
1

On the Performance of Low-complexity

Decoders of LDPC and Polar Codes
Qingqing Peng, Dawei Yin, Dongxu Chang, Yuan Li,

Huazi Zhang, Guiying Yan, Guanghui Wang

Abstract

Efficient decoding is crucial to high-throughput and low-power wireless communication scenarios. A theoretical

analysis of the performance-complexity tradeoff toward low-complexity decoding is required for a better understanding

of the fundamental limits in the above-mentioned scenarios. This study aims to explore the performance of decoders

with complexity constraints. Specifically, we investigate the performance of LDPC codes with different numbers of

belief-propagation iterations and the performance of polar codes with an SSC decoder. We found that the asymptotic

error rates of both polar codes and LDPC codes are functions of complexity T and code length N , in the form of

2−a2
b T
N , where a and b are constants that depend on channel and coding schemes. Our analysis reveals the different

performance-complexity tradeoffs for LDPC and polar codes. The results indicate that if one aims to further enhance

the decoding efficiency for LDPC codes, the key lies in how to efficiently pass messages on the factor graph. In

terms of decoding efficiency, polar codes asymptotically outperform (J,K)-regular LDPC codes with a code rate

R ≤ 1− J(J−1)

2J+(J−1)
in the low-complexity regime (T ≤ O(NlogN)).

Index Terms

low-density parity-check codes, polar codes, successive-cancellation decoding, and belief propagation decoding.

I. INTRODUCTION

Through decades of efforts in pursuit of the Shannon limit, channel coding has seen major breakthroughs in both

theory and practice. The channel coding schemes employed in 5G NR, including LDPC codes and polar codes

have theoretically approached or achieved Shannon limit [1], [2]. As a result, communication systems now has high

spectral efficiency. However, the vision for 6G application scenarios sets higher requirements for coding theory,

aiming at throughput exceeding Tb/s and energy efficiency below pJ/bit, which underscores the need to address

decoding efficiency in addition to coding gain [3]–[5].
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Decoding efficiency, characterized by a complexity-performance tradeoff, varies across different decoding al-

gorithms. Research on LDPC code performance-complexity tradeoffs stems from the McEliece conjecture [6]. It

suggests that when the designed code rate is 1−ϵ of the channel capacity C, the complexity should be approximately
1
ϵ ln

1
ϵ for a given block error rate (BLER) PB . On the other hand, for a given code rate R < C, Lentmaier et al. [7]

establish the BLER upper bound for LDPC codes with O(logN) belief propagation iterations, where N is the block

length. The decoding efficiency of polar codes has also been extensively researched. The simplified successive-

cancellation (SSC) decoder can significantly reduce the complexity of successive-cancellation (SC) decoder [8]

without performance loss. Seyyed et al. show that in the BMS channel, for a fixed PB ∈ (0, 1) and a sequence of

polar codes Cpolar(PB ,W,N) of increasing block lengths with rates approaching the channel capacity, there exists

N̄(ϵ) for any ϵ > 0, such that for any N ≥ N̄(ϵ), the latency of the SSC decoder with P processing elements

is upper bounded by O(N1−1/µ + (2 + ϵ)NP log2 log2
N
P ) [9]. Specifically, a fully serial SSC decoder (P = 1)

has a complexity upper bound of (2 + ϵ)N log2 log2 N . The tradeoff between the decoding circuit complexity and

performance in VLSI models has also attracted research interest [10], [11]. In [11], Frank demonstrates that either

the energy consumption E(N) ≥ Ω(N
√
− ln f(N)) or the error rate PB > f(N). The results mentioned above

inspire our investigation into the decoding efficiency of polar codes and LDPC codes.

Our previous work has compared the decoding efficiency of LDPC and polar codes, using the number of messages

passed (NMP) to measure complexity and a statistical distance to the Maximum A Posteriori (MAP) estimate to

measure performance [12]. However, the results are mainly numerical and lack asymptotic analysis. Retaining NMP

as the complexity measure in this study, we aim to establish a direct relationship between complexity T and error

rate PB , that is, PB = f(T ).

For LDPC codes, Grover et al. predict a double exponential reduction of BER with the number of iterations

[13]. In this study, we provide an explicit expression for this double-exponential relationship. To be specific, we

establish a lower bound of the error rate by observing the number of messages passed from channel output to a

variable node. This can be formulated as a graph theory problem, that is, how many non-repetitive neighbors of a

given vertex are present in the Tanner graph during the decoding process. For polar codes, we also characterize the

trade-off between the complexity of the polar code SSC decoder and its BLER.

Our primary contribution lies in providing the asymptotic error rates of LDPC and polar codes, formulated as

2−a2b
T
N , where a and b are constants that depend on channel and coding schemes. Note that b is the main term

determining the order of the error rate. We demonstrate that for LDPC codes, b ∈ ( log2(J−1)
2J , log2(J−1)(K−1)

2J ),

while for polar codes, b = 0.5. This implies that polar codes asymptotically outperform (J,K)-regular LDPC codes

with a code rate R ≤ 1− J(J−1)
2J+(J−1)

in the low-complexity regime (T ≤ O(NlogN)). This conclusion aligns with

the findings in [12] and corroborates results on terabits-per-second SC decoders [14], [15].

II. PRELIMINARIES

In this section, we will review the definitions of LDPC codes and polar codes, as well as their decoding algorithms,

namely belief propagation (BP) decoding for LDPC codes and simplified successive-cancellation (SSC) decoding

for polar codes.
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A. Bipartite Graphs and LDPC Codes

An undirected bipartite graph G = (VG ∪ CG, EG) is defined as two disjoint sets of vertices VG and CG, and

a set of edges EG, where EG is a subset of the pairs {{v, c} : v ∈ VG, c ∈ CG}, and |VG| and |CG| denote the

number of vertices in VG and CG, respectively. The degree of a vertice v refers to the number of edges connected

to v, and it can be denoted as deg(v). A bipartite graph G is said to be bi-regular if all the vertices in VG have

the same degree deg(v) and all the vertices in CG have the same degree deg(c).

In a bipartite graph, a path of length 2k is a sequence of vertices {v1, c1, v2, . . . , vk, ck, vk+1} in VG ∪CG such

that {vi, ci}, {ci, vi+1} ∈ E for all i ∈ {1, . . . , k}, and all the vertices v1, c1, v2, . . . , vk, ck, vk+1 are distinct. The

distance, denoted as dvi,vj , in graph G between two vertices vi and vj is defined as the length of the shortest path

connecting vi and vj in G.

An LDPC code with a parity check matrix H is a linear block code that can be represented by an undirected

bipartite graph G = (VG ∪CG, EG), where VG and CG refer to the sets of variable nodes (VNs) and check nodes

(CNs) respectively. This bipartite graph is also known as a Tanner graph, and an edge exists between VN vi and

CN cj if and only if H(cj , vi) = 1. The parity-check matrix and Tanner graph for an LDPC code C with a length

of 4 are given in Fig. 1. Note that |VG| denotes the code’s block length N , and the code rate is generally defined

as 1− |CG|/|VG|.

(a) parity check matrix H (b) Tanner graph G

Fig. 1. Parity check matrix and Tanner graph for an LDPC code with a length of 4. In the Tanner graph, circles represent VNs, and squares

represent CNs. The i-th VN receives channel message LLRi.

B. The Ensemble of LDPC Codes

Consider the normalized degree distribution from a node perspective:

Ldeg(x) =
∑
i

Lix
i, (1)

Rdeg(x) =
∑
j

Rjx
j , (2)

where Li denotes the proportion of VNs with a degree of i, and Rj denotes the proportion of CNs with a degree

of j.
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Fig. 2. A computation graph of height 4 for v1 in Fig. 1. Solid lines represent the first appearances of nodes, whereas dashed lines indicate

their subsequent occurrences.

Let J = d1 ≥ d2 ≥ · · · ≥ dN and K = d′1 ≥ d′2 ≥ · · · ≥ d′M , where M =
L′

deg(1)

R′
deg(1)

N . Suppose the

degree sets {di} and {d′j} are selected according to the distributions Ldeg(x) and Rdeg(x), respectively. The

Ensemble LDPC(N,Ldeg, Rdeg) is the probability space of all bipartite graphs with node set (VG, CG), where

VG = {v1, v2, · · · , vN}, CG = {c1, c2, · · · , cM}, and deg(vi) = di, deg(cj) = d′j . Within this space, the distribution

of bipartite graphs is uniform.

It is necessary to describe the construction of LDPC(N,Ldeg, Rdeg) [16]. For each node z, we consider a bin

that contains deg(z) cells. We then consider random perfect matchings to pair the cells on the VG side of the graph

with the cells on the CG side. Corresponding to each matching, there is a so-called configuration, in which the

matched cells on the two sides of the graph are connected by an edge. We assume that configurations are selected

uniformly at random. Corresponding to each matching (configuration), we construct a bipartite graph such that if

there is an edge between two cells, then we place an edge between the corresponding nodes (bins) in the bipartite

graph. We denote the ensemble of bipartite graphs so constructed by G. We note that G contains bipartite graphs

with parallel edges. The ensemble LDPC(N,Ldeg, Rdeg) is obtained by removing all bipartite graphs with parallel

edges from G. With the condition that the bipartite graphs constructed from random configurations have no parallel

edges, the distribution of bipartite graphs (those in LDPC(N,Ldeg, Rdeg)) is uniform.

C. BP Decoding and Computation Graph

One effective decoder for LDPC codes is BP decoding. In a Tanner graph, each VN receives a message from

the channel, and BP decoding is achieved by passing messages along the edges. Assume that x = {x1, . . . , xN} ∈

{0, 1}N are transmitted through binary-input memoryless channels, and y = {y1, ..., yN} ∈ {0, 1}N are received

signals. Let

LLRi = ln
p(yi|xi = 0)

p(yi|xi = 1)
(3)
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denote the initial log-likelihood ratio (LLR) for the i-th VN, and LLRi can also be regarded as the channel message

of the i-th VN, as illustrated in Fig. 1.

The message-passing process of BP decoding consists of variable-to-check (V2C) message updates and check-

to-variable (C2V) message updates. The message update rule of V2C is

LLR(l)
vi→cj = LLRi +

∑
c∈N (vi)\cj

LLR(l−1)
c→vi , (4)

and the message update rule of C2V is

LLR(l)
cj→vi = 2 tanh−1

 ∏
v∈N (cj)\vi

tanh(LLR(l−1)
v→cj/2)

 , (5)

where l is the number of iterations, N (v) denotes the nodes connected directly to node v, vi → cj means from

VN vi to CN cj and cj → vi means from CN cj to VN vi. The initial message LLR
(0)
vi→cj and LLR

(0)
cj→vi is 0.

The decoding process for a VN can be depicted as a computation graph [17]. For example, the decoding of v1

in Fig. 1 depends on the messages from its neighboring nodes, c1 and c2. It processes the message received from

c1 and c2 along with its own message to complete the decoding. As an example, the outgoing message from c1 is

a function of the messages it receives from v2 and v4. When we unroll this dependency structure for VN v1, we

arrive at the computation graph of height 4 shown in Fig. 2, which corresponds to 2 iterations of BP decoding.

This computation graph is depicted as a tree, but in fact, it is not: several of the VNs and CNs appear repeatedly.

For example, v2 appears as a child of both c1, c2, and c3. It is worth noting that the number of distinct VNs in

Fig.2 is equivalent to the number of channel messages collected by v1 in the decoding process.

D. Polar Codes and SSC Decoding

Polar codes [1] are parameterized by (N, k,A), where N is the code length and A is a set of information indices

that carry k information bits uA. The complement of A is the frozen indices Ac that carry frozen bits uAc . The

polar generator matrix is GN = BNF⊗n for any N = 2n, where BN is a bit-reversal permutation matrix, F⊗n

denotes the n−th Kronecker power of F ≜

 1 0

1 1

. A codeword is generated by c = uGN , where u = (uA,uAc).

SC decoding is a message-passing algorithm on the factor graph of polar codes, as shown in Fig. 3 for a polar

code of length N = 8 [1]. At level n of the factor graph, the LLR values α0:N−1
n = {α0

n, α
1
n, · · · , αN−1

n }, that are

calculated from the received channel-output vector, are fed to the decoder. At each level s, we have:

αi
s =

 f(αi
s+1, α

i+2s

s+1 ) if ⌊ i
2s ⌋ mod 2 = 0,

g(αi
s+1, α

i−2s

s+1 , βi−2s

s ) if ⌊ i
2s ⌋ mod 2 = 1

(6)

where f(a, b) = 2 arctanh(tanh(a2 ) tanh(
b
2 )), g(a, b, c) = a + (1 − 2c)b, and βi

s is the i-th bit estimate at level

s of the factor graph. As shown in Fig.4, the decoding process also can be represented as a binary tree. The bit

estimates βs = {β0
s , β

1
s , · · · , βN−1

s } are calculated as

βi
s =

 βi
s−1 ⊕ βi+2s

s−1 if ⌊ i
2s ⌋ mod 2 = 0,

βi
s−1 if ⌊ i

2s ⌋ mod 2 = 1,
(7)
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where ⊕ is the bit-wise XOR operation. All frozen bits are assumed to be zero. Hence at level s = 0, the i-th bit

ui is estimated as

ûi = βi
0 =

 0 if ui is a frozen bit or αi
0 > 0,

1 otherwise.
(8)

The SSC decoding algorithm [8] identifies two types of nodes in the SC decoding tree. The bits within each

node can be decoded efficiently in one shot without traversing its descendent nodes. These two types of nodes are:

• Rate-0 node: A node at level s of the SC decoding tree all of whose leaf nodes at level 0 are frozen bits. For

a Rate-0 node at level s, bit estimates can be directly calculated at the level where the node is located as

βs
i = 0. (9)

• Rate-1 node: A node at level s of the SC decoding tree whose leaf nodes at level 0 are all information bits. For

a Rate-1 node at level s, the bit estimations can be directly calculated at the level where the node is located

as

βi
s =

 0 if αi
s > 0,

1 otherwise.
(10)

SSC decoding can decode Rate-0 and Rate-1 nodes in a single time step. As shown in Fig.5, in a binary tree

representation of SC decoding, this corresponds to pruning all the nodes that are the descendants of a Rate-0 node

or a Rate-1 node.

s ==0 s == 1 

(a; ,/310) 

s ==2 

(ag ,/Ji) 

s ==3 

(ai'矿）
。

^U 

l 
^U 

(at,/Jt) 
2 

^U 

3 
^U 

(a。i ,/Ji。:)
4 

^U 

5 
^U 

(ag伉）
6 

^U 

7 
^U 

Fig. 3. SC decoding on the factor graph representation of Polar codes with N = 8.

E. Complexity metric and Big-O Notation

In this study, we define passing a V2C or C2V message on a directed edge as a unit of complexity [12], and the

complexity T of a decoder is the number of messages passed (NMP). This notion of complexity is proportional to

the complexity measured in arithmetic operations [6], and aligns with the simplification approach in [9], [18], [19].
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Fig. 4. The binary tree representation of SC decoding with N = 8 and R = 0.5. The white nodes represent information bits and the black

nodes represent frozen bits.

Fig. 5. The SSC decoding algorithm on decoding tree. The white nodes represent the R1 nodes and the black nodes represent the R0 nodes.

The polar factor graph is equivalent to a bipartite graph as shown in Fig. 6 [20]. Hence the same rules to measure

complexity can be applied to polar codes.

(a) C2V in polar code (b) V2C in polar code

Fig. 6. Four types of message passing in LDPC and polar codes.

We use standard Bachmann-Landau notation in this paper. For any non-negative real-valued functions f(x) and

g(x), the notation f(x) = O(g(x)) (or equivalently f(x) ≤ O(g(x))) implies that for sufficiently large x, f(x) is

bounded above by cg(x), where c is a positive constant. Similarly, the notation f(x) = Ω(g(x)) (or equivalently

f(x) ≥ Ω(g(x))) indicates that for sufficiently large x, f(x) is bounded below by cg(x), where c is a constant.

III. PERFORMANCE BOUNDS OF LDPC CODES

This section aims to establish a lower bound on the BER of LDPC codes as a function of decoding complexity.

We will analyze the average BER within two distinct ensembles: LDPC codes with finite degrees and regular

LDPC codes. The proof techniques for these bounds are similar and can be divided into two main steps. Firstly,

we calculate the number of channel messages that VN v can collect under l iterations, denoted as n(v, l). This

represents the number of distinct VNs in the computation graph rooted at v with a height of 2l. Secondly, the
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lower bound on the error probability for v with n(v, l) channel messages is established. Assume that the LDPC

codes considered in this section are transmitted over a binary-input output-symmetric memoryless channel, and

each codeword is chosen uniformly at random for transmission.

A. the Error Probability of VN with Given Number of Messages

This subsection will introduce a lemma that provides a lower bound on the error probability for a VN v, given

a specific number of channel messages. This lemma results in a lower bound on the BER for LDPC codes.

Lemma 1. Consider an LDPC code with Tanner graph G. Let n(v, l) denote the number of channel messages that

VN v can collect under l iterations of BP decoding, the error probability of v can be expressed as follows,

Pv ≥ 2−n(v,l)c1−c1 , (11)

where

c1 = | log2
√
α|,

and α denotes the error probability in a single-channel transmission by using the MAP decoder. Therefore, α is a

constant dependent on the channel.

The proof of Lemma 1 will be provided in Appendix A. Subsequently, we demonstrate how Lemma 1 is applied

to assess the performance of LDPC codes.

Consider an LDPC code with a maximum degree of J for VNs and a maximum degree of K for CNs. For any

VN vi, since the maximum degree of VNs is J , the number of first-layer nodes (neighbors of vi) in the computation

graph for vi is at most J . Similarly, for the CNs in the first layer of the computation graph, there can be at most

K − 1 children nodes. Therefore, the number of VNs in the second layer is at most J(K − 1). Following this

pattern, in the 2l-th layer, there can be at most J(J − 1)l−1(K − 1)l VNs. This means that in the computation

graph with a height of 2l, there can be at most c2([(K− 1)(J − 1)]l− 1) VNs, where c2 = J×(K−1)
(J−1)(K−1)−1 . In other

words, vi can collect at most c2([(K − 1)(J − 1)]l − 1) channel messages under l iterations of BP decoding.

Substituting n(vi, l) ≤ min{c2([(K − 1)(J − 1)]l − 1), N} into Lemma 1, we obtain the following Corollary.

Corollary 2. Consider an LDPC code with a maximum degree of J for VNs and a maximum degree of K for CNs.

If we perform BP decoding with l ≤ log(J−1)(K−1)(
N
c2

+ 1) iterations, the BER Pb is given by

Pb ≥ 2−[(K−1)(J−1)]l×c1c2+c1c2−c1 , (12)

where c1 and c2 are expressions as defined earlier.

Here is an intuitive interpretation of Corollary 2. If we perform a finite number of iterations for BP decoding,

then increasing the code length will not result in a performance gain, such as QC-LDPC codes. Furthermore,

if one desires an exponential decrease in error rate with respect to code length N , the complexity should be at

least Ω(N log(J−1)(K−1) N). This conclusion is also consistent with the O(N)-complexity codes like irregular

repeat–accumulate (IRA) and accumulate-repeat-accumulate (ARA) codes [21], [22], where the maximum degree

tends to infinity as the code length increases.
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B. Average BER over the Ensemble of LDPC Codes

When there is a significant disparity between the maximum and minimum degrees, the bound provided by the

Corollary 2 is rather loose. In this subsection, we will present a more precise estimate of the expected number of

messages collected by a random VN, which provides a lower bound on the average BER P b over the ensemble

of LDPC codes under l iterations. We uniformly randomly choose a graph G from LDPC(N,Ldeg, Rdeg) and

a pair of nodes from G. Let d be a random variable denoting the distance between this pair of VNs. Then,

P (d > 2t|d > 2t− 1) (denoted as P (2t) for brevity) denotes the conditional probability that the d is greater than

2t given that it is greater than 2t− 1. We can recursively determine the number of messages collected during the

t-th iteration using P (2t) and subsequently calculate the error rate of nodes by employing Lemma 1.

Theorem 3. Consider the ensemble LDPC(N,Ldeg, Rdeg). If we perform BP decoding with l iterations, then the

average BER over the ensemble P b can be expressed as follows,

P b ≥ 2−N
(
1−

∏l
t=1 P (2t)

)
c1−c1 , (13)

where

P (2t) =

∞∑
k=1

Lk

(
P̃ (2t− 1)

)k

, (14)

P̃ (2t− 1) =

∞∑
k=1

kRk∑∞
k=1 kRk

(
P̃ (2t− 2)

)k−1

, (15)

P̃ (2t− 2) =

∞∑
k=1

kLk∑∞
k=1 kLk

(
P̃ (2t− 3)

)k−1

, (16)

P̃ (1) =

∞∑
k=1

kRk∑∞
k=1 kRk

(
1− 1

N

)k−1

. (17)

Equations (14), (15), and (16) are valid for t ≥ 1, t ≥ 2, and t ≥ 2, respectively.

P (2t) can be calculated recursively using (14) ∼ (17), and P̃ (·) can be viewed as an intermediate variable in the

recursion. In Appendix B, we will demonstrate that P̃ (·) denotes the conditional probability in the cavity graph.

The proof of Theorem 3 is based on an analysis of the expected number of messages collected by a random VN

v in the ensemble, similar to the approach in Corollary 2.

Lemma 4. Consider the ensemble LDPC(N,Ldeg, Rdeg). Let n(l) be the expected number of messages collected

by a random VN in the ensemble under l iterations of BP decoding, where the expectation is over all instances of

the code and the choice of the VN. We have

n(l) = N(1− P (d > 2l)) = N

(
1−

l∏
t=1

P (2t)

)
, (18)

and P (2t) can be calculated by (14) ∼ (17).
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1 2 3 4 5 6

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(d

>
2l

)

Recursive results of regular code
Simulation results of regular code
Recursive results of irregular code
Simulation results of irregular code

Fig. 7. The tail distribution P (d > 2l) were obtained from both recursive equations and numerical simulations. These calculations were

performed on two LDPC code ensembles: the ensemble of (3, 6)-regular LDPC codes and the ensemble of irregular LDPC codes, both with

a block length of N = 1000. The degree distributions for the irregular LDPC code ensemble are specified as Ldeg(x) = 0.38354x2 +

0.04237x3 + 0.57409x4 and Rdeg(x) = 0.24123x5 + 0.75877x6. The numerical results were averaged over 50 graph instances.

The proof of Lemma 4 will be presented in Appendix B. In Fig. 7, we depict the tail distribution P (d > 2l) for

two LDPC code ensembles, as obtained from (14): the ensemble of (3, 6)-regular LDPC codes and the ensemble of

irregular LDPC codes, both with a block length of N = 1000. The degree distributions for the ensemble of irregular

LDPC codes are specified as Ldeg(x) = 0.38354x2+0.04237x3+0.57409x4 and Rdeg(x) = 0.24123x5+0.75877x6.

The results are compared with computer simulations showing excellent agreement.

For a randomly selected VN v in the ensemble, Let P v denote the expected error probability of v, where the

expectation is over all instances of the code, the choice of the VNs, and the realization of the channel noise.

According to Lemma 1, we have

P v

Lemma 1
≥ E

(
2−n(v,l)c1−c1

)
(a)

≥ 2−n(l)c1−c1

Lemma 4
= 2−N

(
1−

∏l
t=1 P (2t)

)
c1−c1 ,

(19)

where (a) follows Jensen’s inequality and a P (2t) can be calculated by (14) ∼ (17), which completes the proof of

Theorem 3. Compared with Corollary 2, Theorem 3 provides a tighter lower bound for irregular LDPC codes.

C. Average BER over the Ensemble of Regular LDPC Codes

Assume that Ldeg(x) = xJ and Rdeg(x) = xK , then the ensemble mentioned in the previous section corresponds

to the (J,K)-regular LDPC codes ensemble. By substituting LJ = 1 and RK = 1 into Lemma 4 and Theorem 3,

we can obtain Corollary 5 and Corollary 6.
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Corollary 5. Consider the ensemble of (J,K)-regular LDPC codes with a block length of N . Let n(l) denote the

expected number of channel messages collected by a random VN in the ensemble under l iterations of BP decoding,

where the expectation is over all instances of the code, the choice of VN. We have

n(l) = N
(
1− P (d > 2l)

)
, (20)

where

P (d > 2l) = exp

{
− J

N

(K − 1)l+1(J − 1)l −K + 1

(K − 1)(J − 1)− 1

}
. (21)

In Corollary 5, P (d > 2l) can be interpreted as the expected proportion of VNs that are not present in the

computation graph of height 2l for a random VN v. NP (d = 2l) denotes the expected number of solid-lined VNs

at the 2l-th layer in the computation graph of v, and it can be calculated as follows,

NP (d = 2l) = N
(
P (d > 2l − 2)− P (d > 2l)

)
. (22)

Remark. If l ≤ c log(J−1)(K−1) N , where c is a constant less than 1, then we have

lim
N→∞

NP (d = 2l + 2)

NP (d = 2l)
≈ (J − 1)(K − 1), (23)

which reflects the good expansion property of random bipartite graphs. When the number of iterations l is fixed,

the probability of the computation graph being a tree approaches 1 as the block length N tends to infinity [23].

Following the proof approach in [23], we can prove that when l ≤ c
2 log(J−1)(K−1) N with c < 1, the computation

graph is a tree with probability 1 in the limit of infinitely long blocklengths. By using Corollary 5, it can be

demonstrated that when l ∈ [ 12 log(J−1)(K−1) N, c log(J−1)(K−1) N ] with 1
2 < c < 1, although the computation

graph might not be a tree, the number of nodes approximates that of a tree.

Corollary 6. Consider the ensemble of (J,K)-regular LDPC codes with a block length of N . The decoder performs

l iterations of BP decoding, the average BER over the ensemble

P b ≥ 2−c1N
(
1−exp{− c2

N ×([(K−1)(J−1)]l−1)}
)
−c1 , (24)

where c1 and c2 are constants as defined earlier.

When l ≤ c log(J−1)(K−1) N with c < 1, the lower bounds in (12) and (24) are asymptotically equivalent. A

single LDPC code iteration requires 2JN message-passing steps, hence, we can conclude that for (J,K)-regular

LDPC codes when the decoding complexity is

T <
2J

log2(J − 1)(K − 1)
N log2(

N

c2
+ 1),

the average BER and average BLER are bounded by

PB(N,T ) ≥ P b(N,T ) ≥ Ω(2−c1c22
log2(J−1)(K−1)

2J
T
N ). (25)
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D. The Discussion about the Tightness of the Lower Bound

In this subsection, we will discuss the tightness of the order of the average BER over the ensemble of regular

LDPC codes as presented in Section III-C. To achieve this goal, we reference the upper bound detailed in [7].

We refer to an upper bound on the LDPC code with a tree-like computation graph as presented in [7] and compare

it with the lower bound we have provided. We rewrite it as follows.

Theorem 7 [7]. Consider the iterative decoding of (N, J,K)-regular LDPC codes, where J ≥ 3 and all computation

graphs with a height of 2l are tree-like for any l ≤ log2 N
log2(J−1)(K−1) . Assume that l1 is a constant determined by J ,

K and channel. If the number of iterations l ∈
(
l1,

log2 N
log2(J−1)(K−1)

)
, then there exists a constant c4 such that Pb

and PB are approximately upper-bounded by the inequalities

Pb < 2−c42
l log2(J−1)

= 2−c42
log2(J−1)

2J
T
N (26)

and

PB < NPb < N2−c42
l log2(J−1)

. (27)

Note that the lower bound in (24) and the upper bound in (26) are both in the form of 2−a2b
T
N , where a and b

are constants. The values of b in the lower bounds provided by Corollary 6 is log2(J−1)(K−1)
2J , where b is the main

term determining the order of the lower bounds. The main term determining the order of upper bound is log2(J−1)
2J ,

and the difference from the lower bound is only log2(K−1)
2J .

IV. POLAR CODES

The decoding process of polar codes can also be represented in the Tanner graph [20]. Building upon this, a

comparative analysis of the decoding process between LDPC and polar codes based on the number of messages

passed was conducted in [12]. The SC decoding algorithm employs a unique message-passing scheduling strategy,

ensuring that all information bits gather channel information and maintaining a complexity of only Nlog2N .

Consequently, Lemma 1 can similarly be applied to polar codes, which provides a lower bound on the BER of

polar codes that can be derived as

Pb ≥ Ω(2−c1N−c1).

This bound is relatively loose, and its BLER lower bound is roughly Ω(2−
√
N ) [24].

Through the analysis of LDPC codes in the previous section, we have come to realize that the ability to effectively

collect and utilize information in the Tanner graph is important. Given that SSC decoding inherits the scheduling

strategy from SC decoding, this insight has led us to believe that polar codes may possess significant potential

for low-complexity scenarios. In this section, we will enhance the results of [9] to establish the BLER-complexity

tradeoff for polar codes assuming different code constructions and SSC decoding complexity. This analysis will

require a different construction rule for polar codes to facilitate theoretical analysis.

Specifically, we redefine polar code construction as follows.

Definition 1. For a given block length N = 2n, binary memoryless symmetric (BMS) channel W , and probability

of error PB = f(N), the polar code Cpolar(PB ,W,N) is constructed by assigning the information bits to the
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positions corresponding to all the synthetic channels whose Bhattacharyya parameter is less than PB/N and by

assigning a predefined (frozen) value to the remaining positions.

With the code construction rule of Definition 1, the error probability under SC decoding and SSC decoding is

guaranteed to be at most PB .

We can find that the construction of polar codes will vary according to the error probability PB . Seyyed et al.

show that for a fixed PB ∈ (0, 1) and a sequence of polar codes Cpolar(PB ,W,N) of increasing block lengths with

rates approaching the channel capacity, there exists N̄(ϵ) for any ϵ > 0, such that for any N ≥ N̄(ϵ), the latency of

the SSC decoder with P processing elements is upper bounded by O(N1−1/µ+(2+ϵ)NP log2 log2
N
P ). Specifically,

the proof of [9, Theorem 1] demonstrates that when P equals 1, i.e., each unit of latency corresponds to one V2C

and one C2V message passing, the complexity of the SSC decoder is upper-bounded by (2 + ϵ)N log2 log2 N .

Typically, the complexity of an SSC decoder is fixed. However, by treating certain frozen bits as information

bits, more aggressive simplification can be pursued, leading to even lower complexity. Of course, this comes at a

cost of performance loss. The performance-complexity tradeoff of the ”modified” SSC decoder is illustrated below.

Consider a polar code of length 8 and code rate 0.5, wherein the four positions corresponding to the smallest

Bhattacharyya parameters are for information bits. Suppose that, during decoding, a frozen bit is decoded as an

information bit. This modification incurs additional error at the frozen bit position which was error-free but, as

shown in Fig. 8(b), it introduces a new rate-1 node to the SSC decoding tree, and thus reducing complexity. We

can generalize this idea by treating more frozen bits as information bits, and obtain further complexity reduction

in the tradeoff. Note that we do not actually increase the code rate from the encoder’s perspective, but only treat

the code as a higher-rate one at the decoder.

Marco et al. clarify the trade-off between the error rate and the gap to capacity in [25], indicating that the

aforementioned adjustments to the SSC decoder can merely alter the scaling at how the code rate approaches the

channel capacity, without affecting the asymptotic code rate. Thus, the decoder is always capable of decoding

within the bounds of the channel capacity. Consequently, we will expound upon how this trade-off influences the

complexity of the SSC decoder. The implications of this observation are encapsulated in the subsequent theorem.

Theorem 8. Let W be a given BMS channel with symmetric capacity I(W ). There exists a sequence of polar

codes Cpolar(PB ,W,N) which are decoded by SSC decoders with complexity T ∈ (2Nlog2log2N,Nlog2N), such

that for sufficient large N , the block error rate can be bounded by

PB ≤ 2−20.5
T
N .

The proof of Theorem 8 continues the line of reasoning established in [9], with specific details available in

Appendix C. Theorem 8 delivers an upper bound of the BLER of polar codes when T ∈ (2Nlog2log2N,Nlog2N),

and we have

Ω(2−
√
N ) ≤ PB(N,T ) ≤ O(2−20.5

T
N ).
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(a)

(b)

Fig. 8. The complexity of the SSC decoder varies with the code rate

Note that on the left side of the interval T , we obtain a better BLER estimate than that of [9]. With the

corresponding complexity T = (2+ ϵ)2Nlog2log2N , the SSC decoding can achieve an error rate that is lower than

any polynomial order. On the right side, our result is consistent with the conclusions in [24], where the upper and

lower bounds coincide.

V. CONCLUSION

In this study, we provide the BER bounds for (J,K)-regular LDPC codes and the BLER bounds for polar codes

which both can be unified in the form of

2−a2b
T
N ,

where b ∈ ( log2(J−1)
2J , log2(J−1)(K−1)

2J ) for LDPC codes and b = 0.5 for polar codes.

In Fig. 9, we illustrate how the performance of (J,K)-regular LDPC codes changes with different graph densities.

When we fix the decoding complexity T and the code rate R, we observe that the main term b increases and then

decreases as the degree J gets larger. This implies that there is an ideal graph density for each code rate that

optimizes efficiency. These findings align with previous studies on the density of parity-check matrices found in

[17].

These results also indicate that polar codes are more efficient than (J,K)-regular LDPC codes with code rate

R ≤ 1 − J(J−1)
2J+(J−1)

in the low-complexity regime. Specifically, as shown in Fig. 10, when T ≤ N log2 N and for

any J ≥ 3, the BLER upper bound of polar codes is lower than the BER upper bound of LDPC codes. Moreover,

when R ≤ 1− J(J−1)
2J+(J−1)

, the BLER upper bound of polar codes is even lower than the BER lower bound of regular

LDPC codes.
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Fig. 9. b vs. J for the lower and upper bound of (J,K)-regular LDPC codes given the complexity T , code rate R.

Fig. 10. b vs. R for bounds of LDPC BER and polar BLER when T = Nlog2N .

The disadvantage range of LDPC codes changes with variations in graph density and degree distribution. When

Nlog2N < T < 2J
log2(J−1)(K−1)N log2(

N
c2
+1), the performance of polar codes no longer improves with increasing

complexity, whereas LDPC codes continue to exhibit performance improvements.

This study’s practical contribution lies in indicating potential avenues for enhancing LDPC and polar codes. The

findings related to LDPC codes underline the significance of the capacity to gather and utilize information on the

Tanner graph. It is promising to note the growing interest in recent research centered on the scheduling policy

of LDPC codes [26], [27]. For Polar codes, their strong capability in gathering and utilizing information suggests
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that efforts to enhance decoding performance should focus on other metrics, perhaps including code distance. A

noteworthy accomplishment in this field is the exploration of how the polar spectrum can be improved through

pre-transformation [28].

APPENDIX A

PROOF OF LEMMA 1

We start with the definition of tree code.

Definition 2. Consider an LDPC code C. Let T denote the computation tree with its root node as v and a height of

2l. Define tree code Cv to be the set of valid codewords on T [17]. More precisely, Cv is the set of 0/1 assignments

on the variables contained in T that fulfill the constraints on the tree.

Note that the block length of Cv is n(v, l). Assume that the transmitter chooses the codeword uniformly at random

from Cv . Project the global codewords of C onto the set of variables contained in T . This set of projections can

be a strict subset of Cv . The error probability of node v is only related to the computation graph T , independent

of the transmitted codewords. Thus, when performing l iterations of BP decoding, the error probability of node v

in code C is equal to the error probability of node v in code Cv . We denote the former as Pv and the latter as P1.

Let C0/1
v denote the codewords in Cv such that v is 0/1. It is well known that |C0

v | = |C1
v |. Without loss of

generality, we assume that the codewords in Ci
v are denoted as xi,1, ...,xi,t with i = 0, 1. Denote the union of BP

decoding regions of codewords x0,1, ...,x0,t as Y0, and the union of BP decoding regions of codewords x1,1, ...,x1,t

as Y1. This gives us the following relationship:

Pv = P1 =

t∑
i=1

P (x0,i)

∫
y∈Y1

P (y|x0,i)dy

+

t∑
i=1

P (x1,i)

∫
y∈Y0

P (y|x1,i)dy

=
1

2t

t∑
i=1

(∫
y∈Y1

P (y|x0,i)dy +

∫
y∈Y0

P (y|x1,i)dy

)

≥ 1

2t

t∑
i=1

∫
y∈Y0∪Y1

min
{
P (y|x0,i), P (y|x1,i)

}
dy,

(28)

where P (x) denotes the probability of codeword x being sent, and P (y|x) denotes the transition probability of

a binary-input output-symmetric memoryless channel. The term 1
2

∫
y∈Y0∪Y1

min
{
P (y|x0,i), P (y|x1,i)

}
dy can be

considered as the BLER of a code composed of two codewords, x0,i and x1,i, with each codeword being sent with

a probability of 1/2, and ML decoding is used. Clearly, this BLER is greater than or equal to P2, the BLER of a

repetition code REPn with the same length n(v, l) under ML decoding. This gives us the following result,

P1 ≥ 1

t

t∑
i=1

P2 = P2 (29)
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In the case of the repetition code REPn, where the an all-zero codeword is denoted as x0 and its ML decoding

region is Y ′
0 , and an all-one codeword is denoted as x1 with its ML decoding region being Y ′

1 , we have:

P2 = P (x0)

∫
y∈Y ′

1

P (y|x0)dy

+ P (x1)

∫
y∈Y ′

0

P (y|x1)dy

≥ 1

2
2α

n(v,l)+1
2

= 2−n(v,l)| log2

√
α|−| log2

√
α|,

(30)

where α denotes the error probability in a single-channel transmission. The reason for the validity of this inequality

is rooted in the fact that if the first n(v,l)+1
2 positions of x0 and x1 are both transmitted with errors, the ML decoder

fails to decode.

By (28), (29) and (30), we conclude the proof of Lemma 1.

APPENDIX B

PROOF OF LEMMA 4

In this section, we will provide a method to calculate the expected number of distinct VNs in the computation

graph of height 2l for a random VN v in the ensemble, where the expectation is over all instances of the code

and the choice of v. This problem is equivalent to finding the expected number of VNs that have a distance from

a random VN v in the ensemble less than 2l, where the expectation is over all instances of the Tanner graph and

the choice of v.

It is easy to know that

n(l) = N
(
1− P (d > 2l)

)
= N

(
1− P (d > 0)

2l∏
t=1

P (d > t|d > t− 1)
)
.

(31)

Since we choose two different VNs as the initial and final nodes, we can establish that P (d > 0) = 1. Within a

bipartite graph, the path length between VN pairs is always even, hence P (d > 2t+1|d > 2t) = 1, t = 0, . . . , l−1.

This observation further simplifies the (31):

P (d > 2l) =

l∏
t=1

P (d > 2t|d > 2t− 1) =

l∏
t=1

P (2t). (32)

Therefore, the key to proving Lemma 4 lies in the calculation of P (2t). Next, we will provide a detailed calculation.

A. some recursive expressions in a given Tanner graph

We employ a recursive approach to provide the formula for computing P (2t), drawing inspiration from [29],

where the distribution of shortest path lengths in random graphs is discussed. Before calculating P (2t) in Section

B-B, it is necessary to establish some recursive expressions for the shortest path lengths in a given Tanner graph

in this subsection.
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In a given Tanner graph G, consider a pair of VNs (vi, vj) where the distance between them is denoted as dvi,vj .

To establish recursive expressions, we first introduce the definitions of conditional indicator functions and mean

conditional indicator functions.

Definition 3. The definitions of the indicator functions are as follows:

X (dvi,vj > 2t) =

 1 dvi,vj > 2t,

0 dvi,vj ≤ 2t.
(33)

The definitions of the conditional indicator functions are as follows:

X (dvi,vj
> 2t|dvi,vj > 2t− 1)

=
X (dvi,vj > 2t ∩ dvi,vj > 2t− 1)

X (dvi,vj > 2t− 1)
.

(34)

Note that, X (dvi,vj > 2t|dvi,vj > 2t− 1) indicates whether dvi,vj
is greater than 2t, given that dvi,vj is greater

than 2t − 1. If this is true, X (dvi,vj > 2t|dvi,vj > 2t − 1) takes a value of 1; otherwise, it assumes a value of

0. In case where the condition dvi,vj > 2t − 1 is not satisfied, the value of the conditional indicator function is

undetermined. Though our primary focus is on the conditional indicator functions between pairs of VN, the same

definitions apply equally to pairs of CNs as well as to VN and CN pairs.

Definition 4. If we take the average of the conditional indicator function X (dvi,vj > 2t|dvi,vj > 2t − 1) with

respect to the final node vj , and the averaging is done over the final nodes vj in G where dvi,vj > 2t − 1, we

obtain the mean conditional indicator function mvi(t):

mvi(2t) = Evj

[
X (dvi,vj > 2t|dvi,vj > 2t− 1)

]
. (35)

Based on the provided definition, for a given VN vi, mvi(2t) denotes the proportion of VNs that satisfy dvi,vj
> 2t

among the set of VNs in G where dvi,vj > 2t− 1.

Now, we present the recursive properties of the paths, which serve as the foundation for establishing the recursive

expressions of the conditional indicator function and the mean conditional indicator function. As illustrated in Fig.

11, a path of length 2t from an initial node i to a final node j can be decomposed into an edge from i to r ∈ N (i),

and a path of length 2t− 1 from r to j. In other words, if there is no path of length 2t between node i and node j,

it implies that any neighbor r of node i does not have a path of length 2t− 1 to reach node j. The graph obtained

by removing vertex i from graph G is referred to as the cavity graph of graph G, denoted as G̃. All second-section

paths decomposed from the paths i to j should be embedded in G̃, implying that the paths from r to j must not

traverse through node i. Using X (i)(drj > 2t− 1|drj > 2t− 2) to denote the conditional indicator function for the

shortest path from r to j in G̃, it is also referred to as the cavity indicator function. The superscript (i) stands for the

fact that the node r is reached by a link from node i. Drawing upon the recursive nature of paths, it can be deduced

that the conditional indicator function X (dvi,vj > 2t|dvi,vj > 2t− 1) can be denoted as the product of conditional
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Fig. 11. Illustration of the possible paths of length 2l between two random VNs, vi and vj , in a Tanner graph G. The first edge of such a

path connects node vi to some other node, cr , which may be any one of the k neighbors of node vi. The rest of the path, from node cr to

node vj is of length 2l − 1 and it resides on the cavity graph of graph G.

indicator functions for shorter paths (referred to as cavity indicator functions) between nodes cr ∈ N (vi) and vj .

X (dvi,vj > 2t|dvi,vj > 2t− 1)

=
∏

cr∈N (vi)

X (vi)(dcr,vj > 2t− 1|dcr,vj > 2t− 2).
(36)

Similar to mi(2t), averaging X (i)(dcr,vj > 2t−1|dcr,vj > 2t−2) with respect to the final node vj yields the mean

cavity indicator function m
(vi)
cr (2t− 1),

m(vi)
cr (2t− 1) = Ej

[
X (vi)(dcr,vj > 2t− 1|dcr,vj

> 2t− 2)
]
. (37)

The averaging is done over the final nodes vj in G̃ where the length of the shortest path between cr and vj ,

embedded in G̃, is greater than 2t− 2.

Under the assumption that the local structure of the network is tree-like, one can approximate the average of the

product in Eq. (36) by the product of the averages. This assumption is fulfilled in the limit of large networks. In

the analysis below we assume that N → ∞ and thus obtain recursion equations of the form

mvi(2t) =
∏

cr∈N (vi)

m(vi)
cr (2t− 1). (38)

The mean cavity indicator function m
(vi)
cr (2t− 1) obeys a similar equation of the form

m(vi)
cr (2t− 1) =

∏
vs∈N (cr)\{vi}

m(cr)
vs (2t− 2). (39)

B. recursive expression for P(2t)

Pick a bipartite graph uniformly at random from the ensemble LDPC(N,L,R) and randomly select a VN vi

uniformly. With a probability of Lk, node vi has a degree of k. If VN vi is connected to a check node cr by an edge,

the probability that cr has a degree of k is given by ρk = kRk

R′(1) , where ρk denotes the check degree distributions

from an edge perspective. Similarly, if the CN cr is directly connected to a VN vs (distinct from vi), then the
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probability that vs has a degree of k is given by λk = kLk

L′(1) , where λk denotes the variable degree distributions

from an edge perspective. Now, under this model, we will delve into the recursive expression for the conditional

probability P (2t).

Let P
(
mvi(2t) = m

)
denote the probability that the mean indicator function associated with VN vi takes on the

value m, P̃
(
m

(vi)
cr (2t− 1) = m̃

)
denote the probability that the cavity mean indicator function associated with CN

cr takes on the value m̃. Based on (38), we can derive:

P
(
mvi(2t) = m

)
=

∞∑
k=1

Lk

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

k∏
r=1

P̃
(
m(vi)

cr (2t− 1) = mr

)
·

δ
(
m−

k∏
r=1

mr

)
dm1dm2 . . . dmk,

(40)

where

δ
(
m−

k∏
r=1

mr

)
=

 1 if m =
∏k

r=1 mr,

0 if m ̸=
∏k

r=1 mr.
(41)

When the degree of node vi is k, mvi(2t) is equal to m if and only if the product of cavity mean indicator functions

corresponding to the k neighbors of node vi equals m. In other words, P (mvi(2t) = m) = P (
∏k

r=1 m
(vi)
cr (2t−1) =

m). P (
∏k

r=1 m
(vi)
cr (2t− 1) = m) can be expressed by the integral term in (40). And the δ function constrains the

integration domain to the region where m =
∏k

r=1 m
(vi)
cr (2t− 1). The validity of (40) relies on the probability of

a node vi having a degree k being Lk.

Similarly, based on (39), the following expression holds:

P̃
(
m(vi)

cr (2t− 1) = m
)

=

∞∑
k=1

kRk

R′(1)

∫ 1

0

· · ·
∫ 1

0

k−1∏
s=1

P̃
(
m(cr)

vs (2t− 2) = ms

)
·

δ
(
m−

k−1∏
s=1

ms

)
dm1 . . . dmk−1,

(42)

P̃
(
m(cr)

vs (2t− 2) = m
)

=

∞∑
k=1

kLk

L′(1)

∫ 1

0

· · ·
∫ 1

0

k−1∏
z=1

P̃
(
m(vs)

cz (2t− 3) = mz

)
·

δ
(
m−

k−1∏
z=1

mz

)
dm1 . . . dmk−1.

(43)

Equation (42) calculates the probability of the cavity mean indicator function m
(vi)(2t−1)
cr taking the value m. For

node cr ∈ N (vi), the probability of its degree being equal to k is denoted as ρk, and as an intermediate node,

one of its edges is consumed by the incoming link, leaving only k− 1 links for the outgoing paths. Therefore, this

equation slightly differs from (40).
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The expected values of P
(
mvi(2t) = m

)
,P̃
(
m

(vi)
cr (2t − 1) = m

)
and P̃ (m

(cr)
vs (2t − 2) = m

)
provide the

conditional probabilities

P (2t) = P (d > 2t|d > 2t− 1)

=

∫ 1

0

mP
(
mvi(2t) = m

)
dm,

(44)

P̃ (2t− 1) = P̃ (d > 2t− 1|d > 2t− 2)

=

∫ 1

0

mP̃
(
m(vi)

cr (2t− 1) = m
)
dm

(45)

and

P̃ (2t− 2) = P̃ (d > 2t− 2|d > 2t− 3)

=

∫ 1

0

mP̃
(
m(cr)

vz (2t− 2) = m
)
dm.

(46)

Plugging Eqs. (40) ,(42)and (43) into Eqs. (44), and (45), respectively, we obtain the recursion equations

P (2t) =

∞∑
k=1

Lk

(
P̃ (2t− 1)

)k

, (47)

P̃ (2t− 1) =

∞∑
k=1

kRk

R′(1)

(
P̃ (2t− 2)

)k−1

(48)

and

P̃ (2t− 2) =

∞∑
k=1

kLk

L′(1)

(
P̃ (2t− 3)

)k−1

, (49)

which are valid for t ≥ 1,t ≥ 2 and t ≥ 2, respectively. For t = 1 when the number of nodes is sufficiently large,

we can approximately obtain the result

P̃ (1) =

∞∑
k=1

kRk

R′(1)

(
1− 1

N

)k−1

. (50)

This completes the proof of Lemma 4.

APPENDIX C

PROOF OF THEOREM 8

We first introduce the relevant results regarding the scaling exponent and the number of unpolarized nodes [9,

Lemma 1].

Definition 5. We say that µ is an upper bound on the scaling exponent if there exists a function h(x) : [0, 1] → [0, 1]

such that h(0) = h(1) = 0, h(x) > 0 for any x ∈ (0, 1), and

sup
x∈(0,1)

y∈[x
√

2−x2,2x−x2]

h(x2) + h(y)

2h(x)
< 2−1/µ. (51)
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For BI-AWGN channel [30] shows that µ ≈ 4, and for BSC it is conjectured that µ ≈ 4.2. For the BEC, the

condition (51) can be relaxed to

sup
x∈(0,1)

h(x2) + h(2x− x2)

2h(x)
< 2−1/µ, (52)

which gives a numerical value µ ≈ 3.63.

Lemma 9 [9]. Let W be a BMS channel and let Zn = Z(Wn) be the random process that tracks the Bhattacharyya

parameter of Wn. Let µ be an upper bound on the scaling exponent according to Definition 5. Fix γ ∈ ( 1
1+µ , 1).

Then, for n ≥ 1,

P

(
Zn ∈

[
2−2

nγh
(−1)
2

(
γ(µ+1)−1

γµ

)
, 1− 2−2

nγh
(−1)
2

(
γ(µ+1)−1

γµ

)])
≤ c02

−n(1−γ)/µ, (53)

where c0 is a numerical constant that does not depend on n, W , or γ, and h
(−1)
2 is the inverse of the binary entropy

function h2(x) = −x log2 x− (1− x) log2(1− x) for x ∈ [0, 1/2].

We now provide a refined version of [9, Lemma 2].

Lemma 10. Let W be a BMS channel. For any ϵ > 0, T ∈ ((2 + ϵ)N log2 log2 N,N log2 N), PB ≥ 2−2
T

(2+0.1ϵ)N ,

N = 2n and M = 2m with m < n. Consider the polar code Cpolar(PB/M,W,N/M) constructed according to

Definition 1. Then, there exists an integer n0, which depends on PB , such that for all n ≥ n0, the following holds:

1) If Z(W ) ≤ 2−2
T

(2+0.5ϵ)N , then the polar code Cpolar(PB/M,W,N/M) has rate 1.

2) If Z(W ) ≥ 1− 2−2
T

(2+0.5ϵ)N , then the polar code Cpolar(PB/M,W,N/M) has rate 0.

Proof. Similar to the proof of Lemma 2 in [31], we start with the case that Z(W ) ≤ 2−2
T

(2+0.5ϵ)N . Note that, for

n ≥ 1

Zn

 ∈ [Zn−1

√
2− Z2

n−1, 2Zn−1 − Z2
n−1] w.p. 1/2,

= Z2
n−1 w.p. 1/2.

(54)

Thus Zn ≤ 2Zn−1. Thus, as Z(W ) ≤ 2−2
T

(2+0.5ϵ)N , for any i ∈ {1, ..., N/M} and sufficiently large N , we have

that

Z(W
(i)
n−m) ≤ 2n−m

22
T

(2+0.5ϵ)N

≤ N

22
T

(2+0.5ϵ)N

≤ PB

N
. (55)

The last inequality holds since when T > (2+ϵ)NloglogN , we have 2
T

(2+0.1ϵ)N −2
T

(2+0.5ϵ)N > 2logN for sufficiently

large N. Therefore, Cpolar(PB/M,W,N/M) has rate 1.

Now consider the second case where Z(W ) ≥ 1− 2−2
T

(2+0.5ϵ)N . Consider the random process 1− Zn and note

that (54) implies that 1− Zn ≤ 2(1− Zn−1). As 1− Z(W ) ≤ 2−2
T

(2+0.5ϵ)N , the proof is consistent with the first

case.

The proof of Theorem 8 is presented as follows.

Proof. Consider pruning the decoding tree at depths k1 and k1 + k2, with

k1 =
T

N
,

k2 = min{50T
N

, log2 N − k1}.
(56)
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If k1 ≤ 1
2 log2 N , there are two constants γ1, γ2 such that for sufficiently large values of N ,

2−2
k1γ1h

(−1)
2

(
γ1(µ+1)−1

γ1µ

)
≤ 2−2

T
(2+0.5ϵ)N

,

2−2
k2γ2h

(−1)
2

(
γ2(µ+1)−1

γ2µ

)
≤ 2−2

T
(2+0.5ϵ)N

.

(57)

Note that, γ1 that satisfies the first inequality certainly exists, since we have

lim
γ1→1

γ1h
(−1)
2

(
γ1(µ+ 1)− 1

γ1µ

)
=

1

2
. (58)

For the second inequality, k2 is greater than k1, therefore γ2 also exists. Now, partition the decoding tree into three

parts: (i) nodes that appear above depth k1, (ii) what remains between depth k1 and the next k2 levels after pruning

the tree at depth k1, and (iii) what remains in the decoding tree after pruning at depth k1 + k2.

For part (i), the total decoding complexity sums up to
k1∑
i=1

2i
N

2i
= k1N. (59)

At depth k1, there are a total of 2k1 nodes prior to the pruning. By using Lemma 9 and the first inequality in

(57), there are at most

a1 ≜ c02
k1(1− 1−γ1

µ ) (60)

nodes whose Bhattacharyya parameter is in the interval [2−2
T

(2+0.5ϵ)N
, 1− 2−2

T
(2+0.5ϵ)N

]. Thus, by applying Lemma

10 with M = 2k1 , all but those a1 nodes can be pruned. Hence, part (ii) of the decoding tree consists of at most

a1 sub-trees with depth k2. Consequently, the total decoding complexity for part (ii) can be upper bounded by

a1

k2∑
i=1

2i
N

2i+k1
= a1k2

N

2k1
= o(k1N). (61)

At depth k2, each of the sub-trees has a total of 2k2 nodes before pruning. By usng Lemma 9 and the

second inequality in (57), at most c02
k2(1− 1−γ2

µ ) of these nodes have Bhattacharyya parameter in the interval

[2−2
T

(2+0.5ϵ)N
, 1− 2−2

T
(2+0.5ϵ)N

]. Thus, by applying Lemma 10 with M = 2k1+k2 , the number of remaining nodes

after pruning at depth k1 + k2 can be upper bounded by

a2 ≜ c202
k1(1− 1−γ1

µ )2k2(1− 1−γ2
µ ). (62)

Consequently, the total decoding complexity for part (iii) can be upper bounded by

a2

log2 N−k1−k2∑
i=1

2i
N

2i+k1+k2

= a2
(
log2 N − k1 − k2

) N

2k1+k2

≤ N log2 N

2k2
1−γ2

µ

= o(k1N).

(63)

By summing the complexities of the three parts, the complexity is upper bounded by T for sufficiently large

N . If k1 > 1
2 log2 N , since there is no part (iii) of the decoding tree, it is only necessary to sum the first two

parts of the decoding tree. At this point, it is unnecessary to consider whether the second inequality in equation

57 holds. Combining the above two cases, and since ϵ can be arbitrarily small, the proof of Theorem 8 is thus

established.
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