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Abstract—Effective agent coordination is crucial in coopera-
tive Multi-Agent Reinforcement Learning (MARL). While agent
cooperation can be represented by graph structures, prevailing
graph learning methods in MARL are limited. They rely solely on
one-step observations, neglecting crucial historical experiences,
leading to deficient graphs that foster redundant or detri-
mental information exchanges. Additionally, high computational
demands for action-pair calculations in dense graphs impede
scalability. To address these challenges, we propose inferring
a Latent Temporal Sparse Coordination Graph (LTS-CG) for
MARL. The LTS-CG leverages agents’ historical observations
to calculate an agent-pair probability matrix, where a sparse
graph is sampled from and used for knowledge exchange between
agents, thereby simultaneously capturing agent dependencies and
relation uncertainty. The computational complexity of this proce-
dure is only related to the number of agents. This graph learning
process is further augmented by two innovative characteristics:
Predict-Future, which enables agents to foresee upcoming ob-
servations, and Infer-Present, ensuring a thorough grasp of the
environmental context from limited data. These features allow
LTS-CG to construct temporal graphs from historical and real-
time information, promoting knowledge exchange during policy
learning and effective collaboration. Graph learning and agent
training occur simultaneously in an end-to-end manner. Our
demonstrated results on the StarCraft II benchmark underscore
LTS-CG’s superior performance.

Index Terms—Multi-agent reinforcement learning, multi-agent
cooperation, coordination graph, graph structure learning.

I. INTRODUCTION

Effective agent coordination is crucial in cooperative Multi-
Agent Reinforcement Learning (MARL), which offers an
instrumental approach to control multiple intelligent agents
to fulfil various tasks, including coordinating traffic lights
throughout a city [1], orchestrating multi-robot formations [2],
and optimizing the behaviour of unmanned aerial vehicles [3]]
One efficient approach to training multiple agents in dynamic
environments involves decomposing the global value function
into manageable segments for each agent. This methodology
is exemplified by techniques such as VDN employing the
sum of independent agent value functions [4], QMIX utiliz-
ing a monotonic mixture instead of a simple sum [5], and
QTRAN using a hyper-edge that connects all agents without
factorization [6]]. Within this framework, each agent selects
actions to maximize its own value function and contributes to
maximising the total reward.

While these methods balance computational efficiency with
effective agent interaction and complex decision-making, in
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Fig. 1: The current methods to infer latent graphs in MARL
can be categorized into three types: (a) fully connected un-
weighted graphs, (b) fully connected weighted graphs, and (c)
sparse weighted graphs. These methods rely solely on one-step
observations, leading to deficient graphs that foster redundant
or detrimental information exchanges and suffer from high
computational complexity for action-pair calculations.

the real world, agents should not only consider their own
observations but also take into account the situations of others
when taking action [7]. Effective cooperation among agents
emerges as a pivotal factor in achieving specific objectives.
This cooperation can be assumed to have some latent graph
structures [8]. Since the graph is not explicitly given, the
inference of meaningful dynamic graph topology has been a
persistent challenge.

The current methods to address this problem can be broadly
categorized into three types, illustrated in Fig[l] The first
type involves employing fully connected unweighted graphs,
such as PIC [9] and DCG [[10]. The second type incorporates
fully connected weighted graphs, such as GraphMIX [11]] and
DICG[12]. The third type utilizes weighted sparse graphs, such
as SOP-CG [13] and CASEC [14]. However, these methods
exhibit the following limitations: (1) They primarily focus
on one-step observations and fail to consider the value of
historical trajectory data, which more accurately represents
agents’ behaviours and is more meaningful to help to learn
policies [15]. This overreliance on one-step data can lead
to suboptimal graph learning, producing graphs that may
encourage redundant or even counterproductive information
exchanges, thereby impeding effective policy learning. (2)
The computation-intensive nature of action-pair calculations
in coordination graphs (CG) [8] poses significant scalability
challenges, especially in fully-connected settings. For instance,
in a system with N agents, each having A actions, the
computational complexity of these methods is O(A2N?). This
complexity becomes increasingly problematic as the number
of agents and actions increases.

In this paper, we address these limitations by proposing a
novel approach called Latent Temporal Sparse Coordination
Graph (LTS-CG) for MARL. LTS-CG efficiently infers graphs
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using agents’ observation trajectories to generate an agent-
pair probability matrix, where the probability is absorbed
and trained together with Graph Convolutional Networks
(GNN) parameters. The computational complexity of this
procedure scales quadratically with the number of agents
N, which renders our approach scalable and suitable for
handling complex MARL scenarios. Subsequently, a sparse
graph is sampled from this matrix, which simultaneously
captures agent dependencies underlying the trajectories and
models the relation-uncertainty between agents. Driven by
the goal of creating meaningful graphs, we enhance agents’
understanding of their peers and the environment by em-
bedding two essential characteristics into the graph: Predict-
Future and Infer-Present. Predict-Future empowers agents to
predict upcoming observations using current observations and
the sampled graph, providing valuable insights for immediate
decision-making. Infer-Present aids each partially observed
agent in comprehending the full environmental context and
deducing the current state with the graph’s information. LTS-
CG leverages both historical and real-time data for graph train-
ing, considering local and global perspectives. The temporal
structure of the learned graph encapsulates past experiences,
with edge weights reflecting ongoing observations. This facili-
tates knowledge exchange during policy learning and supports
historical and present insights for effective cooperation. The
computational complexity of our method is O(T'N?), where
T represents the observation length used for graph learning,
making it more efficient than action-pair-based methods.

The main insight behind designing our method is to enable
simultaneous graph inference and multi-agent policy learning,
facilitating efficient end-to-end training using standard policy
optimization methods. We evaluate LTS-CG on the StarCraft
II benchmark, demonstrating its superior performance. The
ablation results empirically proved that using trajectories for
learning the coordination graph is more effective than rely-
ing on one-step observations, and having the Predict-Future
and Infer-Present characteristics improves the performance of
LTS-CG. The contributions of this paper are summarized as
follows:

o« We pioneer the treatment of agent trajectories as data
streams in MARL with LTS-CG. Our method leverages
these trajectories to infer latent temporal sparse graphs,
facilitating knowledge exchange between agents.

o By sampling sparse graphs from trajectories-generated
agent probability matrices, LTS-CG captures agent de-
pendencies and models the uncertainty of relations be-
tween agents simultaneously, with computational com-
plexity only related to the number of agents.

e LTS-CG further infers the graph from both local and
global standpoints to encode Predict-Future and Infer-
Present characteristics. This meaningful graph enables
agents to gain historical and present perspectives to
achieve effective cooperation.

The rest of the paper is organized as follows. In Sec. [[I}
we give a definition of our task, followed the related work in
Sec. In Sec. we described our approach. We report
experimental studies in Sec. [V] and conclude in Sec.

II. PRELIMINARIES

We focus on cooperative multi-agent tasks modelled as
a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) [16] consisting of a tuple
(Z,8,{A} ,, P, {0} {o'}™ 1, R, ), where T is the
finite set of n agents, s € S is the true state of the environment.
At each time step, each agent ¢ observes the state partially by
drawing observation o} € O and selects an action ai € A’
according to its own policy o’. Individual actions form a
joint action a = (ay, ..., a,), which leads to the next state s’
according to the transition function P(s'|s,a) and a reward
R(s,a) shared by all agents. Each agent has local action-
observation history 7, ; = (04,0, @i,0, - 0it—1, Git—1,04t) €
(O x AY)t x O!. This paper considers episodic tasks
yielding  episodes  (so,{0}}1-1, 0,70, -, ST, {0} 1)
of varying finite length 7. Agents learn to
collectively maximize the global return Qun(s,a) =
ESO:T,O«O:T [ZtT:o ’YtR (8757 at) | So = s,ap = aj,
v € [0,1) 1s the discount factor.

Learning the underlying relation of agents can be seen as
the inference of a meaningful dynamic graph topology. This
graph is denoted as G = {V,€} where ¥V = T is node/agent
set and £ is the edge/relation set between agents.

where

III. RELATED WORK
A. Graph-based MARL

MARL faces the challenge of dealing with the exponen-
tially growing size of joint action spaces among agents [17].
The paradigm of CTDE [18| [19] strikes a balance between
computational efficiency and multi-agent interaction but falls
short in handling dependencies between agents. Graph Neural
Networks (GNNs) have demonstrated remarkable capability
in modelling relational dependencies [20, [21]], making graphs
a compelling tool for graph-based MARL, which can be
generally divided into two types. One type involves using
graphs as coordination graphs during policy training, such as
DCG [10], SOP-CG [13] and CASEC [14]. In this approach,
the total action-value function is defined as:

1 o 1 I
Qtot(staa):m qu (allst)“rm Z q” (a*,d’ |st),

i€V {i,j}€€
(L

where the first term calculates the Q-value of each action (also
known as utility function), and the second term evaluates every
action-pair of agents (also known as payoff function). This
method explicitly assesses the quality of joint actions between
different agents. The other type uses graphs to facilitate
information exchange among agents, such as DICG [22] and
G2ANet [23]. It is formulated as:

m; = AGGjen;, (f(05,a5)), Qiot = Z Qi(0i,ai,m;i) (2)
=1

where A; means the neighbours of agent . f(-) transfers the
original observation and action into embedding, and AGG(-)
aggregates the embedding based on graph topology to generate
the message m;. This message provides additional knowledge
that aids agents in decision-making and represents an implicit



JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2024

r

01 2. or
gert: | HEREERREN |
L
. l

Observatioa Trajectory

| |
Traject : Sample Recurrent
IIIII:I:IIII ::aejgfuzy :: I:::: I..=I <4——| Graph Convolution |<——
IIIII II Extractor I .=..
Agent N H Agent-pair
o " probability 0

o; Predict-future Aoy

Learned graph
Lpre = [|(0: + Aor) — 0p11]12

% G 3
1 0

)

12 ~

—

4—Tt < < a'% 4—mt
_>a§ —» | Agent 1 | . o
Attention [Readout]
. w : Graph — A _>I
= ~ ) .
25 . : / Attention Convolution J | Peoling
Quot(T,ue) 27| % 3 Q : . D — Graph 1
D B — . .
l ' =2 A:: : o / \ Convolution
T a —
g —[rgmn] = F e g <m - Lins = ll5e— g1l
Lrp == g mP
— m

Infer-present

[ Cooperative MARL Inter-Agent Sparse Graph Learning

Fig. 2: The framework of LTS-CG. LTS-CG samples a sparse graph from an agent-pair probability matrix generated by agents’
observation trajectories. We further learn the graph to encode two essential characteristics: Predict-Future enables agents to
predict future steps effectively, and Infer-Present empowers every partially observed agent to deduce the current state using
graph information. The learned temporal graph structure captures past experiences, while current observations determine edge
weights. This allows agents to exchange knowledge during policy learning and gain historical and present perspectives for
effective cooperation. Graph learning and agent training occur simultaneously in an end-to-end fashion.

coordination between agents. Although these methods do
not strictly calculate the payoff-utility function based on the
coordination graph, they build upon the same idea of reasoning
about joint actions based on interactions between agents [22]].

As the graph itself is not explicitly given, inferring graph
topology remains a critical prerequisite for training MARL.
From the perspective of graph structure, existing methods for
graph inference can be broadly categorized into three types: (a)
creating fully connected unweighted graphs by directly linking
all nodes/agents explicitly, such as DGN [24], PIC [9] and
DCG [10] or implicitly such as MAAC [25]], ROMA [26]; (b)
employing attention mechanisms to calculate fully connected
weighted graphs, such as GraphMIX [11] and DICG [12];
(c) designing drop-edge criteria to generate sparse weighted
graphs, such as random drop edges in G2ANet [21]], select
sparse graph from candidate set in SOP-CG [13] and drop
edges based on variance of payoff functions in CASEC [14].

Despite this progress, these methods exhibit the following
limitations: one is that they primarily focus on one-step obser-
vations and fail to consider the value of historical trajectory
data, which more accurately represents agents’ behaviours and
is more meaningful to help to learn policies [15]]; another is
that the computation-intensive nature of action-pair calcula-
tions in coordination graphs (CG) [8] poses significant scala-
bility challenges, which becomes increasingly problematic as
the number of agents and actions increases (See: [V-A).

B. Graph Structure Learning

To learn a relational graph between agents that take a series
of actions within specific time steps, two promising directions
are worth considering: learning a graph for multiple time series
forecasting and inferring a graph for trajectory prediction. For

the former, Yu et al. [27] explored pairwise similarities or
connections among them to enhance forecasting accuracy. Wu
et al. [28] presented a framework for modelling multivariate
time series data and learning graph structures that can be used
with or without a pre-defined graph structure. Satorras et al.
[29]] proposed an approach that balances accuracy and compu-
tational efficiency, allowing the flexibility to infer either fully
connected or bipartite graphs. Regarding trajectory prediction,
Kipf et al. [30] proposed NRI, a variational autoencoder that
leverages a latent-variable approach to learn a latent graph.
On the other hand, LDS [31] and GTS [32] focus on learning
probabilistic graph models by optimizing performance over
the graph distribution mean. To further adaptively connect
multiple nodes, Li et al. [33] proposed a group-aware rela-
tional reasoning approach to infer hyperedges. In the context
of MARL, the absence of labelled data poses a challenge
for traditional trajectory prediction or multiple time series
forecasting methods. Borrowing the learning capabilities from
these two directions while fully leveraging the information
available in MARL remains an underexplored area.

IV. THE PROPOSED METHOD

The framework of LTS-CG is illustrated in Fig. 2] To
efficiently infer the underlying relation from past experiences,
LTS-CG samples a sparse graph from the agent-pair prob-
ability matrix generated by agents’ observation trajectories.
The core of LTS-CG lies in creating a meaningful graph
that enhances agents’ understanding of their peers and the
environment. This is achieved through two key characteristics:
Predict-Future and Infer-Present, which enable agents to share
knowledge and gain both historical and present insights,
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fostering effective cooperation. Detailed descriptions of each
component are provided in the subsequent sections.

A. Latent Temporal Sparse Graphs Learning

1) Sparse graph construction: The accumulated observa-
tion trajectories of all agents encapsulate their experiences
of interactions with the environment and their cooperation.
To efficiently capture the underlying relationships, instead of
directly learning the structure of the inter-agent sparse graph
A, we utilize observation trajectories {O‘}"_, to generate
the agent-pair probability matrix 6 € [0,1]”*™. This matrix
parameterizes the element-wise Bernoulli distribution [31],
which allows us to sample a graph representing the relevant
connections between agents. This graph learning objective is
achieved by minimizing the loss of function

EANBer(O(w)) [‘C (Aa w, OT)] : 3)

Here, O = {O%}",, and O} = {0}, ...,0%} denotes the
observation trajectory for agent ¢ over the time steps 7.
Each element of A is sampled from a Bernoulli distribution
Ber(f(w)), with w denoting the trainable weight. In Eq. (3),
the adjacent probability 6 is absorbed together with the GNN's
parameters w, making the gradient computation more efficient
and having better scalability [32]. In the following, we give
the details about how to infer the inter-agent sparse graph A
and how to define the graph learning loss function L.

To acquire knowledge about the temporal dependence of
each agent and the relationship between agents, we establish
the observation experience extractor f,.(-) to help us capture
the temporal dependence of each agent z* by employing
convolution along the time dimension, followed by a fully
connected layer, defined as

2" = foe(OF) = FC(CONV(O%)), 4)

where FC(-) is a fully connected layer and CONV(-) is the
convolution layer performed along the temporal dimension.
This convolutional layer plays a crucial role in capturing each
agent’s latent behaviour patterns over time, enhancing the
model’s ability to discern dynamic and temporal patterns in
the agents’ interactions. Then the agent-pair predictor f,,(-)
utilize the temporal dependencies of every agent-pair (2’ and
27) to calculate adjacent probability 6;; as follows

0ij = fap(2']|27) = FC(FC(2"[|27)), 5)

min
w

where || denotes concatenation along the feature dimension.
We adopt multi-layer perceptrons (MLPs) to model and learn
fap(+), leveraging the universal approximation theorem [34]] to
enhance their representational capacity.

To enable backpropagation through the Bernoulli sampling,
we apply the Gumbel parameterization trick [35) 36]. This
technique leverages the properties of the Gumbel distribu-
tion to approximate the sampling process in a differentiable
manner, allowing gradients to flow through the stochastic
operation. In the context of Bernoulli sampling, the Gumbel
trick involves generating two Gumbel-distributed random vari-
ables, denoted as gz-lj and gfj, for each element A;; in the
adjacency matrix. These random variables are sampled from

a Gumbel distribution with a location parameter of 0 and a
scale parameter of 1. The sampled values from the Gumbel
distribution are then used to compute the logits for the sigmoid
function in the Bernoulli sampling equation. Specifically, the
logits are calculated as:

Ay = sigmoid ((log (0;;/(1—0:;))+ (95;—95)) /s) . (6)

where gilj, gfj ~ Gumbel(0, 1) for all 4, j, 6;; represents the
probability parameter for the Bernoulli distribution, and s is
a temperature parameter that controls the sharpness of the
sampling process. As the temperature s — 0, A;; = 1 with
probability 6;; and 0 with remaining probability. By applying
Eq. (3) and Eq. (6). we convert the observation trajectories
Or into an agent-pair probability §. We subsequently sample
to obtain the inter-agent graph A for further learning and
utilization in cooperative MARL.

2) Meaningful graph learning: Motivated by the idea that
the graph should enhance the agents’ understanding of other
agents and the environment, we further learn the graph to
encode the following two essential characteristics.
Predict-Future means by exploiting the graph, we aim to
empower agents to predict future steps effectively, enabling
them to make better decisions in the current time step. We use
the diffusion convolutional gated recurrent unit introduced in
Diffusion Convolutional Recurrent Neural Network (DCRNN)
[37] and leverage the learned graphs A to process the obser-
vations of all agents O; = {0}}"_; as follows

R; = sigmoid (Wg x4 [O¢||H¢—1] + br) ,

Ct = tanh (WC *A [OtH (Rt O) Htfl] + bC) (7)
U = sigmoid (Wy %4 [O¢||Hi—1] + bu) ,
H=Uo0H_1+(1-U)0oC,

where the graph convolution x4 is defined as

K
WoraY =Y (wfy (D5'4)" +wfy (D71AT)") Y, ®)
k=0
with Do and D; being the out-degree and in-degree matrix of
learned agent-pair matrix A, respectively. Here, w;?,p U’;?,zv bg
for @ = R, U, C are model parameters and K is the diffusion
degree. We adopt a 1-layer DCRNN and set K = 3 in our
experiments.

To capture both temporal and spatial dependencies between
agents, we feed a T-step observations {0} ;. ,}/; into
Eq.(7), to forecast the future changes in the current T-step
observation. The output of the hidden state in every step repre-
sents the prediction of how the current observation will change
in the next step, denoted as Hyy1yqir = {0, 1, 1ty
Then, the Predict-Future is achieved by calculating the fol-
lowing loss function

n T . ) .
»Cp'r‘e - Z Z H (Oéth’ + AO;%»t’) - 0;+1+t’

i t'=1

.- )

Since Eq. (9) is calculated by the observation of each agent,
Predict-Future is a local-level characteristic of LTS-CG. Em-
ploying the message-passing mechanism of GNNs [38], it
enables agents to predict future observations based on their
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own current observations and the passed information from
neighbouring agents.

Infer-Present is designed to assist every partially observed
agent in gaining the ability to grasp the entire environmen-
tal context and deduce the current state with the informa-
tion provided by the graph. Given the current observation
{oi}m_,, we first generate the observation embeddings matrix
E; = [e}T,...,elT] using the ongoing observation extractor
el = fops(ol), where fops is a MLPs. Then we adopt an
attention mechanism to dynamically calculate the edge weight
between every pair of agents resulting in the attention edge-
weight matrix, defined as

T )
uzy _ exp(eg Wae;) _ ij M’ij
b Y ken expler T Waep) b

where N; represents the neighbors of agent 4 in the graph
and W, is trainable parameter of attention mechanism. The
weighted-agent-pair matrix is updated as A, = C:A, and
the graph convolution [39] is performed using the following
equation

(10)

(1)

where [ is the index of GNN layers, At = [D’%AQB’%, Dn’ =
> Ailé, 5], and H? = E, . The current sparse graph A not
only encapsulates historical information within its structure
but also captures the ongoing agent relationships through the
edge weights. The message-passing mechanism of the GNN in
Eq.(TT) enables agents to exchange their knowledge effectively
at every time step. The current feature of the entire graph at
the t-step is defined as

ol = ReLU(Ath“‘”WU*U),

N
g¢ = READOUT(Y _ Hyli, !]), (12)
where READOUT(+) is an average function aggregating all
the agents’ information to obtain the entire graph feature. The
Infer-Present is achieved by

T
Ling =Y llge = sell, (13)
t=1
where s; denotes the actual state of the environment at the
t step. Infer-Present is a global-level characteristic of LTS-
CG that utilizes graph convolution to facilitate a seamless
exchange of observations among agents, allowing the en-
tire graph (comprising all agents/nodes and their relation-
ships/edges) to represent the current state of the environment
collectively.
With the above two characters, the generalized loss function
for the graph learning Eq.(3) now can be formalized as

L(Aw,O0p)=Ly=Lpre+ Ling. (14)

B. Cooperative MARL with LTS-CG

In our design, LTS-CG facilitates simultaneous graph in-
ference and multi-agent policy learning for efficient end-to-
end training. Initially, with the buffer’s setup, we store the
inter-agent graph with full connectivity. This allows agents

to start the game with the capability to cooperate and make
decisions. As training progresses, LTS-CG dynamically learns
and updates the graph’s structure within the buffer. During
testing, the graph, retrieved from the buffer, is updated with
edge weights based on current observations. This temporal
sparse graph is then utilized for message calculation and
dissemination, ensuring agents have access to the latest in-
formation. Such an approach guarantees effective decision-
making and cooperation throughout the training process.

Leveraging the learned graph A at every time step and fol-
lowing the Eq.(10), the current observation {o}}"_, are used to
compute the edge weights in A. These edge weights determine
the importance of cooperating with neighbouring agents. Con-
sequently, we obtain the latent temporal sparse coordination
graph, encompassing historical information within its structure
and ongoing agent relationships through its edge weights. The
exchanged knowledge m; = H![i,:] between agents is then
shared on this graph. Using Eq.(TI), what information should
be exchanged is calculated during cooperation. This process
enhances the agents’ perception, prediction, and decision-
making capabilities. With this knowledge, the local action-
value function is defined as Q;(7;, a;, m;). To keep the balance
of computational efficiency with effective agent interaction and
complex decision-making, we build our algorithm on top of
the QMIX [5] to integrate all the individual Q values. The
total-action value is monotonic in the per-agent values, which
is formulated as

argmax, Q1 (T1,a1,m;1)
argmaxQyo: (T,a) = :
a
argmax, Qn (Tn,an, My)
15)
The entire framework is trained by minimizing the loss func-
tion

L(0) = Lrp(07) + ALy (8y), (16)

where 6 includes all parameters in the model, £, represents
the graph loss from Eq. and )\ is the weight of graph loss.
The TD loss L1p(07) in Eq. is defined as

2
Lrp(07)= [r+ymax Quot (5, a'16) ~Quor(s,0:07)|

’ (17
where 6’ denotes the parameters of a periodically updated tar-
get network, as commonly employed in DQN. By training with
the Eq. (I6), our method enables simultaneous graph inference
and multi-agent policy learning, facilitating efficient end-to-
end training using standard policy optimization methods.

V. EXPERIMENTS

In this section, we design experiments to answer the follow-
ing questions: (1) How does LTS-CG compare in performance
with state-of-the-art methods on complex cooperative multi-
agent tasks? (See: (2) Is the utilization of trajectories for
learning the coordination graph more effective than relying
on one-step observations? (See: (3) Does having the
Predict-Future and Infer-Present characteristics improve the
performance of LTS-CG? (See: (4) What are the effects
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Fig. 3: Performance of our method and baselines on six maps of the StarCraft II benchmark [40].

rate of the game. X-axis is training steps

of varying the weights for £, on the experimental outcomes?
(See: [V-B3)

To answer the above questions, we conduct our experiments
on StarCraft II benchmark [40], which consists of different
maps with varying numbers of agents. The experiments in-
cluded scenarios with a minimum of eight agents, comprising
both homogeneous and heterogeneous agent setups. All the
experiments are carried out with difficulty=7 and repeated with
5 random seeds. We employ distinct 2-layer GNNs as specified
in Eq.(TT) to facilitate the acquisition of the Infer-present
characteristic and to compute the knowledge exchanged during
agents’ cooperation. The graph loss A, the character-balance
weight b and ¢ in Eq (I6) are set to 1. The hyperparameters
used for MARL in StarCraft IT are given in Tab.[[l] Experiences
are stored in a first-in-first-out (FIFO) replay buffer and during
the training phase. The experiments are finished with Intel(R)
Xeon(R) E-2288G CPU and Tesla V100-PCIE-32GB GPU.
The software that we use for experiments is Python 3.7.13,
PyTorch 1.13.1, PyYAML 6.0, numpy 1.21.5 and CUDA 11.6.

Agent Enemy  Action Episode

Maps Num. Num. Num. Limit
8m 8 8 14 120
25m 25 25 31 150
385z 8 8 14 150
1c3s5z 9 9 15 180
8m_vs_9m 8 9 15 120
10m_vs_11m 10 11 17 150
27m_vs_30m 27 30 36 180
MMM2 10 12 18 180

TABLE I: Detailed information of each map we used in
StarCraft II benchmark.

2 3
T (mil)

Y-axis is the test winning

Hyperparameter Value
Batch-size 32
Replay memory size 5000
discount factor 0.99
Optimizer RMSProp
Learning rate 5x 1074
optim_alpha 0.99
optim_eps 1x107°
Gradient-norm-clip 10
Action-selector e-greedy
e-start 1.0
e-finish 0.05

e-anneal-time

50000 steps

target update interval

200

TABLE II: The hyperparameters used in StarCraft II.

Method  Graph type Edge Data in learning graph
QMIX X X X
DCG Complete Unweighted One-step
DICG Complete Weighted One-step
SOP-CG Sparse Unweighted One-step
CASEC Sparse Weighted One-step
LTS-CG Sparse Weighted Trajectories

TABLE III: Comparison of different experiment methods in
terms of graph type, edge representation, and data used for

learning graph.

A. Performance comparison on StarCraft Il

1) Details for comprised methods:

We utilize several

state-of-the-art baseline algorithms for our experiments. Each
method’s graph type, edge representation, and group utiliza-
tion are summarised in Tab. m Below, we provide a brief
introduction of each method and the detailed settings we used:
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Fig. 4: Performance comparison on the 25m and 27m_vs_30m maps. Due to the high computational complexity, SOP-CG and
CASEC could not complete the experiments on both maps. DCG could not finish the experiment on the later map.

o QMIX F_-I [S] is effective but without cooperation be-
tween agents. We adopt the configuration specified in
the StarCraft Multi-Agent Challenge [40] for the QMIX
algorithm.

e« DCG [] [10] directly links all the agents to get an
unweighted fully connected graph. The graph is used to
calculate the action-pair values function. For DCG, we
employ a low-rank payoff approximation with i =1 (as
described in Eq.(5) of the original paper) and incorporate
privileged information through the action representation
learning technique. This corresponds to the DCG-S (rank
1) setting outlined in the original paper.

« DICG E] [12] uses attention mechanisms to calculate
weighted fully connected graph. The graph is used to pass
information between agents. We utilize the DICG algo-
rithm in the context of the centralised training centralised
execution (CTCE) paradigm. This approach involves
using QMIX as the base policy learning framework.
The graph learning procedure strictly follows the DICG
methodology.

« SOP-CG [13] selects sparse graphs from a pre-
calculated candidate set. In line with the original paper,
we adopt the tree organization Gp for SOP-CG. In
this configuration, the agents are organized in a tree
structure with n — 1 edges, ensuring that all agents form
a connected component.

« CASEC EI14] drops some edges on the weighted fully
connected graph according to the variance payoff func-
tion. We employ the construction_q_var (Eq.(4) in the
paper) and g_var_loss (Eq. 8 in the paper) strategies de-
scribed in the original paper. The weight of the sparseness
loss term is set t0 Agparse = 0.3 in our experiments.

2) Results: Fig. 3| presents the results of our method com-
pared to the performance of other algorithms on six different
maps. The experimental results clearly demonstrate the supe-
riority of our approach LTS-CG across all scenarios (shown
in orange). Firstly, our method exhibited faster convergence

Uhttps://github.com/oxwhirl/pymarl
Zhttps://github.com/wendelinboehmer/dcg
3https://github.com/sisl/DICG
“https://github.com/yanQval/SOP-CG
Shttps://github.com/TonghanWang/C ASEC-MACO-benchmark

than the compared methods on all six maps in the early stages
of training (below 0.6 mil for 8m, 2 mil for MMM?2, and 1
mil for other maps). This indicates that our approach enables
the agents to quickly learn effective cooperative strategies
and achieve high-performance levels. Moreover, our method
demonstrated a smaller standard deviation in performance
compared to the other methods, such as CASEC in 3s5z,
DICG in 8m_vs_9m and DCG in 10m_vs_11m. The reduced
variability suggests that our approach consistently produces
reliable and stable cooperative behaviours, resulting in more
predictable and robust performance across different maps.
Notably, our method achieved consistent and competitive
performance across all six maps. This indicates that our
approach generalizes well and is capable of adapting to various
environmental conditions and agent configurations. The ability
to achieve good results consistently is essential for real-world
applications of multi-agent systems.

Comparing our method to two SOTA approaches, SOP-CG
and CASEC, which aim to learn sparse graphs for MARL, we
observed interesting patterns in their performance on specific
maps. In the 355z, 1¢3s5z, and 10m_vs_I11m maps, SOP-CG
outperformed CASEC. However, in the 8m_vs_9m and MMM?2
maps, CASEC exhibited superior performance compared to
SOP-CG. The varying performance of SOP-CG and CASEC
indicates the importance of learning the meaningful graph
based on the environment and agent setup, which further high-
lights the advantages of our approach in achieving constant and
competitive performance across diverse scenarios.

Large maps. We further investigated the performance of the
proposed method on larger maps: 25m and 27m_vs_30m,
which are designed to test the scalability and efficiency of the
algorithms under high computational complexity. Due to the
high computational demands in representing action-pairs, two
SOTA approaches, SOP-CG and CASEC, could not complete
the experiments on both maps, and DCG could not finish
the experiment on the 27_vs_30m map, which is indicative
of their computational limitations in this context. In Fig. {4
the results of our proposed method on these two maps were
presented. Our approach demonstrated promising performance
compared to the other methods, even in these challenging
and computationally intensive scenarios. Notably, the QMIX
algorithm (shown in blue), which operates without explicit



JOURNAL OF KTEX CLASS FILES, VOL. X, NO. X, 2024

3s5z
1.0
0.8
X
=%
=
%04
i)
0.2 = OneStepObs-c
' OneStepObs-s
s | TS-CG(W/0 Lg)
0.0
0.0 0.5 1.0 1.5
T (mil)

10m vs 11m

=

o
o

Test Win %
o
iy

= OneStepObs-c
OneStepObs-s
| TS-CG(W/O Lg)

o
N

0.0

0.0 0.5 15

1.0
T (mil)

Fig. 5: Performance comparison on the 355z and /0m_vs_11m. OneStepObs-c and OneStepObs-s utilize a one-step observation
to generate a fully connected graph and a sparse graph separately. LTS-CG(w/oL,) investigates the effectiveness of using
trajectories by omitting the Predict-Future and Infer-Present characteristics.
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Fig. 6: Evaluate the effectiveness of the different latent temporal sparse graph learning strategies on two maps. LTS-CG(w/oLg)
excludes both Predict-Future and Infer-Present characteristics. LTS-CG(Lpre) and LTS-CG(L;,¢) only incorporate the Predict-
Future or Infer-Present characteristic into the learning process separately.

cooperation mechanisms or coordination graphs, surprisingly
outperforms DCG and DICG (shown in light green and pink,
respectively), which are graph-based learning algorithms. This
result indicates that while the graph-based approaches are
designed to foster coordination among agents, the lack of
a well-constructed coordination graph can be detrimental,
potentially hindering the policy learning process.

In summary, the experiments suggest that graph-based co-
ordination in multi-agent settings must be carefully crafted
to ensure that it is conducive to the learning environment.
The results highlight the necessity for well-designed graph
structures that enhance rather than impede policy learning, as
evidenced by the success of LTS-CG in complex scenarios
where other graph-based methods struggle.

B. Ablation study

1) Trajectory Graph Learning vs One-Step Observations:
We examined the effect of graph generation methods on
MARL performance in the 3s5z and /10m_vs_IIm scenarios.
We considered three settings:

e OneStepObs-c generates a fully connected graph using

one-step observations, akin to methods like DICG [12].

e OneStepObs-s employs one-step observations to create a

sparse graph, similar to G2ANet [21].

o LTS-CG(w/oL,) utilizes trajectories for graph generation
while excluding Predict-Future and Infer-Present charac-
teristics to solely assess the impact of trajectory-based
learning.

As depicted in Fig. [5| LTS-CG(w/oL,) surpasses both
OneStepObs-c and OneStepObs-s in win percentage over
training iterations, demonstrating its superior performance
in cooperative multi-agent settings. This finding underscores
the significant benefit of trajectory-based graph generation in
enhancing MARL performance, independent of other factors.
The shaded areas in the figure represent the variance across
multiple runs, with LTS-CG(w/oL,) not only achieving higher
win rates but also exhibiting less variance, reflecting its
consistent and reliable performance.

Furthermore, in Fig. [5] the comparison among LTS-
CG(w/oLy), OneStepObs-c (a method similar to DICG), and
OneStepObs-s (a method similar to G2ANet) shows that LTS-
CG(w/oLy) demonstrates the most significant performance
improvement in terms of win percentage across training it-
erations. This outcome highlights the advantages of using
trajectory-based information for graph generation, even with-
out relying on specialized characteristics like Predict-Future
and Infer-Present.

The shaded regions in the graph represent the variance in
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Fig. 7: Evaluate the effect of the different weights of graph loss.

win percentages over multiple runs, providing insights into the
reliability of the methods. Notably, LTS-CG(w/oL,) achieves
higher win rates and maintains tighter confidence intervals,
suggesting a consistent performance advantage over the other
methods. These experimental results provide strong support
for the hypothesis that trajectory-based graph learning is more
effective and robust than one-step observation-based methods,
contributing significantly to the advancement of cooperative
multi-agent learning techniques.

2) Latent Temporal Sparse Graph Learning strategies:
We conducted an evaluation to assess the effectiveness of
different strategies and examine the importance of the Predict-
Future and Infer-Present characteristics in graph learning. Our
investigation focused on the following settings:

o LTS-CG(w/oL,) excludes both Predict-Future and Infer-
Present characteristics. This setting implies that we do not
further refine the learned graph structure after sampling.

o LTS-CG(Lpre) only incorporates the Predict-Future char-
acteristic into the learning process.

o LTS-CG(Liny) only incorporates the Infer-Present char-
acteristic into the learning process.

e LTS-CG with both Predict-Future and Infer-Present char-
acteristics, where we consider both aspects simultane-
ously.

The final performance is assessed on the 8m_vs_9m, and 3s5z
maps and the results are presented in Fig. [f] The ablation
study revealed several important findings. Firstly, regardless
of whether we include the Predict-Future, the Infer-Present,
or both characteristics, the performance was consistently bet-
ter than not having anyone. This highlights the importance
of having these characteristics in enhancing the learning of
the inter-agent graph and improving cooperative behaviour.
Moreover, on the 8m_vs_9m map, with the Predict-Future
characteristic outperformed the other settings. One possible
reason for this observation is that the agents in this map
are homogeneous, sharing similar characteristics. Knowing the
next time observation benefits the overall cooperation among
the agents. In contrast, in the 355z map agents are hetero-
geneous. Utilizing observations from different agents to infer
the current state proves beneficial for learning in this scenario.
Although using both characteristics simultaneously introduces
more parameters and slightly slower convergence, promising

results are obtained after approximately 2 million time steps,
showcasing the effectiveness of leveraging both characteristics
for improved cooperative multi-agent learning. This ablation
study confirms the significance of two characteristics in LTS-
CG for learning meaningful graphs to help agents cooperate.

3) Weight of graph loss: We tested the different weight of
graph loss £, on two maps, as shown in Fig. |7} (w/o L) rep-
resents the scenario where the MARL training does not include
the graph loss term, i.e., A = 0. The results demonstrate the
positive impact of incorporating £, in MARL, as compared
to the case without it. Specifically, when £, = 1,10,50,
the addition of £, Consistently improves the performance of
MARL on both maps. As the value of A increases, the final
results during training on both maps first improve and then
start to decline, which indicates that the weight A\ of the graph
loss function has a noticeable influence on the final results. We
present empirical evidence related to the parameter A\ here.

Identifying the most appropriate A value for specific sce-
narios is a labour-intensive task that requires additional ex-
perimentation. It involves balancing leveraging the benefits
of graph-based learning and avoiding potential overfitting or
performance degradation due to excessive emphasis on the
graph loss term. This process underscores the nuanced nature
of parameter tuning in MARL and highlights the need for
careful consideration when designing and optimizing such
systems.

C. Discussion

In this discussion, we underscore the contrasts between our
proposed approach and CG-based methods (e.g., DCG [10],
SOP-CG [13], and CASEC [14]), as well as with the method
where the graph serves for information exchange (e.g., DICG
[12]], G2ANet [21]).

1) Coordination graphs (CG) methods: The CG is denoted
as G = {V, &} where V is agent/node set and £ is the edge
set between agents [8, 41]. These CG-based methods factorize
the Q-function into utility functions ¢* and payoff functions
g% as follows:

Zq at,a’ |8t)

{1,3}65
(18)

Qtot 3t7 a

=y 2 (1)

eV
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1m steps time (k)  Time Complexity

DCG 11.63 £ 0.64 O(A2N?)
SOP-CG 19.46 £ 0.80 O(A2N?)
CASEC 10.12 £ 0.51 O(A2N?)
LTS-CG 8.84 4+ 0.49 O(TN?)

TABLE IV: Time consumption on map [/0m_vs_IIm and
complexity analysis with CG-based methods.

DICG 1.0

LTS-CG

0.0

Fig. 8: Visualization of latent agent-pair matrices learned by
DICG and LTS-CG on map 8m_vs_9m.

However, due to the large number of action pairs represented
by the payoff functions ¢'/, these methods face challenges
of high computational complexity. To alleviate this concern,
various approaches have been employed, such as low-rank
approximation in DCG [10]], construction of polynomial-time
CG in SOP-CG [13]}, and dropping edges using variance payoff
functions in CASEC [14]. Despite these efforts, the inherent
high complexity of CG-based methods, as high as O(A2N?),
limits their applicability in large-scale scenarios.

By contrast, the complexities of LTS-CG is O(T'N?), where
N is the number of agents, and 7' is the length of trajectories.
For instance, consider experiments conducted on the map
10m_ys_I1m, involving 10 agents and 17 actions, resulting
in 289 potential action-pair within ¢/. Table [IV|illustrates the
time requirements of various methods, revealing that CG-based
approaches demand more time to complete 1m time steps
than our method. Particularly noteworthy is the significantly
higher time consumption of SOP-CG and the remarkably
elevated GPU usage of CASEC (25.85 GB), contrasted with
DCG (2.29 GB), SOP-CG (4.00 GB), and our approach (4.13
GB). Moreover, it’s important to highlight that all CG-based
methods failed to conclude the experiment on the 27_vs_30m
map, involving the calculation of 362 = 1296 action-pair for
every two agents (the complexity now is O(1296 x N?2)).
In contrast, for our proposed LTS-CG method, even though
we set the length of trajectory for graph learning to the
episode limit, the computational complexity remains a modest
O(180 x N?). In the actual experiment, this trajectory length
typically falls below the episode limit. Thus, LTS-CG delivers
competitive performance while maintaining a reasonable level
of computational efficiency.

2) Graphs for information exchange: Current methods us-
ing graphs for information exchange rely on attention mech-
anisms to calculate edge weight. Like DICG [12], these

methods learn a weighted fully-connected graph, which in-
evitably transfers redundant or even detrimental information
between agents, as illustrated in Fig[8] This drawback impedes
individual agents’ capacity to acquire effective policies. In
contrast, our method generates a sparser graph focusing on
the most relevant relationships among agents, leading to more
efficient and effective cooperation.

Another existing method is G2ANet [21], which uses both
hard and soft attention to generate a sparse graph for MARL.
However, our method offers two distinct advantages over
G2ANet: (1) G2ANet focuses solely on ongoing information,
while we leverage the complete observation trajectories to
capture the latent relationships between agents, shown in
Sec[V-BI] (2) Unlike G2ANet’s arbitrary edge reduction us-
ing the attention mechanism, our approach harnesses agents’
experience and current information to acquire a meaningful
graph. This graph exhibits two critical attributes, the efficacy
of which has been demonstrated through Sec[V-B2]

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduces LTS-CG, a novel approach for MARL
that infers a latent temporal sparse graph to enable effective
information exchange among agents. To efficiently infer the
graph from past experiences, LTS-CG uses the agents’ ob-
servation trajectories to generate the agent-pair probability
matrix. Motivated by the idea that the meaningful graph
should enrich agents’ comprehension of their peers and the
environment, we further learn the graph to encode two es-
sential characteristics: Predict-Future and Infer-Present. The
former is a local-level characteristic that gives agents valuable
insights into the future environment, enhancing their decision-
making capabilities in the current time step. The latter is
a global-level one that enables partially observed agents to
deduce the current state, promoting overall cooperation among
agents. By having them, LTS-CG learns temporal graphs from
historical and real-time information, facilitating knowledge
exchange during policy learning and effective collaboration.
Graph learning and agent training occur simultaneously in an
end-to-end manner. Experimental evaluations on the StarCraft
II benchmark demonstrate the superior performance of our
method over existing ones.

For future directions, it is imperative to extend the scope of
graph learning beyond agent-pair relationships. Investigating
higher-order relationships, such as group dynamics, while
inferring cooperation graphs can deepen our understanding of
cooperative behaviours among agents. Additionally, addressing
the challenges posed by asynchronous scenarios is crucial.
Developing techniques to effectively learn cooperation graphs
in such scenarios will enhance the applicability and robustness
of methods in real-world environments.
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