ. It follows that we have a
sequence δk → 0 and a sequence xk ∈ ∂P such that Hδk(xk) is not contained in a cone
of the normal fan. Passing to a subsequence we assume that xk → x0 ∈ ∂P . For any
normal ~n ∈ N(P ) such that hP (~n) > 〈~n, x0〉, the inequality hP (~n)−〈~n, xk〉 ≤ δk tends to
the false inequality hP (~n)− 〈~n, x0〉 ≤ 0 and therefore fails for sufficiently large k. Since
the set N(P ) is finite, all such inequalities fail for sufficiently large k, which effectively
means that Hδk(xk) is contained in the normal cone of the point x0.

Now, consider any vertex x on the boundary of P . Let K be the cone of the normal
fan that contains Hδ(x). Let Cj contain K. For every ~n ∈ Hδ(x) ⊆ K ⊆ Cj and every
ε > 0, we have

〈~n, x− εvj〉 = 〈~n, x〉 − ε〈~n, vj〉 < 〈~n, x〉.

If x − εvj is not in the interior of P , it is due to another normal ~m ∈ N(P ) \Hδ(x), in
the sense that

〈~m, x− εvj〉 ≥ hP (~m).

It will not happen if either 〈~m, vj〉 ≥ 0 or

ε <
hP (~m)− 〈~m, x〉

−〈~m, vj〉
.

Since hP (~m)− 〈~n, x〉 > δ, it suffices to set

ε =
δ

min
~n∈N(P ),j=1,...,q: 〈~n,vj〉<0

|〈~n, vj〉|
.

The set V = {εv1, . . . , εvq} with this value of ε satisfies the requirements.

3 Some discussions on monotypic polytopes

Hadwiger’s conjecture for all polytopes or more generally for all convex bodies may ask
for more techniques than what have been presented in this article. However, it seems
that the approach in this article can be readily applied to all monotypic polytopes, which
are not necessarily strongly monotypic. Note that Proposition 1 applies to all monotypic
polytopes, for which we know that every simplicial fan is identical to the normal fan.
What remains is to establish a “skeleton” as in Theorem 3. This may be the hardest
part, while the arguments in the proof of Theorem 4 may be mostly kept the same.
To close the article, we mention the characterization of monotypic polytopes in [9], in
corresponding to Theorem 2, which may help establishing the “skeleton”.

Theorem 5 (Bui 2023 [9]). The monotypy of an n-dimensional polytope P is equivalent
to: If some n + 1 normals of P are in conical position, then their positive hull contains
another normal of P .
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