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Abstract

Conventional multi-agent simulators often as-
sume perfect information and limitless capabil-
ities, hindering the ecological validity of social
interactions. We propose a multi-agent Minecraft
simulator, MineLand, that bridges this gap by
introducing limited multimodal senses and phys-
ical needs. Our simulator supports up to 48
agents with limited visual, auditory, and envi-
ronmental awareness, forcing them to actively
communicate and collaborate to fulfill physical
needs like food and resources. This fosters dy-
namic and valid multi-agent interactions. We fur-
ther introduce an AI agent framework, Alex, in-
spired by multitasking theory, enabling agents
to handle intricate coordination and scheduling.
Our experiments demonstrate that the simula-
tor, the corresponding benchmark, and the AI
agent framework contribute to more ecological
and nuanced collective behavior. The source code
of MineLand and Alex is openly available at
https://github.com/cocacola-lab/MineLand.

1. Introduction
Multi-agent simulators have facilitated rich explorations of
an interactive artificial society that reflects collective behav-
ior. From sandbox games such as Smallville (Park et al.,
2023) to virtual environments (Bates, 1994; Laird & Van-
Lent, 2001; Gong et al., 2023), researchers and practitioners
have been building open-world simulators that can carry
multi-agent behaviors and navigate complex human rela-
tionships for decades. Especially with the advent of Large
Language Models (LLMs) and Vision-Language Models
(VLMs), numerous multi-agent simulators based on these
technologies have been at the forefront in various fields,
from fundamental research to practical applications, such
as watch-and-help (WAH) task (Zhang et al., 2023), Small-
ville (Park et al., 2023) and Overcook games (Gong et al.,
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2023). However, conventional multi-agent simulators are
often under the assumption of perfect information and lim-
itless capabilities. These idealized worlds diverge sharply
from the messy reality of human interaction. This gap be-
tween simulated agents and real-world humans hinders the
ecological validity and richness of social interaction within
these platforms (Heil, 1983).

We propose MineLand, a multi-agent Minecraft simulator
as shown in Figure 1, that bridges this gap by introducing
limited multimodal senses and physical needs as primary
drivers of agent behavior and interaction. First and fore-
most, the essence of the MineLand’s features is the ability
to handle the maximum number of agents. Compared to
two-agent WAH, single-agent MineDojo (Fan et al., 2022)
and twenty-five-agent Smallville (Park et al., 2023), our
MineLand enables the utilization of forty-eight agents in
the mainstream consumer desktop PC (§5.1). Secondly, our
simulator operates under the fundamental assumption (Heil,
1983) that agents possess only limited multimodal senses:
partially observable environments, eco-centric perspective,
and limited visual and auditory senses. This mirrors real-life
social interactions, where visibility and audibility can be
affected by factors such as distance, terrain, and context.
These limitations restrict information access, forcing agents
to actively communicate to compensate for sensory defi-
ciencies. Thirdly, we integrate realistic physical needs into
agents. Agents require fundamental physical needs, such
as food, sustenance, and resource management, which adds
a time-based aspect to their daily routine procedures. This
necessitates collaboration and competition for resources,
mirroring the complex interplay of cooperation and self-
interest observed in human societies (Doyal & Gough, 1984;
Alderfer, 1969). By incorporating these three features, our
simulator fosters the emergence of dynamic and ecologically
valid multi-agent interactions1.

MineLand supports a wide range of task structures and
difficulties, covering harvest, tech tree, combat, survival,
creative, construction, and stage performance tasks. Cus-

1Ecological validity refers to interactions between agents
within a simulated environment that closely resemble real-world
human interactions. For example, actions are situated, adaptive,
and environmentally constrained.
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Figure 1. A panoramic view of one scene in MineLand, consisting of multiple AI agents. Subfigure 3&6 show interactions demonstrating
cooperation and competition among several agents. Subfigure 5&2&4 showcases the scenarios where the limited senses, physical needs,
and multi-tasking mechanism reflect. In Subfigure 1, an agent is performing a creative task named Exploration. Two agents in the left
cave of Subfigure 5 cooperate to finish a programmatic mining task, while agents in Subfigure 3 are carrying out building construction,
which is a hybrid task.

tomizing the number of players is supported. We also offer
two task modes: cooperative mode and competitive mode,
in addition to the default free mode. This makes it an ex-
cellent platform for benchmarking emergent multi-agent
capabilities. With its flexibility, we design different scenes,
scenarios, and settings, including crowd-sourcing 4499 pro-
grammatic tasks and 1536 creative tasks (2 times compared
to MineDojo), to fully understand the potential of LLM- or
VLM-based AI agents. Additionally, we have introduced
18 hybrid tasks that combine the features of programmatic
tasks and creative tasks.

To integrate agents into this simulator, we design an AI
agent framework - Alex - inspired by Multitasking theory
from Cognition field (Salvucci & Taatgen, 2008). Alex al-
lows for simultaneously simulating and executing intricate
coordination and scheduling with multiple tasks. With this
interactive agent framework, we have obtained the following
intriguing findings: (1) Multimodal information enabling
agents to perform more appropriate actions (§5.2); (2) Mul-
titasking mechanism allows for processing multiple tasks by
autonomously determining their priority (§5.3); (3) Limited
senses force agents to actively communicate to compensate
for sensory deficiencies (§5.4); (4) Physical needs mirrors
real life; agents with physical needs survive longer (§5.5);
(5) Our agents work together more effectively, with a re-
duced workload per agent (§5.6).

With contributions in the simulator (§2), benchmark (§3)
and AI agent (§4), we push the boundaries of multi-agent
simulation by bridging the gap between virtual agents and
real-world humans. This not only advances understanding
of AI multi-agents but also holds potential for applications
in human dynamics, social psychology, robotics, and game
design. We anticipate that this work will serve as a useful
foundation for the community to create new algorithms
and make progress in the field of embodied AI multi-agent
systems.

2. MineLand Simulator
MineLand, inspired by Malmo (Johnson et al., 2016) and
MineDojo (Fan et al., 2022), is a Minecraft simulator where
players2 can explore, and interact with each other as well as
the environments. This section dissects the design and im-
plementation of our simulator, focusing on the architecture,
observation space, state space, action space and communi-
cation.

2In this work, we use the term “player” to refer to both human
players and AI agents. When we mention “agent”, we specifically
mean AI agents. Humans have the option to access the game either
through VR or using a keyboard.
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Figure 2. Illustration of the architecture of MineLand.

2.1. Architecture

MineLand enables a large number of players, with a better
architectural design and a mechanism to facilitate unlimited
large-scale interactions among them. To accomplish this, we
suggest an architecture to expand Mineflayer (PrismarineJS,
2023) as shown in Figure 2. Based on this new architec-
ture, MineLand supports up to 48 agents on a mainstream
consumer desktop PC, which is a substantial improvement
compared to other Minecraft platforms that can only support
up to 2 agents. We conducted relevant experiments in Sec-
tion 5.1. The architecture consists of three main modules:
the bot module (implemented in Python), the environment
module (implemented in Java), and the bridge module (im-
plemented in JavaScript).

• Bot Module: Providing the Minecraft environment
information to the agent and implementing a series of
APIs that agents can use to control entities.

• Environment Module: Collecting the environment in-
formation, passing environment feedback to the bridge
module, executing the action in the environment (by op-
erating the Fabric server instance), and offering some
APIs enabling the bot module to alter the server state.

• Bridge Module: Serving as a bridge, to transfer the
environment information and agent-generated action. 3

3Bridge Module is based on Mineflayer, which bene-

With these three modules, we construct the base of this
simulator and offer many advantages. Most importantly,
it is capable of supporting dozens of players entering the
game simultaneously. It differs from previous Minecraft
simulators (e.g., Malmo, MineRL, MineDojo), all of which
necessitate running a Minecraft game client for each player.
This client-based approach comes with a notable drawback
- it incurs substantial resource costs and most machines
cannot handle running large-scale Minecraft game clients
concurrently. In contrast, MineLand adopts a different
approach. It simplifies each Minecraft client into a single
thread, optimizing performance overhead caused by multi-
ple clients. With MineLand, adding one more agent only
requires one more thread, allowing support for up to 48
agents simultaneously accessing Minecraft. Additionally,
with the introduction of the Mineflayer, a new mode of exe-
cution - code, is offered. In contrast to generating textual ac-
tion descriptions and training an external controller module
(Cai et al., 2023) for transforming the plan to the executable
code, this simulator is the first language-model-friendly sim-
ulator, providing the code instead of the high-level action
description. Through the code, it can directly execute plans
generated by the language model. Beyond its language-
model-friendly nature, MineLand’s three features, namely
large-scale multi-agents, limited multimodal senses, and
physical needs, make it ideal for developing multi-agent
simulators. agents in MineLand generate a series of codes
based on the Mineflayer API while representing planning,
such as moving, watching, and mining. The advantage of
using code is that it avoids error accumulation, whereas
using a textual plan requires an additional model to map the
plan to the code, which can lead to error accumulation.

2.2. Observation Space

Our observation space is designed to be compatible with
almost all APIs of the popular MineDojo framework. We
provide information related to touch, vision, and sound: tac-
tile information (information about the blocks surrounding
the agent, which represent the objects that the agent can
touch), auditory information, and visual information (RGB
video from the first-person perspective of the agent).

These three modalities together provide the agents with
multimodal senses. Note that this information is all raw
perceptual information.4 Additionally, we detail the mecha-
nisms and limitations implemented for vision and hearing,
including distance attenuation, environmental obstructions,
and directional constraints, to model the limited senses.

fits from an excellent community (https://github.com/
PrismarineJS). We have improved community tools.

4Besides the raw perceptual information, MineLand also pro-
vides the events encountered by the agent, such as injury, death,
and others. Injury events can also be regarded as tactile informa-
tion, but they are presented in the form of events for simplicity.

3
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2.3. State Space

Previous simulators focus on task-oriented activities, thus
containing state space of inventory and equipment. We
design a fascinating state space that blends task-oriented
activities with the rhythms of daily life. For the rhythms of
daily life, we define the states of agents themselves: physical
needs like sleep and hunger. Basic physical needs are the
foundation that leads to daily behavior. Here are detailed
explanations:

• Health: Indicate the agent’s current health status,
which can be affected by sleep and enemy attacks. It is
represented as an integer in the range [0, 20]. A higher
value represents better health.

• Food: Indicate the agent’s level of satiety. A higher
value represents better satiety.

• Oxygen: When the agent sinks into water, an oxygen
tank will appear and begin to consume oxygen.

• Inventory: Represent all the resources owned by the
agent in their backpack, like the potion in the backpack.

• Equipment: Indicate the equipment worn by the agent,
like a sword in the hand.

Blending the rhythms of daily life with task-oriented activi-
ties is what makes this simulator stand out. Imagine agents
waking up in their virtual Minecraft homes, engaging in
daily routines like cooking and socializing, but also having
defined jobs (e.g., lumberjack, farmer) that involve specific
task-oriented activities. This creates a natural flow between
daily life and goal-driven behavior, providing a more realis-
tic and nuanced environment for studying agent interactions
and complex social dynamics.

2.4. Action Space

The simulator offers a unique action space encompassing
both low-level and high-level actions. For the low-level
control, MineLand includes basic actions like walking,
running, jumping, and interacting with objects. We also in-
corporate specific task-related actions like mining resources,
chopping wood, or crafting tools. Inspired by Wang et al.
(2023), these low-level actions are implemented in the form
of code. High-level actions provide encapsulated behav-
iors that may consist of several or hundreds of low-level
actions. High-level actions are suitable for complex tasks
that require longer computation times. Imagine agents navi-
gating the world, dodging obstacles, and manipulating tools.
These complex tasks generate an action sequence (i.e., code),
allowing the simulator to continue executing the action se-
quence, skip some steps earlier, or be interrupted by some
special event.

The execution of the code is divided into several steps, with
each step lasting 50-200 milliseconds5. Before taking a step,
the agent is provided with the running states of the previous
code, either running, ready, or exceptions. After completing
a step, the agent, based on the running states, can choose to
either switch to a new action code or continue executing the
previous code. This function of choosing is implemented
by an automatic gate control system with two gates: New
and Resume. New means the agent wants to switch to a new
code in the following steps. Resume indicates that the agent
wants to continue executing the previous code. In this way,
the agent can complete a code that needs to be executed for
a long period, or be interrupted at an appropriate time.

2.5. Communication

Agents in MineLand are allowed to communicate with
each other, including auditory information, body language
(via visual perception), and sharing information in text me-
dia. If an agent wants to communicate with other agents,
it can directly chat through Minecraft’s message bar, and
MineLand will detect it. Only when the distance between
other agents and the sending agent is less than a certain
threshold, will other agents receive messages. Most impor-
tantly, the new message is allowed to interrupt the executing
code and execute this message directly before the previous
code has ended. This means that even if an agent is working
on a 5-minute extension (such as mining), it is still feasible
for other agents to communicate with this working agent.
This communication mechanism was not supported in the
previous work.

3. MineLand Benchmark Suite and Dataset
Benchmark Suite offers a wide and diverse range of tasks.
These tasks are divided into three categories: programmatic
tasks, creative tasks, and hybrid tasks. For each task, cus-
tomizing the number of players is supported. Competitive
mode can be used to measure the differences in capabilities
between different AI agents, as well as to develop adver-
sarial learning algorithms. Next, we will provide a detailed
introduction to each type of task. Refer to Appendix B for
more details.

3.1. Programmatic Task

This type of task has a clear success criterion so that
MineLand directly determines whether the task is com-
pleted based on the environmental feedback. We referred
to MineDojo for the design of programmatic tasks. In total,
MineLand has 4499 programmatic tasks.

Each Task T is defined as a 5-tuple: T = (G,G, I, fsuc, S).
550 milliseconds is the minimum time unit in Minecraft. We

refer to this minimum time unit as a “tick”.
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Figure 3. Illustration of Task. We have expanded the number of programmatic tasks and creative tasks by 2 times, compared to MineDojo).
Additionally, we have introduced hybrid tasks that combine the features of programmatic tasks and creative tasks. Customizing the
number of players is supported. For multi-agents, we provide two modes: cooperative mode and competitive mode.

G refers to the task goal that needs to be completed, which
will be presented in the form of a short sentence, for ex-
ample: “Harvest 1 cobblestone with 1 wooden pickaxe”. G
is guidance, which refers to the steps taken to achieve the
task goal. These steps are automatically generated by Ope-
nAI’s gpt-4-1106-preview based on the goal. It is presented
in the form of several sentences. I is the initial condition
of the task, for example, initial inventory, spawn position,
and nearby enemies. fsuc is the Success Criterion used to
determine whether a task is successful. S is a set of pa-
rameters set by developers to adjust task settings. These
parameters include the number of agents, cooperative mode,
competitive mode, etc.

3.2. Creative Task

Compared with programmatic tasks, there is no clear suc-
cess criterion for creative tasks. Creative tasks is defined by
a 4-tuple: T = (G,G, I, S). MineLand’s creative tasks
include all of the tasks in MineDojo. Besides, we construct
12 new tasks. There are 1536 creative tasks in total.

3.3. Hybrid Task

Hybrid task combines the characteristics of programmatic
tasks and creative tasks. These tasks do not have a unique
ground truth but have some references. We represent the hy-
brid task as T = (G,G, I,D, fscore, S). where D denotes
the references. Unlike programmatic tasks, because Hybrid
tasks do not have a ground truth, MineLand will return a
score of fscore based on D. The higher the score, the better
the task is completed. D can be some key rules, constraints,
or key evaluation indicators.

Hybrid Tasks have two types of tasks: Construction Tasks
and Stage Performance Tasks. Construction Task aims to
provide a blueprint for a building or scene, and agents

are expected to build these buildings or scenes based
on the blueprint. The blueprint is the reference D, and
MineLand gives a score based on whether the constructed
buildings meet the blueprint’s expectations. Blueprints can
be pictures of buildings and scenes in real life, or Minecraft-
style pictures. Moreover, as blueprints may be partial or 2D,
it is meaningless to directly compare 3D buildings with 2D
drawings. We use ORB (Rublee et al., 2011) to calculate the
similarity between the pictures of the constructed buildings
and the pictures of the blueprint. ORB fscore is calculated
by the formula of fscore ∈ [0, 1] represents the similarity
between the constructed building picture and the blueprint.

Stage Performance Tasks aim to provide a script of a drama
consisting of several behaviors, which may be a single ac-
tion or an emotional expression. Agents need to perform
the script. MineLand provides a comprehensive score for
agents based on the accuracy of the Agent’s actions in terms
of time, order, and correlation. The metrics of Stage Perfor-
mance Tasks are as follows. Seqagent represents the action
sequence generated by the agent, while Seq∗ is the ground
truth. Let n and m be the lengths of Seq∗ and Seqagent
respectively. And let LCS be the length of the Longest
Common Subsequence of Seq∗ and Seqagent. After that,
the final score is calculated as fscore = LCS

n + LCS
m .

4. Alex Agent
Crafting an AI agent for MineLand, where daily life seam-
lessly blends with task-oriented activities, opens up excit-
ing possibilities. The agent should fulfill daily needs like
cooking, socializing, and maintaining shelter, while also
completing assigned tasks like resource gathering, craft-

5
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ing, or construction. We propose Alex6, a VLM-based
approach as shown in Figure 4, to balance daily routines
and tasks. Alex supports both individual daily-life goals
and community-based task-oriented goals.

Conventional LLM-powered AI agents depend on LLM to
operate as its brain, which is backed by several vital com-
ponents that perform various essential functions. These
components, such as the memory component, planning com-
ponent, and acting component, have been thoroughly stud-
ied recently. To cater to our specific requirements, we have
improved these three components (refer to Appendix C for
more details) and introduced one new component: the multi-
tasking component. Additionally, Alex exhibits different
personality traits predefined in the system prompt.

Multitasking Component During multitasking, people
often switch attention between tasks, for example cooking
while talking. The ability to communicate smoothly with
other players while working on a task-oriented action is
crucial in multi-agent scenarios. Therefore, we develop
mechanism of multi-tasking ability to enhance the agent’s
attention control and working memory abilities inspired by
Multitasking theory from Cognition field (Salvucci & Taat-
gen, 2008). With the multi-tasking mechanism, Alex al-
lows for simultaneously simulating and executing intricate
coordination and scheduling with multiple tasks.

For attention control, Alex effectively controls attention
among multiple tasks. For working memory, Alex main-
tains and processes information in the Memory Library.
When another agent says hello to the agent, this involves
saving and restoring internal states when switching between
communication activities and goal-driven actions to avoid
disrupting progress or forgetting ongoing tasks.

5. Experiments
5.1. Experiments of Simulators Performance

We evaluate the number of agents that MineLandcan sup-
port and compare MineLandwith other popular Minecraft
simulators. We utilize a mainstream consumer desktop
PC equipped with an Intel i5-12400F CPU and 64GB of
memory. Performance Monitor is employed to monitor the
process. Our findings reveal that MineLandis capable of
supporting up to 16 agents simultaneously while providing a
visual display. When visual display is disabled, the number
of concurrently running agents increases to 48. Furthermore,
as depicted in Table 1, when MineLand and Malmo both
run 8 agents, MineLand’s CPU and memory usage are

6Alex is the protagonist in the sandbox game Minecraft, one
of the default skins for players and a character in the game:
https://www.minecraft.net/zh-hans. To pay tribute,
we named our proposed AI agent Alex.

approximately 1/3 that of Malmo’s (specifically, 35.6% and
38.0%, respectively). It is worth noting that Malmo serves as
the foundation for most popular Minecraft Platforms (e.g.,
MineDojo/MineRL/MarLÖ(Perez-Liebana et al., 2019)),
thus highlighting MineLand’s superior performance com-
pared to the vast majority of existing Minecraft Platforms.
Consequently, MineLandproves to be highly suitable for
multi-agent environments.

Table 1. Part of comparison table of performance of Minecraft
simulators. The full table is in Table A.1. MineLandheadless

means MineLand without vision. CPU and MEM both means
the average of CPU time and memory usage during initialization
phase and five-minute run.

SIMULATOR AGENTS CPU MEM

MINELAND 8 2.81% 7.07GB
MINELANDw/o vision 8 1.88% 2.94GB
MINELANDw/o vision 48 2.94% 5.38GB
MALMO 8 7.90% 18.63GB

5.2. Experiments of Multimodal Observation

We leverage OpenAI’s gpt-4-vision-preview API for text
completion and text-embedding-ada-002 API for text em-
bedding. The temperature is set to 0. All experiments.
Unless specified, all experiments in Section 5 are set to this
default setting. See Appendix D for details.

To validate the impact of multi-modal support in the
simulator and its influence on task performance, we
tested MineLandand its counterpart without vision:
MineLandw/o vision. The task is that the agent needs to
explore the world to find the ocean. Initially, the agent starts
at the summit of a mountain. Within a time constraint of
100 seconds (excluding the agent’s decision-making time),
we measure the average duration for the agent to accomplish
the objective in 5 attempts, as well as the travel paths taken.

Table 2. Comparison of the average task completion time (TIME)
between MineLand and MineLandw/o vision along with the
success rate. The average task completion time was calculated by
excluding any unfinished tasks.

SIMULATOR TIME SUCCESS RATE

MINELAND 46.38S 80%
MINELANDw/o vision 81.50S 40%

As shown in Table 2, the success rate of the vision-enhanced
MineLand is nearly twice that of MineLandw/o vision,
and the time taken is only about half. This can be attributed
to the fact that the agents in MineLand seek out the ocean
as indicated visually and decide their subsequent direction
accordingly. In contrast, the MineLandw/o vision strug-

6
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Figure 4. Illustration of the architecture of Alex.

Figure 5. Trajectory display of the agent in MineLand and
MineLandw/o vision, along with the rationales for the agent’s
decision.
gles to determine the location of water sources without
vision. Consequently, agents in MineLandw/o vision ran-
domly choose their direction of movement, leading to a
lower task completion rate and higher exploration time. In
addition, we showcase the trajectory in Figure 5 and observe
that the primary motivation behind the short-term plans gen-
erated by agents in MineLand is always visual information,
enabling them to perform more appropriate actions.

5.3. Experiments of Multitasking

To validate the impact of multitasking support in the simula-
tor, we conduct the obsidian mining task, which takes over
8 minutes and requires multiple steps to complete. During

these steps, two types of events activate the multi-tasking
component and interrupt the mining process:
Chat event: Another agent nearby initiates a conversation
with Alex. This is a low-priority event, and Alex can
choose whether to respond to the other agent.
Hurt event: The agent gets hurts. For example, a zombie
attacks the agent. This is a high-priority event, requiring
Alex to stop its current task and address this event first.

The results reveal that Alexw/o multitasking can’t process
events timely, but counterattack zombies after mining, re-
sulting in Alex being killed by the zombie. In contrast,
Alex with a multitasking component is capable of manag-
ing multiple events (mining while hearing warnings from
peers about zombies), autonomously determining their pri-
ority, and addressing the higher-priority events first. Hence,
multitasking is an essential mechanism.

Table 3. Comparison between Alex and Alexw/o multitasking .
In all ten runs, we count the number of successfully handling
multitasks. Handling multitasks refers to the agent successfully
completing multiple tasks by appropriately prioritizing them.

AGENT HURT EVENT CHAT EVENT

ALEX 9/10 2/10
ALEXw/o multitasking 0/10 0/10

5.4. Experiments of Limited Senses

To assess the impact of limited senses, we carry out the
“shearing the sheep” task. An agent is required to locate a
sheep to complete the task. In the case of an agent with
limited visual senses, if there are no sheep within its field of
view, it cannot shear a sheep. Therefore, the agent commu-
nicates with other agents to find the whereabouts of a sheep.
On the contrary, an agent with unlimited visual senses is
cognizant of the presence of a sheep in another location,

7
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prompting it to explore the surroundings to locate one.

5.5. Experiments of Physical Needs

We perform experiments using a survival task. The starting
condition of the agent is a health level of 1 and a satiety level
of 0, with an initial inventory of 2 breads. The objective for
the agent is to survive for one day. Comparative experiments
are carried out in regular MineLand and its counterpart ver-
sion MineLand w/o physical needs without physical needs.
Alex in MineLand can survive one day in his shelter
and successfully complete the task while the same agent
in MineLand w/o physical needs failed to execute the task.
The failure is due to the lack of physical needs, although
Alex is aware of possessing bread, the lack of physical
needs resulted in it not consuming the bread. Instead, the
agent continuously collected resources to cope with threats.
Due to the low health level, it was killed by a zombie at
night, leading to the failure of the task. We may refer to
Appendix G for more details of short-term plans and actions
generated chronologically in MineLand w/o physical needs

and MineLand.

Repeated experiments on the constructed building task also
show that Alex in MineLand with physical needs live
longer. Agents tend to prioritize eating and then building a
shelter, while Alex in MineLand without physical needs
lean towards exploring and collecting resources. This indi-
cates that physical needs’ importance to simulate real life.

5.6. Experiments of Multi-Agent Cooperation

To validate the cooperation efficiency of our agent frame-
work, we conduct the “unlocking tools” task with two agents.
We observed that agents in a cooperative relationship re-
quired more code iterations to finish the task, primarily be-
cause most of these iterations were dedicated to establishing
and maintaining communication, as well as task allocation.
For example, when one agent says in a chat that he needs
two sticks, another agent will ask for getting together near
the table, and then give the sticks to him. However, the ac-
tual workload for each agent is reduced without considering
the chat cost. Compared to agents working independently,
the code iteration cost of agents cooperating is reduced by
20% per agent.

5.7. Experiments of Single Agent

We assess individual Alex’s capabilities based on tech tree
tasks, demonstrating that Alex’s architecture can plan and
execute complex tasks. We attempt the task of obtaining
diamonds six times, unlocking crucial items such as the
crafting table, wooden pickaxe, stone pickaxe, iron ore,
coal, furnace, iron ingot, and iron pickaxe in the process.
Alex get diamonds twice out of six tasks. Importantly,

to approach the real world, we’ve added a restriction on
multimodal information atop Voyager, where Alex can
“cheat” (i.e., obtain the location of the target) only when it
can visually discover or reason about the target’s presence
nearby.

As shown in Appendix F, even with this restriction,
Alex demonstrates a strong ability for long-term planning.
Additionally, when a plan does not yield the desired re-
sults (e.g., suddenly encountering obstacles on the road),
Alex promptly adjusts and devises a short-term plan using
its multimodal information.

5.8. Social Dynamics

In the “unlocking tools” task with two agents, two agents
work together effectively, with a reduced workload per agent
and higher communication expenses. On the other hand, two
competitive agents worked independently and necessitated
fewer code iterations. The primary reason for this is that, in
adversarial relationships, agents tend to achieve more in a
single iteration to expedite progress and outperform their
opponents. However, this results in less thorough planning
and more code errors. Consequently, multiple agents in
adversarial relationships require fewer code iterations but
make more mistakes.

We also observe that personality plays a significant role in
determining the behavior of agents in multi-agent societies.
We assigned the personality trait of high openness to both
agents. Under this condition, the agents tended to establish
collaboration and engage in mutual communication. When
no personality was set for the agents, they tended to work
independently.

Table 4. The number of code iterations needed per agent to unlock
tools made of various materials is determined under three con-
ditions. These conditions include a single agent, two agents in
a cooperative relationship, and a competitive relationship. Each
experiment is repeated three times, and the success rate is 100%.

RELATIONSHIP WOODEN STONE IRON

SINGLE AGENT 7±2 10±3 25±7
COOPERATIVE 13±5 20±7 49±10
COMPETITIVE 6±2 10±3 27±10

6. Conclusion
Traditional multi-agent simulators have facilitated rich ex-
plorations of collective behavior, often under the assumption
of perfect information and limitless capabilities. We pro-
pose a multi-agent simulator that bridges this gap through
three aspects: large-scale agents, limited multimodal senses,
and physical needs. The advantage carries potential broader
impacts across various domains as discussed in Appendix A.
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A. Broader Impact
By including the simulator, benchmark, and agent framework, we allow for research on more authentic and detailed
interactions in simulated environments.

Advancing AI Multi-Agent Research The proposed simulator, MineLand, offers a platform for studying agents
interacting under more realistic conditions. This can lead to the development of more robust and adaptable AI agents capable
of effectively collaborating and navigating complex social scenarios. These advancements hold immense potential for
various applications, including human-computer interaction, robotics, and game design.

Understanding Human Dynamics By studying agent interactions within the simulator, users may gain valuable insights
into human social dynamics. Analyzing collaboration, communication, and competition in this controlled environment can
help us understand real-world social phenomena and predict their potential outcomes.

Ethics Statement This study follows the ethical principles stated in the Declaration of Helsinki. All participants will
receive comprehensive information about the nature and objectives of the study and will be required to provide written
consent. Participation in this study is voluntary, and participants have the right to withdraw at any time without facing any
consequences. The confidentiality and privacy of participants will be safeguarded in accordance with relevant laws and
regulations.

B. Details of MineLand Benchmark Suite
MineLand Benchmark Suite offers a wide and diverse range of tasks, including three categories: programmatic tasks,
creative tasks, and hybrid tasks. We referred to MineDojo for the design of programmatic tasks. Programmatic tasks are
divided into four categories: Survival, Harvest, Tech Tree, and Combat. The Survival task requires the agent to survive for a
specific number of days without dying. The Harvest task requires the agent to obtain certain specific items. The Tech Tree
task requires the agent to obtain certain specific tools. The Combat task requires the agent to kill certain specific creatures
or enemies. Tech Tree Tasks require agents to make specific tools that represent the current level of Agent technology
development. Combat tasks require agents to defeat certain creatures. Survival tasks require the agent to survive for a period
of time. The metrics for these four tasks are the probability of success for multiple evaluation episodes, the number of
in-game ticks, and the number of code iterations. Creative Tasks will give the agent an open task objective to facilitate
exploration. We have formalized the definition of tasks, allowing developers to easily add new tasks.

The data statistics of the dataset are shown in Table B.1. Figure 6 displays specific task data.

Table B.1. Statistical analysis of the tasks in MineLand Benchmark Suite.

TASK CATEGORY NUMBER OF TASKS

HARVEST TASKS 1361
TECH TREE TASKS 861
COMBAT TASKS 2232
SURVIVAL TASKS 45

CREATIVE TASKS FROM MINELAND 12
CREATIVE TASKS FROM MINEDOJO 1524

CONSTRUCTION TASKS 13
STAGE PERFORMANCE TASKS 5

ALL TASKS 6053

C. Details of Alex
Different from most conventional LLM-based agents, Alex process information from various sources like visual, auditory
(hearing conversations, environmental sounds), and tactile (touching objects) to build a comprehensive understanding of the
world. For the remaining parts of MineLand that are not emphasized, we used the default setting of Wang et al. (2023).
AI agents perceive the environment, make plans, execute plans independently, and interact with other agents. Internally,
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Figure 6. Illustration of example for different tasks.

Alexmay exhibit different personality traits predefined in the system prompt. It utilizes the VLM for processing sensor
information within the Minecraft environment. Alex also tracks its own states, energy levels, and resource inventory to
inform its actions and prioritize tasks.

C.1. Memory Component

The brain module can be considered as composed of the memory component and the planning component. The memory
library is responsible for the storage and retrieval of memories, managing all memories in Alex’s life. The planning
component, based on memories and external information, generates a plan for the action module to execute. In this
subsection, we will detail the memory component, which consists of two main parts: memory Library and associative
memory.

The memory library is responsible for storing all of the agent’s information and retrieving relevant information from memory
based on events. The memory library stores the agent’s personality, persona, long-term goals, short-term goals, chat records,
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experienced events, mastered skills, and environmental information. The memory library also includes a long-term planner.
When accessing the memory library for the first time, the long-term planner generates a long-term plan based on the
personality, persona, and observations, which is then stored in the memory library. In each iteration, the memory library
processes information from observations, critic information, and tasks, and stores it in the vector database 7. If the critic
information indicates that the previous task has been completed, the skill manager in the memory library will be called upon
to generate a concise description of the relevant skill, which will then be stored in the skill vector database.

Associative memory is responsible for storing Alex’s short-term memories and relevant memories related to the current
situation, aiding the short-term planner to focus on important rather than irrelevant information. Upon a special event,
Alex first decides in the associative memory whether the event requires high-priority processing; if so, it interrupts the
current code to generate a new short-term plan.

There is a bidirectional communication mechanism between the memory library and associative memory. The memory
library extracts relevant information according to the current situation and stores it in associative memory, which then returns
the generated short-term plans to be stored in the memory library.

C.2. Hierarchical Planning Component

Based on observation, inner states, task running states, and event information, MineLand considers the current task’s
complexity degree. If it is complex, it will generate a long-term plan for later decomposition into short-term plans;
Otherwise, a short-term plan will be generated directly and executed immediately. Next, all the information related to the
plan is integrated into the associative memory and memory library, including the generated long-term plan. Afterward,
Alex extracts information from Associative Memory and generates short-term plans and explanations, which are then input
into the Action module.

Because of the multi-tiered goals of MineLand, we implement a hierarchical planning system with different levels of
abstraction. The top-level (i.e., long-term planning) focuses on long-term community goals and individual aspirations, while
the lower levels handle specific tasks and sub-goals within the daily schedule. With long-term planning and short-term
planning, agents can pursue bigger objectives within the daily life context, such as building a community, accumulating
wealth, or achieving societal goals. This adds a layer of strategic planning and foresight to their behavior.

Additionally, different from other task-oriented AI agents, the long-term planning module interleaves daily routines and
tasks: design the planner to seamlessly interweave daily routines like cooking or socializing with task-oriented actions
like resource gathering or construction. This ensures the agent fulfills both individual needs and community objectives
efficiently.

C.3. Action Module

The action module is responsible for converting short-term plans along with related information into code, executing the
code, and performing the self-correction circle. The action module includes three components:

• Action component: Responsible for converting the Plan into specific steps and codes.

• Critic component: Used to detect whether a certain execution result conforms to the short-term plan, so as to determine
whether the current plan has been completed.

• Dispatching component: Responsible for receiving environmental information and distributing it to the other two
components according to different situations.

This self-correction circle allows for identifying and correcting deviations from planned behaviors or task execution. This
equips the agent with mechanisms to detect and recover from errors like missed goals, failed actions, or unforeseen
consequences. In previous work, such as Park et al. (2023), action execution will not fail. Planning to cook will definitely
lead to success. However, in MineLand as well as reality, actions may fail due to various reasons, such as unexpected
events. So, we need self-correction to solve some simple action errors in the action module. Inspired by Voyager, we
implement self-correction. By reading information such as observation space and short-term plan, we comprehensively
consider and determine the completion status of the short-term plan through the critic component.

7We leverage Chroma in Alex for storage and retrieve memory. https://www.trychroma.com/
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C.4. Algorithm

Algorithm 1 demonstrates Alex’s core algorithm, which corresponds to the process in Figure 4.

Algorithm 1 Core algorithm of Alex.
Input: observation space obs, task info task, code info code
state, description← Distributor(obs, task, code)
if state = None then

return None
end if
if state = Critic then

state, description, critic← Critic Component(obs)
end if
if state = Action then

Perceive(obs, critic)
end if
if state = Brain then

Perceive(obs, critic, code)
Generate Long-term Plan(obs, task)
retrieved← Retrieve(obs)
Plan(obs, task, retrieved)
state← Action

end if
act← Execute(obs, description, code, critic, short-term plan, relevant info)
return act

D. Details of Hyper-Parameters
Alex leverage OpenAI’s gpt-4-vision-preview API for text completion in all components, and text-embedding-ada-002 API
for text embedding in the memory library for storage and retrieve memory. Apart from the action component, the maximum
tokens are set to 512. For the action component, the maximum tokens are expanded to 512 * 3.

• AI Agent: Alex’s personality and persona in our experiments is “None” in the default situation.

• Dispatching component: “FAILED TIMES LIMIT” refers to the maximum number of attempts allowed when
Alex has a code error. The default value is 5. “code execution time limit” is 2000 ticks.

• Critic component: “FAILED TIMES LIMIT” refers to the maximum number of attempts allowed when Alex failed
to achieve a short-term plan. The default value is 2. “Critic Mode” is “auto” for leveraging AI to judge whether to
achieve the short-term plan.

• Memory Library: “chat retrieve limit” is 5, “event retrieve limit” is 2, “environment retrieve limit” is 2, “skill retrieve
limit” is 5, “recent chat retrieve limit” is 8, “short term plan retrieve limit” is 5.

E. Minecraft Simulator Performance Comparison
We evaluate the number of agents that MineLand can support and compare MineLand with other popular Minecraft
simulators, in Table A.1. We utilize a mainstream consumer desktop PC equipped with an Intel i5-12400F CPU and 64GB
of memory. Vision condition means MineLand provides visual display and headless mode means MineLand doesn’t
provide a visual display. The two values of the VISION column (e.g., 6 and 250MS) are view distance and visual refresh
interval in milliseconds, respectively.

Our findings reveal that MineLand is capable of supporting up to 16 agents simultaneously while providing a visual
display while it supports 48 agents without a visual display. Furthermore, when MineLand and Malmo both run 8 agents,
MineLand’s CPU and memory usage are approximately 1/3 that of Malmo’s (specifically, 35.6% and 38.0%, respectively).
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It is worth noting that Malmo serves as the foundation for most popular Minecraft Platforms (e.g., MineDojo/MineRL
v0.4/MarLÖ), thus highlighting MineLand’s superior performance compared to the vast majority of existing Minecraft
Platforms.

It should be noted that original MineDojo and MineRL only support a single agent, while MarLÖ by default supports only 2
agents. Malmo originally supported only one agent. We have designed a new task for Malmo, so it supports 8 agents.

Table A.1. Comparison between MineLand and other popular Minecraft simulators under different conditions.

SIMULATOR CONDITIONS NUMBER OF AGENTS AVG CPU TIME MAX CPU TIME AVG MEM USAGE

MINELAND VISION = (6, 250MS) 1 1.74% 23.22% 4.11 GB
MINELAND VISION = (6, 250MS) 4 2.80% 48.16% 5.16 GB
MINELAND VISION = (6, 250MS) 8 4.85% 63.60% 7.87 GB
MINELAND VISION = (3, 500MS) 1 1.54% 18.92% 3.61 GB
MINELAND VISION = (3, 500MS) 4 2.09% 31.00% 5.06 GB
MINELAND VISION = (3, 500MS) 8 2.81% 33.08% 7.07 GB
MINELAND VISION = (3, 500MS) 16 4.66% 46.63% 10.17 GB
MINELAND HEADLESS MODE 1 1.47% 19.91% 3.23 GB
MINELAND HEADLESS MODE 4 1.73% 27.27% 3.30 GB
MINELAND HEADLESS MODE 8 1.88% 26.83% 2.94 GB
MINELAND HEADLESS MODE 16 2.72% 45.17% 3.51 GB
MINELAND HEADLESS MODE 24 3.92% 81.64% 3.65 GB
MINELAND HEADLESS MODE 32 2.81% 73.14% 4.64 GB
MINELAND HEADLESS MODE 40 2.98% 84.56% 5.34 GB
MINELAND HEADLESS MODE 48 2.94% 80.85% 5.38 GB

MALMO DEFAULT 1 2.78% 28.78% 3.54 GB
MALMO DEFAULT 4 2.81% 62.59% 11.43 GB
MALMO DEFAULT 8 7.90% 115.66% 18.63 GB
MINEDOJO DEFAULT 1 5.88% 25.15% 3.90 GB
MARLÖ DEFAULT 1 3.81% 30.68% 3.70 GB
MARLÖ DEFAULT 2 5.34% 43.82% 5.57 GB
MINERL V1.0 DEFAULT 1 6.46% 78.05% 3.80 GB

F. Experiments of Single Agent
As shown in Figure 7, even with this restriction, Alex demonstrates a strong ability for long-term planning.

Figure 7. Comparison of our single-agent Alex and other SOTA baselines.
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G. Experiments of Physical Needs
We perform experiments using a survival task. The starting condition of the agent is a health level of 1 and a satiety level of
0, with an initial inventory of 2 bread. The objective for the agent is to survive for one day. Comparative experiments are
carried out in regular MineLand and its counterpart version MineLand w/o physical needs without physical needs.

Alex in MineLand can survive one day in his shelter and successfully completed the task. We showcase an example of
Alex, with short-term plans and actions generated chronologically by Alex:

• Short-term plan: The agent’s life is critically low at 1, and the food level is at 0, which is also critical. The agent
has 2 pieces of bread in the inventory, which should be consumed immediately to restore food levels and start health
regeneration.

• Action: Consume 2 bread.

• Short-term plan: The agent’s health is critically low at 1, and the food level is at 10 after consuming bread. To ensure
survival and allow health regeneration, the agent should seek immediate shelter to avoid any potential threats.

• Action: Collect 20 dirt.

• Short-term plan: Given the agent’s critically low health and the fact that it’s early in the day, the immediate priority
should be to ensure survival by building a simple shelter with the dirt blocks already collected.

• Action: Place dirt around.

Compared to the MineLand, the same agent in MineLand w/o physical needs failed to execute the task. The following is
its short-term plans and actions:

• Short-term plan: The ultimate goal is to survive for 1 day. The agent has bread for food and is in a forest biome,
which is good for gathering wood. Since there are no immediate threats observed or events indicating danger, the agent
can proceed to gather resources.

• Action: Mine 5 oak logs

• Short-term plan: The agent has successfully mined 5 oak logs as per the last short-term plan and the current chat
confirms this. With wood in the inventory, the next step in the long-term plan is to craft basic tools for further resource
gathering and potential shelter construction.

• Action: Craft 1 crafting table.

From the above plans and actions, we observe that, although Alex is aware of possessing bread, the lack of physical needs
resulted in it not consuming the bread. Instead, the agent continuously collected resources to cope with threats. Due to the
low health level, it was killed by a zombie at night, leading to the failure of the task.

Repeated experiments on the constructed building task also show that Alex in MineLand with physical needs live longer.
Agents tend to prioritize eating and then building a shelter, while Alex in MineLand without physical needs lean towards
exploring and collecting resources. This indicates that physical needs’ importance to simulate real life.

H. Experiments of Comparing VLMs and LLMs
As shown in Table A.2, we perform thorough assessments using newly implemented LLMs/VLMs within our agent
framework. The tasks used include “Harvest 1 White Wool With 1 Shears” and “Harvest 1 White Wool With 1 Iron Word”.
We compared the performance of Alex, which uses the gpt-4-1106-preview API for the complete action component, and
Alex, which uses different VLMs or LLMs for the action component.
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Table A.2. Comparison of different VLMs and LLMs for the action component. Fractions represent the count of successful completions
within a set of three attempts. 0/3 means that the method is unable to solve the task within the maximum number of code iterations(15) or
exceeds the designated area of the task. The fewer the number of code iterations, the higher the efficiency.

TASK HARVEST 1 WHITE WOOL WITH 1 SHEARS HARVEST 1 WHITE WOOL WITH 1 IRON SWORD

gpt-3.5-turbo-1106 N/A(0/3) N/A(0/3)
gpt-4-1106-preview 4(1/3) 6± 3(3/3)
gpt-4-vision-preview 4± 2(3/3) 7± 3(3/3)

I. Limitations
The utilization of multimodal information significantly aids Alex in in achieving objectives. However, the current level of
multimodal understanding ability is insufficient. This limitation becomes evident when visual errors occur, causing Alex to
encounter obstacles and hindering its progress. Take the strong VLM, GPT-4, as an example. There was a situation where
Alex mistakenly identified a block of wood as a crafting table and placed it on the ground, resulting in the inability to craft
items and ultimately leading to the failure of the assigned task.

J. Related Work
J.1. Multi-Agent Simulator

As the popularity of AI agent research continues to grow, there has also been a focus on studying multiple AI agents as
well as their cooperation and competition. Researchers and practitioners imagine a dynamic artificial society where human
interactions can be simulated by trustworthy agents (da Rocha Costa, 2019). From two individuals (Cao et al., 2012; Puig
et al., 2020), through four individuals (Wimmer et al., 2021), to sandbox games Smallville with twenty-five individuals (Park
et al., 2023), we witness how individuals perceive a simulated society as the backdrop and interact with the agents and people
who engage with it. Each individual can be portrayed through a program, a real human, or an agent based on LLM (Park
et al., 2023). The interaction between individuals plays a role in shaping social behavior, leading to simulation of the society.
Simulating larger societies can be advantageous. Increasing the number of agents can lead to greater specialization, enabling
the accomplishment of more complex and larger-scale tasks. This can significantly improve task efficiency, such as in
software development tasks (Qian et al., 2023). Additionally, such simulation of interaction has had a significant effect in
many other fields. For example, it can replicate realistic social phenomena (Dill & Martin, 2011; Park et al., 2022), enhance
social robots (Bates, 1994; Bledsoe, 1986). They can also be used to test social science theories (Binz & Schulz, 2023; Jiang
et al., 2023; Horton, 2023), create model human processors for theory and usability testing (Card et al., 1983; John & Kieras,
1996), train people on how to handle rare yet difficult interpersonal situations (Tambe et al., 1995; Jones et al., 1999; Hollan
et al., 1984), and support game characters (Laird & VanLent, 2001; Riedl, 2012).

Challenges of Scaling Up the Number of Agents. While increasing the number of agents can improve task efficiency and
make multi-agent simulations more realistic (Qian et al., 2023; Park et al., 2023; Williams et al., 2023), current research
primarily focuses on a small number of agents (Park et al., 2023; Bai et al., 2023; Zhuge et al., 2023). This is mainly due
to the challenges of scaling up the number of agents. Deploying a large number of AI agents will result in an increased
computational burden, necessitating better architectural design and computational optimization (Park et al., 2023). Most
research in terms of AI agents mimicking daily life routines, focused on two agents (Puig et al., 2020). Simulators that
remind people of sandbox games (The Sims) initially support four individuals (Wimmer et al., 2021), then are extended to
twenty-five individuals by Park et al. (2023).

Challenges of Limited Multimodal Senses. To ensure the authenticity of the simulation, an ideal multi-agent simulator
should operate under the fundamental assumption that agents possess only limited multimodal senses like humans (Heil,
1983). Limited multimodal senses mean partially observable environments and an eco-centric perspective. Limited visual
and auditory senses restrict information access, forcing agents to actively navigate and communicate to compensate for
sensory deficiencies. This mirrors real-life social interactions, where visibility and audibility can be affected by factors such
as distance, terrain, and context (Juslin et al., 2005). As the number of agents grows, the challenges of limited multimodal
senses become quite difficult. This is because the communication network of the entire system becomes highly intricate. For
agents in our MineLand, the video input is an eco-centric perspective (first perspective) instead of the third perspective in
(Park et al., 2023), which is omniscient and unrealistic.
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Challenges of Physical Needs. Multi-agent simulation platforms hold immense potential for exploring and understanding
human social dynamics. However, existing paradigms often disregard the human needs (Doyal & Gough, 1984; Alderfer,
1969). Existing simulators are designed to simulate believable human behavior in daily-life activities Park et al. (2023);
Bai et al. (2023). These activities include waking up, cooking breakfast, heading to work, and initiating conversations with
others. However, they do not define their physical needs. For example, after a certain amount of time has passed, the agent
will become hungry and have the desire to cook. This desire then leads to the next actions. In this way, the action of cooking
is motivated by real desires instead of a predefined schedule.

We incorporate practical physical requirements into the agent model. Agents have basic physical needs: sleep, food, and
resource management, which introduces an engaging time-based element to their daily routine processes. This encourages
collaboration and competition for resources, reflecting the intricate balance of cooperation and self-interest seen in human
societies.

J.2. Multi-Agent Simulator w.r.t Minecraft

Minecraft, the beloved sandbox game, has been a valuable platform for researchers exploring various fields, including
artificial intelligence and multi-agent systems, because of its open world and diverse mechanics Specifically, the flexibility
and richness of Minecraft make it perfect for developing multi-agent simulators. Researchers have the ability to create
various custom environments and scenarios within the game world, where they can introduce virtual agents with specific
goals and capabilities. These agents can then interact with each other and the environment, providing researchers with the
opportunity to observe and analyze their behavior in a controlled setting. These simulators can be broadly categorized into
two main types: task-oriented simulators and daily-life simulators.

Task-oriented simulators focus on agents achieving specific objectives within a set time frame. Minecraft is regarded as
the training ground for AI agents to hone their skills. For example, Guss et al.; Fan et al. (2022) focuses on exploring the
environment and gathering resources like wood and stone, and managing them efficiently to complete tasks like building
structures or crafting tools. Agents in Gong et al. (2023) must work together to overcome challenges that require joint effort.

Daily-life simulators take a more holistic approach, focusing on the daily lives of agents within a virtual society. Park et al.
(2023) simulates the rhythms and routines of daily life. This includes activities such as waking up, cooking breakfast, going
to work, forming opinions, observing others, and engaging in conversations.

J.3. AI Agent with LLMs and VLMs

LLMs or VLMs are commonly utilized to bootstrap the components of the Agent. In particular, LLMs have demonstrated
effective performance for task-planning (Gong et al., 2023), and they possess substantial world knowledge (Yu et al., 2023).
Moreover, VLMs like CLIP (Radford et al., 2021) offer a versatile visual-language representation that aligns with language
and enables zero-shot visual recognition capabilities for potential AI agents.

K. Prompts
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Figure 8. Part of short-term plan generator
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Figure 9. Part of long-term plan generator
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