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Abstract—Modern scientific applications are increasingly de-
composable into individual functions that may be deployed across
distributed and diverse cyberinfrastructure such as supercom-
puters, clouds, and accelerators. Such applications call for new
approaches to programming, distributed execution, and function-
level management. We present UniFaaS, a parallel program-
ming framework that relies on a federated function-as-a-service
(FaaS) model to enable composition of distributed, scalable,
and high-performance scientific workflows, and to support fine-
grained function-level management. UniFaaS provides a unified
programming interface to compose dynamic task graphs with
transparent wide-area data management. UniFaaS exploits an
observe-predict-decide approach to efficiently map workflow
tasks to target heterogeneous and dynamic resources. We pro-
pose a dynamic heterogeneity-aware scheduling algorithm that
employs a delay mechanism and a re-scheduling mechanism to
accommodate dynamic resource capacity.

Our experiments show that UniFaaS can efficiently execute
workflows across computing resources with minimal scheduling
overhead. We show that UniFaaS can improve the performance
of a real-world drug screening workflow by as much as 22.99%
when employing an additional 19.48% of resources and a mon-
tage workflow by 54.41% when employing an additional 47.83%
of resources across multiple distributed clusters, in contrast to
using a single cluster.

Index Terms—federated cyberinfrastructure, federated func-
tion serving

I. INTRODUCTION

The rapid adoption of hardware accelerators and exponential
increases in data volumes have spurred a major transformation
in the nature of programming. Developers increasingly decom-
pose previously monolithic workflows into many individual,
often lightweight tasks [1]. These tasks may be individual
functions or executables developed in different programming
languages, with varied resource requirements—from single-
core functions and multi-core simulation codes, to accelerator-
based computations. When workflows are decomposed in this
way, it is then feasible, and indeed often desirable, to execute
different tasks in different locations: for example, where accel-
erators or resources are available, where software is installed,
near data, or with the best cost-performance efficiency.

Unfortunately, such fine-grain workflows are not well sup-
ported by current research cyberinfrastructure (CI) that is
managed by batch schedulers designed for scheduling large
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batch jobs and typically have long (and unpredictable) queue
times. As researchers often have access to a resource pool con-
taining several computing resources (e.g., institutional clusters,
supercomputers, and accelerators), one may want to exploit
these resources concurrently to amortize queue times (though
perhaps at the cost of additional data transfers) for faster
scientific analyses. For example, it may take only minutes
to transfer gigabytes and hours to transfer terabytes [2],
but days to obtain hundreds of nodes on an oversubscribed
supercomputer.

As a result, researchers increasingly use multiple resources
together across federated CI (e.g., supercomputers, clouds,
accelerators, and local compute) to run a single workflow—a
landscape referred to as cross-facility computing [3]. Such a
trend towards fine-grained and distributed scientific workflows
drives new system requirements. To name just a few (more
are described in §II): 1) programmability to allow users to
construct programs able to execute on diverse and distributed
CI with minimal barriers; 2) automatic fine-grained task-level
management in terms of resource provisioning and heteroge-
neous environment management; and 3) enabling flexible task
execution on dynamic resources as the resource availability
across federated CI may change at runtime.

Myriad systems have been developed to address the needs
of users writing and deploying workflows [4]. While these
systems address some of the requirements above, none address
the entire set of requirements. For example, many workflow
systems [5], [6] rely on domain-specific languages to support
workflow composition. Python-based computing frameworks
such as Ray [7], Parsl [8], and Dask [9] support develop-
ment of parallel programs on a single computer but cannot
easily adapt to federated CI. Pegasus [10] leverages a static
configuration-based model to compose scientific workflows as
directed-acyclic graphs (DAGs) but requires deployment of
HTCondor [11] which is rarely supported on HPC systems
and cannot support fine-grained task-level management.

While in principle one can develop modern workflows by
writing batch scripts or combining various workflow systems
for federated CI, this approach in practice not only imposes
a significant development and management burden (e.g., fault
tolerance, data movement, and resource management) on re-
searchers, but is also not flexible, scalable, or portable across
computers, reducing efficiency and reproducibility that are
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crucial for science [12].
We present UniFaaS, a general-purpose, parallel program-

ming framework that adapts a federated function-as-a-service
(FaaS) model to enable developers to compose distributed,
scalable, and high-performance scientific workflows that span
federated CI. The FaaS model, first implemented by commer-
cial cloud providers [13], can benefit modern scientific appli-
cations from several perspectives. FaaS reduces the burden of
managing computing resources and instead exposes a function-
based API that allows users to manage and schedule scientific
workflows at a fine-grained function level. Further, it enables
the use of containers to both simplify the management of
complicated environments and reduce portability challenges.
Finally, FaaS, by definition, abstracts the resource pool and
thus enables resources to be dynamically added (or removed)
during execution.

We implement UniFaaS upon funcX [14], [15], a federated
FaaS platform that extends the FaaS model and enables users
to invoke functions on arbitrary resources. UniFaaS provides a
unified programming interface to express task parallelism and
compose dynamic dependency graphs, which can be further
deployed across distributed resources seamlessly. UniFaaS
implements a data manager to transparently manage data
transfers across computers on behalf of users, using widely-
used transfer mechanisms such as Globus [16] and rsync.

It is non-trivial to achieve high performance in cross-
facility computing, since the resources across federated CI are
heterogeneous and each resource may have dynamic capacity
during execution due to scheduled downtimes and use by
others.

In this paper, we explore an observe-predict-decide ap-
proach to improve the performance: UniFaaS monitors the
key characteristics (e.g., input data sizes and environments)
of tasks on different computers and predicts the task per-
formance (e.g., transfer and execution time) using common
performance models. We propose a dynamic heterogeneity-
aware scheduling algorithm that employs a delay mechanism
and a re-scheduling mechanism to accommodate the work-
flow and resource dynamics. UniFaaS supports elasticity—it
can automatically scale various resources based on workflow
characteristics. Furthermore, the modular design of UniFaaS
allows users to easily plug in any appropriate schedulers or
data transfer mechanisms for their workflows.

To the best of our knowledge, UniFaaS is the first frame-
work that adapts the convenient federated FaaS model to
enable monolithic workflows to be broken into small schedu-
lable function units that can be flexibly executed across a
resilient, federated resource pool. In this paper, we explore the
feasibility of adapting the FaaS paradigm and aim to design
an extensible system to address the unique challenges of
programmability, scheduling, and data management (more in
§II) in cross-facility computing. Together, these features enable
productive parallel programming and simple, yet performant,
execution management on federated CI.

The contributions of our work are as follows:

• We design UniFaaS, a general-purpose parallel program-
ming framework that simplifies workflow structuring and
enables fine-grained function-level management of work-
flows in federated environments.

• We propose a dynamic heterogeneity-aware scheduler and
a re-scheduling mechanism to handle heterogeneous and
dynamic computing environments.

• Our evaluation shows that UniFaaS can deploy workflows
across up to 16 computing resources with high perfor-
mance.

• We discuss lessons learned when using UniFaaS in real
use cases and identify areas for further improvement.

The rest of this paper is as follows. §II presents general
requirements for modern scientific workflows. §III presents the
programming model of UniFaaS. §IV describes the UniFaaS
system architecture, optimizations, and implementations. §V
evaluates UniFaaS’s performance. §VII discusses the lessons
learned with UniFaaS. §VIII discusses related work. §IX
concludes the paper with future remarks.

II. MOTIVATION AND BACKGROUND

In this section, we highlight the key requirements for
modern scientific workflows deployed across federated CI by
describing a real-world use case. We note that these charac-
teristics are shared by many use cases, for example in modern
AI-driven simulations and data-driven workflows [17]–[26].
Further, recent work has shown that such distribution can also
improve energy consumption of workflows [27].

The COVID-19 pandemic highlighted the need for dis-
covery of effective therapeutics among a near-infinite search
space of small molecules. One common way to accelerate
the design and development of antiviral treatments is to use
machine learning (ML) models to computationally screen
small molecules rapidly, much faster than is possible with
wetlab studies. A typical drug screening pipeline [28] involves
multiple computational stages, such as molecular simulations,
feature computations, fingerprinting, etc., each with distinct
computational needs. Each stage relies on different toolkits and
methods (e.g., simulation, machine learning), requires different
types of resources (e.g., CPUs, accelerators) and different
amounts of those resources, and has diverse task features (e.g.,
parallelism, dependency, duration, input size). Computers also
vary significantly in characteristics, for example, some may
be powerful but have long queue times while others may have
fewer resources but are immediately available. An application
that needs, for example, to screen millions of molecules
quickly must be able to adapt to these different tasks and
resource characteristics.

These modern use cases motivate the need for deployment
in federated environments and exhibit the following key re-
quirements.
1) Fine-grained management: workflows usually consist of

tasks with diverse requirements on resources, environ-
ments, software dependencies, data locations, etc., and thus
require fine-grained task-level management automatically
to reduce the burden on users.



2) Portability: scientific applications require portability in
different dimensions: first, a workflow may run on various
computing resources with different environments for repro-
ducing and sharing [28]; second, a stage may be portable
to different computations, e.g., different ML models or
different methods.

3) Elasticity: workflows may have different resource de-
mands at different stages, and thus require elasticity, i.e.,
automatic resource provisioning.

4) Programmability: one should be able to use simple and
straightforward languages to express parallelism and com-
pose workflows with dynamic dependency graphs.

5) Data dependency: handling complex data dependencies
across CI is complicated. Abstracting data movements
between resources is crucial to simplify development.

6) Dynamic execution: a workflow may be dynamically
changing based on the prior computation results and its
functions may execute dynamically on various resources
based on resource availability and status.

7) Performance: given the heterogeneous and dynamic (re-
source availability may vary) nature of modern CI, tasks
require to be scheduled to appropriate resources with high
performance.

Existing systems only partially satisfy these requirements and
in general are not designed to manage computation across
federated CI. We are thus motivated to develop UniFaaS.
UniFaaS leverages funcX as the main execution backend.
funcX is a federated function serving fabric and supports
executing function tasks on arbitrary computing resources in
a FaaS manner. UniFaaS leverages two main components in
funcX: endpoint and client.

An endpoint represents a computing resource that can
execute tasks using the FaaS model, i.e., the endpoint can
elastically launch multiple worker processes (or containers)
and assign a task to a worker to be performed. One can deploy
the endpoint software on any computer and integrate it into
the execution fabric as an available resource.

The funcX client provides a secure means to interact with
the cloud-hosted funcX web service to submit function tasks to
specific endpoints, track task states, and retrieve task results.
When a function task is submitted to UniFaaS, UniFaaS
employs internally the funcX client to dispatch the task to
the remote endpoint and retrieve the results.

We leverage funcX as the execution backend for two impor-
tant reasons. First, funcX allows one to easily add/remove a
resource via its flexible endpoint software. Second, the FaaS
model can inherently satisfy requirements 1–3: fine-grain func-
tion management, portability, and elasticity. However, funcX
offers only an independent task execution interface. There are
still research challenges (e.g., programmability, data, dynamic
execution, and performance) toward a simple programming
model across a resilient, federated resource pool. In this paper,
we discuss how we design UniFaaS to satisfy the requirements
and solve the challenges of adapting the FaaS model for
programming federated scientific workflows.

III. PROGRAMMING WITH UNIFAAS

To satisfy the programmability requirement, UniFaaS adopts
a Python-based programming model and allows users to com-
pose workflows with dynamic dependency graphs.

A. Programming Model

Functions and tasks: A function can be a pure Python
function or a function call to other software. Each function to
be executed on remote computing resources must be decorated
with @function. A task represents an invocation request
of a function. The invocation to a decorated function does
not return results immediately, but instead returns a Future
object, indicating that the function instance is being executed
asynchronously. A function may accept Python objects or
Future objects of other tasks as input arguments. This mech-
anism is commonly used in existing Python-based systems
such as Dask [9], Parsl [8], and Ray [7].

Data: A function may be invoked with Python objects and
files as input arguments. Python objects are directly serialized
when passed as input arguments. There is a hard limit on the
size (10 MB) of a Python object that can be passed among
resources in funcX. Any object with a size larger than the limit
must be serialized and invoked as a RemoteFile object.

UniFaaS enables users to read and write files via the
RemoteFile object in a function. When a task needs files
located on a remote resource, UniFaaS supports transferring
the files via two mechanisms: Globus [16] and rsync. The
RemoteFile object includes two subclasses: GlobusFile
and RsyncFile (more details in §IV-E). We will use
GlobusFile below to illustrate the programming model.

1 @function
2 def compute fingerprint ( GlobusFile : mol file ) :
3 from rdkit import *
4 import GlobusFile
5

6 mol path = mol file . get remote file path ( )
7 molecule = open (mol path ) . readline ( )
8 fp = AllChem. GetMorganFingerprint (
9 Chem.MolFromSmiles ( molecule ) , 2)

10

11 out f i le = GlobusFile . create ( ” fp . txt ” )
12 out path = out f i le . get remote file path ( )
13 open ( out path , ’w ’ ) . write ( fp )
14 return out f i le

Listing 1. An example function with GlobusFile. The function is to compute
the fingerprint of a molecule in SMILES format.

Listing 1 shows a compute_fingerprint function
that accepts a mol_file parameter of type GlobusFile.
The path of the remote file can be retrieved via the
get_remote_file_path() method and further read-
/write operations on the file can be done via Python’s built-in
I/O libraries. One needs to call the GlobusFile.create
method to create a new file on the remote compute resource,
which returns a GlobusFile object that can be recognized
and managed by UniFaaS.

B. Dynamic Task Graph

UniFaaS represents a workflow as a directed acyclic graph
(DAG), where each node indicates a task and each edge



indicates a dependency between two tasks. UniFaaS allows
passing future objects as function arguments to construct
task graphs. Specifically, when a future F is passed to a
task T , UniFaaS adds an edge from the task that is associated
with F to T . A task can execute only when all its dependen-
cies are ready. Through future passing, UniFaaS supports
constructing a task graph dynamically, which means that the
graph can change during execution time.

C. Configuration

Each funcX endpoint is assigned a universally unique
identifier (UUID) when it is deployed. UniFaaS provides a
Config interface that allows one to specify endpoints as
computing resources by their UUIDs, as shown in Listing 2.
One can also configure other parameters such as scheduling
strategy, the maximum number of retries, and file transfer type.
The Config interface is separated from the programming
interface. In other words, one can write a workflow once and
deploy it on different sets of endpoints by simply updating
the UUIDs specified in the workflow configuration, enabling
write once, run anywhere.

1 config = Config (
2 executors =[
3 Executor ( label=” Cluster1 ” ,
4 endpoint=”6156af −... −54e93” ) ,
5 Executor ( label=” Cluster2 ” ,
6 endpoint=”9c2344−... −7 ff98 ” ) ,
7 ] ,
8 scheduling strategy=”LOCALITY” ,
9 max transfer retries=3,

10 f i le transfer type=”Globus” )

Listing 2. An example of the Config interface.

IV. ARCHITECTURE AND IMPLEMENTATION

UniFaaS comprises five system components: monitors, pro-
filers, scheduler, data manager, and task executor, as shown
in Figure 1. All components are extensible to any appropriate
alternatives. In this section, we describe the design of each
component and discuss how UniFaaS can satisfy the require-
ments presented in §II.

A. Overview

The performance of tasks at different stages of a federated
workflow may vary significantly due to the heterogeneity of
both tasks and hardware. Fortunately, decomposing a workflow
into functions enables fine-grained task performance predic-
tion. Scientific workflows are often run repeatedly on similar
sets of computers and have predictable performance [29].
These characteristics together allow us to exploit an observe-
predict-decide approach to improve the performance of feder-
ated workflows. We briefly describe the execution flow of a
workflow with UniFaaS as follows:
1) Deploy funcX endpoint software on the accessible re-

sources and supply the endpoint UUIDs in the Config.
2) Create the functions, decorate them with @function, and

express task graphs. The DAG generator analyzes the task
dependencies and constructs a DAG.

3) The profilers load task characteristics from the local
database (if any), build performance models, and predict
execution time and data transfer time for tasks when
needed by the scheduler.

4) The scheduler creates a schedule for tasks based on the
information provided by the profilers and monitors.

5) Once the scheduling decisions are made, the data manager
performs data transfers in advance when possible, and the
task executor submits tasks to endpoints.

6) When a task runs, the task monitor tracks the character-
istics and logs them into the local database after the task
completes. The profilers are updated accordingly based on
the latest runs.

funcX
federated FaaS Platform

Update

periodically

UniFaaS

DAG generator

Scheduler

UniFaaS interface

Submit Result

Config interface

Task
executor

funcX client interface

Task
submit

Result
polling

Task
status

Endpoint
status

Profilers

Task
profiler

Transfer
profiler

Data
manager

Monitors

Task
monitor

Endpoint monitor
...Mock Mock

Logging

Transfer
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Local
store

Endpoint 1

Worker

Endpoint 2

Worker

Endpoint N

Worker
......

Fig. 1. UniFaaS architecture.

B. Monitors
Task monitor: This component is responsible for monitor-

ing task execution information, such as task states (e.g., run-
ning, completed, failed, etc.), task characteristics (e.g., CPU
utilization) and task completion times on various computers.
The monitored information is streamed into a local database
and the profilers. The local database can be treated as historical
knowledge—UniFaaS allows a user to start a workflow by
loading an existing database so that the profilers can pre-
build performance models for the scheduler. However, the task
execution status may vary over time, resulting in inaccurate
scheduling decisions. Therefore, real-time task information is
also fed into the profilers to update the performance models.

Endpoint monitor: UniFaaS’s scheduler requires endpoint
information, including hardware configuration and real-time
endpoint status (e.g., available and pending tasks), to make
proper scheduling decisions. While funcX provides RESTful
interfaces for polling endpoint status, it is only updated peri-
odically (e.g., every minute) but not in real-time, which may
lead to inaccurate scheduling decisions. Moreover, frequently
polling for endpoint status updates may increase the load on
the funcX services, and hence is not practical.

To address this problem, we propose a local mocking
mechanism. Specifically, the endpoint monitor creates a mock



endpoint object for each endpoint listed in the Config inter-
face. A mock endpoint serves as a proxy to the corresponding
genuine endpoint and has the same attributes as the genuine
endpoint, including hardware information, task queues, the
number of busy and idle workers, etc. When initializing a
mock endpoint, the endpoint monitor communicates with the
funcX service to retrieve initial information. When submitting
a task to a genuine endpoint, a mock task is pushed into
the task queue of the mock endpoint and the number of idle
workers is decreased. Similarly, the mock task is popped out
of the queue after the task is completed. Meanwhile, to ensure
the accuracy of the mock information, the endpoint monitor
synchronizes the mock objects with the funcX service peri-
odically. While polling-based approaches may have varying
latency depending on the network latency, the overhead of
this local mocking mechanism is negligible, which enables
the scheduler to obtain real-time endpoint status for accurate
scheduling decisions.

C. Profilers

UniFaaS uses an execution profiler and a transfer profiler
to predict the execution and transfer time. These profilers are
deployed on separate threads in the UniFaaS client. They peri-
odically learn or update models based on real-time monitoring
information and historical data from prior runs and do not
interfere with the main scheduling loop.

Execution profiler: When UniFaaS is initialized, the ex-
ecution profiler trains an initial performance model for each
function based on historical data. When a workflow runs, the
profiler updates the models periodically if there is new task
information collected from the monitor. We apply the random
forest regression algorithm [30], [31] as the default execution
performance model. The model takes the input size, number
of cores, CPU frequency, and RAM size of the endpoint to run
on as inputs, and estimates the execution time and output data
size. We note that UniFaaS’s modular design means that users
can easily extend it to other appropriate performance models
such as XGBoost [32] and Bayesian linear regression [33].

Transfer profiler: Data transfer time is primarily deter-
mined by the data size and the network conditions between
endpoints. Prior work [2] shows that the data transfer time
is relatively predictable across federated CI. In the absence of
recent data, the transfer profiler can send probing file transfers
to measure the network bandwidth between endpoints when
UniFaaS is initialized. The current implementation uses a
polynomial regression model that uses bandwidth, data size,
and the maximum number of concurrent transfers (set by the
data manager in §IV-E) to predict the data transfer time.

D. Scheduler

The scheduler maps workflow tasks to heterogeneous end-
points, with the objective of minimizing the workflow com-
pletion time (i.e., makespan), which has been demonstrated
to be NP-hard [34]. As aforementioned, the scheduler needs
to consider that both the workflow DAGs and resource ca-
pacity may vary during execution in cross-facility computing,

which brings a unique challenge on how to make scheduling
decisions at the most appropriate time. Resource capacity in
this paper represents the number of workers in an endpoint
and each function is mapped to a worker. The resources
allocated (e.g., CPUs, GPUs, memory, and disks) per worker
is configurable on the funcX endpoint. The scheduler can
consider various resource dimensions when making decisions.

In cross-facility computing, data staging may incur signifi-
cant delay, thus it is often desirable to make task scheduling
decisions as early as possible (e.g., immediately after tasks are
submitted), allowing overlapping data staging and computation
to reduce workflow makespan. However, early scheduling de-
cisions may result in poor performance in the case of dynamic
workflows or resource capacity. To address this challenge, we
propose three scheduling algorithms, capacity-aware, locality-
aware, and heterogeneity-aware, to support various scenarios,
from static to dynamic workflow DAGs and resource capacity.

Capacity-aware scheduling (Capacity in short):
Capacity assigns workflow tasks to endpoints based on the
capacity of each endpoint, i.e., the number of tasks scheduled
to an endpoint is proportional to its total computing capacity.
Assume we have a set of N endpoints EP = {e1, e2, ..., eN}
and the capacity of the endpoints are C = {c1, c2, ..., cN}
(measured by the number of workers on an endpoint).
Suppose we have a set of M tasks. The number of tasks
scheduled to the endpoint ei can be computed by:

Mi = M ∗ ci∑N
i=1 ci

. (1)

After determining Mi, i ∈ [1, N ], the scheduler searches the
candidate tasks for each endpoint in a depth-first search (DFS)
order, with the intention to consider data locality and allocate
tasks on the same path to the same endpoint, reducing data
transferred across endpoints.

After partitioning the DAG based on endpoint capacity,
tasks are placed into the corresponding data staging queues
between endpoint pairs. Upon the completion of data staging,
they are immediately dispatched to remote endpoints, as shown
in Figure 2.

DM2

DM1

Remote
EP2

DM3 Remote
EP3

Remote
EP11

2 5 6 8

3 7
4

EM1 EM2 EM3

DAG partition Data staging queue

Control flow

1 Task with DFS order

EM Endpoint monitor DM Data manager

Task in data staging Task with data staging finished

Immediate task dispatch

Task 1-5

Task 6-7

Task 8

Fig. 2. An illustration of Capacity. EPs 1-3 have 5, 2, and 1 workers,
respectively. According to the capacity and DFS order, tasks 1–5, tasks 6–7,
and task 8 are assigned to endpoint 1, 2, and 3, respectively.

Note that the scheduling decisions of Capacity are gen-
erated offline, i.e., immediately after a workflow DAG is
submitted and formed. Therefore, Capacity is most suitable
for workflows that have static DAGs and run on endpoints with
similar hardware performance and static resource capacity.



Locality-aware scheduling (Locality in short): Unlike
Capacity, Locality only assigns tasks to an endpoint when
there are available resources on the endpoint. Specifically,
When assigning a task, Locality examines the data distri-
bution for all dependencies of the task on all the endpoints.
Based on the data distribution, it computes the amount of data
transferred if placed on a specific endpoint and selects the
endpoint that leads to the least amount of transfer, denoted
as locality selection in Figure 3. Upon completion of the data
staging, tasks are immediately dispatched to remote endpoints.

DM2

DM1

DM3

Remote
EP1

Remote
EP2

Remote
EP3

1

2 3 4 5

6 7

8

Data staging queue

Task with level order

Task in data staging

Task with data staging finished

Sort by level order

Task with pending dependencies

EM1

EM2

EM3

Locality selection

Control flow

Ready task

1

Immediate task dispatch

Task 
monitor

Fig. 3. An illustration of Locality. When an endpoint monitor detects
idle resources, it performs locality selection for the next ready task and
immediately dispatches the task to the target endpoints.

While Locality is similar to Capacity in that they both
intend to reduce data transfers across federated CI, Locality
produces real-time scheduling decisions whenever there are
idles sources and only considers current task states (e.g., data
distribution and priority). Therefore, Locality is applicable
to workflows with dynamic DAGs, as well as workflows that
run on endpoints with dynamic resource capacity.

Dynamic heterogeneity-aware scheduling (DHA in short):
DHA assumes that all task information and data transfer

information is known a priori, via user input or from the
profilers. DHA involves two stages when scheduling, task
prioritization and endpoint selection. DHA first calculates the
priority of all tasks and then selects an appropriate endpoint for
every task in order based on the priority, as shown in Figure 4.

In detail, the priority of a task ti is recursively computed
based on the following equation:

priority(ti) = di + wi + max
tj∈succ(ti)

priority(tj), (2)

where di denotes the average data staging time of task ti over
all the endpoints, wi is the average execution time of task ti
over all the endpoints, and succ(ti) is the set of immediate
successors (if there is any) of task ti. The priority calculation is
inspired by the heterogeneous earliest finish time (HEFT) [35]
algorithm. The recursive calculation ensures that predecessor
nodes are assigned to endpoints ahead of successor nodes.

Submitted tasks are scheduled based on the priority. Once all
the dependencies of a task are complete (i.e., ready task), DHA
selects the target endpoint in a heterogeneity-aware manner
that minimizes the completion time. After endpoint selection,
DHA implements a delay scheduling mechanism to delay the
task dispatch to the target endpoint. Specifically, the endpoint
selection allows the task to instantiate the data staging immedi-
ately whenever a dependency of the task is complete. However,

the task dispatch is delayed until the target endpoint has idle
resources. In other words, this mechanism allows tasks with
data staging completed to wait in the UniFaaS client queue.

…

… …

… …

Task id
Execution time
Transfer time
In-degree
Out-degree

DAG analysis

Task 
profiler

Transfer 
profiler

Sort by priority

… Task with information

……

Task 
monitor

high

low

Data staging queue

EM1

EM2

EM3

Remote
EP1

Periodic task stealingGreedy selection Task dispatch

Control flow

Remote
EP2

Remote
EP3

DM1

DM2

DM3

Task with data staging finishedReady task Task with pending dependencies

Fig. 4. An illustration of DHA. DHA involves prioritization and endpoint
selection. Tasks are not dispatched until the target endpoint has idle resources.

To adapt to dynamic resource capacity during execution, we
propose a re-scheduling mechanism: whenever the resource
capacity changes, DHA periodically recomputes the scheduling
decisions of pending tasks (including those with data staging
completed) considering several factors (e.g., data movement
cost and execution time on different clusters, and available
resources) and performs task stealing if necessary. With the
delay mechanism, the pool of tasks that can be re-scheduled
is expanded. The optimization goal of the re-scheduling is to
maximize the utilization of dynamic resources while reducing
the completion time of the corresponding tasks.

Unlike Capacity and Locality that either makes offline
or real-time scheduling decisions, DHA is a hybrid algorithm
between them, i.e., it generates scheduling decisions offline but
only dispatches tasks until there are idle resources. The delay
and re-scheduling mechanism are key enablers for DHA to sup-
port dynamic workflow DAGs and dynamic resource capacity.
DHA is applicable to any scenario but requires workflows to
have full knowledge (e.g., graph structure, network bandwidth,
and task characteristics) to have optimal performance.

TABLE I
SUMMARY OF THE SCHEDULING ALGORITHMS.

Capacity Locality DHA
Scheduling type Offline Real-time Hybrid
Dynamic DAG supported ✗ ✓ ✓
Dynamic resource supported ✗ ✓ ✓
Knowledge required ✗ ✗ ✓

Summary: We summarize the features of the three schedul-
ing algorithms in Table I. The UniFaaS scheduler is designed
to be extensible and configurable. Users may extend the
scheduler simply to adapt to their use cases.

E. Data Manager

Workflows often involve complex inter-task data depen-
dencies. While UniFaaS can automatically pass small objects
among tasks (via futures), there may exist large files to
stage across federated CI. Some tools support programmatic
data transfers but require real-time authentication of computers
and pre-knowledge of specific locations, which misaligns with
the federated workflows—a task may run on various resources
and the location is unknown when programming.



UniFaaS resolves this via a data manager that i) provides
a shim layer with RemoteFile and RemoteDirectory
objects, which allows users to wrap data and supports in-
terfaces to perform read/write operations similar to regular
files and directories; ii) stages data transparently for users
using the built-in transfer mechanisms, when a task with data
dependencies is scheduled; and iii) monitors the progress of
data transfers and retries failed transfers.

Currently, the data manager supports Globus [16] and rsync,
two widely used mechanisms for data transfers across different
resources. The data manager also enables concurrent data
transfers, and the number of threads can be configured based
on the connection limit of resources or transfer mechanisms.

F. Task Executor

UniFaaS leverages funcX as the backend to run tasks in a
FaaS manner. Users must therefore deploy funcX endpoints
on desired resources to run their tasks. The task executor
asynchronously submits tasks and polls results via the funcX
service. The task executor wraps the task with data staging
finished as a funcX task, submits the task to the corresponding
endpoint via the funcX client, and records the task’s returned
future. The task executor has a separate thread to poll the
results of all pending tasks via the funcX client. Upon com-
pletion of a task (i.e., when its result is retrieved), the task
executor updates the corresponding future and also streams the
task execution status such as the execution time and location
into the task monitor as described in §IV-B.

G. Fault Tolerance

UniFaaS implements several fault tolerance mechanisms.
Data transfer retry: Data transfers may fail due to network

conditions, especially for large data volumes. UniFaaS will
retry failed transfers several times (configurable). If all retries
fail, the corresponding tasks will be marked as failed.

Task reassignment: A task may fail for various systematic
reasons, e.g., data transmission failure, endpoint disconnection,
or incorrect runtime environment. For a failed task, UniFaaS
attempts to execute the task again on an endpoint according
to the scheduler. If it fails again, UniFaaS reassigns it to the
endpoint with the highest success rate based on prior runs. If
it fails on all endpoints, UniFaaS returns an error message.

H. Optimizations

UniFaaS applies several performance optimizations to en-
sure the efficient and robust execution of federated workflows.

Multi-endpoint elasticity: The resource requirements of a
workflow often vary at different stages. Each funcX endpoint
itself can dynamically scale: spawning more workers when
there are more tasks than workers and killing idle workers
when there is no incoming task for a certain period of time.
However, each endpoint does not have a global view of
workflows and may make suboptimal scaling decisions. With
a full view of workflows, UniFaaS can perform multi-endpoint
scaling in advance based on the characteristics of workflows.

UniFaaS implements a Scaling interface which allows
users to implement their own multi-endpoint scaling logic

(e.g., preferences for certain endpoints). The default multi-
endpoint scaling strategy is straightforward: if the number
of pending tasks in a workflow is more than the number of
workers, UniFaaS scales out the workers on all the endpoints;
the scale-in logic is left to the endpoints to decide, as each
endpoint can scale in if there are idle resources (which may
indicate that the endpoint is less preferred by the UniFaaS
scheduler). Such an approach that scales out aggressively
but scales in conservatively works well in most use cases,
since killing idle resources is generally easier than requesting
resources on federated CI.

Batching: Workflows may be composed of thousands of
tasks. To amortize the communication and computation costs
for managing tasks and endpoints across various components,
UniFaaS implements batching mechanisms at several levels,
including task submission, result retrieval, endpoint status
polling, and performance prediction, whenever possible.

I. Implementation

We implement a prototype of UniFaaS in Python, which
is based on Parsl [8], a parallel programming library widely
used in science. UniFaaS is open source on GitHub.1

V. EVALUATION

We evaluate UniFaaS’s performance in terms of several
system metrics including latency, scalability, elasticity, and
scheduler overhead.

A. Testbeds

To evaluate UniFaaS’s ability to manage scientific work-
flows across federated CI, we deploy funcX endpoints on the
following heterogeneous clusters, and submit workflows via
UniFaaS on a local workstation. The hardware of these clusters
and computers is listed in Table II.
• Taiyi is a 2.5-petaflops supercomputer that was in the

TOP500 list until recently.
• Qiming is a 0.3-petaflops academic supercomputer.
• Dept. cluster is a department cluster used primarily for

teaching and research.
• Lab cluster is a local compute cluster.

TABLE II
HARDWARE OF THE HETEROGENEOUS TESTBED.

Name CPU RAM
(GB)

#
nodes

Taiyi 2*Xeon Gold 6148@2.4GHz 192 815
Qiming 2*Xeon E5-2690@2.6GHz 64 230
Dept. cluster 2*Xeon Platinum 8260@2.4GHz 770 26
Lab cluster 2*Xeon Gold 5320@2.2GHz 128 2
Workstation Core i5-9400@2.9Ghz 16 1

B. Latency

We measure the latency incurred by each component in
UniFaaS, by running a “hello world” task with a 1 MB input
file to transfer, and timing the latency across each component.
The endpoint is deployed on Qiming and the average of 20

1https://github.com/SUSTech-HPCLab/UniFaaS



runs is reported in Figure 5. The task takes around 1,087 ms
to execute. Each UniFaaS component results in only minimal
latency. For example, the profilers predict job characteristics
and transfer time within 2 ms (included in the scheduling). The
local mocking overhead, included in the submission stage, is
0.08 ms. The majority of the latency is from unavoidable data
transfer, as well as task dispatching to the remote endpoint
and result polling that are highly relevant to the network
delay. Nonetheless, the execution times of data analysis tasks
in scientific workflows often vary from minutes to hours, in
which case this level of overhead is acceptable.

Scheduling

ts  = 3 ms

Data
management

Submission

Result polling Remote
execution

174 ms

Result 
logging

< 1 ms < 1 ms

< 1 ms

td = 726 ms tsub = 4 ms

117 ms

te = 62 ms< 1 msth = 2 ms

Fig. 5. UniFaaS latency breakdown.

C. Scalability

We evaluate the strong and weak scaling of UniFaaS. Strong
scaling measures performance for a fixed number of tasks,
as the number of workers increases; weak scaling measures
performance for increasing numbers of workers when the
average number of tasks per worker is fixed. It has been
previously demonstrated that a single funcX endpoint can
scale up to 130,000 workers [14], [15]; hence, we focus
here on evaluating UniFaaS scalability when deploying tasks
across multiple endpoints—more endpoints lead to higher task
scheduling and submission overheads. In this experiment, each
endpoint has 24 workers and all endpoints are deployed on
Qiming. We create two types of tasks: 1 s and 5 s compute-
intensive CPU stress (i.e., while loop) tasks.

Figure 6 shows the strong and weak scaling performance
from 1 to 16 endpoints. In the strong scaling case, we measure
the performance for a) 100,000 × 1 s tasks and b) 20,000 × 5 s
tasks. In the weak scaling case, each worker runs, on average,
either a) 260 × 1 s tasks or b) 52 × 5 s tasks, yielding the
same workloads in total for strong and weak scaling on 16
endpoints. We note that 16 endpoints is a sufficient number
for many of our scientific use cases, but not a limit of UniFaaS.
The results show that the scalability for 5 s tasks is close to the
ideal for up to 12 endpoints; with yet longer-duration tasks,
we would expect to see good scaling for yet larger numbers
of endpoints. The completion time keeps decreasing until six
endpoints for 1 s tasks and 12 endpoints for 5 s tasks. The
performance of 100,000 × 1 s tasks is worse than that of
20,000 × 5 s tasks. This is primarily because a larger number
of 1 s tasks suffer from higher network latency and scheduling
overheads, causing worse nonlinear scaling.

D. Multi-endpoint Elasticity

To demonstrate the multi-endpoint elasticity of UniFaaS,
we deployed three endpoints on Qiming (EP1), Dept. cluster
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Fig. 6. Strong and weak scaling of UniFaaS.

(EP2), and Lab cluster (EP3), respectively. Each endpoint can
scale up and down in terms of nodes and each node has 20
workers, whereas the maximum number of workers of EP1,
EP2, and EP3 is set to 100, 40, and 20, respectively. We create
three types of compute-intensive stress tasks: 30 s tasks (task1
on EP1), 15 s tasks (task2 on EP2), and 10 s tasks (task3 on
EP3). Each endpoint runs a distinct task duration since we
want to show that each endpoint can scale independently.

Figure 7 shows the number of pending tasks and active
workers versus time. At t = 10, we run 50 × task1, 20 × task2,
and 10 × task3. Consequently, EP1 scales up to 60 workers,
while EP2 and EP3 scale up to 20 workers. At around t = 50,
since EP3 has been idle for more than 30 seconds (configured
maximum idle interval), EP3 returns all the workers. At t =
70, we run 200 × task1, 80 × task2, and 40 × task3 on
the corresponding endpoints. This time all the endpoints scale
up to the maximum number of workers (i.e., 100, 40, and
20). After all the tasks are complete, each endpoint scales
down to zero workers. We repeat the above process twice and
observe that each endpoint can scale up and down promptly
and independently, as expected. It is worth mentioning that the
performance of elasticity in practice is subject to the queuing
delays of batch schedulers.
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Fig. 7. Number of tasks and workers over time. Top: number of pending
tasks. Bottom: number of active workers.

E. Scheduler Overhead

We measure the scheduler overhead (including the time
to predict task characteristics if needed) when scheduling a
drug screening workflow in Figure 8. Note that this overhead
experiment is conducted on the Workstation and better per-
formance may be achievable with a more powerful server.
Table III shows the overhead per task of different algorithms.
We see that all the algorithms have only a modest overhead.



DHA involves predicting task characteristics and prioritizing the
tasks in the DAG, resulting in a slight increase in the overhead.

A

D C B

F

E

...

G

...

A

B C D

E

F

Drug screening Montage

....H H

I II

H

J J J

K K

L

Fig. 8. DAG structures of the drug screening and the montage workflows.
Each character represents a distinct task type. The drug screening workflow
consists of 24,001 functions. The total computation time is 1,447 hours with an
average of 220 seconds per task. The total size of the input, intermediate, and
output data is 480.64 GB. The montage workflow consists of 11,340 functions.
The total computation time is 108 hours with an average of 6.4 seconds per
task. The total size of the input, intermediate, and output data is 673.49 GB.

TABLE III
OVERHEAD OF DIFFERENT ALGORITHMS.

Scheduling algorithm Overhead (s)
Capacity 1.72 × 10−4

Locality 3.00 × 10−3

DHA 3.46 × 10−3

VI. CASE STUDIES

We use two open-source workflows, a drug screening work-
flow [36] and a montage workflow [37], to study the character-
istics of different scheduling strategies and evaluate UniFaaS’s
ability to manage workflows across multiple resources.

A. Static resource capacity

In this experiment, we use two workflows shown in Fig-
ure 8. When executing the drug screening workflow, we deploy
2000 workers (50 nodes) on Taiyi (EP1), 384 workers (16
nodes) on Qiming (EP2), 48 workers (2 nodes) on Dept. cluster
(EP3), and 52 workers (2 nodes) on Lab cluster (EP4). When
executing the montage workflow, we deploy 120 workers (4
nodes) on EP1, 240 workers (10 nodes) on EP2, 48 workers
(2 nodes) on EP3, and 52 workers (2 nodes) on EP4. All
workers are launched before the experiment, and the number of
workers is static during this experiment. For DHA, we assume
full knowledge can be retrieved from the profilers.

TABLE IV
RESULTS FOR STATIC RESOURCE CAPACITY.

Workflow Experiment Makespan
(s)

Transfer
size (GB)

Drug Capacity 3,240 4.86
Locality 3,882 53.46
DHA 2,898 44.94
Baseline: Only Taiyi 3,763 0

Montage Capacity 1,027 2.57
Locality 1,055 13.35
DHA 909 18.27
Baseline: Only Qiming 1,994 0

Analysis: Table IV shows the makespan of the work-
flows under different scheduling algorithms. The makespan

is defined as the completion time of the workflow, including
scheduling overhead, polling latency, etc. For both work-
flows, DHA outperforms Capacity and Locality in terms of
makespan, since DHA can leverage knowledge such as DAG
structure and task characteristics. Capacity results in the
smallest data movement because it is designed for static DAGs
and can use certain knowledge like DAG structures to sched-
ule. Locality operates without any prior knowledge, thereby
minimizing data transfer size to the best extent possible.

To further analyze the reason for the performance vari-
ance, we plot in Figure 9 the worker utilization of different
scheduling algorithms. For both workflows, DHA achieves
consistent high worker utilization. The worker utilization of
both Locality and Capacity gradually decreases, exhibiting
a long-tail pattern. However, the root causes of these declines
in worker utilization are different. The makespan of Locality
is severely impacted by the data staging, since Locality

makes scheduling decisions in real-time and cannot hide the
data staging delays, resulting in a longer makespan. This is
proven by Figure 10, which shows the number of tasks in
data staging over time. Capacity makes scheduling decisions
offline and hence the data staging can be done immediately
after each task’s dependencies are completed, overlapping the
data staging with the computation. Figure 11 demonstrates that
Capacity can evenly distribute tasks to endpoints based on
the number of workers. DHA is heterogeneity-aware and tends
to allocate more tasks to Taiyi with more advanced hardware.
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Fig. 9. Worker utilization over time under static resource capacity.
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To demonstrate the potential of deploying workflows across
federated CI with UniFaaS, we compare the three scheduling
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Fig. 11. Workload distribution of Capacity and DHA. DHA prefer Taiyi,
a higher performance cluster.

algorithms with a baseline, which runs on only Taiyi (2000
workers) for the drug screening workflow and only Qiming
(240 workers) for the montage workflow. As shown in Ta-
ble IV, the makespan is improved by up to 22.99% (54.41%)
with an additional 19.48% (47.83%) of the workers while
executing the drug screening (montage) workflow.

The results demonstrate that UniFaaS can effectively deploy
workflows across federated CI, even though cross-facility
computing may incur a significant amount of data transfers.

B. Dynamic resource capacity

We study the effectiveness of DHA under dynamic resource
capacity. We execute the drug screening workflow with 12,001
functions and the montage workflow with 11,340 functions.
The captions of Figure 12 and Figure 13 show how the amount
of resources varies over time (in terms of the number of
workers) on the endpoints for the two workflows.

TABLE V
RESULTS FOR DYNAMIC RESOURCE CAPACITY.

Workflow Experiment Makespan
(s)

Transfer
size (GB)

Drug Capacity 3,610 3.26
screening Locality 2,130 43.61

DHA 1,666 33.01
DHA without re-sched. 2,183 39.47

Montage Capacity 2,671 2.48
Locality 1,360 14.18
DHA 1,257 31.05
DHA without re-sched. 1,868 29.62

Analysis: Table V shows the makespan of the workflows
with dynamic resource capacity for different scheduling algo-
rithms. In both workflows, DHA attains the lowest makespan
because the re-scheduling mechanism can promptly respond to
resource variations and effectively balance the workload across
endpoints. As a result, DHA improves the makespan by up
to 32% compared to DHA without re-scheduling. Locality
reduces the makespan by more than 41% when compared
with Capacity because the real-time nature of Locality
enables it to dynamically adapt based on the current state of
resources, resulting in more efficient utilization of available
capacity, while operates as an offline scheduler. Figure 12(a)
and Figure 13(a) imply that Capacity fails to balance the
tasks to more capable endpoints, resulting in long-tail latency
due to the bottleneck endpoints. Figure 12(b) and Figure 13(b)
show that DHA can quickly re-schedule tasks when there is
resource variation.
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Fig. 12. Running the drug screening workflow under dynamic capacity.
Initially, 400, 600, 48, and 52 workers are deployed on EP1, EP2, EP3 and
EP4 respectively. At t = 120, EP2’s worker count increases by 600. At
t = 540, EP1’s worker count decreases by 280.
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Fig. 13. Running the montage workflow under dynamic capacity. Initially, 40,
240, 48, and 52 workers are deployed on EP1, EP2, EP3 and EP4 respectively.
At t = 120, EP1’s worker count increases by 80. At t = 300, EP2’s worker
count decreases by 168.

VII. LESSONS LEARNED

We discuss our experiences with the case studies using
UniFaaS and traditional approaches.

Traditional approaches versus UniFaaS: We attempted to
compare the performance of UniFaaS with traditional systems
such as Pegasus [10] in the evaluation. However, it was
challenging since traditional systems are not designed for
those requirements or do not run workflows in a manner
like UniFaaS does. For example, Pegasus is coupled with
HTCondor, which needs to open a port on each computing
resource and establish a direct connection to the submit host
to listen for incoming jobs. However, this is rarely allowed by
HPC clusters and requires privileged access.

Further, traditional systems launch tasks of workflows at
the job level and are not suitable for workflows with dynamic
DAGs and dynamic resource capacity. UniFaaS differs in
that it allows one to programmatically compose a workflow
and map the workflow to a resilient resource pool at the
function level. UniFaaS enables construction of workflows to
run across federated cyberinfrastructure using Python, while
traditional systems often require domain-specific languages or
specifications to describe workflows.

In summary, UniFaaS differs from traditional approaches in
terms of both programmability and task management. Such a
FaaS-based approach creates new opportunities for considering
workflows in which small schedulable units can be flexibly
placed across dynamic federated computers.

Applicability to federated workflows: We utilized two
supercomputers, Taiyi and Qiming, in our evaluation. Taiyi,
boasting new generation hardware, usually has longer queue
times than Qiming. In general, users run workflows on
either Taiyi or Qiming, since it is a burden to manage



workflows across two heterogeneous clusters using traditional
approaches. UniFaaS provides the ability to easily explore
tradeoffs between hardware performance and queue time,
using Taiyi and Qiming, as well as the Dept. cluster and Lab
cluster. Based on our observations, the tasks of the workflow
use Qiming preferably when Taiyi is busy, and prefer Taiyi
when its resources are available.

Programmability and Portability: We developed and de-
bugged the drug screening and montage workflows in §V
locally, and finally ran them across several computing re-
sources. These workflows were originally designed to run a
single cluster. We made them executable across distributed
CI with minimal effort using UniFaaS: i) decorate each stage
as functions; ii) replace the original file I/O operations with
RemoteFile object; and iii) deploy the resource pool and
specify the endpoints’ UUID. During the development, the
main computation code remained unchanged. Additionally,
Qiming was updated from the PBS to the LSF scheduler during
our experiments. With UniFaaS, we transitioned the workflow
to the updated Qiming by merely replacing the funcX endpoint
with one configured for LSF. These experiences demonstrate
that UniFaaS simplifies the utilization of diverse resources.

VIII. RELATED WORK

FaaS. FaaS platforms are widely offered by most cloud
providers [38]–[40]. There are also many open-source
FaaS frameworks (e.g., OpenWhisk [41], KNIX [42], and
DFaaS [43]) that allow users to deploy on-premise and for
different scenarios (e.g., IoT). The success of the FaaS model
in clouds motivates us to adopt and extend the FaaS model
for modern science workflows. We thus build UniFaaS upon
funcX [14], [15], a specialized FaaS platform for federated CI.

Several papers [44]–[48] focus on migrating DAG-like
applications to use the FaaS model. For instance, Py-
Wren [45] and NumPyWren [46] leverage FaaS for specific
types of applications such as MapReduce and linear algebra;
Wukong [47] is a serverless parallel programming framework
that relies on AWS Lambda. These works are tied to cen-
tralized (cloud-hosted) FaaS platforms (e.g., Lambda) or are
limited to just one endpoint. Our novelty lies in the use of
the FaaS model as a way to distribute computation across
federated CI. We focus on the unique challenges of such
federated environments (e.g., scheduling and data transfer).

Workflow management systems. While there are many
workflow management systems developed [5], [6], [10], [49]–
[51], none aim to address the needs of fine-grain task execution
across federated CI specifically, to the best of our knowledge.
For instance, Pegasus [10] similarly aims to bridge distributed
and diverse CI. However, Pegasus relies on a static DAG
model and requires HTCondor [11] as the broker to interact
with different cluster schedulers. UniFaaS instead leverages
a Python-based dynamic DAG model and the flexibility of
funcX endpoints allows one to simply run on arbitrary re-
sources. Python parallel frameworks (e.g., Dask [9], Parsl [8],
Ray [7]) support construction of parallel programs with Python
functions and simple deployment on various types of clusters

(e.g., supercomputers and clouds). While UniFaaS uses a
similar programming interface, these frameworks are primarily
designed for deployment on a single cluster.

Workflow performance modeling and scheduling. Esti-
mating runtimes and other task characteristics of workflows
is a well-studied area [30], [33], [52]–[56]. UniFaaS relies on
several performance models to predict task characteristics and
transfer performance. The profilers of UniFaaS are designed
to be extensible to any of these models.

Workflow management systems [5], [10], [57] rely on
efficient scheduling algorithms to map workflows to target re-
sources. Many papers propose workflow scheduling algorithms
for different scenarios. For example, prior papers [35], [58]–
[60] focus on scheduling tasks efficiently to heterogeneous
processors. BaRRS [61] leverages task graph partitioning and
data replication to reduce the data transfers among different
resources. UniFaaS addresses a unique scheduling problem in
the federated FaaS scenario, where workflow DAGs could be
dynamic and resources may be added (or removed) during
execution. However, there are common experiences and tech-
niques in these papers that we can draw lessons from or further
integrate into UniFaaS. For example, the priority calculation
in the DHA algorithm is adopted from HEFT [35].

IX. CONCLUSION

UniFaaS adopts a federated FaaS model that enables users
to focus on what to do in the functions and when to in-
voke the functions tasks of workflows, without considering
the management of execution. UniFaaS provides a unified,
function-based programming interface for expressing task par-
allelism and composing task graphs, as well as providing
transparent data management. Internally, UniFaaS monitors
task characteristics, creates performance models for tasks
on different endpoints, and decides where to dispatch tasks
to achieve high performance in large-scale, heterogeneous,
and dynamic environments. We demonstrated that UniFaaS
introduces only minimal latency overhead and that UniFaaS
can support a workflow to deploy efficiently across up to 16
different endpoints. In the future, we intend to incorporate
additional data transfer profilers into UniFaaS, which will
consider various factors such as communication patterns and
network bandwidth. We will investigate more comprehensive
scheduling algorithms and explore the coordination of these
algorithms with multi-endpoint elasticity to enhance resource
utilization and performance.
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