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Abstract

We present a switching control strategy based on Lyapunov control for arbitrary state transitions in open qubit systems.
With coherent vector representation, we propose a switching control strategy, which can prevent the state of the qubit from
entering invariant sets and singular value sets, effectively driving the system ultimately to a sufficiently small neighborhood of
target states. In comparison to existing works, this control strategy relaxes the strict constraints on system models imposed
by special target states. Furthermore, we identify conditions under which the open qubit system achieves finite-time stability
(FTS) and finite-time contractive stability (FTCS), respectively. This represents a critical improvement in quantum state
transitions, especially considering the asymptotic stability of arbitrary target states is unattainable in open quantum systems.
The effectiveness of our proposed method is convincingly demonstrated through its application in a qubit system affected by
various types of decoherence, including amplitude, dephasing and polarization decoherence.
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1 Introduction

With the help of principles of quantummechanics, quan-
tum information processing, including quantum commu-
nication [1] and quantum control [2,3], surpasses classi-
cal information technics in some aspects [4,5]. As the ba-
sic carrier of quantum information, qubit systems play
a crucial role in quantum information processing [5, 6].
Hence, precise control of qubit states is not only funda-
mental to the success of quantum communication and
control but also pivotal in advancing the field of quan-
tum information technologies [7,8]. A fundamental con-
trol problem is: how to guide the state of qubit systems
toward a target state via suitable controls [9, 10].

⋆ This work is supported by the National Natural Science
Foundation of China (NSFC) under Grants 62273226.

Email address: shbxue@sjtu.edu.cn ( Shibei Xue).

To tackle the problem, a class of Lyapunov control meth-
ods has been proposed, where Lyapunov stability is uti-
lized to design control laws, stabilizing a system to a tar-
get state [11, 12]. The challenge of quantum Lyapunov
theory lies in the design of a Lyapunov function [13,14].
For closed systems, Ref. [15] presents three distinct Lya-
punov functions based on state distance, average value of
an imaginary mechanical quantity and state error, which
are commonly used in existing works. Based on the Lya-
punov function of state distance method in [15], Ref. [16]
has proposed target state tracking control for closed sys-
tems, which can be considered as a state transition prob-
lem when the target state is stationary. However, it only
works for a specific type of target state which is a diago-
nal densitymatrix. Extending the results in [16], Ref. [17]
takes the eigenstates of the free non-degenerate Hamil-
tonian as the target states. Furthermore, to transfer to
eigenstates of the Hamiltonian, advanced control meth-
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ods are explored to accelerate the speed of state transi-
tions [18], achieving state transfers within a finite time
through non-smooth control laws [19].

Different from closed quantum systems, controlling open
quantum systems is usually more challenging [20, 21].
To achieve global asymptotic stability in state transi-
tion, target states have to be chosen as special states.
For open quantum systems under measurement feed-
back described by a quantum stochastic master equa-
tion, Ref. [22] adopted the eigenstates of the Hamil-
tonian as target states and presents a segmented con-
trol approach, where different control laws are designed
based on the proximity to the target states, ultimately
stabilizing the system in a probabilistic sense. Similar
to [22], Ref. [23] reconfigured the control Hamiltonian,
using segmented control to avoid the state entering into
sets of singular values and invariant sets, making it pos-
sible to prepare entangled states such as GHZ and W
states in qubit systems. Similarly, Ref. [24] investigates
state transition under time-delay conditions. In all the
aforementioned works with measurement feedback, the
target states are eigenstates of an observable, and seg-
mented control is employed to ensure the stability in
probability. For systems without measurement feedback,
Ref. [25] investigates a switching approach to driving a
state into a decoherence-free space (DFS). However, to
achieve an asymptotically stable convergence, most ex-
isting works focus on specific target states. Here, we fo-
cus on the state transition problem for arbitrary target
states where the existing control laws often do not work.

In this paper, we investigate the arbitrary state tran-
sition problem in open qubit systems where we do not
require the target state to be the eigenstate of the sys-
tem Hamiltonian or commute with Lindblad operators.
A switching control strategy is employed to prevent the
state entering invariant and singular value sets. However,
given that open qubit systems cannot achieve asymp-
totic stability for an arbitrary target state [26], we pro-
pose a strategy to direct the state into a small neigh-
borhood encompassing the target state through intro-
ducing the concepts of finite-time stability (FTS) and
finite-time contraction stability (FTCS). These concepts
consider practical constraints and the need for a swift
response, aiming to ensure that the system attains and
maintains proximity to the target state within a finite
time. Building upon this, we prove the convergence of the
system state when employing the proposed control strat-
egy. Finally, the proposed method is applied to three dis-
tinct decoherence systems, validating its effectiveness.

This paper is organized as follows. Section 2 introduces
a qubit control model, presents the Bloch vector rep-
resentation and formulates the arbitrary state transi-
tion problem. Section 3 introduces our Lyapunov control
method and switching control strategy. In Section 4, the
finite time convergence analysis for the problem is given.
Section 5 demonstrates the efficacy of the switching con-

trol strategy through simulations in various decoherence
cases. Finally, conclusions are drawn in Section 6.

Notation For a matrix A = [Aij ], the symbols AT and
A† represent the transpose and Hermitian conjugate of
A. Given two operatorsM andN , [M,N ] = MN−NM
and {M,N} = MN +NM are their commutators and
anti-commutators, respectively. Given a complex num-
ber a, ā represents its conjugate.

2 State transition for open qubit systems

2.1 Open single qubit systems

The state of a single qubit system defined on a two di-
mensional Hilbert space H can be represented by a den-
sity operator ρ ∈ S = {ρ|ρ† = ρ, ρ ≥ 0, tr(ρ) = 1, ρ ∈
C2×2}. The evolution of a Markovian open qubit system
obeys the following Markovian master equation [27,28]

ρ̇(t) = − i

ℏ
[H, ρ(t)] +

R∑
j=1

γjDLj
[ρ(t)], (1)

where H = H0 +
∑2

r=1 ur(t)Hr with free Hamiltonian
H0 and control Hamiltonians Hr. ur(t) are admissible
real-valued control functions. The reduced Planck con-
stant ℏ is set to be 1. Generally, the first term on the RHS
of Eq.(1) describes the unitary evolution of the qubit
without interaction with an environment. The positive
time-independent parameters γj ∈ R+ represent the dis-
sipation rates in different damping channels [29]. R rep-
resents the number of damping channels. The Lindblad
superoperator

DLj
[ρ(t)] = Ljρ(t)L

†
j −

1

2
(L†

jLjρ(t) + ρ(t)L†
jLj) (2)

is induced by a Markovian environment, where Lj are
Lindblad operators.

2.2 Bloch vector representation

To obtain a dynamical equation with real-valued coef-
ficient matrices, the density matrix describing quantum
states can be converted into a coherent vector represen-
tation [30, 31]. In this representation, the state of the
system (1) can be expanded as

ρ(t) =
1

2
(I2 +

3∑
v=1

sv(t)σv), (3)
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where sv(t) = tr(ρ(t)σv) ∈ R, I2 is a two dimensional
identity matrix. The Pauli matrices

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
(4)

are the orthonormal bases for the Lie algebra su(2).
Their commutation relations are given as

[σm, σn] = 2iϵmnlσl, (5)

where m,n, l ∈ {1, 2, 3}, the anticommutation relations
are

{σm, σn} = 2δmn. (6)

where ϵmnl is the completely antisymmetric structure
constant of the Lie algebra su(2) and δmn represents
Kronecker delta function. Similarly, the Hamiltonians
and Lindblad operators can be expanded as

Hq =

3∑
v=1

hq
vσv, (7)

Lj =

3∑
v=1

βj
vσv, (8)

where hq
v = tr(Hqσv), β

j
v = tr(Ljσv), q = 0, 1, 2. Hence,

the Lindblad master equation (1) can be reformulated
into a Bloch equation

ṡ(t) = As(t) +

2∑
r=1

urKrs(t) + g, (9)

where s(t) = [s1(t), s2(t), s3(t)]
T is the coherent vector;

A and Kn ∈ R3×3 are the system and control matrices,
respectively; g = [g1, g2, g3]

T ∈ R3 is a time-independent
constant vector. The elements of A, Kr and g can be
calculated as

All = −2

R∑
j=1

3∑
m ̸=l

γj |βj
m|2, (10)

Alm = 2

3∑
p=1

h0
pϵpml +

R∑
j=1

γj(β
j
l
¯
βj
m + βj

m
¯
βj
l ), (11)

Kr
ll = 0, (12)

Kr
lm = 2

3∑
p=1

hr
pϵpml, (13)

gl = 2i

R∑
j=1

3∑
m=1

3∑
p=1

γjβ
j
m

¯
βj
pϵmpl. (14)

In fact, the evolution of the state vector of the system
(9) and the density matrix of system (1) has an one-to-
one mapping. In the following, we frequently treat the
two equations as equivalent.

2.3 Problem formulation

Different from Refs. [22–24], the target state ρd in this
paper is not an eigenstate of the Hamiltonian or observ-
ables, nor is it within a DFS. Instead, it is relaxed to
be an arbitrary quantum state. Since the system (9) are
unable to attain asymptotic stability for an arbitrary
target state [26], our aim is to stabilize the system state
within a sufficiently small neighborhood through control
within a finite time. Based on Eq. (9), the initial state
ρ0 and target state ρd can be thus denoted as s0 and
sd under the representation of the coherent vector. The
problem of this paper is to design control laws u1(t) and
u2(t) such that the initial state s0 converges to a neigh-
borhood of an arbitrary target state sd within a finite
time.

3 Lyapunov control

In order to transfer the state of the system (9) to a target
state, we provide a Lyapunov control method based on
state error in this section. With this method, a switching
control strategy is proposed.

3.1 Lyapunov control design for arbitrary state transi-
tion

Firstly, we define an error vector e(t) between the state
of the system s(t) and the target state sd; i.e., e(t) =
s(t)− sd. The Lyapunov function is thus defined as

V (t) = eT (t)Pe(t), (15)

where P ∈ R3×3 is a positive definite matrix. By using
the dynamical equation of the coherent vector represen-
tation (9), the derivative of V (t) with respect to time t
is calculated as

V̇ (t) = 2eT (t)PAs(t) + 2eT (t)Pg

+ 2u1(t)e
T (t)PK1s(t) + 2u2(t)e

T (t)PK2s(t).
(16)

In order to ensure that V̇ (t) < 0, we can eliminate the
drift term 2eT (t)PAs(t) + 2eT (t)Pg in the first row of
(16) with the control function u2(t). Then, one has the
following control mode

M1 :


u1(t) = −ξsign[eT (t)PK1s(t)],

u2(t) =
sT (t)ATPe(t) + eT (t)Pg

−eT (t)PK2s(t)
,

(17)
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where ξ is a positive constant and sign(·) is a sign func-
tion. Similarly, by employing the control function u1(t)
to eliminate the drift term, a control mode can be for-
mulated as

M2 :

u1(t) =
sT (t)ATPe(t) + eT (t)Pg

−eT (t)PK1s(t)
,

u2(t) = −ξsign[eT (t)PK2s(t)].

(18)

Note that, although the above control laws are similar
to those in Ref. [18], the target states considered in this
paper are arbitrary, which challenges the results in Ref.
[18]. With the control mode (17) or (18), we obtain

V̇ (t) = −δsign[eT (t)PKjs(t)]e
T (t)PKjs(t) ≤ 0. (19)

In Eq. (19), it is less than or equal to zero, not just less
than zero. This is because for the control modeMj , there

may exist solutions of V̇ (t) = 0. According to the LaSalle
invariance principle [32,34], the trajectory of the system

state must converge to the invariant set Ŝ = {s(t) :

V̇ (s(t)) = 0}. Hence, beside the target state which is
generally in the invariant set, there would be other states
in the invariant set, which can be an obstacle for state
transition.

In addition, due to the fractional form of the control
laws, when the denominator approaches zero, the con-
trol function tends towards infinity, such that a singu-
larity problem arises. The states that cause the control
law (17) or (18) to become singular belong to a singu-

lar value set T̂j = {s(t)|e(t)TPKjs(t) = 0}, j = 1 or
2. From the definition of the singular value set, we find
a target state belongs to this set since e(t) = 0 when
s(t) = sd. However, the states in this set would not be
the target state in general. Hence, the singular value
sets and invariant sets form the primary obstacles in the
state transfer, with entry into either of them making it
challenging to reach the target state.

3.2 Switching strategy

To tackle the above problems, a switching control strat-
egy is presented in this paper, whose main idea is to keep
the system’s state away from the singular value sets and
invariant sets in the process of state transition. Given a
terminal time Tf > 0, we define the switching moments
as τm satisfying 0 = τ0 < τ1 < τ2 < · · · < Tf where
m ∈ N. For t ∈ [τm−1, τm), the singular value set can be
given as

T̂κ(m−1) = {s(t)|eT (t)PKκ(m−1)s(t) = 0}, (20)

where κ(m − 1) ∈ {1, 2} labels the control mode dur-
ing the interval t ∈ [τm−1, τm). Kκ(m−1) represents the
control matrix over the interval t ∈ [τm−1, τm). In order

to avoid the singular value problem of control laws, rea-
sonable thresholds κ1, κ2 > 0 are given to describe the
distance to the singular value sets. Then, the switching
moment caused by singular values is defined as

τsinm = inf{t ∈ [τm−1, Tf ] : ∆κ(m−1)(t)− κκ(m−1) ≤ 0}
(21)

with

∆κ(m−1)(t) = |eT (t)PKκ(m−1)s(t)|, (22)

where κκ(m−1) denotes the threshold for the dis-
tance from a state to the singular value set during
t ∈ [τm−1, Tf ]. By switching controls at the moments
(21), we can effectively avoid the singular value sets.

Further, we consider the avoidance of invariant sets dur-
ing the evolution. For t ∈ [τm−1, τm), the invariant set
is given as

Ŝκ(m−1) = {s(t)|V̇ (s(t),κ(m− 1)) = 0}. (23)

Since the system (9) evolves slowly around an invariant

set, it would take a long time for V̇j(t) to be exactly
equal to 0. To achieve a more rapid control response,
two reasonable thresholds ι1, ι2 > 0 are given, and the
moment of the switching caused by the invariant set can
be defined as

τ invm =inf{t ∈ [τm−1, Tf ] : |V̇ (s(t),κ(m− 1))|
− ικ(m−1) ≤ 0}, (24)

where ικ(m−1) represents the threshold for the distance
from the state to the invariant set during the time in-
terval t ∈ [τm−1, Tf ]. Note that under different control
modes, the invariant sets are different. Here we also use
κ(m− 1) ∈ {1, 2} to label the control mode during the
interval t ∈ [τm−1, τm).

Finally, combining (21) and (24), we can write the
switching time as

τm = min{τsinm , τ invm }. (25)

Then, the switching time sequence can be written as

τ = {τ1, τ2, ..., τN}, (26)

where N is the total amount of the switched times on
time interval [0, Tf ]. For the sake of analysis, the follow-
ing assumption is given.

Assumption 1 Assume that the trajectory of the sys-
tem will not pass through the intersections of singular
value sets, nor through the intersections of the invariant
sets.
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With Assumption 1, we avoid the situation where all
control modes fail. Based on this assumption, we subse-
quently introduce a switching control algorithm.

3.3 Switching control Algorithm

It is clear that from the previous section, once the state
evolves into the set T̂1 ∪ Ŝ1 or T̂2 ∪ Ŝ2 under control
modes M1 or M2, the control mode switches to M2 or
M1. With the strategy, we can summarize the switching
control algorithm for an open qubit system as follows:
Step 1. Choose an arbitrary target state sd and initial-
ize the state of the qubit system s0. Setm = 0, j ∈ {1, 2}
and the appropriate thresholds κ1, κ2 and ι1, ι2 for the
singular value sets and invariant sets, respectively;
Step 2. A reasonable terminal condition eTPe ≤ ϑ
with sufficiently small constant ϑ ∈ R+ is given. If the
termination condition is satisfied, stop the algorithm; if
not, go to Step 3;
Step 3. If the invariant set condition or singular condi-
tion (25) is satisfied, take the current time t as switching
moment, set m = m + 1 and τm = t, one control mode
is switched to the other one;
Step 4. Calculate the evolution of the state of the
Markovian qubit system (9) to the next state with one
control mode Mj , j ∈ {1, 2}. Return to Step 2.

With this algorithm, we can effectively prevent the sys-
tem from entering invariant sets and singular value sets.
In what follows, we analyze the convergence of the sys-
tem’s state to the target state under this algorithm.

4 Main result

For arbitrary state transition in open qubit systems, the
inability to achieve global asymptotic stability makes
finite-time stability particularly significant. This is be-
cause it guarantees that, even in open environments, the
system can reach the desired stable state within a finite
time. This is particularly beneficial in suppressing deco-
herence in open quantum systems. In what follows, we
provide a theorem on finite-time stability. Based on this,
we propose sufficient conditions for finite-time contrac-
tive stability to achieve improved convergence.

4.1 Finite-time stability

Firstly, we shall introduce several concepts.

Definition 1 [32] Given constants Tf , ϱ, η, c1, c2 ∈ R+

with ϱ ∈ (0, Tf ) and η < c1 < c2, the system (9) is said
to be
(1) finite-time stable, if |e(0)| < c1 implies that |e(t)| <
c2 for all t ∈ [0, Tf ].
(2) finite-time contractive stable, if |e(0)| < c1 implies
that |e(t)| < η for all t ∈ [Tf − ϱ, Tf ].

Definition 2 [33] For any t0 < t1 < t2, let Nχ(t1, t2)
be the switching times over the interval [t1, t2). If
Nχ(t1, t2) ≤ N0 + (t2 − t1)/ζ holds for N0 ≤ 1, ζ > 0,
then ζ and N0 are called the average dwell time and the
chatter bound, respectively.

It is worth mentioning that, from Definition 1, we can
observe that the conditions for FTCS are much stronger
than FTS. Additionally, Definition 2 prevents frequent
switching within a short period.We take into account the
scenario where N0 = 0, which implies that no switching
occurs when the time interval is shorter than ζ. Based on
Definition 1 and Definition 2, we then have the following
finite-time stability theorem.

Theorem 1 If there exist matrices P > 0, W > 0 and
constants α > 0, c1 ≥ |e(0)|, c2 > 0, such that

Tf ≤ − 1

α
ln
λ1c1 + dλ3

c2λ2
, (27)

where λ1 = λmax(P ), λ2 = λmin(P ), λ3 = λmin(W ), and
the average dwell time ζ satisfies

ζ >
Tf lnµ

ln(λ2c2)− ln(λ1c1 + dλ3)− αTf
, (28)

where µ = λ1/λ2, d = gT gTf , then the system (9) is
FTS with the control laws (17) and (18) under the strat-
egy (25). That is, the system state s(t) converges to a
neighborhood of target state sd with a distance less than√
c2 in a finite time Tf .

Proof. To investigate the convergence of the system at
the terminal time Tf , our initial focus is on analyzing the
convergence behavior of the system between two switch-
ing moments. Since W > 0 and α > 0, with the control
laws (17) and (18), it can be deduced that

V̇κ(m)(t) = −δsign(eTPKκ(m)s(t))e
TPKκ(m)s(t)

≤ αVκ(m)(t) + gTWg (29)

for t ∈ [τm, τm+1). According to (29), the Lyapunov
function satisfies

Vκ(m)(t) < eα(t−τm)Vκ(m)(e(t))

+ eαt
∫ t

τm

e−αwgTWgdw

≤ eα(t−τm)Vκ(m)(e(τm))

+ eαt
∫ t

τm

e−αwgTWgdw. (30)

In view of λ1 = λmax(P ) and λ2 = λmin(P ), it is
straightforward to obtain eT (t)Pe(t) ≤ λ1e

T (t)e(t) and

5



eT (t)Pe(t) ≥ λ2e
T (t)e(t). It then follows from the fact

µ = λ1/λ2 ≥ 1 that

eT (t)Pe(t) ≤ µeT (t)Pe(t). (31)

Next, we analyze the properties of the Lyapunov func-
tion at the switching moment t = τm. Since the tra-
jectory of e(t) is continuous; i.e., e(τm) = e(τ−m) with
e(τ−m) = limϖ→0−e(τm +ϖ), it can be deduced that

Vκ(m)(e(τm)) < µVκ(m−1)(e(τ
−
m)). (32)

According to (30), we have

Vκ(m+1)(t) < eα(t−τm+1)Vκ(m+1)(e(τm+1))

+ eαt
∫ t

τm+1

e−αwgTWgdw

≤ µeα(t−τm+1)Vκ(m)(e(τm))

+ eαt
∫ t

τm+1

e−αwgTWgdw. (33)

For t ∈ [0, Tf ], we denote Nχ(0, t) as the total switching
times in [0, t) and obtain

Nχ(0, t) ≤ N, (34)

where N is defined in (26). Next, we establish the rela-
tionship between the Lyapunov function and its initial
values. By iterating over the different time intervals, we
have

V (t) < eαtµNVκ(0)(0) + µN−1eαt
∫ τ1

0

e−αwgTWgdw

+ µN−2eαt
∫ τ2

τ1

e−αwgTWgdw + ...

+ eαt
∫ t

τN

e−αwgTWgdw

= eαtµNVκ(0)(0)

+ eαt
∫ t

0

e−αwµNχ(w,t)gTWgdw. (35)

According to Definition 2, we have N ≤ Tf

ζ . One can

deduce that

V (t) < eαTfµ
Tf
ζ (Vκ(0)(0) + dλ3). (36)

From λ1 = λmax(P ), λ2 = λmin(P ), we obtain

eT (t)e(t) ≤ 1

λ2
V (t) <

1

λ2
µ

Tf
ζ eαTf (λ1c1 + dλ3). (37)

Noting that µ = λ1/λ2 ≥ 1, we consider the following
two distinct cases. In the case of µ = 1, from (27), we

finally get

eT (t)e(t) < c2. (38)

In the case of µ > 1, from (28), we obtain

Tf

ζ
≤ ln(λ2c2)− ln(λ1c1 + dλ3)− αTf

lnµ
. (39)

Therefore, one can deduce that

µ
Tf
ζ ≤ µ

ln(λ2c2)−ln(λ1c1+dλ3)−αTf
lnµ (40)

= e
ln(

λ2c2
λ1c1+dλ3

)−αTf

lnµ lnµ

=
λ2c2

λ1c1 + dλ3
e−αTf .

Combining (40) with (37), we conclude that

eT (t)e(t) < c2. (41)

The proof is complete. ■

Remark 1 The proof of Theorem 1 reveals that it is
not necessary for V (t) to be negative definite or semi-
negative definite, which is unlike proving asymptotic sta-
bility. This distinction highlights the difference between
finite-time stability and asymptotic stability. In addi-
tion, Theorem 1 presents the conditions for the system
to achieve FTS, where the bounds of the terminal state
may not necessarily be smaller than the initial error. This
result is different from that in [19], which can achieve
global asymptotic stability as the target state is one of
the eigenstates of the free Hamiltonian.

4.2 Finite-time contractive stability

In practice, it is often undesirable for the error range
of the final state to exceed that of the initial state. To
achieve a more precise terminal state, modified control
laws can be designed as

M̂1 :

u1(t) =
sT (t)ATPe(t) + eT (t)Pg +Υ(t)

−e(t)TPK1s(t)

u2(t) = −ξsign(eT (t)PK2s(t))

,

(42)

M̂2 :


u1(t) = −ξsign(eT (t)PK1s(t))

u2(t) =
sT (t)ATPe(t) + eT (t)Pg +Υ(t)

−e(t)TPK2s(t)
,
(43)

where Υ(t) = −Γ(t)V (t) + θ̂, ξ > 0. Γ(t) is a time-

dependent function, θ̂ ∈ R+. Based on this, a finite-time
contractive stability theorem is given as follows.
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Theorem 2 Consider real functions Λ(t) =
∫
Γ(t)dt,

Γ(t) < 0 and constants η, b1, θ̂ ∈ R+, ϱ ∈ [0, Tf ], η < b1,
α1 < α2 ∈ K. If we have

α1(|e|) < V (|e|) < α2(|e|) (44)

and

eΛ(t)−Λ(ϱ)α2(b1) + θ̂eΛ(t)

∫ t

ϱ

e−Λ(w)dw − α1(η) ≤ 0

(45)

with |e(0)| ≤ b1 for ∀t ∈ [ϱ, Tf ], the system (9) is FTCS
with the control laws (42) and (43) under the strategy
(25).

Proof. We first analyze the convergence of the system
between two consecutive switching instants. According
to (42) and (43), for t ∈ [τm, τm+1), we have

V̇ (t) = Γ(t)V (t)− θ̂ − δsign(eTPKκ(m)s)e
TPKκ(m)s.

(46)

Since −δsign(eTPKκ(m)s)e
TPKκ(m)s ≤ 0, we then

have

V̇ (t) ≤ Γ(t)V (t)− θ̂. (47)

Now, we consider the inequality conditions satisfied by
the Lyapunov function between two switching moments.
By solving the differential equation mentioned above,
one can deduce that

V (t) ≤ e

∫ t

τm
Γ(w)dw

V (e(τm))− θ̂eΛ(t)

∫ t

τm

e−Λ(w)dw.

(48)

Next, we establish the relationship between the Lya-
punov function and α1(η). In order to obtain conver-
gence within the time period t ∈ [ϱ, Tf ], by iteratively
applying (48), we have

V (t) ≤ eΛ(t)−Λ(ϱ)V (e(ϱ))− θ̂eΛ(t)

∫ t

ϱ

e−Λ(w)dw. (49)

It follows from (45) that

eΛ(t)−Λ(ϱ)α2(b1)− θ̂eΛ(t)

∫ t

ϱ

e−Λ(w)dw ≤ α1(η). (50)

Noting that V (e(ϱ)) ≤ V (e(0)) < α2(b1), we finally have
α1(e(t)) < V (e(t)) < α1(η) with η < b1 for t ∈ [ϱ, Tf ].
Hence, the proof is complete. ■

Remark 2Theorem 2 establishes a more restrictive con-
straint compared to Theorem 1. The Bloch sphere can

be viewed as a boundary accepted in Theorem 1, but this
boundary is too loose for arbitrary state transition. In
Theorem 2, a notable phenomenon emerges: the bound-
ary η and function α1(η) exhibit a positive correlation.
When the function Λ(t) is characterized as a decreas-
ing function, an intriguing consequence emerges. As the
value of eΛ(t)−Λ(ϱ) decreases, the boundary of the sys-
tem’s state correspondingly contracts, which means that
the boundary η is much smaller than the initial error b1.

Remark 3 Note that when the state of system (1) is
very close to the target state, both switching conditions
in (21) and (24) can be satisfied. This may lead to the
failure of the switching control strategy. To address this
issue, and in conjunction with the switching strategy in
(25), here we define shrink threshold functions ϑi(V ) and
ςi(V ) to substitute the fixed thresholds κi and ιi, respec-
tively, where ϑi(·) > 0 and ςi(·) > 0 are strictly increas-
ing functions. Similar to (25), we now give a switching
control mechanism with shrink thresholds as follows

τm = inf{t ∈ [τm−1, Tf ] : min{∆κ(m−1) − ϑκ(m−1)(V ),

|V̇ (s(t),κ(m− 1))| − ςκ(m−1)(V )} ≤ 0}. (51)

The equation above reveals that as the Lyapunov func-
tion V continuously decreases, the corresponding thresh-
old for switching also decreases. This prolongs the du-
ration of the control action. Compared with the original
switching strategy (25) which maintains fixed thresholds
as the state approaches to the target state, the switching
strategy (51) with shrink thresholds can achieve better
performance.

5 Simulation

In this section, we verify our control performance in a
single qubit system with several types of decoherence
[35]. The Hamiltonian of the single qubit is given as
H0 = 1

2ω0σ3 with an angular frequency ω0. The control
Hamiltonians are H1 = σ1, H2 = σ2, and the control
matrices in the system (9) are expressed as

K1 =


0 0 0

0 0 −2

0 2 0

 , (52)

K2 =


0 0 2

0 0 0

−2 0 0

 . (53)

The initial state and the target state are given as ρ0 =[
0.8 0.4i

−0.4i 0.2

]
and ρd =

[
0.1 −0.3

−0.3 0.9

]
. It is worth not-

ing that the target state, in this case, is not an eigen-
state of the system’s free Hamiltonian, [H0, ρd] ̸= 0, nor
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that of the Lindblad operators, [L, ρd] ̸= 0, so that ex-
isting approaches for state transition in open qubit sys-
tems would fail in this example. In what follows, we show
the effectiveness of our switching control with different
types of decoherence.

5.1 The case of amplitude decoherence

Here, we consider a qubit system (1) with one amplitude
decoherence channel [36] and let ω0 = 10GHz and γ =
0.1GHz. The Lindblad operator is given as

L =

[
0 0

1 0

]
.

The matrix A and the vector g are given as

A =


−0.05 −10 0

10 −0.05 0

0 0 −0.1

 ,

g =


0

0

−0.1

 .

We set P = diag[0.078, 0.078, 0.078] and Tf = 10a.u..
With the switching control laws (42) and (43), we

consider the control mode M̂1 as the initial control
mode. The thresholds involving in (25) are given as
κ1 = 0.0018, κ2 = 0.00021, ι1 = 0.0047 and ι2 = 0.0001.
Moreover, in order to get a better control performance,
we design a switching control strategy with a shrink
threshold in (51), where the shrink threshold func-
tions are given as ϑ1(V ) = 0.0005V + 0.0018, ϑ2(V ) =
0.00001V + 0.000021, ς1(V ) = 0.00008V + 0.0047 and
ς2(V ) = 10−6V .

Fig. 1 shows the evolution trajectories of the system’s
state on the Bloch sphere under switching control strate-
gies. The blue dashed line is obtained without a switch-
ing control strategy, the red solid line represents the tra-
jectory with a switching strategy (25), and the black
dashed line is the trajectory under the switching strat-
egy (51) with a shrink threshold. Furthermore, the two
intersecting gray surfaces represent the surfaces of two
singular value sets of the system (which require switch-
ing when the trajectory crosses them), with the target
state (green point) lying on the intersection curve. In
Fig. 1, it can be observed that without a switching strat-
egy, the system ultimately converges to the invariant set
of the system (blue point), making it unable to reach
the neighborhood of the target state. On the contrary,

with the switching control strategy, the terminal states
(red point and black point) can cross the invariant set
to reach the neighborhood of the target state. Addition-
ally, Fig. 1 reveals that the black point is closer to the
green point, suggesting that switching strategy (51) is
superior to switching strategy (25).

In addition, control laws u1(t) and u2(t) under switcing
control strategy with shrink thresholds are given in Fig.
2. We find that control laws in this paper are continuous
and non-smooth. Furthermore, the curve of the control
function u2(t) oscillates in the later stage, which is not
caused by the switching of the control, but because of
the sign function in (42) and (43), similar to the high-
frequency pulse function in dynamical decoupling [37].

At the terminal time Tf = 10a.u., under the switching
control strategy with the shrink threshold, the density
matrix of system is given as

ρ(Tf ) =

[
0.10 −0.29 + 0.03i

−0.29− 0.03i 0.90

]

and its fidelity is 99.4%. According to Theorem 2, we set

Λ(t) = −kt, k = 1.5, θ̂ = −0.1gT g. The eigenvalue λ2 =
0.078 can be obtained from the matrix P . We choose
α2(e) = 0.08e2 and ϱ = 7a.u.. It can be deduced that

η =
√

1
λ2
[eΛ(t)−Λ(ϱ)α2(b1) + θ̂eΛ(t)

∫ t

ϱ
e−Λ(s)ds] ≈ 0.06.

According to Theorem 2, η is an upper bound on the er-
ror distance of the state within the interval [7, 10]. From
(44), α2(η) is the upper bound of Lyapunov function
within the interval [7, 10].

In Fig. 3, we compare the trajectory of states un-
der different control strategies. It is clear that the
non-switching control strategy maintains a significant
distance in the x direction, thereby failing to enter
the neighborhood of the target state. In contrast, the
switching control strategy effectively addresses this is-
sue. Notably, the Lyapunov curve under the switching
control strategy (red solid line) is less than the theo-
retical upper bound α2(η) within the interval [7, 10], as
defined in Theorem 2. Additionally, the Lyapunov func-
tion under the switching control strategy with a shrink
threshold (black dashed line) is lower than that under
the fixed threshold switching control strategy (red solid
line). This indicates that the shrink threshold control
strategy proposed in (51) can enhance convergence.

5.2 The case of dephasing decoherence

When taking into account dephasing decoherence [36],

the Lindblad operator can be expressed asL =

[
1 0

0 −1

]
.
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Fig. 1. Comparison of trajectory evolution on Bloch sphere
and two singular value sets
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Fig. 2. Control curves on two control channels

Here, we select ω0 = 10GHz and γ = 0.1GHz. The sys-
tem matrix is obtained as

A =


−0.2 −10 0

10 −0.2 0

0 0 0

 . (54)

The control matrices are the same as (52) and (53).
The vector g is a zero vector. Likewise, we con-
sider the switching control strategy with shrink
thresholds, where the shrink threshold functions are
given as ϑ1(V ) = 0.3V , ϑ2(V ) = 0.4V + 0.00035,

0 1 2 3 4 5 6 7 8 9 10
Time(a.u.)

-0.5

0

0.5

x

switching strategy
no-switching strategy
switching strategy with shrink threthhold
target state
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0
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z
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10-4

100

V

2( )

Fig. 3. Comparison of different evolutionary trajectories and
Lyapunov functions

ς1(V ) = 1.2V + 0.0002 and ς2(V ) = 10−6V in (51).

Take the control mode M̂1 as the initial control mode.
Set P = diag[0.078, 0.078, 0.078] and Tf = 1.8a.u.. The
simulation results are shown in Figs. 4 and Figs. 5.

Fig. 4 presents the evolutionary trajectory of the sys-
tem’s state with the shrink threshold switching con-
trol strategy. The grey surfaces represent invariant sets
and singular value sets. It is evident that when the sys-
tem passes through these sets, it is neither attracted by
them nor disrupted by any singular values, maintaining a
continuous trajectory. Ultimately, the system’s terminal
state is able to reach a neighborhood of the target state.
In Fig. 5, we observe that the system state converges to
a neighborhood of the target state in all directions. Fur-
thermore, in Fig. 5, we find that the Lyapunov function
converges to an order of magnitude of 10−4 at terminal
time. This demonstrates the effectiveness of the methods
presented in this paper in the dephasing decoherence.

5.3 The case of polarization decoherence

Now, we consider the switching control strategy in po-
larization decoherence case [38]. Three damping chan-
nels are considered here and the damping rates are given
as γ1 = γ2 = γ3 = 0.01GHz. Three different Lindblad
terms are given as L1 = σ3, L2 = σ2 and L3 = σ1 Here,
we set ω0 = 10GHz and the system matrix can be ex-
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Fig. 4. The state trajectory in the case of dephasing deco-
herence

Fig. 5. State trajectory and Lyapunov function in the case
of dephasing decoherence

pressed as

A =


−0.04 −10 0

10 −0.04 0

0 0 −0.04

 . (55)

The vector g is a zero vector. Set Tf = 2a.u. and take

the control mode M̂1 as the initial control mode. Based
on Remark 3, we have designed shrink thresholds for
the switching control strategy. The shrink threshold
functions in (51) are given as ϑ1(V ) = 0.01V + 0.001,

Fig. 6. The state trajectory on the Bloch sphere in the case
of polarization decoherence

ϑ2(V ) = 0.01V + 0.002, ς1(V ) = 0.001V and ς2(V ) =
10−6V . It is observed that as the state evolves towards
the target state, the error e(t) continuously diminishes,
leading to a corresponding reduction in the Lyapunov
function V (t). This, in turn, results in a contraction of
the threshold. This effectively prolongs the duration of
the switching control strategy, allowing us to obtain a
better control performance.

Fig. 6 and Fig. 7 depict the convergence of the target
state under the shrink threshold switching control strat-
egy. As illustrated in Fig. 6, under the switching control
strategy, the system’s state trajectory can pass through
invariant sets and singular value sets to reach the neigh-
borhood of the target state. Fig. 7 shows the convergence
of the system state in three directions. Ultimately, the
Lyapunov function’s curve reveals that the designed con-
trol laws can stabilize the system state within the neigh-
borhood of the target state. Therefore, we can conclude
that, similar to the cases of amplitude and dephasing de-
coherence, the strategy proposed in this paper remains
effective in the polarization decoherence.

6 Conclusion

This paper presents a switching control strategy for
arbitrary state transitions in open qubit systems. The
switching control strategy prevents the state of open
qubit systems from invariant and singular value sets.
Furthermore, we have demonstrated that the proposed
switching control strategy can enable the system to
achieve FTS. Additionally, to enhance system conver-
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Fig. 7. The state trajectory and Lyapunov function in the
case of polarization decoherence

gence, we have proposed an improved controller and
outlined the conditions for achieving finite-time contrac-
tive stability. Finally, the effectiveness of this method
is validated through three examples. It is worth noting
that our methods can be applied to quantum systems
in three different decoherence scenarios, significantly
expanding its applicability. Future research directions
involve extending qubit systems to n-level systems with
measurement feedback.
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Wootters. (1993). Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels,
Physical Review Letters, 70(13): 1895.

[2] Y. Wang, S. Xue, H. Song, M. Jiang. (2023). Robust quantum
teleportation via a non-Markovian channel, Physical Review
A, 108(6): 062406.

[3] L. Cao, S. Xue, M. Jiang. (2020). Multi-hop teleportation of
an unknown four-qubit cluster state based on cluster states
with minimum resource, IEEE Access, 8:81447-81457.

[4] D. Awschalom, L. Bassett, A. Dzurak. (2013). Quantum
spintronics: engineering and manipulating atom-like spins in
semiconductors, Science, 339(6124): 1174-1179.

[5] F. Albertinif, D. Alessandrod. (2003). Notions controllability
for bilinear multilevel quantum systems, IEEE Transactions
on Automatic Control, 48: 1399-1403.

[6] B. Liu, L. Li, Y. Huang, et al. (2011). Experimental control of
the transition from Markovian to non-Markovian dynamics
of open quantum systems, Nature Physics, 7(12): 931-934.

[7] D. Dong, I. R. Petersen. (2022). Quantum estimation, control
and learning: opportunities and challenges, Annual Reviews
in Control, 54: 243-251.

[8] D. Dong, I. R. Petersen. Learning and Robust Control in
Quantum Technology. Springer Nature, 2023.

[9] M. Bason, M. Viteau, N. Malossi, et al. (2012). High-fidelity
quantum driving, Nature Physics, 8(2): 147-152.

[10] A. Lerose, S. Pappalardi. (2020). Bridging entanglement
dynamics and chaos in semiclassical systems, Physical Review
A, 102: 032404.

[11] W. Wang, L. Wang, X. Yi. (2010). Lyapunov control
on quantum open systems in decoherence-free subspaces,
Physical Review A, 82: 034308.

[12] S. Hou, M. Khan, et al. (2012). Optimal Lyapunov-based
quantum control for quantum systems, Physical Review A,
86: 022321.

[13] X. Yi, X. Huang, C. Wu, C. Oh. (2009). Driving quantum
systems into decoherence-free subspaces by Lyapunov
control, Physical Review A, 80: 052316.

[14] X. Yi, S. Wu, C. Wu, X. Feng, C. Oh. (2011). Time-delay
effects and simplified control fields in quantum Lyapunov
control, Journal of Physics B-Atomic Molecular And Physics,
44: 195503.

[15] S. Kuang, S. Cong. (2008). Lyapunov control methods of
closed quantum systems, Automatic, 44(1): 98-108.

[16] X. Wang, G. Sophie, Schirmer. (2010). Analysis of
effectiveness of Lyapunov control for non-generic quantum
states, IEEE Transactions on Automatic Control, 55(6):
1406-1411.

[17] S. Zhao, H. Lin, Z. Xue. (2012). Switching control of closed
quantum systems via the Lyapunov method, Automatica,
48(8): 1833-1838.

[18] S. Kuang, D. Dong, I. R. Petersen. (2017). Rapid Lyapunov
control of finite-dimensional quantum systems, Automatica,
81: 164-175.

[19] S. Kuang, X. Guan, D. Dong. (2021). Finite-time stabilization
control of quantum systems. Automatica, 123: 109327.

[20] H. Amini , M. Mirrahimi, P. Rouchon. (2012). Stabilization
of a delayed quantum system: The photon box case study,
IEEE Transactions on Automatic Control, 57(8):1918-1930.

[21] C. Altafini. (2003). Controllability properties for finite
dimensional quantum Markovian master equations. Journal
of Mathematical Physics, 44(6): 2357-2372.

[22] M. Mirrahimi, Mazyar, R. Handel. (2007). Stabilizing
feedback controls for quantum systems, SIAM Journal on
Control and Optimization, 46(2): 445-467.

[23] S. Kuang, G. Li, X. Sun, S. Cong. (2022). Rapid
feedback stabilization of quantum systems with application
to preparation of multiqubit entangled states, IEEE
Transactions on Cybernetics, 52(10): 11213-11225.

[24] Y. Liu, D. Dong, S. Kuang, I. R. Petersen, H. Yonezawa.
(2021). Two-step feedback preparation of entanglement for
qubit systems with time delay, Automatica, 125: 109174.

[25] M. Chen, S. Kuang, S. Cong. (2017). Rapid Lyapunov control
for decoherence-free subspaces of Markovian open quantum
systems. Journal of the Franklin Institute, 354(1): 439-455.

[26] C. Altafini, F. Ticozzi. (2012). Modeling and control of
quantum systems: An introduction. IEEE Transactions on
Automatic Control, 57(8), 1898-1917.

[27] M. Emzir, et al. (2022). Stability analysis of quantum
systems: A Lyapunov criterion and an invariance principle.
Automatica, 146: 110660.

[28] S. Khari, Z. Rahmani, A. Daeichian. (2022). State transfer
and maintenance for non-Markovian open quantum systems
in a hybrid environment via Lyapunov control method, Eur.
Phys. J. Plus, 137: 533.

[29] S. Xue, M. R. Hush, I. R. Petersen. (2016). Feedback
tracking control of non-Markovian quantum systems, IEEE
Transactions on Control Systems Technology, 25(5): 1552-
1563.

11



[30] D. Dong, I. R. Petersen. (2012). Sliding mode control of two-
level quantum systems, Automatica, 48(5): 725-735.

[31] S. Xue, J. Zhang, I. R. Petersen. (2018). Identification of non-
Markovian environments for spin chains. IEEE Transactions
on Control Systems Technology, 27(6): 2574-2580.

[32] X. Yang, X. Li. (2021). Finite-Time stability of nonlinear
impulsive systems with applications to neural networks,
IEEE Transactions on Neural Networks and Learning
Systems, 34(1): 243-251.

[33] L. Zhang, H. Gao. (2010). Asynchronously switched control of
switched linear systems with average dwell time, Automatica,
46(5): 953-958.

[34] D. Alessandro. Introduction to Quantum Control and
Dynamics. CRC press, 2021.

[35] D. Dong, I. R. Petersen, H. Rabitz. (2013). Sampled-data
design for robust control of a single qubit, IEEE Transactions
on Automatic Control, 58(10), 2654-2659.

[36] M.A. Nielsen, I.L. Chuang. Quantum computation and
quantum information. Cambridge University press, 2010.

[37] L. Viola, S. Lloyd. (1998). Dynamical suppression of
decoherence in two-state quantum systems, Physical Review
A, 58(4): 2733.

[38] S. Damodarakurup, M. Lucamarini, G. Giuseppe, D.
Vitali, P. Tombesi, P. (2009). Experimental inhibition
of decoherence on flying qubits via “bang-bang” control,
Physical Review Letters, 103(4): 040502.

12


	Introduction
	State transition for open qubit systems
	Open single qubit systems
	Bloch vector representation
	Problem formulation

	Lyapunov control
	Lyapunov control design for arbitrary state transition
	Switching strategy
	Switching control Algorithm

	Main result
	Finite-time stability
	Finite-time contractive stability

	Simulation
	The case of amplitude decoherence
	The case of dephasing decoherence
	The case of polarization decoherence

	Conclusion
	References

