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Distinguishing Polynomials of Graphs
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Abstract

For a graph G, a k-coloring c : V (G) → {1, 2, . . . , k} is called distinguishing, if the

only automorphism f of G with the property c(v) = c(f(v)) for every vertex v ∈ G (color-

preserving automorphism), is the identity. In this paper, we show that the number of

distinguishing k-colorings of G is a monic polynomial in k, calling it the distinguishing

polynomial of G. Furthermore, we compute the distinguishing polynomials of cycles and

complete multipartite graphs. We also show that the multiplicity of zero as a root of the

distinguishing polynomial of G is at least the number of orbits of G.
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1 Introduction, The Distinguishing Polynomial

Let G be a simple graph. A k-coloring c : V (G) → {1, 2, . . . , k} is called distinguishing, if the

only automorphism of G with the property c(v) = c(f(v)) for every vertex v ∈ G is the identity.

In other words, the vertices of G are colored such that each non-identity automorphism of G

changes the color of some vertex. Equivalently, sometimes we say, a distinguishing coloring

breaks all symmetries of G. In 1996, the pioneer work of Albertson [2] is published and after

that this notion is studied and extended by many authors.

The distinguishing number of G, denoted by D(G), is the minimum k for which a distin-

guishing k-coloring exists. Since the automorphisms of the graph Gc are the same as those of

G, we have D(G) = D(Gc).
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In [6] the upper bound ∆(G) + 1 is given for D(G), with equlity only for complete graphs,

balanced complete multipartite graphs Kn,n and C5. Distinguishing graphs by edge colorings

and total colorings are introduced in [4] and [5]. Infinite graphs are also studied [3]. Our main

reference is [1] where nonequivalent distinguishing colorings is defined.

Let c : V (G) → {1, 2, . . . , k} be a coloring (not necessarily distinguishing) of G. For each

automorphism f of G, we have a permutation of the vertices which, at the same time, moves

the colors. So we can define a k-coloring c′ by

c′(v) = c(f−1(v) (i.e. c′(f(v)) = c(v)). (1.1)

These two colorings c and c′ are called equivalent. By the same token, we call two colorings

c and c′ equivalent if there exists an automorphism f of G which establishes equation 1.1.

Otherwise, they are non-equivalent. Plainly, if c and c′ are equivalent, then c is distinguishing

if and only if c′ is distinguishing.

Non-equivalent distinguishing k-colorings is first defined in [1]. They denote by Φk(G)

the number of non-equivalent k-colorings of G; and by φk(G) the number of non-equivalent

k-colorings of G in which all k colors are used. So, we have:

Φk(G) =
k

∑

i=D(G)

(

k

i

)

φk(G). (1.2)

Definition 1.1. Let c be a coloring of a graph G. We say that c supports an automorphism

f ∈ Aut(G) if c(f(v)) = c(v) for all v ∈ V (G). In other words, f preserves the colors of vertices.

For any coloring c of a graph G it can be easily observed that the stabilizer of c,

Sc = {f ∈ Aut(G) : c supports f}

is a subgroup of Aut(G) and the number of colorings equivalent to c is [Aut(G) : Sc] (the index

of Sc in Aut(G)). Therefore, c is a distinguishing coloring of G if and only if Sc is the identity

subgroup of Aut(G).

For a graph G we denote the number of distinguishing colorings of G using at most k colors

by Dk(G).

Theorem 1.2. For any graph G of order n, we have,

Dk(G) =

n
∑

i=D(G)

(

k

i

)

φi(G)|Aut(G)| = Φk(G)|Aut(G)|, (1.3)

which is a monic polynomial in k of degree n.

Proof. The equality 1.3 is clear by definitions. Note that in the summation above, the largest

degree term versus k is kn occurring in k(k − 1) . . . (k − n + 1), for i = n; and the previous

terms have degrees less than n in k. Hence Dk(G) is a monic polynomial of degree n.
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Definition 1.3. For a graph G we call the polynomial Dk(G) the distinguishing polynomial

of G.

Since the automorphisms of G are the same as those of Gc, the distinguishing polynomials

of G and Gc are the same. Also, once we have one of the three functions φk(G), Φk(G) or

Dk(G), then the other two can be derived via equalities 1.2 and 1.3.

Example 1.4. The following facts can easily be verified.

1. Dk(Kn) = k(n) = k(k − 1) · · · (k − n + 1).

2. If G is asymmetric of order n, then Dk(G) = kn. Conversely, if Dk(G) = kn, then G is

asymmetric of order n.

3. If Sn denotes the star with n+1 vertices, then Dk(Sn) = kk(n) = k2(k−1) · · · (k−n+2).

4. Dk(2K2) = Dk(C4) = k(k − 1)(k − 2)(k + 1).

5. If G is a graph with no isolated vertex, then Dk(G ∪K1) = kDk(G).

6. For the path Pn on n vertices, Dk(Pn) = kn − k⌈n
2
⌉. Because every non-distinguishing

coloring of Pn is a coloring symmetric to the mid point of the path.

Note that item 6 in the example above together with equation 1.3 and |Aut(Pn)| = 2 easily

gives Φk(Pn) =
1
2
(kn−k⌈n

2
⌉). This is done recursively in [1], without giving an explicit formula.

Another challenging case mentioned in [1] is computing Φk for cycles. The following section

is devoted to cycles. We consider disconnected graphs and complete multipartite graphs in

section 3. At the end, in section 4, we show that the multiplicity of zero in Dk(G) is at least

the number of orbits of G.

2 Cycles

As usual Cn denotes the cycle of length n ≥ 3. Recall that the automorphism group of Cn is

(isomorphic to) the dihedral group D2n; consisting of all rotations and reflections of a regular

n-gon . Therefore, a distinguishing coloring of Cn can be regarded as one that fixes all rotations

and reflections of the regular n-gon of unit edge. Let us make no difference between the regular

n-gon of unit edge and Cn. We need also the degenerate cycles C1 = K1 and C2 = K2, whose

automorphism groups are the identity and Z2, respectively.

We label the vertices of Cn by 1, . . . , n and calculations are taken modulo n. For 1 ≤ i ≤ n,

denote by ρi the reflection relative to the diagonal passing through the vertex i. When n is

even, we have also reflections relative to the diagonals bisecting two opposite edges {i, i + 1}
and {i + n

2
, i + 1 + n

2
}. Such a reflection is denoted by ρi,i+1 = ρi+n

2
,i+1+n

2
. Note that when n

is odd, ρi is also the reflection relative to the diagonal bisecting the edge {i + n−1
2
, i + n+1

2
}.

Despite this fact, we restrict the reflections ρi,i+1 to the case n even. See Figure 1. In order to
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Figure 1: Reflections are relative to diagonals

compute Dk(Cn), our first tool is the following lemma which is an straightforward consequence

of the algebraic definition of D2n.

Lemma 2.1.

(a) If a subgroup of D2n contains two reflections, then it contains a rotation.

(b) If a subgroup of D2n contains a rotation and a reflection, then it contains more than one

reflections.

Recall that a coloring c of a graph G supports an automorphism f ∈ Aut(G) if c(f(v)) = c(v)

for all v ∈ V (G). In case of Cn, the following lemma gives more insight on colorings supporting

automorphisms.

Lemma 2.2. Let c be a coloring of Cn.

(a) If c supports two different reflections, then it supports a rotation.

(b) If c supports a reflection and a rotation, then it supports more than one reflections.

Proof. Note that the stabilizer Sc of c is a subgroup of Aut(Cn) and use Lemma 2.1.

Let d be a divisor of n and consider a colored segment [d] = {1, 2, . . . d}. If we put this

colored segment consecutively around Cn (n
d

times, clockwise), starting at an arbitrary vertex,

then we have a coloring c of Cn. In this case, we say that the coloring c is generated by the

colored segment [d]. Note that when d 6= n, c supports the rotation by the angle 2π d
n
. On the

other hand, if c is a coloring supporting a rotation of Cn, then there exists a divisor d 6= n of

n, such that c is generated by the colored segment [d].

According to Lemma 2.2, the set of all non-distinguishing k-colorings of Cn is partitioned

into two disjoint subsets. One is consisting of those colorings supporting exactly one reflection,

and the other is consisting of colorings which support some rotation. We denote the former by

Mn,k and the latter by Nn,k. Therefore, the distinguishing polynomial of Cn would be

Dk(Cn) = kn − |Mn,k| − |Nn,k|. (2.1)

4



In the sequel, we count |Mn,k| and |Nn,k|.
Note that any non-constant coloring c of Cn can be generated by more than one colored

segments, because of cyclicity. Assume that the coloring c is generated by a segment [d], d 6= 1.

For i ∈ {1, 2, . . . , n}, if the vertex i does not match the first position of a copy of [d] around

the cycle, there exists another coloring of the segment [d] generating c, in which the vertex i

matches the first position in a copy of [d]. In fact, the new colored segment is obtained from

[d] by moving the colors cyclically in the segment. For d = 1, a trivial statement holds. This

observation implies the following lemma.

Lemma 2.3. Let d be a divisor of n. The number of k-colorings of Cn generated by colored

segments of length d is kd. In addition, if d′|d, a k-coloring generated by a colored segment of

length d′ is also generated by some colored segment of length d.

Proof. The number of k-colorings of the segment [d] is kd, which we put it around Cn consec-

utively from an arbitrary initial vertex. The initial vertex does not alter the counting, by the

preceding observation. The second assertion is clear.

Lemma 2.4. Suppose that d is a divisor of n and [d] is a colored segment and c is a coloring

of Cn generated by [d]. Then c supports a reflection of Cn if and only if any coloring of Cd

generated by [d] supports a reflection of Cd.

Proof. Throughout this proof, without loss of generality, we assume that the vertex 1 matches

the first position in a copy of [d] around the corresponding cycle (Cn or Cd).

First suppose that c supports a reflection ρi ∈ Aut(Cn), 1 ≤ i ≤ n. We can assume that

i = 1. Hence,

c(j + 1) = c(−j + 1), 1 ≤ j ≤ n. (2.2)

Here the calculations are taken modulo n. Since d is a divisor of n, equation 2.2 holds modulo

d, too. Consequently, coloring the vertices of Cd according to the coloring of [d] supports the

reflection ρ1 ∈ Aut(Cd).

Second, suppose that c supports the reflection ρi,i+1 which occurs for even n. We assume

that i = n. Consequently,

c(j + 1) = c(−j), 1 ≤ j ≤ n. (2.3)

Here the calculations are taken modulo n. We color the vertices of Cd according to the coloring

of [d]. When d is even, it supports ρd,1 ∈ Aut(Cd), again by the equation 2.3; since d is a divisor

of n and the equation 2.3 also holds modulo d. If d is odd, changing j by d+1
2

+ j in equation

2.3 leads to:

c(
d+ 1

2
+ j + 1) = c(−

d+ 1

2
− j) = c(d−

d+ 1

2
− j) = c(

d+ 1

2
− j + 1).

This equation is nothing but the equation 2.2 shifted by d+1
2

, true also in modulo d. It shows

that the coloring supports the reflection ρ d+1

2

= ρ⌈ d
2
⌉ ∈ Aut(Cd).
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Conversely, suppose that c is a coloring of Cd generated by a colored segment [d], which

supports a reflection ρ ∈ Aut(Cd). If ρ = ρi, 1 ≤ i ≤ d, again we can assume that i = 1. Then,

c(j + 1) = c(−j + 1), 1 ≤ j ≤ d.

Here computations are taken modulo d. Consider the coloring c′ on Cn generated by the colored

segment [d]. So, for each 1 ≤ p ≤ n, if p = qd+j, for integers q and 1 ≤ j ≤ d, then c′(p) = c(j).

That is, if two vertices of Cn are congruent modulo d, they are assigned the same color as in

[d]. Hence,

c′(p+ 1) = c(j + 1) = c(−j + 1) = c′(−p+ 1).

It follows that c′ supports ρ1 ∈ Aut(Cn). (Whenever n is even and d is odd, similar correspond-

ing calculations show that c′ also supports the reflection ρ d+1

2
, d+3

2

∈ Aut(Cn))

Finally, let ρ = ρi,i+1 ∈ Aut(Cd), which occurs for d (and n) even. We assume that i = d.

The proof is similar and runs as in the previous case. However, for the sake of completeness

and to avoid confusions, the proof is brought. For each 1 ≤ j ≤ d, we have c(j + 1) = c(−j),

where the calculations are taken modulo d. Consider the coloring c′ on Cn generated by the

colored segment [d]. So, for each 1 ≤ p ≤ n, if p = qd + j, for integers q and 1 ≤ j ≤ d, then

c′(p) = c(j) = c(−j + 1) = c′(−p + 1). Hence,

c′(p+ 1) = c(j + 1) = c(−j) = c′(−p), 1 ≤ p ≤ n.

This shows that c′ supports ρn,1 ∈ Aut(Cn).

Corollary 2.5. Let d|n and 1 ≤ i ≤ n. Then,

(a) The number of k-colorings of Cn which are generated by a colored segment of length d and

support the reflection ρi is k⌈ d+1

2
⌉.

(b) If n is even, the number of k-colorings of Cn which are generated by a colored segment of

length d and support the reflection ρi,i+1 is k⌊ d+1

2
⌋.

Proof. We employ Lemma 2.4 and its proof.

(a) Without loss of generality, let i = 1. Such a coloring on Cn induces a coloring on Cd

supporting the reflection ρ1. If d is odd, this counts as k
d+1

2 colorings on Cd; since the vertex 1

has an arbitrary color and half of the remaining vertices determine the coloring. If d is even, it

counts as k
d
2
+1 colorings on Cd; since in addition to vertex 1, its opposite vertex, d

2
+ 1, has an

arbitrary color, too; and half of the remaining vertices determine the coloring. Both numbers

are equal to k⌈ d+1

2
⌉.

(b) Without loss of generality let i = n. First suppose that d is odd. Since the coloring of

[d] around Cn supports ρn,1, it supports the reflection ρ⌈ d
2
⌉ on Cd. The number of such colorings

is k
d+1

2 , as computed in (a).

If d is even, in order to support ρn,1 on Cn, the segment [d] is colored symmetrically with

respect to its mid point. The number of such colorings of [d] is k
d
2 . Here both numbers are

equal to k⌊ d+1

2
⌋.
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Let n = pn1

1 pn2

2 · · · pnt

t be the canonical decomposition of n to prime factors. For each subset

A of W = {1, 2, . . . , t}, define the integer

nA = (
∏

i∈W\A

pni

i )(
∏

j∈A

p
nj−1
j ),

which is a divisor of n. When A = ∅, nA = n; and nA is a maximal divisor of n if and only if

|A| = 1. Also, for any subset A of W , we have

nA = gcd(n{x} : x ∈ A).

Lemma 2.6. Let n = pn1

1 pn2

2 · · · pnt

t be the canonical decomposition of n to prime factors. Then,

|Nn,k| = kn −
∑

A⊆{1,2,...,t}

(−1)|A|knA .

Proof. Let S be the set of all k-colorings of Cn and let Si be the subset of S consisting colorings

generated by colored segments of length n{i}. Every coloring of Cn which supports a rotation

is generated by a colored segment [d] for some d|n, d 6= n, and such a d is a divisor of n{i}, for

some i ∈ {1, 2, . . . t}. By Lemma 2.3, Nn,k =
⋃t

i=1 Si. Also, for each ∅ 6= A ⊆ {1, 2, . . . , t}, the

set
⋂

i∈A Si is the set of colorings in S which are generated by some colored segment of length

nA. Therefore, by Lemma 2.3, |
⋂

i∈A Si| = knA. By the principle of inclusion-exclusion,

|Nn,k| =
∑

∅6=A⊆{1,2,...,t}

(−1)|A|+1knA .

Finally, taking into account A = ∅ and noting that n∅ = n results in:

|Nn,k| = kn −
∑

A⊆{1,2,...,t}

(−1)|A|knA .

Lemma 2.7. Let n = pn1

1 pn2

2 · · · pnt

t be the canonical decomposition of n to prime factors. Then

|Mn,k| =
n

2

∑

A⊆{1,2,...,t}

(−1)|A|(k⌈
nA+1

2
⌉ + k⌊

nA+1

2
⌋).

Proof. First, suppose X is the set of all k-colorings of Cn supporting the reflection ρ1 ∈ Aut(Cn)

and Xj , 1 ≤ j ≤ n, is the subset of X consisting of k-colorings generated by the segment of

length n{j}. By Corollary 2.5 (a), we have |X| = k⌈n+1

2
⌉. Note that a coloring c in X supports

no reflection of Cn other than ρ1, if and only if c /∈ Xj , for all j (otherwise, contradicts Lemma

2.2). For ∅ 6= A ⊆ {1, 2, . . . , t}, the set
⋂

j∈AXj is the subset of X consisting of colorings

generated by the segment of length nA. They also support ρ1 ∈ Aut(Cn). Therefore, Corollary

2.5 (a) implies that |
⋂

j∈AXj| = k⌈
nA+1

2
⌉.
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We can now find the number of k-colorings of Cn which support only ρ1 and no more

reflections (and of course no rotation, by Lemma 2.2. By the inclusion-exclusion principle,

|X \ (X1 ∪X2 ∪ . . . ∪Xt)| = k⌈n+1

2
⌉ −

∑

∅6=A⊆{1,2,...,t}

(−1)|A|+1k⌈
nA+1

2
⌉.

If we take into account A = ∅ and note that n∅ = n, the equality above becomes,

|X \ (X1 ∪X2 ∪ . . . ∪Xt)| =
∑

A⊆{1,2,...,t}

(−1)|A|k⌈
nA+1

2
⌉.

For each 1 ≤ i ≤ n we can use the same argument as ρ1 for the reflection ρi ∈ Aut(Cn). If

n is odd, there are no reflections of the form ρi,i+1. Since in this case all nA’s are odd we have

the desired equality:

|Mn,k| = n
∑

A⊆{1,2,...,t}

(−1)|A|k⌈
nA+1

2
⌉ =

n

2

∑

A⊆{1,2,...,t}

(−1)|A|(k⌈
nA+1

2
⌉ + k⌊

nA+1

2
⌋).

Now suppose that n is even. Since ρi = ρn
2
+i, the number of k-colorings of Cn which support

some ρi and no more reflections is:

n

2

∑

A⊆{1,2,...,t}

(−1)|A|k⌈
nA+1

2
⌉.

In addition, a similar arguments and Lemma 2.5 (b) reveal that the number of k-colorings

of Cn which only support ρn,1 and no more reflections is equal to:

∑

A⊆{1,2,...,t}

(−1)|A|k⌊
nA+1

2
⌋.

Since ρi,i+1 = ρn
2
+i,n

2
+i+1, the number of k-colorings of Cn which support some ρi,i+1 and no

more reflections is:
n

2

∑

A⊆{1,2,...,t}

(−1)|A|k⌊
nA+1

2
⌋.

Therefore,

|Mn,k| =
n

2

∑

A⊆{1,2,...,t}

(−1)|A|(k⌈
nA+1

2
⌉ + k⌊

nA+1

2
⌋).

The proof is now complete.

Now all ingredients are ready to compute the distinguishing polynomials of cycles.

Theorem 2.8. Let n = pn1

1 pn2

2 · · · pnt

t be the canonical decomposition of n to prime factors.

Then,

8



(i) If n is odd,

Dk(Cn) =
∑

A⊆{1,2,...,t}

(−1)|A|(knA − nk
nA+1

2 ).

(ii) If n is even,

Dk(Cn) =
∑

A⊆{1,2,...,t}

(−1)|A|(knA −
n

2
k⌈

nA+1

2
⌉ −

n

2
k⌊

nA+1

2
⌋).

Proof. Use Equation 2.1, Lemma 2.6 and Lemma 2.7.

Corollary 2.9. For any odd prime p,

• Dk(Cp) = kp − pk
p+1

2 + (p− 1)k.

• Dk(Cp2) = kp2 − p2k
p2+1

2 − kp + p2k
p+1

2 .

Example 2.10.

• Dk(C4) = k4 − 2k3 − k2 + 2k (given in split form in Example 1.4 )

• Dk(C6) = k6 − 3k4 − 4k3 + 8k2 − 2k.

3 Disconnected graphs, Complete Multipartite Graphs And

Joins

In contrast to the chromatic polynomial, the distinguishing polynomial of a disjoint union of

graphs is not necessarily equal to the product of their individual polynomials, unless some

obvious necessary conditions occur. However, we can compute the distinguishing polynomial

of a disjoint union of graphs versus the distinguishing polynomials of the components. For a

graph G, denote the disjoint union of m copies of G by mG.

Lemma 3.1. For every connected graph G:

Φk(mG) =
1

m!
Φk(G)(m) =

1

m!

m−1
∏

i=0

(Φk(G)− i).

Proof. Show the copies of G by G1, G2, · · · , Gm. There are Φk(G) nonequivalent distinguishing

k-colorings of G1. Let c be a distinguishing k-coloring of G1. To avoid mapping of G1 and G2

onto each other, we must have a coloring of G2 nonequivalent to c. So, there exist Φk(G)− 1

nonequivalent distinguishing colorings for G2. Similarly, we must avoid mappings of G1, G2 and

G3 onto each other. Hence, there exist Φk(G)− 2 nonequivalent distinguishing k-colorings for

G3; and so on. Therefore, there are
∏m−1

i=0 (Φk(G)− i) = Φk(G)(m) nonequivalent distinguishing

k-colorings for mG, if the copies of G are considered different objects. But the copies are the

same objects, so we have to divide
∏m−1

i=0 (Φk(G)− i) = Φk(G)(m) by m! to find Φk(mG).

9



In order to compute Dk(mG), we also need the following known lemma, which can easily

be verified.

Lemma 3.2. For any connected graph G, |Aut(mG)| = m!|Aut(G)|m. ✷

The previous two lemmas and 1.3 gives Dk(mG), whenever G is connected.

Corollary 3.3. For a connected graph G,

Dk(mG) =
m−1
∏

i=0

(Dk(G)− i|Aut(G)|)

Proof. By Lemma 3.2 and Corollary 3.3,

Dk(mG) = Φk(mG)m!|Aut(G)|m =
1

m!
Φk(G)(m)m!|Aut(G)|m =

m−1
∏

i=0

(Dk(G)− i|Aut(G)|).

Now, gathering the results above, everything is ready to compute the distinguishing poly-

nomial of a disjoint union versus distinguishing polynomials of its components.

Theorem 3.4. Let G1, G2, · · · , Gt be mutually non-isomorphic connected graphs and m1, m2,

· · · , mt be positive integers. Then

Dk(

t
⋃

i=1

miGi) =

t
∏

i=1

Dk(miGi) =

t
∏

i=1

mi−1
∏

j=0

(Dk(Gi)− j|Aut(Gi)|). (3.1)

Proof. The proof is plain. For i 6= j, no automorphism can map a copy of Gi to a copy of Gj.

In other words, any automorphism of
⋃t

i=1miGi maps miGi, 1 ≤ i ≤ t, onto itself, hence the

left equality holds. Write the right equality by Corollary 3.3.

As a corollary, distinguishing polynomials of complete multipartite graphs are derived.

Theorem 3.5. Suppose that ni, 1 ≤ i ≤ t are distinct positive integers and H is the complete

multipartite graph with mi parts of order ni, 1 ≤ i ≤ t. Then

Dk(H) =
t

∏

i=1

mi−1
∏

j=0

(k(ni) − jni!)

Proof. As we noted earlier, the distinguishing polynomials of a graph and its complement are

the same. The complement of the complete multipartite H is the disjoint union
⋃t

i=1miKni

and |Aut(Kni
)| = ni!. Now Theorem 3.4 gives the result.

Example 3.6.

10



• Dk(K2,3) = Dk(K2 ∪K3) = k2(k − 1)2(k − 2) = k5 − 4k4 + 5k3 − 2k2.

• Dk(K3,3) = Dk(2K3) = k(k−1)(k−2)[k(k−1)(k−2)−6] = k(k−1)(k−2)(k−3)(k2+2) =

k6 − 6k5 + 13k4 − 18k3 + 22k2 − 12k.

• Dk(K2,2,2) = Dk(3K2) = k(k−1)[k(k−1)−2][k(k−1)−4] = k(k−1)(k−2)2(k+1)(k2−
k − 4) = k6 − 3k5 − 3k4 + 11k3 + 2k2 − 8k.

Finally, if we consider the join G∨H of two graphs G and H , we have Dk(G∨H) = Dk(G
c∪

Hc), which can be computed by Theorem 3.4. For example, the distinguishing polynomial of

a wheel is at hand, since a wheel is the join of a cycle with a single vertex. So is for a fan, the

join of a path and a single vertex.

4 Conclusion

Like all over mathematics, the notion distinguishing polynomial brings up many new problems

and aspects. After paths and cycles, we are interested in knowing distinguishing polynomials

of trees, hypercubes and Kneser graphs, ..., specially the Petersen graph. On the other hand,

the theoretical aspects of this polynomial are also important. In contrast to the chromatic

polynomial, we do not know exactly how the coefficients of Dk(G) are related to the graph

structure.

In particular, the multiplicity of zero as a root of Dk(G) seems to be an important invariant

of the graph G. Roughly speaking, any increase in multiplicity of zero results in less symmetry

and vice versa. For the moment, we have no exact interpretation of such multiplicity versus

the graph structure. However, we show that the multiplicity of zero in the distinguishing

polynomial of G is at least the number of its orbits. Recall that an orbit O of a graph G is a

maximal subset of vertices of G for which if x, y ∈ O, then there exists f ∈ Aut(G) such that

f(x) = y. The vertex set of G is partitioned into its orbits.

Definition 4.1. We call two distinguishing colorings c and c′ of G similar if they induce the

same partition on each orbit of G. That is, if O is any orbit of G and x, y ∈ O, then c(x) = c(y)

if and only if c′(x) = c′(y).

Example 4.2. Any two distinguishing colorings of the path P3 as well as complete graph Kn

and any asymmetric graph are similar. On the other hand, consider the path P4 with vertices

1, 2, 3, 4. Let α, β, γ and δ be different colors. The following three distinguishing colorings

c, c′ and c′′ are mutually non-similar: c(1, 2, 3, 4) = (α, β, γ, δ), c′(1, 2, 3, 4) = (α, α, α, γ) and

c′′(1, 2, 3, 4) = (α, α, β, α). The coloring c′′′(1, 2, 3, 4) = (α, β, α, β) is similar to c. In fact, each

distinguishing coloring of P4 is similar to one of the colorings c, c′, c′′.

Note that similarity is an equivalence relation on the set of all distinguishing k-colorings

of G. Let c be a distinguishing coloring of G. The number of colorings similar to c can be
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computed as follows. If O is an orbit of G partitioned as X1, X2, · · · , Xt by c, the vertices in

O can be colored in

k(k − 1) · · · (k − t+ 1) (4.1)

number of ways; and the number of distinguishing k-colorings similar to c is equal to the

product of products of the form 4.1 for all orbits. For each orbit we have a factor k, hence

there are kqgc(k) distinguishing k-coloring of G similar to c, where gc(k) is a suitable nonzero

polynomial. The set of all distinguishing k-colorings of G is partitioned into equivalence classes

of similarity, and the cardinality of each class is divisible by kq. Therefore, Dk(G) is divisible

by kq. Aggregating, we have proved the following theorem.

Theorem 4.3. For any graph G with q orbits, the multiplicity of zero as a root of Dk(G) is at

least q. ✷

For most of the graphs studied in previous sections, namely paths, complete graphs, com-

plete multipartite graphs, asymmetric graphs and cycles of odd prime lengths, the multiplicity

of zero as a root of Dk(G) is exactly the number of their orbits. However, as corollary 2.9

shows, for an odd prime p, while the cycle Cp2 is vertex transitive and has only one orbit,

the multiplicity of zero in Dk(Cp2) exceeds one. It also shows that there is no limit for the

multiplicity of zero in Dk(G) even when G is vertex transitive. Other roots are also interesting,

possible negative integers, real or complex roots.

Finally, as stated, knowing the automorphism groups and orbits play important roles in this

theory; nevertheless, they are not sufficient to determine the distinguishing polynomials, as the

graphs in previous sections demonstrate. In addition to employing the automorphisms and

orbits, different techniques were used to determine the distinguishing polynomials of illustrated

graphs. These observations suggest that the complexity of determining Dk(G) is NP, although

it remains to be seen whether this statement is true.
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