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ABSTRACT
Deep Neural Networks (DNN) are core components for classifica-
tion and regression tasks of many software systems. Companies
incur in high costs for testing DNN with datasets representative
of the inputs expected in operation, as these need to be manually
labelled. The challenge is to select a representative set of test inputs
as small as possible to reduce the labelling cost, while sufficing to
yield unbiased high-confidence estimates of the expected DNN ac-
curacy. At the same time, testers are interested in exposing as many
DNN mispredictions as possible to improve the DNN, ending up
in the need for techniques pursuing a threefold aim: small dataset
size, trustworthy estimates, mispredictions exposure.

This study presents DeepSample, a family of DNN testing tech-
niques for cost-effective accuracy assessment based on probabilis-
tic sampling. We investigate whether, to what extent, and under
which conditions probabilistic sampling can help to tackle the out-
lined challenge. We implement five new sampling-based testing
techniques, and perform a comprehensive comparison of such tech-
niques and of three further state-of-the-art techniques for bothDNN
classification and regression tasks. Results serve as guidance for
best use of sampling-based testing for faithful and high-confidence
estimates of DNN accuracy in operation at low cost.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
A countless number of software systems today rely on Deep Neural
Networks (DNN) predictions. Before release, engineers need to test
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the DNN to estimate their accuracy (i.e., probability of not having
mispredictions). This allows to establish a release criterion and to
correct or tune the DNN until the criterion is met.

The reference scenario is the following: a DNN model meant to
operate in a target context is trained with a training dataset. The
goal of the tester is to select a small yet representative subset of
(unlabelled) inputs from an operational dataset, to use as test cases
to estimate the DNN accuracy [1]. Their manual labelling has a high
cost. The challenge is to build a small test set able to provide an un-
biased, high-confidence estimate of the DNN accuracy. At the same
time, testers are interested in exposing DNN mispredictions, since
they are input to DNN debugging and re-training [2]. The goal thus
becomes threefold: build a small dataset, able to faithfully estimate
DNN accuracy, and with a good ability to expose mispredictions.

Inspired by operational testing, a known practice in software
reliability engineering [3–7], researchers proposed probabilistic
sampling to test DNN. The basic scheme is simple random sampling
(SRS). Li et al. proposed a sampling scheme aimed at minimizing
cross-entropy between the selected tests and the operational dataset
[1]. Guerriero et al. [2] leveraged adaptive sampling [8] to propose
DeepEST, whose objective is to expose many DNN mispredictions
while yielding good accuracy estimates. These techniques borrow
basic concepts from sampling theory to derive algorithms working
well for specific goals or contexts – for instance, CES and DeepEST
outperform each other in their respective objectives (lower-variance
estimate the former, better failure exposure the latter). However,
better trade-offs can be achieved by exploiting advanced strategies
from statistical sampling, e.g., by properly using the information
available to drive the sampling process.

This work aims to give a high level view of sampling-based
DNN testing to highlight what are the main knobs to tailor a tech-
nique according to the needs and improve performance, exploiting
advanced sampling theory concepts besides the basic ones (e.g., aux-
iliary variables, unequal sampling, without-replacement schemes,
stratification). To this aim:

• Wepropose DeepSample, a family of sampling-basedDNN testing
techniques differing from each other in the sampling strategy, in
the auxiliary information used for sampling and for partitioning,
and in the estimation process.
The framework includes five new testing techniques, each imple-
mented in three variants depending on the auxiliary information
used to drive sampling.

• We present a comprehensive comparison of the new techniques
and of three existing ones, SRS, CES, DeepEST, to evaluate their
ability to assess DNN accuracy and select failing examples. The
evaluation is conducted on classification and regression tasks,
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under 5 testing budgets, 3 datasets, with 3 models per dataset for
classification, and 1 dataset and 2 models for regression.1

The new algorithms turn out to outperform the existing ones in
almost all the contexts. Overall, the results allow to draw guidelines
for practitioners and researchers - on relevant factors like if and
which auxiliary information to use and how to use it - for sampling-
based DNN testing for high accuracy, high confidence estimates at
low cost and with good mispredictions exposure ability.

2 RELATEDWORK
Probabilistic sampling is used in operational testing (OT) to estimate
the expected reliability of a software system after release. In OT,
test suites are built by selecting or generating tests according to the
expected operational profile, a probabilistic characterization of the
expected usage. OT was central in Cleanroom software engineering
[3–6] and in the Software Reliability Engineering Test process [7].

Over the years, researchers proposed better sampling strategies
to improve estimates or lower their cost. Cai et al. [9–11] developed
Adaptive Testing, still based on the operational profile, but with an
adaptive selection of test cases from partitions. Adaptive Testing
with Gradient Descent2 [12] is one of the techniques considered in
this study. Stratified sampling too has been used for reliability as-
sessment [13, 14]. Later, Pietrantuono et al. [15, 16] stressed the use
of unequal probability sampling to improve efficiency, formalizing
several sampling schemes to this aim [17].

Li et al. [1] first proposed sampling for DNN operational accu-
racy assessment in the CES (Cross-Entropy Sampling) technique.
Like OT, CES aims to select a small yet representative sample, by
minimizing the cross-entropy between the selected and the opera-
tional dataset. A sample is expected to contain the same proportion
of failing examples as in the operational dataset. Guerriero et al.
[2] observed that the mere imitation of operational inputs may be
inefficient, especially for accurate DNN, as much effort is wasted
to label correctly classified inputs.

They propose DeepEST, exploiting an adaptive sampling algo-
rithm for rare populations [8] to spot the more failing examples,
hence spending effort to label examples useful for improvement
besides assessment. The disproportional selection is balanced by
an estimator that preserves unbiasedness.

A further technique is PACE (Practical accuracy estimation)
[18], a heuristic method that uses clustering to partition tests into
groups, and then uses adaptive random selection of test inputs
representative of the clusters. Zhou et al. proposed DeepReduce
[19], a two-stage heuristic method exploiting neuron coverage to
select a subset of inputs, then using the Kullback-Leibler Divergence
to drive the second-stage selection. These techniques are however
not based on probabilistic sampling like those compared in this
work, and they do not guarantee unbiasedness and convergence.

3 SAMPLING-BASED TESTING
3.1 Formulation
• 𝑀 is the DNN model under test;

1The replication package is at: https://github.com/dessertlab/DeepSample.git.
2At each step, the partition selected to draw the next test is the one that yields the
greatest descent (i.e., negative gradient) of the variance of the reliability estimator.

• 𝐷 = {𝑑1, . . . , 𝑑𝑁 } is the operational dataset, an arbitrarily large
set of examples with unknown labels, which are possibly given as
input to the model𝑀 in the operational phase. Its size is 𝑁 = |𝐷 |;

• 𝑇 ∈ 𝐷 = {𝑡1, . . . , 𝑡𝑛} is the subset of examples to select from 𝐷

and to be labelled. This set is used for estimating DNN accuracy,
and can also be used to enlarge the training set and improve the
DNN performance in new releases. Its size is 𝑛 = |𝑇 | ≪ 𝑁 . When
an example 𝑡𝑖 is submitted to the DNN, a human oracle assigns the
expected output to 𝑡𝑖 , and then compares it with the actual output.
In classification tasks, this gives a binary outcome 𝑧𝑖 (whether
actual and expected labels match or not). In regression tasks, the
comparison gives an offset 𝛿𝑖 , which is the absolute difference
between the true (𝑟𝑖 ) and predicted (𝑟𝑖 ) values – considering
this a failure or not depends on the tolerable threshold. For our
purposes, it suffices to focus on the value of 𝛿𝑖 .

• 𝜃 = 𝑃𝑟 (𝑧𝑖 = 1), with 𝑖 = 1, . . . |𝐷 |, is, in classification tasks, the
true failure probability on a randomly selected example from the
entire operational dataset, and corresponds to the true (unknown)
proportion 𝜃 = 1

𝑁

∑𝑁
𝑖=1 𝑧𝑖 . Accuracy is defined as: 𝜉 = 1−𝜃 . In the

case of regression, we look at the mean squared error between
the true (𝑟𝑖 ) and predicted (𝑟𝑖 ) value over the entire operational
dataset: Δ = 1

𝑁

∑𝑁
𝑖=1 𝛿

2
𝑖
, and 𝜉 = 1 − Δ. Its estimate is 𝜉 .

Given a sample size budget 𝑛, the goal of DeepSample is to select
a subset 𝑇 able of giving an unbiased (i.e., such that E[𝜉] = 𝜉)
estimate of 𝜉 while maximizing the efficiency of the estimator (i.e.,
minimizing the variance of the estimate).3 In addition, the set 𝑇 is
wanted to expose as many failing examples as possible.

3.2 Overview of DeepSample
DeepSample is a family of techniques leveraging prior knowledge
available about the operational dataset, supposed to be correlated
to the variable to estimate (namely, accuracy). Prior information is
encoded in what are called auxiliary variables [20], here denoted as
𝜒 ; for instance, the confidence value provided by classifiers when
predicting a label can be assumed to be (negatively) correlated
with the failure probability 𝜃 . Clearly, accuracy and efficiency of
estimates depend on the extent to which assumptions hold.

The DeepSample techniques are characterized by two dimen-
sions: i) the sampling algorithm, and ii) the auxiliary variable.

The former specifies a sampling scheme, namely the sequence
of steps required to select the tests 𝑡𝑖 . The latter specifies what is
the auxiliary variable 𝜒 , if used by the sampling scheme (not all
auxiliary variables can be used in all the schemes).

There are two ways of exploiting the auxiliary variables. The
first is to partition the dataset into classes that are homogeneous
with respect to the auxiliary variable (e.g., similar confidence), sim-
ilarly to stratification in sampling theory [20]. If the variable is
well correlated with the failure probability 𝜃 (or Δ for regression),
partitions too should be homogeneous with respect to 𝜃 (or Δ). This
allows to wisely allocate the number of examples to draw from
each partition with the aim to reduce the variance of the estimation.
The second way is to let the sampling scheme select the examples
proportionally to the auxiliary variable’s value, so as to get the ones

3Minimizing the variance is equivalent to minimize the MSE since the estimators are
required to be unbiased. Low variance (or MSE) implies maximizing the confidence.

https://github.com/dessertlab/DeepSample.git
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with higher expected failure probability. A proper estimator is then
needed to correct bias due to this unequal selection probability.

Techniques can be with or without replacement. The former ones
(allowing an example to be selected more times) are associated with
simpler estimators - a common choice in literature [1] [9] [10] [11]
[12]; the latter ones are expected to give higher efficiency, though
the gain in large populations can be marginal (with-replacement
schemes will unlikely select twice the same example).

The estimator takes the result of submitting the selected sam-
ple 𝑇 to the DNN 𝑀 (denoted as 𝑧𝑖 and 𝛿𝑖 for classification and
regression, respectively) and yields an unbiased estimate of 𝜉 by
counterbalancing the disproportional selection (cf. with Sec. 3.4).

3.3 Auxiliary variables
We consider three auxiliary variables for classification problems,
and for regression as well. For classification, they are: Confidence,
Distance-based Surprise Adequacy (DSA), and Likelihood-based
Surprise Adequacy (LSA). We opted for these variables based on
the literature [1, 2]. For regression, they are LSA, and two variables
based on the reconstruction error of a simple autoencoder (SAE) and
of a variational autoencoder (VAE), which have been demonstrated
to be effective in detecting inputs likely to cause failure [21].

Confidence𝐶𝑑𝑖 of an input 𝑑𝑖 is the maximum value in the proba-
bility vector obtained from the last layer’s output of the DNN4; it is
for classification problems only. DSA and LSA, defined by Kim et al.
[22], exploit Activation Traces (AT), which are vectors of activation
values of neurons belonging to a certain layer. DSA is defined as:
𝐷𝑆𝐴𝑑𝑖 =

𝜎𝐴
𝜎𝐵

, where 𝜎𝐴 is the Euclidean distance between the ATs
of the input𝑑𝑖 (whose predicted class is A) and its nearest neighbour
belonging to the same class 𝐴, 𝜎𝐵 is the distance between the ATs
of 𝑑𝑖 and its nearest neighbour belonging to a different class 𝐵.5 It
makes sense for classification models only. LSA uses Kernel Density
Estimation (KDE) [23] to estimate the probability density of each
activation value, obtaining the surprise of a new input with respect
to the estimated density. LSA is a measure of rareness computed as:
𝐿𝑆𝐴𝑑𝑖 = −𝑙𝑜𝑔(𝑓 (𝑑𝑖 )), where 𝑓 (𝑑𝑖 ) is the KDE applied to the new
input 𝑑𝑖 . LSA is for both classification and regression.

For SAE/VAE-based variables, we leverage the reconstruction er-
ror 𝜖 . We used the two best-performing autoencoders implemented
by Stocco et al. [21], SAE (Simple Autoencoder) with a single hid-
den layer, and VAE (Variational Autoencoder). We consider autoen-
coders as single-image reconstructors, computing their outputs for
all the operational examples, and then calculating the reconstruc-
tion error as: 𝜖𝑑𝑖 = 1

𝑊𝐻𝐶

∑𝑊,𝐻,𝐶

𝑘=1, 𝑗=1,𝑐=1 (𝑑𝑖 [𝑐] [𝑘, 𝑗] − 𝑑′
𝑖
[𝑐] [𝑘, 𝑗])2,

where 𝑑𝑖 is the original image, 𝑑′
𝑖
is the reconstructed image,𝑊 ,

𝐻 , and 𝐶 are width, height, and channels respectively. The corre-
sponding auxiliary variables are synthetically called SAE and VAE,
meaning the 𝜖𝑑𝑖 value obtained by SAE and VAE.

All variables are assumed to be correlated to accuracy: lower
confidence, higher surprise (DSA, LSA), and higher reconstruc-
tion error (SAE, VAE) are expected to be related to higher failure
probability. To have all positive variables (from which selection
probabilities need to be derived), DSA and LSA for classification

4In the case of binary classification with a single neuron, the confidence is the neuron
output 𝑜 when 𝑜 ≥ 0.5 (e.g., class 1) and 1 − 𝑜 when 𝑜 < 0.5 (class 0).
5Note that the computation does not need the actual labels (but only predicted ones).

Table 1: Compared testing techniques

Technique SUPS RHC-S SSRS GBS 2-UPS SRS CES DeepEST
Partitioning ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Unequal
selection ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

Without
replacement ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

are min-max normalized. For regression, as the min-max normal-
ization affects the distribution of test data, we just shift the values:
𝐷𝑆𝐴𝑑𝑖 = 𝐷𝑆𝐴𝑑𝑖 + ⌈

��𝑚𝑖𝑛(𝐷𝑆𝐴𝑑𝑖 )
��⌉ (the same for 𝐿𝑆𝐴). All the above

variables are denoted as 𝜒𝑖 in the following, when there is no need
to distinguish them. In the case of confidence, 𝜒𝑖 = 1 −𝐶𝑑𝑖 since
we assume that confidence is negatively correlated to the accuracy.

3.4 Testing techniques
The characteristics of the eight compared testing techniques are
summarized in Table 1; their description follows.

3.4.1 Without-partitioning techniques.

Simple Random Sampling (SRS). SRS with replacement, where all
examples have the same probability to be selected, is the simplest
and baseline technique [17][1]. For SRS; unbiased estimators of 𝜃
(for classification) and Δ (regression) are, respectively, the observed
proportion and mean squared error over the subset of selected tests:

𝜃 =
1
𝑛

𝑛∑︁
𝑖=1

𝑧𝑖 (1) Δ̂ =
1
𝑛

𝑛∑︁
𝑖=1

𝛿2𝑖 (2)

Simple Unequal Probability Sampling (SUPS). This scheme lever-
ages auxiliary variables 𝜒 for selecting the examples. The selection
probability 𝜋𝑖 for the 𝑖-th example 𝑡𝑖 is obtained by normalizing
the auxiliary variable 𝜋𝑖 = 𝜒𝑖/

∑𝑁
𝑖=1 𝜒𝑖 ; this is known as probability-

proportional-to-size (PPS) sampling [20]. The selection is with re-
placement. An unbiased estimator is the sample mean of the ob-
served values re-scaled by the inverse of their selection probability
𝜋𝑖 and by 𝑁 , known as Hansen-Hurwitz estimator [24]:

𝜃 =
1

𝑛𝑁

𝑛∑︁
𝑖=1

𝑧𝑖

𝜋𝑖
(3) Δ̂ =

1
𝑛𝑁

𝑛∑︁
𝑖=1

𝛿2𝑖
𝜋𝑖

(4)

Note that this is a generalization of SRS, wherein the selection
probability is 𝜋𝑖 = 1/𝑁 for all the examples.

RHC-Sampling (RHC-S). This is another unequal probability se-
lection scheme, but without replacement, and uses the Rao, Hartley,
and Cochran (RHC) estimator [25]. The scheme is as follows:
(1) Given the budget of 𝑛 = |𝑇 | test cases, divide randomly the

𝑁 = |𝐷 | units of the operational dataset into 𝑛 groups, by
selecting 𝐺1 inputs with SRS without replacement for the first
group, then 𝐺2 inputs out of the remaining (𝑁 −𝐺1) for the
second, and so on. This will lead to 𝑛 groups of size𝐺1, . . . ,𝐺𝑛

with
∑𝑛
𝑟=1𝐺𝑟 = 𝑁 . The group size is arbitrary, but we select

𝐺1 = 𝐺2 = · · · = 𝐺𝑛 = 𝑁 /𝑛, as this minimizes the variance.
(2) One test case is then drawn by taking an input 𝑡𝑖 in each of these

𝑛 groups independently and with a PPS sampling according to
the above-defined 𝜋 variable.

(3) Denote with 𝜋𝑖,𝑟 the probability associated with the 𝑡𝑖 -th unit
in the 𝑟 -th group, and with 𝑞𝑟 =

∑
𝑖∈𝐺𝑟

𝜋𝑖,𝑟 the sum in the 𝑟 -th
group. The unbiased estimators are:
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𝜃 =
1
𝑁

𝑛∑︁
𝑟=1

𝑧𝑟

𝜋𝑟 /𝑞𝑟
(5) Δ̂ =

1
𝑁

𝑛∑︁
𝑟=1

𝛿2𝑟
𝜋𝑟 /𝑞𝑟

. (6)

Cross-entropy Sampling (CES). Cross Entropy-based Sampling
(CES) was proposed by Li et al. [1]. The CES algorithm builds
the sample first selecting randomly an initial set of examples, and
then selecting the remaining examples trying to minimize the av-
erage cross-entropy between the probability distribution of the
𝑚-dimensional representation of neurons output computed on the
operational dataset and the selected images. The objective is to
sample a set of examples as much as possible representative of
the operational dataset, namely if it contains the same proportion
of mispredictions as the operational dataset. For CES, the authors
demonstrate that the estimator is the same as SRS (Eq. 1 and Eq. 2).

Deep neural networks Enhanced Sampler for operational Testing
(DeepEST). Guerriero et al. presented DeepEST [2], a technique for
DNN operational testing with the twofold objective of accuracy
estimation and accuracy improvement. DeepEST exploits adaptive
sampling [8] to select a sample providing a close and efficient es-
timate and, at the same time, including a high number of failing
examples. The original version of DeepEST works only for classi-
fication tasks. We hereafter extend it for regression too, defining
the corresponding estimator. The auxiliary variable, 𝜒 , is used by
DeepEST to define a weight 𝑤𝑖, 𝑗 between any pair of examples
𝑑𝑖 and 𝑑 𝑗 of the operational dataset, used to explore the example
space adaptively. The weight𝑤𝑖, 𝑗 is the value of 𝜒𝑑 𝑗

if 𝜒𝑑𝑖 exceeds a
threshold (i.e., it means that 𝑡𝑖 is in an interesting cluster to explore),
0 otherwise. The thresholds are those of the original paper. The
strategy acts as follows: the first input is selected via SRS, then a
weight-based sampling (WBS) is used with probability r to sample
the next example (or SRS with probability 1-r). The example 𝑑𝑖 is
selected at step 𝑘 with probability 𝑞𝑘,𝑡𝑖 :

𝑞𝑘,𝑖 = 𝑟 ·
∑

𝑗 ∈𝑠𝑘 𝑤𝑖,𝑗∑
ℎ∉𝑠𝑘 ,𝑡 𝑗 ∈𝑠𝑘 𝑤ℎ,𝑗

+ (1 − 𝑟 ) · 1
𝑁 − 𝑛𝑠𝑘

(7)

where:

• 𝑟 : probability of using WBS;
• 𝑠𝑘 : current sample (all examples selected up to step 𝑘);
• 𝑤𝑖, 𝑗 : weight relating example 𝑑 𝑗 in 𝑠𝑘 to example 𝑑𝑖 ;
• 𝑛𝑠𝑘 : the size of the current sample 𝑠𝑘 ;
• 𝑁 : the size of the operational dataset.

WBS selects an example 𝑑𝑖 proportionally to the sum of weights
𝑤𝑖, 𝑗 of already selected examples toward 𝑑𝑖 . We compute the follow-
ing step-by-step estimators to balance for the adaptive sampling:

𝜃 =
1
𝑛
(𝑧1 +

1
𝑁

𝑛∑︁
𝑘=2

𝜃𝑘 ) (8) Δ̂ =
1
𝑛
(𝛿21 +

1
𝑁

𝑛∑︁
𝑘=2

Δ̃𝑘 ) (9)

where 𝑧1 and 𝛿21 are the estimates obtained at step 𝑘 = 1 (hence
when 𝑛 = 1), 𝜃𝑘 and Δ̃𝑘 are the Hansen-Hurwitz estimates at step
𝑘 > 1 for the total failures and for the mean-squared error:

𝜃𝑘 =
∑︁
𝑗 ∈𝑠𝑘

𝑧 𝑗 +
𝑧𝑖

𝑞𝑘,𝑖
(10) Δ̃𝑘 =

∑︁
𝑗 ∈𝑠𝑘

𝛿2𝑗

𝑘 − 1
+
𝛿2𝑖 /𝑘
𝑞𝑘,𝑖

. (11)

The final estimators (Eq. 8, 9) are the sample mean of the step-
by-step estimators. For regression, the 𝑘-th MSE estimate is Δ̃𝑘 .

3.4.2 Partition-based techniques. Partition-based techniques split
the operational dataset into classes to improve sampling. In sam-
pling theory, stratification splits the population to have a small
expected intra-stratum variance of the variable to estimate 𝜉 and
a large inter-strata variance, so as to sample more from partitions
with higher variance. Since the true variance of 𝜉 is unknown, strati-
fication can be done on an estimate of such variance (e.g., computed
from a preliminary sample) [17]. However, this would require la-
beling a subset only just for the purpose of estimating the variance
and then applying stratification. Another common solution, that
we adopt, is to stratify based on auxiliary variables. Although risky
(performance depends on the extent to which they are correlated
to 𝜉), this requires no prior knowledge about 𝜉 . We used 𝑘−means
clustering [26] on 𝜒 , with 𝑘 set to 10 after a preliminary tuning on
30 random samples from MNIST, with 𝑘 = 6, 8, 10, 12.

Stratified Simple Random Sampling (SSRS). In this scheme, the
number of examples to draw from each partition 𝑝 is computed by
the Neyman allocation [20] applied to 𝜒 , namely proportionally
to the standard deviation of the (normalized) 𝜒 values for that
partition, and to the size of the partition, 𝑁𝑝 . Selection within the
partition is without-replacement. The estimators are the weighted
sum of the SRS estimates for partitions:

𝜃 =
1
𝑁

(
𝑃∑︁

𝑝=1
𝑁𝑝𝜃𝑝 ) (12) Δ̂ =

1
𝑁

(
𝑃∑︁

𝑝=1
𝑁𝑝 Δ̂𝑝 ) (13)

where 𝜃𝑝 and Δ̂𝑝 are the within-partition SRS estimators (Section
3.4.1), 𝑃 = 𝑘 = 10 is the number of partitions.

Gradient-Based Sampling (GBS). Unlike SSRS, this technique
does not initially allocate a sample size for each stratum, but it de-
cides step by step which partition the next example will be drawn
from. Inspired by adaptive testing with gradient descent [12], at
each step the partition is chosen so as to maximize the reduction
of the variance 𝑉𝑎𝑟 (𝜉) of the 𝜉 estimator, by taking the partition
with the largest negative gradient: −𝜕𝑉𝑎𝑟 (𝜉)/𝜕𝑛𝑝 (ties broken ran-
domly), 𝑛𝑝 being the number of examples selected from partition
𝑝 up to the current step. The selection within the partition is then
with replacement. The estimators are the same as SSRS (Eq. 12, 13).
Note that the with-replacement SRS, used in GBS, and without-
replacement SRS, used in SSRS, have the same mean estimators –
they differ for the variance of these estimators.

Two-stage Unequal Probability Sampling (2-UPS). This technique
implements a two-stage sampling scheme, where unequal probabil-
ity sampling is adopted to select the partition (first stage), and SRS
without replacement is adopted to select the example from the cho-
sen partition (second stage). The selection probability for partition
𝑝 is proportional to the sum of (normalized) 𝜒 values (denoted as
𝜋𝑖 as in SUPS and RHC-S) within that partition:

𝜓𝑝 =

∑𝑁𝑝

𝑖=1 𝜋𝑖∑𝑃
𝑝=1

∑𝑁𝑝

𝑖=1 𝜋𝑖
. (14)

Clearly, selection of partitions is with replacement; 𝑄𝑝 is the
number of times partition 𝑝 is selected. The estimator for this
technique is the average over 𝑛 estimates:

𝜃 =
1
𝑁𝑛

(
𝑃∑︁

𝑝=1

𝑄𝑝∑︁
𝑖=1

𝑧𝑖𝑁𝑝

𝜓𝑝

) (15) Δ̂ =
1
𝑁𝑛

(
𝑃∑︁

𝑝=1

𝑄𝑝∑︁
𝑖=1

𝛿2𝑖 𝑁𝑝

𝜓𝑝

) (16)
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Inner terms (𝑧𝑖𝑁𝑝 )/(𝜓𝑝 ) and (𝛿2
𝑖
𝑁𝑝 )/(𝜓𝑝 ) are Hansen-Hurwitz

estimates for the total number of failures and squared errors in
partition 𝑝 , respectively. These estimates are summed up over all
partitions and divided by the sample size 𝑛 to get an average total
estimate. The division by 𝑁 gives 𝜃 and Δ̂.

4 EVALUATION
4.1 Research questions and metrics
RQ1: How do the sampling techniques perform in assessing the oper-
ational accuracy of DNN models?
• RQ1.1: How do the techniques perform for classification?
• RQ1.2: How do the techniques perform for regression?
Over 𝑅 = 30 repetitions, we measure the root mean squared error
(RMSE) between the accuracy estimates 𝜉 and the true accuracy 𝜉

computed on the operational datasets by labeling all the images:

𝑅𝑀𝑆𝐸 =

√︄∑𝑅
𝑟=1 (𝜉 − 𝜉 )2

𝑅
(17)

where 𝜉 for classification and regression is computed using 𝜃 and Δ̂,
respectively. Lower RMSE means higher confidence in the estimate.
RQ2: How do the sampling techniques perform in detecting failing
examples? An issue of some techniques like CES is that they, with
reason, try to have in the sample the same proportion of failures
as in the operational dataset, to faithfully estimate accuracy (what
is called the imitation bias [2]); but in highly-accurate DNNs, this
entails very few failures exposed, which requires engineers to run
further tests to expose failures – an issue addressed by DeepEST [2].
Thus a desirable property is to expose a high number of failures,
besides the ability to provide unbiased high-confidence estimates.
• RQ2.1: Classification task. How many failures (namely, misclassi-
fications) are exposed by the techniques?

• RQ2.2: Regression task. How many examples with an inaccurate
prediction are selected by the techniques? Since in regression we
have continuous outputs, we measure the number of examples
having a difference between true and predicted output (i.e., the
offset: 𝛿𝑖 = |𝑟 −𝑟𝑖 |) greater than or equal to a given value𝑦: 𝑁𝛿≥𝑦
with 𝑦 ranging from 0◦ to 25◦, with a step of 2.5◦.6

RQ3: How does the budgeted sample size affect performance? The
sample size is directly related to the cost of labelling, as it determines
the number of examples to be manually labelled.
• RQ3.1: How does the size affect the accuracy estimate?
• RQ3.2: How does the size affect the failing examples detection?

To answer RQ1 and RQ2, we consider a budget size of 200, as
in [1, 2]; the total runs are 6,600 [11 models × 30 repetitions × (6
techniques × 3 auxiliary variables + the 2 techniques CES and SRS
not using auxiliary variables)]. For RQ3, with 5 sample size values
(50, 100, 200, 400, 800), there are additional 6,600 × 4 = 26,400 runs,
for a total of 33,000 runs.

4.2 Subjects
The evaluation is on 11 DNN models on popular datasets (Table 2).
For classification we consider 3 models for each of the following

6The output of the DNN for regression is a steering angle degree; a difference greater
than 25◦ is unrealistic, and never occurred in our experiments.

Table 2: List of experimental subjects

Model Dataset Layers Parameters Accuracy

A
MNIST

7 6,237 90.3%
B 6 97,114 94.8%
C 8 545,546 93.3%
D

CIFAR10
13 1,084,234 71.5%

E 10 258,762 79.0%
F 12 550,570 65.1%
G

CIFAR100
16 15,047,588 66.3%

H 9 564,484 57.4%
I 13 1,465,220 58.8%

DO Udacity 13 2,116,983 0.904
DD 15 3,276,225 0.918

3 datasets: MNIST [27], CIFAR10 and CIFAR100 [28]. MNIST has
70,000 entries; CIFAR10 has 60,000 entries; both have 10 classes.
CIFAR100 also has 60,000 entries, with 100 classes. For regression,
we consider 2 models for the Udacity dataset7 (101,396 entries for
training, 5,614 for test) for steering angle prediction in Autonomous
Driving Systems: Dave_orig (DO) and Dave_dropout (DD) [1][29].

Recht et al. [30] showed that if the accuracy is computed on
previously unseen data, it is actually smaller than the claimed one
by a value ranging from 3% to 15% on CIFAR10 and from 11% to 14%
on ImageNet. Therefore, for a more realistic accuracy, each DNN
is trained “from scratch” by separating training, verification, and
operational sets, as in [31]. The verification set is the set used to
evaluate the DNN. The operational set contains unlabelled images.

The three datasets are split as follows. For MNIST, 7,000 images
are for training and 2,500 for verification; the remaining 60,500 en-
tries are the operational dataset (big size). All models trained with
this configuration achieve an accuracy greater than 90%. For CI-
FAR10, we use 24,000 images for training and 2,500 for verification;
the remaining 33,500 entries are the operational dataset (medium
size). For CIFAR100, 40,000 entries are for training and 5, 000 for ver-
ification; thus, the operational dataset has 15,000 images (small size).
The operational datasets are chosen to have MNIST (big) almost
double than CIFAR10 (medium) and four times CIFAR100 (small).
The greater training set sizes for CIFAR10 and CIFAR100 are due
to the higher complexity of the images, to pursue an acceptable
accuracy. For regression models, we use as operational dataset the
entire test dataset, as all its examples are unseen during training.

5 RESULTS
5.1 RQ1: operational accuracy assessment
5.1.1 RQ1.1: Classification. To check if techniques have pairwise
a statistically significant difference, we run the Friedman test [32]
on all subjects/auxiliary variable pairs. The 𝑝-value is lower than
𝛼 = 0.05 in all cases, hence the null hypothesis of no difference
among techniques is always rejected. For pairwise comparison, we
run the non-parametric post hoc Dunn test [33] with the Holm
adjustment. The results are in Figure 1, where gray squares mean
no significant difference for the pair, white (black) squares mean the
technique on the row is statistically better (worse) than the one on
the column. All exact 𝑝-values are in the replication package.1

On MNIST, DeepEST and 2-UPS significantly differ from the
other techniques (which perform similarly). We show three exam-
ples in Figures 2a-2c. The first is on Model A (top-left box in Fig. 1)

7https://github.com/udacity/self-driving-car.

https://github.com/udacity/self-driving-car
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Figure 1: RQ1.1: Dunn test on the classification task

with confidence as auxiliary variable. Here, the RMSE of 2-UPS is
by far the worst; however, it is affected by few outliers due to the
inability of the estimator to balance, within the given budget, the
examples whose auxiliary information is incoherent with the result
(e.g., failures with high confidence). If we take the root square of
the median of squared errors, called RMedSE, we see 2-UPS is in
line with the others. This causes 2-UPS to go unreported as signifi-
cantly different by the Dunn test (non-parametric, hence robust to
outliers). DeepEST, instead, shows to be significantly worse.

The second example (Fig. 2b) is onModel B with LSA (top-middle
box in Fig. 1). 2-UPS performs worse than the others, the second
being DeepEST although the difference is not detected by the Dunn
test. The third example (Fig. 2c) is on Model C with DSA (top-right
box in Fig. 1). In this case, both DeepEST and 2-UPS perform worse.
In the second and third examples, the values of the RMSE and
RMedSE for 2-UPS are close (no outliers); this is attributable to the
higher representativeness of LSA and DSA, which were more robust
than confidence to misclassification on inputs closer to training set.

On CIFAR10 with confidence, the outliers in 2-UPS are even more
pronounced (Fig. 2d). DeepEST and 2-UPS again give the worst
estimates. The other algorithms are similar (Fig. 2e).

On CIFAR100 with confidence, GBS, SSRS and SRS differ signifi-
cantly from the other techniques. Consider Fig. 2f (Model I). GBS,
SSRS and SRS exhibit the best values. Outliers in 2-UPS are con-
firmed; they are more frequent, especially on low-accurate models
(the behaviour is more evident with CIFAR10 and CIFAR100, less
accurate for MNIST). On the other hand, it is worth to stress that
not all the algorithms relying on the auxiliary variable suffer from
unstable results; RHC-S and SUPS are more stable. With LSA (Fig.
2g) and DSA (Fig. 2h), the previous results are confirmed; after
DeepEST and 2-UPS, CES turned out to be the third worst one.

5.1.2 RQ1.2: Regression. The Friedman test gives a 𝑝-value lower
than 𝛼 = 0.05 in all the cases, except for DO with the SAE auxiliary
variable. Figure 3 shows the results of the Dunn test for pairwise
comparison. When using LSA, DeepEST and 2-UPS are significantly
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Figure 2: RQ1.1: Examples
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Figure 3: RQ1.2: Dunn test on the regression task

worse. Figures 4 and 5 confirm their higher values of RMSE and
RMedSE for both DO and DD models.

With the VAE auxiliary variable, GBS differs from SRS, but it is
almost equivalent to the other algorithms in the DO model. Figure
4 confirms that GBS has higher RMSE than the others. For the DD
model, 2-UPS differs from SUPS and RHC-S. 2-UPS has the highest
RMSE values, while RHC-S has the lowest ones (Figure 5).

With SAE, the Friedman test did not detect any difference for
DO, while, for DD, 2-UPS is still the worst technique, although it is
closer to GBS and SSRS than the previous cases.
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Figure 4: RQ1.2: DO model - Bar charts
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Figure 5: RQ1.2: DD model - Bar charts

As for RMedSE%, the worst values are always with the LSA
variable: for DO, 2-UPS and DeepEST show the worst values (4.2%
and 3.2%, respectively); SSRS has the best value (0.4%); for DD,
DeepEST and 2-UPS show 3.9% and 2.1%, respectively, against
SUPS with 0.4%. The worst case with autoencoders is for DD with
the SAE variable, with 2-UPS (2.0%), while the best one is SRS
(0.4%). These results are in line with the classification ones.

Overall, the techniques are all equivalently effective in assessing
the operational accuracy of DNN models for classification and
regression tasks, except for DeepEST and 2-UPS. While DeepEST
was expected to show worse results (its primary objective is on
failure exposure), 2-UPS shows many outliers since it is strongly
affected by auxiliary variable representativeness.

5.2 RQ2: failing examples detection
For RQ2, we treat classification and regression differently. For the
former, we count the number of misclassifications. For the latter, we
count the number of examples whose offset 𝛿 (predicted vs actual
value) is greater than a threshold 𝑦, with 𝑦 ∈ [0◦, 2.5◦, 5◦, . . . , 25◦]
– the higher the difference, the more severe the misprediction.

5.2.1 RQ2.1: Classification. Table 3 reports the number of misclas-
sifications broken down by dataset and auxiliary variable – the best
mean values are in bold. DeepEST exposes more failures than the
others in 7 out of 9 times. 2-UPS has the highest value only for

Table 3: RQ2.1: Number of exposed failures (classification)

MNIST CIFAR10 CIFAR100
𝜒 Technique mean std mean std mean std

co
nfi

de
nc

e

GBS 28.2 7.2 68.4 8.0 86.2 10.6
DeepEST 80.5 10.3 108.7 9.4 136.4 6.6
2-UPS 69.5 17.4 108.9 11.7 141.5 6.2
RHC-S 70.6 16.5 106.0 12.8 142.3 6.4
SSRS 38.4 10.2 78.7 13.5 109.2 6.2
SUPS 69.8 16.9 106.9 12.3 143.6 5.5
CES 15.6 5.8 55.8 12.6 70.4 7.5
SRS 14.6 5.3 57.3 13.1 78.0 12.8

LS
A

GBS 21.0 5.2 58.2 10.6 84.6 7.4
DeepEST 35.9 10.7 69.2 10.4 119.9 12.4
2-UPS 25.0 7.5 61.8 11.3 110.5 20.1
RHC-S 25.5 7.1 62.9 11.4 110.3 19.3
SSRS 27.3 6.4 60.1 10.7 93.2 10.7
SUPS 25.4 6.8 63.5 11.2 110.2 21.7
CES 15.6 5.8 55.8 12.6 70.4 7.5
SRS 14.6 5.3 57.3 13.1 78.0 12.8

D
SA

GBS 20.3 6.0 63.6 11.0 88.5 7.5
DeepEST 73.0 17.9 102.4 8.9 136.7 4.9
2-UPS 25.2 7.2 65.2 12.0 96.3 8.7
RHC-S 23.9 7.0 65.5 13.8 96.9 9.6
SSRS 21.7 5.6 58.3 12.0 82.4 6.4
SUPS 24.7 6.9 65.7 12.1 97.3 10.7
CES 15.6 5.8 55.8 12.6 70.4 7.5
SRS 14.6 5.3 57.3 13.1 78.0 12.8

CIFAR10 with confidence, and SUPS for CIFAR100 with confidence.
2-UPS, SUPS, and RHC-S almost equivalently follow DeepEST.

These results counterbalance the DeepEST and 2-UPS results on
the estimates, which were worse than the others (RQ1.1). DeepEST
assumes that failures belong to a rare population, and is conceived
to spot them. The greater ability to find misclassifications causes a
greater variability of the estimates, and more budget is needed to
converge. A similar problem is observed for 2-UPS. We hypothesize
that partitioning combined with unequal sampling (both based on
the auxiliary variable 𝜒) can push toward failing examples, but
the estimator needs more time to converge. Unlike DeepEST, 2-
UPS showed many spikes in the accuracy estimation; the estimator
generates spikes every time a failure is detected with “misleading”
values of 𝜒 , namely misclassified examples with values of 𝜒 that
would indicate a correct classification. For instance, failures with
high confidence, or with low LSA/DSA. SUPS and RHC-S seem very
good compromises between the two – more details in the final
discussion. GBS, CES, and SRS detect fewer failures. For SRS and
CES this is likely because the former does not use any auxiliary
variable, the latter uses cross-entropy, not supposed to be related
to failures. GBS and SSRS both use 𝜒 only for partitioning; but GBS
detects fewer failures likely because the algorithm is thought to
minimize the variance of the estimate.

5.2.2 RQ2.2: Regression. Tables 4 and 5 report the histograms of
the offset, starting from 12.5◦ to 25◦. Compared to the classification
case, the differences here are less pronounced. Looking at the sum
of the bins, we notice that CES and SRS select less examples with
higher offset with respect to the others under the LSA case, while all
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Table 4: RQ2.2: Average number of failures whose offset is 12.5◦ ≤ 𝛿 < 15◦, 15◦ ≤ 𝛿 < 17.5◦, . . .22.5◦ ≤ 𝛿 < 25◦. DO model

Technique LSA VAE SAE

GBS
4.2 2.8 1.6 0.7 0.2 0.6 10.2

12.9
6.0 3.0 0.6 0.2 0.5 23.1

8.9
4.4 2.3 0.4 0.1 0.5 16.6

DeepEST

12.8
7.0 4.0 1.5 1.3 2.2 28.9

10.3
4.6 2.1 1.2 0.5 0.9 19.5

9.7
4.9 2.2 0.8 0.6 1.0 19.2

2-UPS

13.7
7.2 4.5 2.0 1.3 2.4 31.0

10.5
4.8 2.3 0.7 0.4 0.9 19.6

9.0
4.5 2.6 0.9 0.4 0.8 18.2

RHC-S

14.4
8.4 4.7 2.2 1.3 1.9 32.8

8.4 5.0 2.9 1.0 0.7 0.8 18.7
9.8

4.3 2.4 0.8 0.6 0.7 18.7

SSRS

11.2 9.3
4.6 2.3 1.6 2.4 31.4

9.5
4.9 2.3 1.1 0.7 0.6 19.1

9.3
4.4 1.5 0.7 0.5 0.7 17.1

SUPS

13.4
8.2 4.7 2.1 1.2 2.9 32.7

8.8 5.0 2.0 0.8 0.8 0.7 18.1
10.2

5.2 1.9 0.9 0.5 0.6 19.1

CES
8.5 5.1 2.9 0.7 0.5 1.2 18.9

8.5 5.1 2.9 0.7 0.5 1.2 18.9
8.5 5.1 2.9 0.7 0.5 1.2 18.9

SRS
9.4

4.0 1.9 0.8 0.4 1.1 17.7
9.4

4.0 1.9 0.8 0.4 1.1 17.7
9.4

4.0 1.9 0.8 0.4 1.1 17.7

Table 5: RQ2.2: Average number of failures whose offset is 12.5◦ ≤ 𝛿 < 15◦, 15◦ ≤ 𝛿 < 17.5◦, . . .22.5◦ ≤ 𝛿 < 25◦. DD model

Technique LSA VAE SAE

GBS 3.7 1.9 1.4 0.8 0.8 0.8 9.4
8.3 4.9 1.7 2.0 0.9 1.9 19.7

5.7 4.9 1.7 0.9 0.6 1.0 14.7

DeepEST
8.8 6.9 4.2 2.8 1.2 2.2 26.1

4.7 3.0 1.9 1.1 0.5 0.8 12.0
4.8 2.9 2.1 1.1 0.5 0.7 12.1

2-UPS
10.5 7.9 5.9 3.0 1.5 2.3 31.1

4.2 3.0 1.7 1.0 0.4 0.7 11.0
4.8 3.1 1.7 1.1 0.6 0.8 12.0

RHC-S

11.1 7.2 4.7 2.7 1.9 2.3 29.9
4.7 2.5 1.3 0.8 0.5 0.9 10.6

5.3 2.5 1.9 0.9 0.5 0.6 11.8

SSRS
9.1 5.9 4.3 3.3 2.1 2.5 27.3

5.7 2.7 1.8 0.9 0.6 0.7 12.4
5.0 3.5 2.9 1.5 0.9 1.6 15.4

SUPS

11.1 8.1 5.2 2.6 2.1 2.8 31.9
4.6 3.1 1.7 1.2 0.7 0.7 12.1

4.4 2.9 1.5 1.0 0.7 0.8 11.4

CES
3.9 2.6 1.5 1.1 0.8 0.5 10.3

3.9 2.6 1.5 1.1 0.8 0.5 10.3
3.9 2.6 1.5 1.1 0.8 0.5 10.3

SRS
4.6 2.3 2.1 0.3 0.4 0.1 9.8

4.6 2.3 2.1 0.3 0.4 0.1 9.8
4.6 2.3 2.1 0.3 0.4 0.1 9.8

the techniques are roughly equivalent with VAE and SAE8. GBS has
similar poor performance, but it performs much better when used
with VAE (consistently with the more unstable RMSE (Fig. 4). SUPS
is the best one with LSA. The good performance of partitioning-
based techniques (which achieve or even outperform DeepEST)
is attributable to a better effect of partitioning when applied to
regression compared to classification (since the auxiliary variable,
used for partitioning, and the offset are more correlated).

5.3 RQ3: efficiency analysis
5.3.1 RQ3.1. Accuracy assessment. We synthesize in Tables 6 and 7
the results for classification and regression. Besides the RMSE value
at each point,9 we are interested in figuring out if the techniques
smoothly converge as the sample size increase. First, we report for
each dataset, technique, auxiliary variable, and model, how many
times the minimum RMSE is reached under the given sample size.
For instance, 3/3/3 of GBS for sample size 800 in MNIST, means
8Note that the histograms for CES and SRS are the same along the three columns of
the Table since they do not use LSA/VAE/SAE.
9The full set of graphs for each dataset-auxiliary variable-model combination over the
sample size are in the replication package.

that the minimum RMSE was reached for all the 3 models used
with MNIST, using respectively confidence/LSA/DSA as auxiliary
variable. This is marked as green, and is the expected behaviour.
When this is not true for at least one case, we mark it as red, and
correspondingly mark as yellow those cells in the same row (with
sample size smaller than 800) where the minimum was reached.

There are many cases where the minimum is not achieved with
the largest sample size (red cells). For instance, the instability of
2-UPS makes it even reach the best values with a sample size 50
(MNIST and CIFAR100) and sample size 100 (MNIST and CIFAR10).
CES with CIFAR100 has the same convergence problem, while it is
stable in MNIST and CIFAR10. In remaining red cases, the minimum
is at 400. SRS is the most stable technique, for independence from
auxiliary variables. GBS and DeepEST are stable for 2 of 3 datasets;
in the bad case, they converge at size 400. For regression, perfor-
mance is better; GBS is more unstable, while the others converge
at 800 with few exceptions at 400 and one (CES) at 200.

Tables 6 and 7 report also in how many cases the RMSE with
budget 50 is smaller than that with budget 800 (red cells).We call this
inversions, denoting convergence problems. There are 5 such cases:
3 for 2-UPS (2 with MNIST and 1 with CIFAR100), 1 for SUPS and 1
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Table 6: RQ3.1: RMSE sensitivity analysis (conf./LSA/DSA)

Minimum RMSE Inversions
Technique 50 100 200 400 800 50>800

GBS 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
DeepEST 0/0/0 0/0/0 0/0/0 0/0/1 3/3/2 3/3/3
2-UPS 1/0/0 1/0/0 0/0/0 0/1/0 1/2/3 1/3/3
RHC-S 0/0/0 0/0/0 0/0/0 0/1/1 3/2/2 3/3/3
SSRS 0/0/0 0/0/0 0/0/0 0/0/1 3/3/2 3/3/3
SUPS 0/0/0 0/0/0 1/0/0 0/0/0 2/3/3 3/3/3
CES 0 0 0 0 3 3

M
N
IS
T

SRS 0 0 0 0 3 3

GBS 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
DeepEST 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
2-UPS 0/0/0 0/0/1 0/0/0 1/0/0 2/3/2 3/3/3
RHC-S 0/0/0 0/0/0 0/0/0 1/0/0 2/3/3 3/3/3
SSRS 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
SUPS 0/0/0 0/0/0 0/0/0 1/0/0 2/3/3 3/3/3
CES 0 0 0 0 3 3

CI
FA

R1
0

SRS 0 0 0 0 3 3

GBS 0/0/0 0/0/0 0/0/0 0/0/1 3/3/2 3/3/3
DeepEST 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
2-UPS 0/0/1 0/0/0 0/0/0 0/0/0 3/3/2 3/3/2
RHC-S 0/0/0 0/0/0 0/0/0 0/1/0 3/2/3 3/3/3
SSRS 0/0/0 0/0/0 0/0/0 0/0/0 3/3/3 3/3/3
SUPS 0/0/0 0/0/0 0/0/0 2/1/0 1/2/3 2/3/3
CES 0 1 1 0 1 2

CI
FA

R1
00

SRS 0 0 0 0 3 3

Table 7: RQ3.1: RMSE sensitivity analysis (LSA/VAE/SAE)

Minimum RMSE Inversions
Technique 50 100 200 400 800 50>800

GBS 0/0/0 0/0/0 0/2/0 0/0/1 2/0/1 2/2/2
DeepEST 0/0/0 0/0/0 0/0/0 0/0/0 2/2/2 2/2/2
2-UPS 0/0/0 0/0/0 0/0/0 1/1/0 1/1/2 2/2/2
RHC-S 0/0/0 0/0/0 0/0/0 0/0/0 2/2/2 2/2/2
SSRS 0/0/0 0/0/0 0/0/0 0/0/0 2/2/2 2/2/2
SUPS 0/0/0 0/0/0 0/0/0 1/0/0 1/2/2 2/2/2
CES 0 0 1 0 1 2

U
da
ci
ty

SRS 0 0 0 0 2 2

for CES (bothwith CIFAR100). Inversions never occur for regression.
SRS is still the most stable technique for both classification and
regression. Again, 2-UPS is the most affected one.

5.3.2 RQ3.2: Failing examples detection. Results for this RQ are
in Tables 8 and 9. For regression, we consider as failures all the
predictions with an error on the steering angle greater than 12.5◦.
The Table reports the mean (over the sample sizes) of the minimum
andmaximum number of failures, and the ratio between the number
of failures detected with sizes 800 and 50 (𝐹800/50).

We observe there is no inversion: failures constantly increase
with the budget size – they roughly double as the sample size
doubles for both classification and regression (detailed values are
in the replication package). The expectation in this case is fully
matched by all techniques. Looking at 𝐹800/50, all the results of RQ2
are confirmed for all budget sizes.

6 DISCUSSION
We analyze the results with respect to the main impacting factors,
to provide guidance to both practitioners (to select the technique
best fitting the needs) and researchers (to design new techniques).

Table 8: RQ3.2: Failures sensitivity analysis (conf./LSA/DSA)

Technique mean(min) 𝐹800/50 mean(max)

M
N
IS
T

GBS 5.3/5.8/4.5 26.3/15.7/21.9 136.5/91.9/95.9
DeepEST 19.3/8.0/17.9 16.7/17.7/16.5 321.6/140.0/295.9
2-UPS 17.4/5.8/5.9 15.9/17.1/16.9 277.2/100.5/98.0
RHC-S 17.1/6.7/6.2 16.1/15.1/16.0 274.2/101.8/100.3
SSRS 10.0/6.9/5.5 15.5/15.8/16.6 153.3/107.4/90.9
SUPS 17.7/6.2/5.8 16.0/16.4/17.3 282.6/102.6/100.9
CES 3.8 16.1 61.5
SRS 3.8 15.9 58.6

CI
FA

R1
0

GBS 15.4/14.9/14.4 17.9/15.9/18.3 272.5/238.7/261.1
DeepEST 26.9/17.1/25.3 16.1/16.2/16.2 432.7/277.7/408.6
2-UPS 26.7/15.8/16.8 16.1/16.1/15.8 431.8/252.7/264.2
RHC-S 27.2/15.9/16.1 15.7/16.0/16.3 427.7/252.6/262.4
SSRS 19.7/15.3/14.4 16.0/15.7/16.0 315.1/239.4/231.1
SUPS 26.7/15.1/16.4 16.2/16.6/16.2 433.8/250.6/263.3
CES 14.1 15.2 216.5
SRS 13.8 16.4 227.6

CI
FA

R1
00

GBS 21.5/21.3/21.7 15.9/15.9/16.5 341.0/339.2/357.8
DeepEST 33.7/29.8/34.9 16.2/16.0/11.3 546.6/475.3/393.3
2-UPS 35.7/27.2/24.5 15.9/16.0/15.7 565.9/434.7/385.8
RHC-S 35.3/27.6/24.1 15.9/15.7/15.9 560.9/432.6/383.3
SSRS 28.2/22.7/20.8 15.5/16.5/15.9 436.5/374.5/329.8
SUPS 35.2/27.4/23.8 16.2/16.2/16.4 571.2/441.1/389.7
CES 19.7 13.8 270.5
SRS 20.8 15.2 315.0

Table 9: RQ3.2: Failures sensitivity analysis (LSA/VAE/SAE)

Technique mean(min) 𝐹800/50 mean(max)

U
da
ci
ty

GBS 4.2/3.7/4.1 3.0/34.1/14.9 12.4/122.8/57.8
DeepEST 6.8/3.6/3.6 16.2/16.6/18.0 109.3/60.3/61.2
2-UPS 7.4/3.8/3.4 16.6/15.5/18.9 123.1/59.1/61.2
RHC-S 8.1/3.5/3.7 13.8/17.3/16.4 112.1/60.8/61.5
SSRS 7.5/4.2/4.2 15.6/15.1/15.2 117.5/64.2/64.9
SUPS 8.1/3.7/3.8 15.9/16.5/16.2 127.3/60.6/61.1
CES 3.1 20.9 65.3
SRS 3.3 17.9 58.3

The performance of a sampling technique depends on the tester’s
objective and on the application context.

As for the objective (set in the problem formulation, Sec. 3.1),
while a tester is always interested in an unbiased assessment of the
DNN accuracy, s/he can specifically focus on:

1○ High confidence (i.e., low variance), e.g., as criterion to release
a DNN, or to choose which DNN to deploy among various
alternatives – a high-confidence estimate is usually required
in critical domains. This can be achieved by reducing the
RMSE or RMedSE: in the former case, one looks for high-
confidence estimate even in presence of outliers; in the latter
case, one neglects the negative effect of outliers.

2○ High failure exposure ability, e.g., when the tester needs
to assess and improve the DNN accuracy efficiently, and
the high-confidence requirements can be relaxed (e.g., in
non-critical domains). The simultaneous assessment and
improvement can help during subsequent re-training/fine-
tuning iterations to efficiently track progress in the achieved
accuracy.
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Table 10: Top 3 techniques across configurations (two factors)
- (T: trade-off, nf: number of failures)

(a) Task

Classification Regression
1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

RMSE GBS SSRS SUPS CES SSRS RHC-S
RMedSE SSRS GBS SRS SSRS SUPS RHC-S
Failures DeepEST SUPS RHC-S SSRS SUPS GBS
TRMSE-nf SUPS RHC-S DeepEST SSRS SUPS RHC-S

TRMedSE-nf SUPS RHC-S DeepEST SSRS SUPS RHC-S

(b) Sample size

Small/Medium (50, 100, 200) Large (400, 800)
1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

RMSE SSRS GBS SUPS GBS SSRS SRS
RMedSE SSRS SRS SUPS SSRS GBS SRS
Failures DeepEST RHC-S SUPS SUPS DeepEST 2-UPS
TRMSE-nf RHC-S SUPS SSRS SUPS RHC-S GBS

TRMedSE-nf RHC-S SUPS SSRS SUPS RHC-S SSRS

(c) Dataset/model accuracy

Low (CIFAR10, CIFAR100) High (MNIST, Udacity)
1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

RMSE GBS SSRS SRS SSRS RHC-S SUPS
RMedSE SSRS GBS SRS SSRS RHC-S SUPS
Failures RHC-S 2-UPS DeepEST DeepEST SUPS RHC-S
TRMSE-nf SUPS RHC-S GBS SUPS SSRS RHC-S

TRMedSE-nf SUPS RHC-S GBS/2-UPS SUPS SSRS RHC-S

(d) Auxiliary variable

RMSE RMedSE Failures TRMSE-nf TRMedSE-nf

conf.
1𝑠𝑡 : SSRS SSRS SUPS SUPS SUPS
2𝑛𝑑 : GBS GBS 2-UPS RHC-S RHC-S
3𝑟𝑑 : SRS SRS RHC-S 2-UPS 2-UPS

LSA
classification

GBS SSRS DeepEST RHC-S RHC-S
SUPS GBS RHC-S SUPS SUPS
RHC-S SRS SUPS DeepEST DeepEST

DSA
SUPS SUPS DeepEST SUPS SUPS
GBS GBS 2-UPS RHC-S RHC-S
SSRS SSRS SUPS DeepEST DeepEST

LSA
regression

SSRS SSRS SSRS SSRS SSRS
RHC-S SUPS SUPS RHC-S SUPS
SUPS RHC-S 2-UPS SUPS RHC-S

VAE
CES SRS GBS SSRS SSRS
SRS SSRS SSRS CES SUPS

RHC-S RHC-S SUPS SUPS GBS

SAE
SRS SSRS GBS CES SSRS
CES RHC-S DeepEST SRS RHC-S
SSRS CES RHC-S RHC-S SUPS

3○ A trade-off between confidence in the accuracy estimate and
number of exposed failures, e.g., when a good confidence esti-
mate is used to monitor the accuracy of a DNN and engineers
want to use the exposed failing examples in the re-training
actions (these may be triggered only when the accuracy
drops under a certain threshold) [34].

As for the context, following our experimental design, the factors
that we identified as potentially impacting are: the task (classifica-
tion or regression), the sample size (hence the budget available),
the dataset10, and the auxiliary variable, if available, for sam-
pling.

Table 10 reports a two-way analysis of the ranking performance
of the techniques. On the row, we list the objective. On the column,
10Datasets and models are considered together; the average accuracy of the models on
the datasets capture three distinct cases of low, medium and high accuracy (Tab. 2)

Table 11: Number of best-performing occurrences out of 270
(classification) and 60 (regression) configurations

Classification Regression
aux. RMSE RMedSE Failures aux. RMSE RMedSE Failures
conf. 73 82 243 LSA 35 30 52
LSA 85 82 8 VAE 12 17 7
DSA 112 106 19 SAE 13 13 1

we break down the results by the impacting factor. For each com-
bination (e.g, RMSE with Classification, Table 10a), we count the
number of times a technique was among the top-3 ones, and report
the best 3 techniques according to this count.

A practitioner should consider the combination reflecting more
his/her needs and context. For instance, one might want a high-
confidence robust-to-outlier assessment (row 1), with a medium
(200) labelling effort (Table 10b); or (s)he might not want to use LSA
or DSA, which are more expensive to compute, preferring the use of
confidence (Table 10d).11 Since exploring any n-way combinations
could be of interest too (e.g., small RMSE and small sample size and
high-accuracy dataset), we release a notebook in our replication
package1 to specify the factors of interest and query the results.

Besides combination-specific findings easily inferable from the
Tables, some interesting patterns are hereafter highlighted:

• In high-confidence assessment 1○ (RMSE, RMedSE), SSRS is
among the best three techniques in 22 out of 24 combinations,
followed by GBS and SRS (12/24), SUPS (11/24) and RHC-S
(10/24). The existing techniques CES and DeepEST are never
in the top 3. Surprisingly, SRS appears often, especially for
large sample size, and for low-accuracy models;

• In high failure exposure 2○, SUPS stands out 10 out of 12
times, followed by DeepEST (8/12) and RHC-S (7/12);

• For good trade-offs 3○ (𝑇𝑅𝑀𝑆𝐸-𝑛𝑓 , 𝑇𝑅𝑀𝑒𝑑𝑆𝐸-𝑛𝑓 ), SUPS and
RHC-S appear almost always (23/24 and 22/24, respectively).
The others are far less common (SSRS 12/24, DeepEST 6/24).

It is worth to note that the new algorithms proposed (GBS, 2-
UPS, RHC-S, SSRS, SUPS) appear among the best three in the vast
majority of cases. The following specific considerations can be
drawn.

SSRS is particularly good for high-confidence estimates; SUPS
(and to a lesser extent RHC-S) outperforms the others for high
failure exposure, where it even defeats DeepEST that is specifically
conceived for that task via adaptive sampling.

SUPS and RHC-S give the best trade-offs. This indicates that they
perform generally well for all the objectives.

The distinguishing feature of the new techniques is that they ex-
ploit the auxiliary variable for just partitioning (SSRS, GBS) and/or
for inputs selection (RHC-S, SUPS, 2-UPS). This in essence allows to
direct the sampling toward higher-variance areas of the population,
reducing the estimator variance and exposing more failures.

In the perspective of a researcher devising a new technique,
attention has to be paid to these aspects: auxiliary variable (if and
which one to use), partitioning, and replacement scheme (Tab. 1).

11These results have to be read with the pairwise statistical test results, as the best 3
techniques could be negligibly different (in which case one can be chosen arbitrarily).
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Auxiliary variable. The performance of auxiliary variables is
useful not only for selecting a technique, but also to design new
ones. The results in Table 10.d highlight that the only techniques
not using auxiliary variables (SRS and CES) are rarely among the
top-3 ones, especially for the failure exposure ability (𝐴𝑓 ).

Table 11 reports how many times each auxiliary variable yields
the best RMSE and RMedSE, and the number of failures. For classifi-
cation, DSA and confidence are the best variables for RMSE/RMedSE
1○ and number of failures 2○, respectively. It is important to high-
light that confidence is cheaper to collect, as it comes with the
output of the classification. For regression, LSA shows the best
results 1○ 2○ 3○. The variables derived by SAE/VAE perform poorly.
Partitioning. Partitioning based on auxiliary variables is partic-
uarly beneficial for good accuracy estimates 1○; SSRS and GBS are
the best ones for this aim. The benefit of partitioning is lower when
the aim is to expose failures 2○ 3○; performance is better when parti-
tioning with LSA, especially for regression, as it is better correlated
to (in)accuracy.
Replacement. We found no remarkable advantage of without-
replacement sampling; for instance, SUPS (with replacement) works
well in all scenarios. This is likely due to the negligible sample
size compared to the operational dataset, hence sampling with
replacement is unlikely to pick the same example twice.

7 THREATS TO VALIDITY
As for the selection of the experimental subjects, we have consid-
ered publicly available DNNs [31]; we have however re-trained
them from scratch to have realistic accuracy and avoid the men-
tioned inflated accuracy issue described in [30].

The choice of the sample size affects the results. We ran a sensi-
tivity analysis with five (from 50 to 800) values of the sample size.
Different values could yield different results.

The evaluation does not include an extensive analysis of parti-
tioning. We ran 𝑘-means, with 𝑘 = 10 partitions, after a preliminary
tuning on 30 random samples from MNIST and 𝑘 = 6, 8, 10, 12.
Extending the tuning of 𝑘 to all cases would improve performance.

Despite extensive code inspection, the presence of defects in the
algorithms cannot be excluded.

External validity is undermined by the number of models and
datasets; we considered state-of-the-art DNNs and widely-used
datasets. The replicability of the experiments mitigates this threat.

8 CONCLUSIONS
We presented DeepSample, a framework encompassing a set of
sampling-based techniques for DNN operational accuracy assess-
ment. We implemented techniques with and without partitioning,
with and without replacement, with and without auxiliary vari-
ables to drive the selection, and we empirically evaluated them
in terms of accuracy estimation and number of failures, on both
classification and regression problems.

The findings pertaining to the individual techniques, as well as
to the key factors impacting the sampling algorithms, serve: i) as
guidance for testers to select the technique depending on the needs
and on the auxiliary information available to expedite sampling,
and ii) for researchers to devise new techniques.

We conclude that the tester’s objective and the application con-
text are crucial in selecting a sampling technique. Techniques yield-
ing high-confidence estimates (such as SSRS) are well suited to
check the DNN against a release criterion, or for choosing among
different DNNs. Techniques with high failure exposure ability (such
as SUPS and DeepEST) are well suited for the simultaneous DNN
accuracy assessment and improvement in iterative life cycle models.
Techniques exhibiting a good trade-off between high-confidence
estimates and high failure exposure (such as SUPS and RHC-S) are
appropriate for cost-effective assessment and retraining.

In devising new techniques, the use of auxiliary variables and
partitioning is strongly encouraged, as they have been shown to be
beneficial for both accuracy estimation and failure exposure – LSA
was the best choice for regression, while confidence (for failures
exposure) and DSA (for accuracy estimation) were the best ones
for classification.

9 DATA AVAILABILITY
All results and the artefacts for replication are available at:
https://github.com/dessertlab/DeepSample.git.
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