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Abstract. Recent progress in diffusion models has profoundly enhanced
the fidelity of image generation. However, this has raised concerns about
copyright infringements. While prior methods have introduced adversar-
ial perturbations to prevent style imitation, most are accompanied by
the degradation of artworks’ visual quality. Recognizing the importance
of maintaining this, we develop a visually improved protection method
that preserves its protection capability. To this end, we create a percep-
tual map to identify areas most sensitive to human eyes. We then adjust
the protection intensity guided by an instance-aware refinement. We also
integrate a perceptual constraints bank to further improve the impercep-
tibility. Results show that our method substantially elevates the quality
of the protected image without compromising on protection efficacy.

1 Introduction

The groundbreaking advancements in large-scale diffusion models have trans-
formed media creation workflows [2,27,40,43,45]. These can be further enhanced
in usability when integrated with external modules that accept multi-modal in-
puts [18, 21, 28, 38, 62]. Such innovations have also been pivotal in the realm of
art creation [1, 22, 50]. Nevertheless, generative AI, while undoubtedly benefi-
cial, brings concerns about its potential misuse. When someone exploits these to
replicate artworks without permission, it introduces significant risks of copyright
infringement. This style imitation becomes a serious threat to artists [49,60].

To counteract style imitation, previous studies have introduced adversarial
perturbation [13,32] to artwork, transforming it into an adversarial example that
can resist few-shot generation or personalization methods [29,30,46,52,61,65,66].
Specifically, building on the Stable Diffusion (SD) model [43], they iteratively
optimize the protected (or perturbed) image to fool the SD network, guided by
the gradients from the image encoder or denoising UNet.

While existing studies are effective in preventing style imitation, they do
not prioritize the protected image’s quality. They leave discernible traces (or
artifacts) on the protected images due to the inherent nature of adversarial
perturbations. Moreover, we observed that compared to adversarial attacks on
classifiers [7, 31], style protection requires more intense and globally dispersed
perturbations. Consequently, despite the commendable protection performance,
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Fig. 1: Impasto preserves the authenticity of artworks by impeding style imitation
while reducing visual artifacts in the protected images. (Right) Impasto shows a
significant enhancement in the balance between protection efficacy and imperceptibility.

prior works run the risk of severely degrading the original artwork’s fidelity, mak-
ing it less practical for real-world applications. While moderating the strength
of protection could mitigate this, it introduces a trade-off, often compromising
protection performance and making it challenging to achieve satisfactory results.

To alleviate this, we propose IMperceptible Protection Against STyle imita-
tiOn (Impasto; Fig. 2). We design this upon the principle of perception-aware
protection, which focuses on perturbing regions less discernible to humans. Al-
though many adversarial attack methods restrict perturbations to small areas to
maximize imperceptibility [6,7,37], they are ineffective for style protection since
personalization methods can exploit the references from non-perturbed textures.
To circumvent this, we instead adopt a soft restriction strategy by relaxing the
harsh condition of sparse constraints. This applies protection to the entire image
but with modulated intensities. To implement this, it is crucial to identify which
areas are perceptually more noticeable when perturbations are introduced. For
this purpose, we analyze various perceptual maps that are suitable for the style
protection task. Then, we propose a method that combines such perceptual maps
and refines them in an image-specific manner. Such an instance-wise refinement
sets itself apart from previous protection methods as it offers a way to strike the
optimal balance between imperceptibility and protection performance.

To further enhance imperceptibility, we use a perceptual constraint bank. We
delve into multiple feature spaces, examining the pixel and the latent spaces of
both LPIPS [63] and CLIP [42]. Previous methods have also adopted perceptual
constraints [49,61]. However, their approach, typically limited to employing only
one or two constraints, does not fully capitalize on the potential of perceptual
models. In contrast, we employ a perceptual constraint bank to effectively steer
towards more enhanced imperceptibility. Additionally, we integrate a soft re-
striction within these constraints. Diverging from previous methods that apply
constraints uniformly via spatial averaging, we modulate the spatial influence of
constraints in areas less perceptible to humans, thereby achieving closer align-
ment with the nuances of the human visual system. Intuitively, it may not be
surprising that imperceptibility can be improved with a constraint bank. How-
ever, surprisingly, our work is the first investigation to apply constraints across
multiple spaces, thereby enhancing fidelity without sacrificing robustness.

To the best of our knowledge, Impasto is the pioneering approach that pri-
oritizes the protected image’s quality in the style protection task. We show the
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Fig. 2: Model overview. Given an artwork, we construct a perceptual map M by
integrating multiple JNDs, M. Impasto optimizes imperceptible perturbation δ using
M and concurrently updates the refinement parameters ω, all while being steered by
SD’s guidance. Consequently, the protected artwork impedes malicious users from fine-
tuning or generating credible imitations. Blue dashed arrows denote the gradient flow.

effectiveness of Impasto through a broad range of experiments. It achieves ro-
bust protection against style imitation and maintains visual fidelity in protected
images (Fig. 1). Impasto also significantly improves the trade-off balance be-
tween protection efficacy and image quality (Fig. 1, right). The flexibility of
Impasto is demonstrated by its successful applications to existing protection
frameworks [29,30,46,52]. Impasto also maintains resilience and generalizes well
against a range of countermeasures and personalization techniques, performing
on par with the baseline methods. Our key contributions are highlighted as:

– We propose Impasto, which applies human visual perception principles to
achieve subtle and effective style protection in diffusion models.

– Impasto incorporates perception-aware protection and a perceptual con-
straints bank to realize imperceptible but effective style protection.

– We validate the efficacy of Impasto through various experiments, despite its
straightforward modulo design. It can be effortlessly adopted in any existing
protection method, confirming its ability to be deployed in real applications.

2 Background

2.1 Diffusion Models

Diffusion models have risen to prominence for their capacity to produce high-
quality images [2, 9, 16, 39, 45]. In AI-assisted art production, Stable Diffusion
(SD) [43] is widely used because of its exceptional quality and efficiency. In
the SD model, an input image x is projected into a latent code via an image
encoder E such that z = E(x). A decoder D reverts the latent code to the
image domain, represented as x′ = D(z′). The diffusion model derives a modified
latent code z′ by incorporating external factors y, such as text prompt or other
modalities [21,62]. The training objective for SD at timestep t is defined as:

LSD = Ez∼E(x),y,ϵ∼N(0,1),t[||ϵ− ϵθ(zt, t, c(y))||22]. (1)

Here, a denoising UNet ϵθ reconstructs the noised latent code zt, given t and
a conditioning vector c(y). Leveraging the power of diffusion models, recent
studies have investigated personalizing SD with a given few reference images.
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For example, textual inversion-based methods [1, 12, 53] exploit the embedding
space of CLIP [42] while freezing the denoising UNet. On the other hand, model
optimization-based methods [24,44,50] directly update the UNet.

2.2 Protection Against Style Imitation

Previous protection methods introduce adversarial perturbations δ to image x,
making protected image x̂ = x+δ through projected gradient descent (PGD) [32],
a renowned algorithm in the adversarial attack task.
Encoder-based methods [29,46,49,61] update δ under the guidance of the VAE
encoder E . They aim to maximize the distance between the encoded feature of
the original image x and protected image x̂. In practice, many methods instead
minimize the distance between the protected image x̂ and target image y:

δ = argmin
||δ||∞≤η

LE(x+δ, y), LE = ||E(x+δ)−E(y)||22. (2)

While L∞ norm (||δ||∞ ≤ η; η is a protection budget) is widely used constraints,
GLAZE [49] adopts LPIPS [63] and DUAW [61] employs SSIM [55].
UNet-based methods [29, 30, 46, 52, 65] update δ under the guidance of the
denoising UNet, ϵθ, maximizing diffusion loss, LSD as:

δ = argmax
||δ||∞≤η

LSD(E(x+ δ)). (3)

Upon this, Anti-DreamBooth [52] integrates DreamBooth training and Mist [29]
merges Eq. 2 and 3, enhancing performance and robustness in various scenarios.

Since Impasto is versatile and can be effortlessly integrated into any existing
protection methods, we generalize the style protection as below formulation.

δ = argmax
||δ||∞≤η

LSP(x+ δ,y), (4)

where LSP = −λELE(x+ δ,y)+λSDLSD(E(x+ δ)). Then, we employ PGD [32]
to get a protected image x̂. Let x(0) denote the original artwork. The protected
image of i-th optimization step is generated by a signed gradient ascent with
step function sgn and step length α as given by:

x(i)=ΠNη(x)

[
x(i−1) + αsgn(∇x(i)LSP(x

(i−1),y)
]
, (5)

where ΠNη(x) is the projection onto the L∞ neighborhood around x with radius
η. This process is repeated N steps as x̂ = x(N).

2.3 Imperceptible Adversarial Examples

The concept of imperceptibility is an actively investigated subject in adversar-
ial attacks; some studies target specific elements; e.g . the low-frequency compo-
nents [14,31]. Another approach use advanced constraints [48]; color distance [64]
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(a) Original (b) Full protection (c) Partial protection

Fig. 3: Sparse restriction in style protection. We compare the full image protec-
tion with partial one that simulates sparse restriction. For partial protection, we only
apply perturbation in the facial region (no perturbation in red inlet). Generated re-
sult shows that partial protection is inadequate for style protection, as personalization
methods can capitalize on unprotected areas when learning the artwork’s style.

or quality assessment [54] are adopted. Several methods focus on restricting per-
turbation regions; leveraging L0 norm to produce sparse perturbation [6, 37] or
limiting perturbations to tiny salient regions [7]. Our research draws inspiration
from these studies. However, attacking discriminative models is fundamentally
distinct from that of targeting generative models. Hence, we employ a specialized
strategy designed specifically for disrupting style imitation.

3 Method— Impasto

3.1 Perception-Aware Protection (PAP)

Naive approach— Sparse restriction. In adversarial attacks, perturbations
are often confined to a sparse region to increase imperceptibility [6,7,37]. Yet, we
observed that such restriction does not sufficiently prevent style imitation (Fig.
3). In this analysis, we compare the protection encompassing the entire image
(Fig. 3b) against the one that applies perturbation to facial region only (Fig. 3c).
It is shown that the partial protection cannot protect original artwork against
DreamBooth [44] and we argue that this is because the personalization method
can leverage textures from unprotected regions. Overall, sparse restriction may
confine the perturbation region too aggressively to be applied in style protection.
Therefore, we relax such assumptions to better align with this task.
Soft restriction. To address the limitation of sparse restriction, we instead
employ a soft restriction strategy. It protects the entire image but with varying
intensities across different regions. To this end, we introduce a perceptual map,
M ∈ Rd, where d is the number of pixels of an image. This map reflects the hu-
man sensitivity to subtle alterations; a value near 1.0 indicates a region with the
highest perceptibility, while a value close to 0.0 signifies a region where changes
are hardest to notice. With this map M, we define perception-aware protection
loss LPAP(x, δ,y,M), which use soft restriction-based Lp norm constraint as:

LPAP = LSP(x+ δ,y) +
(∑d

i=1 |Mi ∗ δi|p
)1/p

, (6)

where ∗ denotes element-wise multiplication. Employing a soft restriction-based
Lp norm controls perturbations to be suppressed in regions with high percep-
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(a) Input (b) LA (c) CM (d) CSF (e) Std. (f) Entropy (g) Avg. (h) IWR

Fig. 4: Examples of perceptual maps. We employ multiple JND models in our
analysis. Darker region corresponds to increased protection intensity. The perceptual
maps include luminance adaptation (LA), contrast masking (CM), contrast sensitivity
function (CSF), standard deviation (Std.), and entropy. Impasto constructs perceptual
map M by spatially averaging these estimations (g) or an learnable manner (h).

tual visibility to humans and amplified in areas with lower perceptibility. The
subsequent objective is now to quantify perceptual sensitivity to distortions.
Perceptual map analysis. To build a perceptual map M in a simple yet ef-
fective manner, we investigate the just noticeable difference (JND) concept [58]
inspired by the human visual system. JND represents the minimum intensity of
stimulus (perturbation in our context) required to produce a noticeable change
in visual perception. The intent behind the JND estimation model is to deter-
mine this perceptual threshold for every image pixel. Given that the fundamental
premise of JND— to quantify human sensitivity to subtle changes— aligns with
our objective of perception-aware protection, we focus on analyzing 1) the effec-
tiveness of JNDs in our formulation, and 2) which JND models yield the best
results. To this end, as depicted in Fig. 4, we compare the following JND models.
Detailed explanations for each model are described in Suppl.
– Luminance adaptation (LA): Perturbations are less visible in regions of

very low or high luminance and more noticeable in moderate lighting condi-
tions [19]. Hence, we modulate protection strength based on pixel luminance
with a fixed adaptation model (Fig. 4b).

– Contrast masking (CM): Perturbations can seamlessly blend into regions
with intricate textures, while they leave distinct traces on flat surfaces. To
simulate this, we utilize the luminance contrast (or change) of a region to
measure the complexity of the pixel [26, 57] (Fig. 4c).

– Contrast sensitivity function (CSF): Given the band-pass characteris-
tics of the human visual system, we utilize a frequency-based JND model [56].
The human eye is receptive to signals at modulated frequencies while exhibit-
ing insensitivity to high-frequency components. Consequently, perturbations
overlaid on high-frequency signals (e.g . edges) are less perceptible (Fig. 4d).

– Standard deviation: To assess the spatial structure of an image, we cal-
culate the standard deviation of local image blocks, inspired by SSIM [55].
This measures the image’s structural complexity, which correlates with the
sensitivity to subtle perturbations (Fig. 4e).

– Entropy: The entropy of an image block is computed to quantify the amount
of information or complexity within a local region [59] (Fig. 4f).
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Table 1 presents the protection performance when adopting the JND-based per-
ceptual map. Image quality is assessed through DISTS [10], and protection per-
formance is evaluated using FID [15]. The baseline is trained with Eq. 5 and
other models are trained via Eq. 6 with corresponding JNDs. For all the JNDs,
we inverse them i.e. Mk = 1 − JNDk, since a higher JND threshold represents
lower sensitivity to changes. When compared to the baseline, perceptual map
improves image quality (DISTS) across the board, but it also leads to a compro-
mise in protection performance (FID). Among the JNDs, LA demonstrates the
best protection performance. We conjecture that in many artworks, the majority
of areas fall high or low-luminance, thereby maintaining perturbations strength
high across extensive regions. However, as illustrated in Fig. 4b, even simple tex-
tures like the sky can have strong perturbations, placing LA at the lower image
quality. On the other hand, CSF, Std, and Entropy generally apply high per-
turbations only to specific areas, such as edges, resulting in most regions being
not fully protected and consequently, causing a huge degradation in protection
performance. CM’s protection intensity is also determined by spatial changes
but this covers more detailed local regions (see fields in Fig. 4c) and also being
based on contrast, leading to both high quality and effective protection.

Table 1: Perceptual map
analysis. DISTS measures
image quality, while FID eval-
uates protection performance.
Map DISTS (↓) FID (↑)

Baseline 0.212 299.1

LA 0.175 284.7
CM 0.169 280.8
CSF 0.172 273.2
Std. 0.171 277.7
Entropy 0.174 277.3

Perceptual map. In our earlier investigation, we
observed that the JND model fits surprisingly well
with soft restriction approach, offering an effective
way for the imperceptible style protection. Conse-
quently, Impasto employs a perceptual map con-
structed using JND estimates, considering its sim-
plicity and effectiveness. Among JNDs we analyzed
(Table 1), LA and CM emerge as superior in the
quality-protection trade-off. However, these results
represent the average scores across a dataset and
we note that some images exhibit better trade-off results with different JND
models. Especially, since artworks have diverse styles, the best combinations can
differ; for example, in Fig. 4, Std. and entropy demonstrate best performance for
top image while bottom image shows a preference for CM and CSF. In addition,
in practical scenarios, users seeking to protect their artwork are soley concerned
with their specific pieces. Hence, it is crucial to ensure that the protection method
is effectively applied to every individual artwork.

Therefore, we apply all the JNDs listed in Table 1 simultaneously to create
the perceptual map, since relying on a single JND could result in decreased per-
formance for some artworks. Formally, for an artwork x requiring protection, we
initially generate a corresponding perceptual map M with a collection of JNDs,
M = {M i, . . . ,MK}, where K is the number of JNDs. To integrate multiple
JNDs, the simplest method involves using a spatial average: M = 1

K

∑K
k=1 M

k.
As we will demonstrate in the experimental results, this straightforward ap-
proach proves to be a surprisingly effective universal algorithm for creating per-
ceptual map. Considering its simplicity and efficacy, we adopt spatially averaged
JNDs to construct the initial perceptual map.
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Algorithm 1: Optimization of Impasto
Data: Image x, target image y, all perceptual maps M, step length α
Result: Protected image x̂

1 Initialize x(0) ← x

2 Initialize M← 1
K

∑K
k=1 M

k, ω ← 1
K
· 1K

3 for i = 1 to N do
4 δ(i) ← αsgn(∇δ(i)L(x

(i−1), δ(i−1),y,M))
5 x(i) ← ΠNη(x)(x

(i−1) + δ(i))

6 end
7 M′ ←M
8 for j = 1 to P do // instance-wise refinement
9 ω ← ω −∇ωLM(x(N), δ(N),y,M′,M(ω))

10 end
11 x̂← x(0) +M(ω)⊙ δ(N)

Instance-wise refinement. Although the above method is more effective in
many scenarios than the single JND, applying a uniform averaged map across
all artworks may still be suboptimal for some artworks. Moreover, the optimal
perceptual map corresponding to an artwork varies depending on both artwork’s
structure and the applied protective perturbations. Even for identical artwork,
the detectability of perturbations is affected by changing these as human sen-
sitivity varies with distortion type [11]. To this end, we propose an instance-
wise refinement (IWR), customizing the perceptual map M for each artwork.
During optimization, the perceptual map is refined through a weighted sum:
M(ω) =

∑K
k=1 softmax(ω)k ∗Mk, where ω is a set of learnable parameters that

adjust the contributions of each JND to M. The refinement parameters ω is
optimized using the objective function below:

LM = ||LSP(x+M′⊙δ)−LSP(x+M(ω)⊙δ)||22+
(∑d

i=1 |M(ω)i ∗ δi|p
) 1

p

(7)

with M′ being the initial perceptual map before the refinement steps. In Eq. 7,
the former term enforces the consistency of the refined perceptual map M with
the initial map M′ by minimizing the discrepancy in protection loss between
them. The latter term enhances the perception-aware protection for a given
specific image. Algorithm 1 (L7-10) details the procedure for this refinement.
As demonstrated in Fig. 4h, instance-wise refinement has a pronounced effect
as compared to the naive averaging approach (Fig. 4g), better capturing the
nuances of image-specific perceptual sensitivity.

3.2 Perceptual Constraint Bank

To further enhance the imperceptibility, we employ a bank of perceptual con-
straints across multiple feature spaces:
Masked LPIPS. LPIPS [63] is a widely used constraint and is also utilized
in GLAZE [49]. Our approach distinguishes itself by applying a masked LPIPS
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constraint, modulating the LPIPS influence using a perceptual map M. Let ϕl be
a l-th layer of the LPIPS network, with a corresponding feature map resolution
dl, the masked LPIPS is calculated as:

LL =
∑
l

1

dl

dl∑
i=1

Mi ∗ ||wl ∗ (ϕl(x)i − ϕl(x+ δ)i)||22, (8)

where wl is the channel-wise scale parameters. By focusing on perceptually signif-
icant regions with a mask, Impasto can achieve better protection performance.
Masked low-pass. In line with our motivation for perceptual protection, we
apply a pixel-domain constraint that focuses solely on the low-frequency com-
ponents. Inspired by Luo et al. [31], we implement a discrete wavelet transform
(DWT) to enforce a low-pass filter-based constraint. To tailor this constraint fur-
ther closely to human perception, we adjust the loss impact using a perceptual
map. The associated loss function is formulated as in below.

LLP =
1

d

d∑
i=1

Mi ∗ ||LP(x)i − LP(x+ δ)i||22, (9)

where LP(x) is the reconstructed image from the low-frequency component only.
For more details, please refer to Suppl. This constraint mimics observing a paint-
ing from a distance, where perturbations in smooth regions are perceptible, while
detailed textures hide these until we closely inspect the artwork. It reflects prac-
tical viewing where visibility depends on spatial detail and observer distance.
CLIP. We also leverage the CLIP [42] space which benefits from training on
a vast and varied dataset of image-text pairs. This extensive training enables
CLIP to evaluate image quality independently of the original image, offering a
novel approach to quality assessment within perceptual constraints. With the
prompt C = “Noise-free image", the CLIP constraint aims to maximize the
feature distance between the protected image and the descriptive prompt.

LC = −cos(CLIPI(x+ δ), CLIPT (C)), (10)

where CLIPI ,CLIPT are image and text encoders. The final protection loss,
L(x(i), δ,y,M) combines all the losses, weighted by their respective λs as:

L = LPAP + λLLL + λLPLLP + λCLC . (11)

Algorithm 1 overviews the protection process of Impasto. It is designed to
be versatile, allowing the integration of existing protection frameworks. Such
adaptability will be discussed in the next section as well as in Suppl.

4 Experiment

Implementation details. We optimize for N = 100 steps and IWR updates
M for P = 25 steps after perturbation optimization. Other settings are aligned
with that of baseline models; please refer to Suppl. for more details.



10 N Ahn et al.

Table 2: Quantitative comparison of protection methods w/ and w/o Impasto,
both selected for their comparable protection performance. Impasto markedly elevates
the protected images’ quality while maintaining comparable levels of protection efficacy.

Dataset Method
Protected Image Quality Protection Performance

DISTS (↓) PieAPP (↓) TOPIQ (↑) NIQE (↑) BRISQUE (↑) FID (↑)

Painting

PhotoGuard 0.181 (+0.000) 0.364 (+0.000) 0.896 (+0.000) 4.306 20.99 277.6
+ Impasto 0.159 (+0.022) 0.315 (+0.049) 0.912 (+0.016) 4.479 20.74 279.3

AdvDM 0.167 (+0.000) 0.730 (+0.000) 0.846 (+0.000) 3.761 12.45 269.0
+ Impasto 0.136 (+0.031) 0.531 (+0.199) 0.895 (+0.049) 3.897 12.54 271.6

Cartoon

PhotoGuard 0.249 (+0.000) 0.782 (+0.000) 0.797 (+0.000) 5.037 10.19 155.9
+ Impasto 0.207 (+0.042) 0.709 (+0.073) 0.886 (+0.089) 5.632 10.90 157.8

AdvDM 0.241 (+0.000) 0.776 (+0.000) 0.775 (+0.000) 4.802 10.95 153.5
+ Impasto 0.231 (+0.010) 0.774 (+0.002) 0.797 (+0.022) 4.793 11.87 154.0

Original artwork PhotoGuard + IMPASTO AdvDM + IMPASTO
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Fig. 5: Qualitative comparison of baseline methods with and without Impasto.
While maintaining comparable style protection efficacy (artifacts in the generated re-
sults), Impasto significantly enhances the protected images’ quality.

Datasets. We utilize two art domain datasets: painting and cartoon. The paint-
ing dataset is curated from WikiArt [51] with a selection of 15 artists, 10 works
per artist. The cartoon dataset is a collection of 15 cartoons with 10 cartoon
face images. Further details are in Suppl.

Evaluation. To evaluate protected image quality, we use DISTS [10], PieAPP [41],
and TOPIQ [4]. Protection performance is measured with NIQE [36], BRISQUE [35],
and FID [15]. In protection metrics, worse scores indicate more effective protec-
tion, as our objective is to prevent style mimicry. It is important to note that
some protection assessments, such as NIQE and BRISQUE, are non-reference-
based, leading to somewhat inconsistent scores. These tend to fluctuate instead
of showing a consistent progression with varying protection strengths. FID, al-
though potentially inconsistent due to a limited number of evaluation samples,
aligns more closely with human preferences in this task. Therefore, we further
validated Impasto’s effectiveness through human evaluation. For more detailed
settings on evaluation metrics, including the user study, please refer to Suppl.

Baseline. Impasto can be integrated into any methods generally formulated in
Eq. 4. Based on this, in our benchmark, we incorporate Impasto into Photo-
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Fig. 6: Style protection comparison. Protection performance is evaluated with
FID [15] and imperceptibility via DISTS [10]. Adaptation of Impasto to both Photo-
Guard [46] and AdvDM [30] ensures superior performance.

Guard [46] (encoder-based) and AdvDM [30] (UNet-based). In Suppl., applica-
tions to Mist [29] and Anti-DreamBooth [52] are also presented.

4.1 Model Comparison

Table 2 presents a quantitative comparison of visual quality under a comparable
protection performance of the models with and without Impasto. Across all the
scenarios, Impasto substantially enhances the fidelity of the protected images.
Fig. 5 also supports the superior efficacy of Impasto; it successfully minimizes
artifacts, in contrast to baselines that leave discernible traces on the artwork. It
is particularly pronounced in the cartoon dataset (bottom), where both vanilla
methods introduce noticeable artifacts in facial areas, potentially disrupting user
immersion when reading cartoons. In contrast, Impasto reduces artifacts signifi-
cantly, rendering them nearly invisible unless examined closely and meticulously.
User evaluation further confirms the effectiveness of Impasto (Fig. 7).

Fig. 7: User preference study (via A/B
test) of PhotoGuard [46] and AdvDM [30]
methods with and without Impasto.

Varying protection strengths. In
Fig. 6, we manipulate the protec-
tion strengths (budgets) to delineate
an imperceptibility-protection trade-
off curve. On both painting and car-
toon datasets, employing Impasto
into the baselines (PhotoGuard and
AdvDM) considerably improves the
trade-off dynamics; Impasto consis-
tently achieves higher imperceptibility with comparable protection performance,
or delivers enhanced protection without compromising image quality.

4.2 Model Analysis

Ablation study. In Table 3, we dissect components of Impasto. The proposed
PAP markedly improves image fidelity over the base model (Base*), albeit with a
slight reduction in protection efficacy. However, compared to the base model with
lower protection (Base**), PAP achieves superior preservation of protection per-
formance with enhanced image quality. We observed that when M is formed from
a random mask, not JND, (w/o JND), the protection performance is degraded.
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Table 3: Component analysis. We incrementally attach proposed components to
assess their contribution. PAP: perception-aware protection. w/o JND: initialize M
with random masks, not from JNDs. w/o Mask: Constraints without a perceptual
mapM. Base*: the baseline model (PhotoGuard [46]) with equal protection strength.
Base**: the baseline model with a similar level of protection performance.

Method
Image Quality Protection Performance

DISTS (↓) TOPIQ (↑) BRISQUE (↑) FID (↑)

Base* 0.212 0.845 17.66 299.1

+ PAP 0.171 0.890 20.05 286.8
w/o JND 0.170 0.892 20.45 278.1

+ LPIPS 0.163 0.910 21.24 280.4
+ Low-pass 0.163 0.911 21.25 277.5
w/o Mask 0.163 0.911 19.74 272.6
+ CLIP 0.159 0.912 20.74 279.2

Base** 0.181 0.896 20.99 277.6

Table 4: Perception-aware protection. The efficacy of individual JNDs (LA and
CM since they show superior results) is presented along with an averaged perceptual
map and with IWR. IWR†: IWR is conducted before perturbation optimization.

Method
Image Quality Protection Performance

DISTS (↓) TOPIQ (↑) BRISQUE (↑) FID (↑)

Baseline 0.212 0.845 17.66 299.1

LA 0.175 0.879 18.29 284.7
CM 0.169 0.882 17.44 280.8

Average 0.170 0.891 17.42 277.9
IWR† 0.171 0.894 19.26 282.5
IWR 0.171 0.890 20.05 286.8

One might expect that the JND maintains protection scores while improving
image quality. Indeed, the random mask constrains the protection intensity in
a similar level to the JND-based map. This is because both maps are normal-
ized between 0 and 1. As a result, they yield similar perturbation magnitudes,
leading to a comparable image quality. Nonetheless, the JND-based perceptual
map prioritizes less sensitive regions for perturbation while reducing it in highly
sensitive areas. Despite the similar protection magnitudes, the JND-based PAP
achieves more effective protection. This hints at the possibility that the JND
maps are helpful in finding the areas that are important for style protection. For
instance, in areas with complex textures, the PAP applies more perturbations
than its non-JND counterpart as shown in Fig. 4e. However, these perturbations
are typically imperceptible to humans, thereby ensuring perceptually acceptable
image quality. Employing a constraint bank significantly improves image quality
with comparable protection scores to the baseline (Base**). The omission of the
perceptual map M in the constraints (w/o Mask) leads to a decline in protec-
tion performance, akin to the observations in the PAP case; as we confine the
influence of constraints in a perceptual manner, it improves protection efficacy.
Perceptual map. We also analyze the proposed perception-aware protection
in Table 4. LA and CM, which are the best JNDs as demonstrated in Table
1, enhance the fidelity of the protected images but at the cost of significantly
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Fig. 8: Generalization. Impasto does not impede baselines’ generalization abilities
on (a) diverse personalization methods; DreamBooth [44], LoRA [17], and Dream-
Styler [1] or (b) model black-box scenario; optimize on SD v1.5 and test on SD v2.1.

compromising protection performance. Creating a perceptual map with multiple
JNDs through averaging leads to better image quality compared to scenarios with
a single JND. However, this approach also substantially reduces the effectiveness
of protection. We speculate that such a straightforward averaging method may
not adequately capture the unique structural elements of the image, resulting
in overly smooth perturbations that could weaken the protection performance.
On the other hand, IWR enhances all protection scores while preserving sat-
isfactory image quality, as it can adapt to the specific textures and structures
of a given artwork. It’s noteworthy that applying IWR prior to perturbation
optimization (IWR†), where it does not consider the perturbations, slightly di-
minishes protection performance, accentuating the importance of modeling the
interplay between artwork and applied perturbation to finalization mask M.
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Fig. 9: Evaluation on robustness.
Methods with Impasto exhibit comparable
protection performance to baselines.

Countermeasures. To analyze the
robustness of Impasto, we conduct
countermeasure experiments involv-
ing JPEG compression (q = 40),
Gaussian blur (3×3 kernel, σ = 0.02),
and Gaussian noise (σ = 0.02). Re-
sults indicate a performance degrada-
tion of all protection methods when
these countermeasures are applied, as
they tend to remove the protective
perturbations (Fig. 9). Nonetheless, Impasto demonstrates comparable robust-
ness against such countermeasures. For the blur effect, there is a slight per-
formance degradation with Impasto, as subtle perturbations are particularly
weakened to this; we also observed that baseline with low-budget protection is
also vulnerable to blur operation. However, the blurring effect also renders the
artwork less plausible, making it an impractical choice for malicious users. The
most commonly used method is likely JPEG compression, as it preserves the
artwork’s fidelity while being readily applicable.
Black-box scenario. We extend to evaluating the impact of Impasto on the
performance of protection when trained with other personalization methods.
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Table 5: Quantitative comparison on facial datasets.

Dataset Method
Protected Image Quality Protection Performance

DISTS (↓) PieAPP (↓) TOPIQ (↑) NIQE (↑) BRISQUE (↑) FID (↑)

CelebA-HQ

PhotoGuard 0.280 (+0.000) 0.379 (+0.000) 0.878 (+0.000) 5.031 15.36 233.1
+ Impasto 0.266 (+0.014) 0.376 (+0.003) 0.880 (+0.002) 5.161 14.13 234.6

AdvDM 0.213 (+0.000) 0.573 (+0.000) 0.832(+0.000) 4.051 10.05 278.8
+ Impasto 0.195 (+0.018) 0.522 (+0.051) 0.854(+0.022) 4.080 10.59 273.6

VGGFace2

PhotoGuard 0.270 (+0.000) 0.413 (+0.000) 0.870 (+0.000) 5.916 19.73 253.9
+ Impasto 0.255 (+0.015) 0.413 (+0.000) 0.868 (-0.002) 5.746 19.39 257.0

AdvDM 0.206 (+0.000) 0.589 (+0.000) 0.821 (+0.000) 3.977 8.43 292.9
+ Impasto 0.187 (+0.019) 0.543 (+0.043) 0.846 (+0.025) 3.986 9.86 289.8

PhotoGuard + IMPASTO AdvDM + IMPASTO

Protected Generated Protected Generated Protected Generated Protected Generated

Fig. 10: Qualitative comparison on facial dataset.

We adopt LoRA [17], a standard personalization technique in the art creation
community, and DreamStyler [1], known for its effectiveness in style adaptation
using a textual inversion approach. As illustrated in Fig. 8a, Impasto maintains
robust protection effectiveness even with these personalization methods.

In style protection, generalization robustness against unknown models is also
a crucial aspect. To examine this, we compare by optimizing on SD v1.5 and
testing on SD v2.1, following the setups of Van et al. [52]. As illustrated in Fig.
8b, Impasto successfully preserves the robustness of PhotoGuard and AdvDM.
Overall, in both facets of the black-box scenario; unknown personalization meth-
ods and diffusion models, Impasto not only maintains the generalization ability
but also effectively reduces the artifact on the protected images.

4.3 Impasto in Other Domain

Although Impasto is initially proposed to prevent style imitation, its applicabil-
ity can be extended beyond other domains or applications. To validate this, we
conduct protection on two facial datasets, CelebA-HQ [20] and VGGFace2 [3].
As demonstrated in Table 5 and Fig. 10, adopting Impasto in these natural do-
mains can also enhance the quality of protected images without compromising
the protection performance of baseline models. This broad applicability high-
lights Impasto’s versatility and potential as a universal tool for protecting users’
copyright and preventing serious threats of deepfakes.

5 Conclusion

We have introduced Impasto to prevent style imitation in perceptual orienta-
tion. With a proposed perceptual map, Impasto markedly improves the quality
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of the protected images. A perceptual constraint bank further boosts perfor-
mance, establishing our method as a versatile and superior protector of artwork.
Limitations. Current protection methods mostly adopt adversarial perturba-
tions, which can hamper usability due to the extensive time required for the
optimization. Even accessible software [49] takes 30-60 mins to protect a 5122

image on an M1 Max CPU. Addressing this time constraint is a challenge that
future research should aim to overcome.
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A Method Details

In this section, we describe the details of Impasto— the computation and dis-
cussion of JND estimations (Sec. A.1), perceptual constraints (Sec. A.2), and
the implementation specifics (Sec. A.3).

A.1 JND Estimations

In our study, we investigated five JND models, and here we we provide a compre-
hensive elucidation of the fundamental rationale of these estimations and delve
into the specifics of their computations:
Luminance adaptation (LA): The visibility thresholds within the human vi-
sual system vary to luminance levels [19]. For instance, our eye is more sensitive
under moderate lighting conditions, while discrimination is challenging in a very
dark light. Similarly, we observed that perturbations are less noticeable in re-
gions with extremely low or high luminance, prompting an increase in protection
strength within these areas. To implement this concept, luminance adaptation
is computed following Chou and Li [5] as in the below equation.

LA(x) =

{
17×(1−

√
B(x)
127 )+3, if B(x) ≤ 127

3
128×(B(x)−127)+3, otherwise,

(12)

where B(x) is the background luminance, which is calculated as the mean lumi-
nance of a local 3 × 3 block. With this formulation, the sensitivity (the inverse
of LA) peaks at luminance ranging from 100 to 200. As luminance approaches
an extremely low value (darker area), human perception fails to discern minor
variations. Conversely, at high luminance levels, the detection ability becomes
progressively more difficult, albeit less so compared to the darker regions.
Contrast masking (CM): It is obvious that stimuli become less perceptible
against patterned, non-uniform backgrounds. In our context, perturbations can
seamlessly blend into regions with intricate textures, while they leave distinct
traces on flat surfaces. To simulate this effect, we first compute the luminance
contrast [26] by convolving an input image with four directional filters. This
process highlights the complexity of a region by contrasting it with its immedi-
ate surroundings. Subsequently, contrast masking is established by mapping the
luminance contrast onto a logarithmic curve [57].

CM(x) = 0.115× 16× LC(x)2.4

LC(x)2 + 262
, (13)

where luminance contrast LC(x) is obtained via four directional filters as LC(x) =
1
16 × maxk=1,...,4|x ∗ ∇k| following Wu et al. [58].
Contrast sensitivity function (CSF): The human visual system exhibits a
band-pass response to spatial frequency and CSF represents a function of how
our eye is sensitive to the contrast of signals at various spatial frequencies. High
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spatial frequencies correspond to rapid changes in image details, and contrast
sensitivity is optimal at moderate spatial frequencies. Beyond a certain frequency
threshold, known as the resolution limit, our eyes are unable to detect changes.
Upon this concept, several studies have introduced and modified the CSF [8,25,
33,34]; the CSF model H(f, θ) is given below.

H =

{
2.6× (0.0192 + 0.114fθ)e

−(0.114fθ)
1.1

, if f ≥ 7.8909

0.981, otherwise.
(14)

Here, f is the radial spatial frequency, measured in cycles per degree of visual
angle (c/deg). The variable θ, ranging from [−π, π], denotes the orientation.
Additionally, fθ = f/[0.15× cos(4θ) + 0.85] accounts for the oblique effect [25].

The CSF model is now applied to an image in the frequency domain as xcsf =
F−1[H(u, v)×F(x̌)], where F [·] and F−1[·] represent the DFT and its inverse,
respectively. Here, H(u, v) is the DFT-version of H(f, θ), with u, v being the
DFT indices. The transformation from H(f, θ) to H(u, v) is elaborated in Larson
et al. [25]. Prior to applying the CSF model, an input image x is converted
into a perception-adjusted luminance form to reflect the non-linear relationship
between digital pixel values and physical luminance [25]. This is achieved by
calibrating x to the settings of an sRGB display and converting it into perceived
luminances, which indicates the relative lightness: x̌ = 3

√
(0.02874x)2.2.

Standard deviation: It has served as a crucial metric for quantifying the struc-
tural information of an image, both in pixel space [55] and feature space [10].
Given that perturbations tend to be less noticeable in areas exhibiting high levels
of change, (as discussed in contrast masking), we focus on these sudden changes,
interpreting them as structural components. For this purpose, we compute the
block-wise standard deviation in pixel space using a 9× 9 local block.

Entropy: Similar to standard deviation, block-wise entropy is calculated using
a 9×9 local window. This approach is based on the concept that the complexity
of a local region influences the detectability of subtle perturbations. The higher
the local entropy, the more intricate the region, potentially rendering minor
perturbations less perceptible.

Post-processing: All the JND estimations are min-max normalized and then
inverted by subtracting from one. When constructing a perceptual map M with
JND estimations, we encountered issues with some JNDs displaying extremely
skewed distributions. Additionally, the distributions of JNDs often do not align
with each other, posing challenges in their combination. While standardization
aligns the distributions, we found that the continuous JND values provide weak
signals as masks (e.g . on average, the protection strength drops to 50% compared
to the original). To give a more distinct signal depending on the JND values, we
discretize the scores by quantizing the JND values. This involves calculating JND
quantiles, where the first quantile is set to 1.0. For each subsequent quantile, we
multiply by a factor of β to decrease the value in a discrete manner. We use
β = 0.85, resulting in quantized JND values across four quantiles as [1.0, 0.85,
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0.7225, 0.6141]. This allows for a more nuanced adjustment of the protection
intensity while accommodating the varied distributions of JND estimations.

A.2 Perceptual Constraints

Masked LPIPS. We use AlexNet [23] as the backbone network for the LPIPS
loss, adhering to the parameter settings in the official LPIPS documentation.
Masked low-pass. In this constraint, we utilize LP(·), a reconstruction func-
tion focusing on the low-frequency component. Inspired by Luo et al. [31], we
implement a DWT-based reconstruction module. Given an input image x, DWT
decomposes it into one low-frequency component and three high-frequency com-
ponents, as expressed by the following equations.

xll = LxLT , xlh = HxLT , xhl = LxHT , xhh = HxHT . (15)

L and H represent the low-pass and high-pass filters of an orthogonal wavelet,
respectively. To reconstruct an image using only its low-frequency component,
we input xll alone into the inverse DWT function. Thus, LP(x) is defined as:

LP(x) = LTxllL = LT (LxLT )L. (16)

CLIP. As outlined in Eq. 10, Impasto focuses on maximizing the feature dis-
tance between the protected image and the prompt C = “Noise-free image”.
While it is conceivable to minimize the distance using a ‘bad’ prompt (e.g . C =
“noisy image”) or to integrate both ‘good’ and ‘bad’ prompts, we observed that all
these show comparable performance. Therefore, we opted to employ the ‘good’
prompt only in the CLIP-based constraint.

A.3 Implementation Details

When we implement Impasto into the existing protection methods, we adhere to
their respective settings for optimizing perturbations. Regarding the Impasto’s
own components, we use following hyperparameters depicted in Eq. 11 as: λL =
5.0, λLP = 10.0, λC = 0.1. For our PAP (Eq. 6), we utilize the L∞ norm. On the
other hand, for the IWR loss (Eq. 7), we employ the L2 norm. When we calculate
IWR loss, since the distance between LSP respect to M′ and M(ω) (first term)
is significantly smaller than the L2 constraint (second term), we amplify the
former term by a factor of 5 × 107. In addition, during our experiments, it
was observed that the magnitudes of LE and LSD differ considerably, with the
SD loss exhibiting much smaller values. Therefore, when integrating Impasto
into UNet-based protection methods (e.g . AdvDM [30], Anti-DreamBooth [52],
Mist [29]), we further scale down all the λL, λLP , λC by a factor of 0.05. This
adjustment is made to balance the influence of our proposed components across
both protection methods, ensuring that the impact of Impasto is consistent and
effective in enhancing image protection.
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B Experimental Settings

Datasets. To create the “painting” dataset, we gather artworks from the WikiArt
dataset [51]. This dataset includes selections from 15 artists, 10 artworks per
each. The “cartoon” dataset is sourced from the NAVER WEBTOON platform;
images are cropped to contain only character depictions. This comprises 15 car-
toons with 10 cartoon character images each.
Evaluation. To assess the quality of the protected images, we utilize three deep
learning-based full-reference quality assessments: DISTS [10], PieAPP [41], and
TOPIQ [4]. These measures compare the protected images against the original
artworks. DISTS is designed to be sensitive to structural changes while exhibiting
explicit tolerance to texture resampling. It achieves this by evaluating both the
mean and correlation of feature maps from the compared images. PieAPP mea-
sures the perceptual error of a distorted image with respect to a reference and
its training dataset. TOPIQ adopts a top-down approach, leveraging high-level
semantics to direct the quality assessment network’s focus towards semantically
significant local distortion regions.
For evaluating protection performance, we employ NIQE [36], BRISQUE [35],
and FID [15]. NIQE and BRISQUE are blind image quality assessment meth-
ods that only use generated images for evaluation. BRISQUE operates on the
premise that distortions in natural images disrupt pixel distributions as well. It
processes an input image and then extracts features, which are finally mapped
to a mean opinion score using an SVM regressor [47]. NIQE, in contrast, does
not rely on opinion scores but instead assesses the quality of an image by com-
paring its statistical properties with those of a clean image dataset. Despite
their widespread use, these methods have limitations in our context: 1) They
are designed primarily for natural image domains, making their measurements
potentially unreliable in artistic domains, particularly for cartoons. 2) Tradi-
tional non-reference assessments focus on common distortions such as JPEG
compression, blurring, and Gaussian noise, which may not effectively capture
the unique artifacts in generated images in our task. FID, conversely, measures
the distance between two distributions—the original artwork and the generated
image—providing more reliable assessments. For example, as protection strength
increases, FID is the only metric where scores worsen.
User study. We conducted a user study in the form of an A/B test with a
reference image as a benchmark. A total of 44 participants were involved, tasked
with determining the better-quality protected image (given the reference origi-
nal artwork) and identifying the lower-quality generated image (given a reference
DreamBooth generated image). Each participant was asked to vote on 8 ques-
tions for PhotoGuard [46] and another 9 for AdvDM [30].

C Additional Analyses and Results

Ablation study. In Table 6, we conduct additional component analysis by
omitting certain components from the full Impasto framework. Specifically, we
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Table 6: Component analysis. Within Impasto, we conduct an analysis by ex-
cluding the JND-based perceptual map generation, resulting in the creation of the
perceptual map from random masks (denoted as w/o JND). Additionally, we evaluate
the impact of omitting the perception-aware protection (denoted as w/o PAP).

Method
Protected Image Quality Protection Performance

DISTS (↓) TOPIQ (↑) BRISQUE (↑) FID (↑)

Impasto (Full model) 0.159 0.912 20.74 279.3
w/o JND 0.158 0.912 19.30 268.1
w/o PAP 0.199 0.890 17.57 281.1

Table 7: Evaluating the impact of varying refinement Step P . In this analysis,
we explore the effects on performance when adjusting the number of refinement steps
P within the instance-wise refinement process.

Method
Protected Image Quality Protection Performance

DISTS (↓) TOPIQ (↑) BRISQUE (↑) FID (↑)

P = 100 0.159 0.913 19.29 278.4
P = 75 0.159 0.913 19.06 278.2
P = 50 0.158 0.913 18.19 279.7
P = 25 0.159 0.912 20.74 279.3
P = 10 0.159 0.913 18.49 274.3

assess the impact of 1) removing the JND-based perception map, which results
in initializing M with random masks (w/o JND), and 2) excluding the proposed
perception-aware protection (PAP), thereby relying solely on the perceptual con-
straint bank (w/o PAP). For the w/o JND case, in contrast to Table 3, we start
with a full-component model and remove only the JND part. The results indicate
that discarding the JNDs leads to a decrease in protection performance while
maintaining similar image quality, corroborating the findings in Table 3. When
PAP is not applied, there is a slight increase in protection performance (FID:
279.3 → 281.1) with significant compromise on image quality. These observations
suggest that the integration of PAP alongside a JND-based perceptual map is
crucial for achieving an imperceptible style protection framework that effectively
balances protection performance with image quality.
Varying refine step in IWR. In this analysis, we investigate the effect of
varying the refining step P during the instance-wise refinement (IWR) process
(Algorithm 1 L8-10) and assess the changes in protection performance (Table 7).
We observe that though P is decreased from 100 to 25, both the image quality
and protection capability remain relatively consistent. This performance stability
can be attributed to the initial utilization of a JND-based perceptual map M,
which necessitates only minor adjustments during the IWR step. However, a
notable reduction in protection performance is shown when P is reduced to 10,
indicating that such a small step is insufficient for achieving optimal refinement.
Consequently, we set P = 25 as the default setting, balancing both performance
efficacy and the number of optimization steps.
Impasto with other protection methods. In addition to PhotoGuard [46]
and AdvDM [30], we extend the application of Impasto to recent protection
techniques, Anti-DreamBooth [52] and Mist [29]. Anti-DreamBooth, a variant
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Table 8: Quantitative comparison of protection methods w/ and w/o Impasto,
both selected for their comparable protection performance. Impasto markedly elevates
the protected images’ quality while maintaining comparable levels of protection efficacy.

Dataset Method
Protected Image Quality Protection Performance

DISTS (↓) LPIPS (↓) TOPIQ (↑) NIQE (↑) BRISQUE (↑) FID (↑)

Painting

Anti-DB [52] 0.151 (+0.000) 0.081 (+0.000) 0.876 (+0.000) 3.865 13.63 266.1
+ Impasto 0.138 (+0.013) 0.008 (+0.073) 0.889 (+0.013) 3.780 12.60 270.9

Mist [29] 0.167 (+0.000) 0.100 (+0.000) 0.846(+0.000) 4.052 13.96 272.2
+ Impasto 0.144 (+0.023) 0.077 (+0.023) 0.879(+0.033) 3.830 11.11 273.0

Cartoon

Anti-DB [52] 0.260 (+0.000) 0.154 (+0.000) 0.700(+0.000) 4.437 15.48 160.6
+ Impasto 0.234 (+0.026) 0.027 (+0.127) 0.782(+0.092) 4.589 12.35 161.0

Mist [29] 0.256 (+0.000) 0.160 (+0.000) 0.709(+0.000) 4.597 10.86 158.7
+ Impasto 0.238 (+0.018) 0.077 (+0.083) 0.772(+0.063) 4.693 11.23 158.3

of AdvDM, incorporates DreamBooth tuning into its optimization process. Mist
utilizes a hybrid approach, combining both Encoder (e.g . PhotoGuard) and
UNet-based (e.g . AdvDM) protection methods (similar to Eq. 4). We adhere
to the hyperparameters specified in their official implementations. Regarding
Impasto, we employ the same settings used in our application to AdvDM (Sec.
A.3), for both Anti-DreamBooth and Mist. As shown in Table 8, Impasto no-
tably enhances the quality of the protected images with comparable protection
performances. Fig. 11 and 12 also support the efficacy of our method; Impasto
significantly diminishes visual artifacts in the protected images while preserving
the original methods’ style protection ability. These experiments highlight the
adaptability and efficacy of Impasto across various protection frameworks.
Additional qualitative results. Fig. 13 and 14 provide additional visual com-
parisons, illustrating the impact of applying Impasto in conjunction with Pho-
toGuard [46] and AdvDM [30], respectively.
We also compare the robustness on countermeasure of Impasto in Fig. 15, in-
cluding JPEG compression, blurring, and noise addition. Across all these coun-
termeasures, our method demonstrates a protection capability comparable to
that of the baseline. Furthermore, in Fig. 16, we present additional qualitative
results demonstrating the generalization capability of Impasto. When applied
to three different personalization methods—DreamBooth, LoRA, and Dream-
Styler—Impasto maintains performance levels akin to those observed in their
respective non-Impasto implementations. This highlights the effectiveness and
adaptability of Impasto across diverse personalization techniques.
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Fig. 11: Qualitative comparison of Anti-Dreambooth [52] with and without Im-
pasto.
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Fig. 12: Qualitative comparison of Mist [29] with and without Impasto.
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Fig. 13: Qualitative comparison of PhotoGuard [46] with and without Impasto.
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Fig. 14: Qualitative comparison of AdvDM [30] with and without Impasto.
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Fig. 15: Qualitative comparison on robustness. Methods with Impasto exhibit
comparable protection to the baselines.
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Fig. 16: Qualitative comparison on generalization. Impasto does not impede
protection methods’ generalization abilities across diverse personalization methods;
DreamBooth [44], LoRA [17], and DreamStyler [1]
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