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Abstract

Coherent sets are time-dependent regions in the physical space of nonautonomous
flows that exhibit little mixing with their neighborhoods, robustly under small random
perturbations of the flow. They thus characterize the global long-term transport behav-
ior of the system. We propose a framework to extract such time-dependent families of
coherent sets for nonautonomous systems with an ergodic driving dynamics and (small)
Brownian noise in physical space. Our construction involves the assembly and analysis of
an operator on functions over the augmented space of the associated skew product that,
for each fixed state of the driving, propagates distributions on the corresponding physical-
space fibre according to the dynamics. This time-dependent operator has the structure of
a semigroup (it is called the Mather semigroup), and we show that a spectral analysis of
its generator allows for a trajectory-free computation of coherent families, simultaneously
for all states of the driving. Additionally, for quasi-periodically driven torus flows, we
propose a tailored Fourier discretization scheme for this generator and demonstrate our
method by means of three examples of two-dimensional flows.

1 Introduction

Understanding the transport and mixing behavior of complicated nonautonomous flows is still
an outstanding problem on the interface of dynamical systems theory and its many applications.
We will consider in this work the problem of finding time-evolving families of sets in the
state space of the dynamics that mix little with their surroundings. This way we provide a
macroscopic view on prevalent transport-related characteristics of aperiodically driven flows. In
the classical theory of deterministic dynamical systems, invariant manifolds organize the state
space in terms of transport: they form impenetrable barriers to purely advective transport.
For nonautonomous systems, this led to the concept of lobe dynamics [RKW90], of general
transport barriers such as Lagrangian Coherent Structures [HY00, SLM05, RBBV+07], and
related objects [HBV13, MB14, HHFH16, BOR18].
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1.1 Background

Small noise, metastability, and coherence. In a physically motivated modeling step,
small random perturbations can be added to the (otherwise deterministic) state evolution, while
the questions remain: What are the characteristic state-space objects governing mixing and the
typical timescales associated to them? In a natural approach to this question, subsets of the
state space can be sought that mix particularly little with their surroundings. For autonomous
systems, such sets are called almost-invariant [DJ99] or metastable [Dav82a, Dav82b, SS13,
BDH16]. Their presence implies the existence of persistent patterns, such as slowly decaying
concentration fields of quantities passively transported by the flow [LH04]. The corresponding
objects in nonautonomous systems are called coherent sets, and this term loosely refers to time-
varying sets that have little dynamical interaction with their neighborhood. The concept has
initially been developed in a finite-time setting for systems subject to noise [FSM10, Fro13,
FPG14]; it has later been generalized separately to deterministic dynamics [Fro15] and to
the periodically-forced infinite-time setting [FK17]. We note that the deterministic and noisy
notions can be linked in the vanishing-diffusion limit [Fro15, KK20, SKJ21].

Escape rates. If finite-time considerations are replaced by infinite-time ones, the notions of
metastability and coherence need to be adapted as well. Escape rates become a natural measure
of dynamical persistence of a set, and the notion has been extensively studied for autonomous
open systems [PY79, CMT98, LMD03, DY05, DT17, DWY12, FS10, BY11, BFGTM14] and
for time-homogeneous (Markovian) systems alike [CMS97, FJK13] The nonautonomous gen-
eralization of escape rates from a family of time-dependent sets was considered in [Bal14]
for deterministic flows in terms of time-varying flux. It was used to extract coherent sets
in [FK17, FKS20] for specific driving dynamics, and has appeared in the random dynamical
systems literature for open systems [AFGTV23] to measure persistence.

Practical characterization and computation: Transfer operators. In computational
approaches to metastability and coherence a functional view is prevailing. Sets are relaxed to
(signed) distributions and these in turn are evolved by transfer operators associated with the
dynamics. Metastable sets of autonomous systems can be connected to the dominant eigenspec-
trum of transfer operators [Dav82a, Dav82b, DJ99, DHFS00, BEGK02, DW05, HS06, SS13],
while finite-time coherent sets can be extracted from a singular value decomposition of associ-
ated Markov operators [FSM10, Fro13, FPG14, DJM16]. Intuitively, the eigen-(singular) values
here are commensurate with the metastability (coherence) of the associated sets: The closer
these values are to 1, the less dynamical leakage do the corresponding metastable (coherent)
sets exhibit.

The connection to escape rates arises if we consider instead of one-step quantities (such as
eigen- or singular values) of transfer operators an iterated quantity: decay rates. Naturally, for
autonomous systems the decay of a function is governed by its decomposition into eigenfunctions
of the transfer operator (assuming it has one). However, nonautonomous systems require a
generalization of this concept, which is predominantly formalized in the framework of transfer
operator cocycles and multiplicative ergodic theory, where the spectra and eigenfunctions are
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replaced by Lyapunov spectra (exponents) and associated Lyapunov filtrations (in special cases,
Oseledets splittings) [FLS10, FLQ10, GT18]. While our considerations below are intimately
related to Lyapunov spectra and Oseledets splittings, we defer rigorous elaborations on this
connection to future studies. The purpose of the present study is to highlight other aspects. A
description of linear stability in nonautonomous dynamical systems that more broadly mimics
the autonomous distinction into stable and unstable directions is given by the Sacker–Sell (or
dichotomy) spectrum [SS78] which typically contains the Lyapunov spectrum and allows for
constructions of dynamically relevant subsets such as invariant manifolds [Pöt12, PR16]. We
will make use of this spectrum within this work.

Augmented space. The same way as time-augmentation transforms a nonautonomous sys-
tem into an equivalent autonomous one, we ask whether metastability as a persistence concept
for the skew-product associated to a nonautonomous system reveals coherent sets of the latter.
This research thread was initiated in [FK17] for periodic driving and in [FKS20] for finite-time
systems, and here we consider the natural next step, where a general ergodic flow is driving a
stochastic differential equation (SDE) on physical space. We set up the transfer operator of this
skew-product system, a so-called Mather (evolution) semigroup [CL99, Section 6.2], and use its
spectrum to extract coherent sets. More precisely, we consider the generator of this semigroup,
since this has advantages over the numerical approximation of the entire semigroup—as we
elaborate below. A phenomenologically “dual” construction in [GD20] considers the evolution
semigroup of Koopman operators and extracts so-called “coherent patterns”, with the cru-
cial difference to our construction that they apply diffusion both in the driving and in physical
space. The spectral properties of evolution semigroups (also called Howland semigroup [How74]
if the parameter space is the real line representing time) and Mather semigroups in relation to
the dynamical properties of the driving system (the “base”) are comprehensively elaborated
in [CL99].

1.2 Contributions

The setting. To describe our approach and contributions more precisely, we consider a
nonautonomous SDE on the physical space M ⊂ Rd (or M = Td) with additive noise (and
reflecting boundary conditions on ∂M , unless M = Td) that is driven by some base dynamics
on a parameter space Θ,

dθt = Ψ(θt)dt,

dxt = v(θt, xt)dt+ εdwt,
(1)

i.e., xt ∈ M and θt ∈ Θ. Here, Θ is a compact smooth manifold equipped with a continuous
vector field Ψ. We assume that the unique solution to the ODE on Θ governed by Ψ is an
invertible ergodic flow ϕt : Θ → Θ and that v : Θ ×M → Rd is a smooth, divergence-free
vector field.

Ensembles of states inM , which will be generalized to be viewed as functions f ∈ L2(M ;C),
are evolved by (1) as described by the transfer operator cocycle P t

θ, acting on L
2(M ;C) equipped

with the usual norm ∥·∥2. This means, if θ0 = θ and the random physical-space initial condition

3



is f -distributed (we write x0 ∼ f), then xt ∼ P t
θf . We note that P t

θ is the solution operator
of the Fokker–Planck (or advection-diffusion) equation associated with the SDE for xt. The
transfer operators satisfy the cocycle identity P t

ϕsθ ◦ Ps
θ = P t

θ.
In general, nonautonomous transfer operators depend on an initial time s and a time du-

ration t. For a cocycle, the initial time is replaced by the parameter θ ∈ Θ describing the
state of the driving system at initial time. Thus, Θ can be viewed as a compactification of
the set R≥0 of initial times s. This compactification allows for the study of asymptotics as
t → ∞ without (numerically) emulating this limit. Such asymptotics, like the exponential de-
cay rate of ∥P t

θf∥2 for a distribution f ∈ L2(M,C), are commonly studied using multiplicative
ergodic theory. In this work, we take a different approach and study the long-term behavior
of the transfer operator cocycle by constructing an augmented generator that captures the
nonautonomous dynamics in a single time-independent operator. An analogous approach has
previously been applied to study periodically driven flows in [FK17]. The extension of this
approach to aperiodically driven flows introduces significant complexity to the analysis and
requires a different theoretical framework which we will elaborate on in the following.

Our results. Our central object of study is the linear operator Mt acting on a function space
F, which is either L2(Θ, L2(M,C)) or C(Θ, L2(M,C)), describing the evolution of some f ∈ F
fibre-wise according to P : [

Mtf
]
(θ) = P t

ϕ−tθf(ϕ
−tθ).

In Section 2.1, we introduce a set of assumptions (I)–(IV) for the transfer operators P t
θ, guaran-

teeing that (Mt)t≥0 is a strongly continuous semigroup, which is called the Mather semigroup.
The study of the Mather semigroup and its generator, in particular their spectrum and spectral
subspaces, provides insight into the long-term behavior of the transfer operator cocycle P . We
establish a spectral mapping relation in Theorem 2.6. In Theorem 3.5, we ensure that the
operators P t

θ of the Fokker–Planck equation related to (1), indeed, form a well-defined linear
cocycle satisfying assumptions (I)–(IV).

The purpose of the current work is to study in theory and by several numerical examples
how spectral objects of Mt and its generator G give rise to families of coherent sets At

θ ⊂
M , θ ∈ Θ, t ≥ 0. To measure coherence of such a family, we will consider two measures.
The first is the escape rate, which is an asymptotic quantity related to the tail behavior of
the survival probabilities P(xs ∈ As

θ, ∀s ∈ [0, t]) for t → ∞. The second is the cumulative
survival probability, which is an integral quantity of the survival probabilities, and, in particular,
includes its finite-time characteristics.

The spectral objects of Mt which we extract coherent sets from are eigenfunctions, approx-
imate eigenfunctions and spectral subspaces. We provide rigorous bounds on the measure of
coherence of the resulting family At

θ for eigenfuctions (Theorem 4.2) and approximate eigen-
functions (Proposition 4.4) and additionally derive heuristic methods that can be applied in
numerical computations.

To illustrate the central idea of how we construct coherent sets, assume that f is an eigen-
function of the Mather semigroup to a real eigenvalue λ ∈ R, i.e. P t

θf(θ) = eλtf(ϕtθ) for all
t ≥ 0 and θ ∈ Θ. Define the family of sets At

θ := {f(ϕtθ) ≥ 0} ⊂ M which is the non-negative
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support of the fibres of f . Since the transfer operator P t
θ maps f(θ) to (a multiple of) f(ϕtθ),

particles that were initialized in the set A0
θ have a high probability to lie inside At

θ after time t.
A schematic representation of this setting is found in Figure 1.

θ

f(θ)

f(ϕtθ)

ϕtθ

ϕt

P t
θ

M

MA0
θ

At
θ

Θ

Figure 1: Sketch of the temporal evolution of the coherent set At
θ = {f(ϕtθ) ≥ 0} ⊂M , where

f is an eigenfunction of the Mather semigroup with real eigenvalue. The distribution f(θ) is
mapped to (a multiple of) f(ϕtθ) under the cocycle P t

θ over the driving ϕt : Θ → Θ.

To evaluate the applicability of our methods, we numerically compute coherent sets and
measure their coherence for three example dynamics: translated gyres, oscillating gyres and
alternating shears. We restrict our considerations to the case where both the parameter space Θ
and the physical spaceM are given by tori Td. In order to extract coherent sets from respective
eigenfuncions, we discretize the Mather semigroup and its generator G by Galerkin projection
onto selected Fourier modes. Based on the infinite-dimensional matrix representation of the
augmented generator G in Proposition 5.2, we introduce an informed selection process to boost
accuracy even in our numerically challenging multidimensional setting, where functions over
Θ ×M need to be discretized. For simplicity, the driving dynamics on Θ is assumed to be a
quasi-periodic torus rotation. The extension of our methods to general domains and driving
dynamics is discussed in the outlook. For all three examples, we compute coherent sets whose
survival probabilities decay close to the theoretical bounds. An implementation of our method
in Matlab, including all examples presented below, is available under

https://github.com/RobinChemnitz/MatherCoherent

Outline. The rest of the paper is structured as follows. Section 2 formally introduces the
objects which we will work with in the later sections; namely linear cocycles, their Sacker–
Sell spectrum, and the Mather semigroup. In Section 3, we study the SDE (1) through its
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transfer operators P t
θ. The central result of this section is that the operators P t

θ form a linear
cocycle that enables the construction of the associated Mather semigroup and its generator.
In Section 4, we introduce coherent sets and derive methods to extract coherent sets from
spectral objects of the Mather semigroup and its generator. In Section 5, we represent the
augmented generator G in Fourier coordinates and construct a discretized generator using a
Galerkin approximation onto carefully selected Fourier modes. We extract coherent sets from
eigenfunctions of the discretized generator and test their coherence experimentally for three
examples in Section 6. We conclude with a discussion of our results as well as an outlook.

2 Preliminaries

2.1 Continuous-time cocycles

In this section, we introduce the notion of a linear cocycle, its Sacker–Sell spectrum, and the
Mather semigroup in a general setting.

Let Θ be a compact metric space equipped with its Borel σ-algebra and let H be a Hilbert
space. We denote the space of bounded linear operators on H by L(H). Let ϕt : Θ → Θ, where
t ∈ R, be a continuous and invertible flow on Θ. That is, (ϕt)t∈R is a one-parameter group
on Θ such that the map (θ, t) 7→ ϕtθ is continuous. Let µ be an ergodic measure of ϕ, that is
µ(A) ∈ {0, 1} for any set A ⊂ Θ that is ϕt-invariant for all t ≥ 0. Since Θ is compact at least
one such measure exists, which can be shown using the Banach–Alaoglu theorem. W.l.o.g. we
assume supp(µ) = Θ, i.e. any open set U ⊂ Θ has µ(U) > 0. There are two cases that can
occur. Either Θ ∼= S1 consists of a single periodic orbit, or the set of aperiodic points with
respect to ϕ is dense in Θ. Throughout, we assume that the set of aperiodic points is dense
in Θ.

A linear cocycle in H with driving ϕ is a map

Φ : Θ×R≥0 → L(H)

(θ, t) 7→ Φt
θ,

with the following defining cocycle properties:

(i) Φ0
θ = Id, ∀θ ∈ Θ;

(ii) Φs+t
θ = Φt

ϕsθ ◦ Φs
θ, ∀θ ∈ Θ, ∀s, t ∈ R≥0.

We introduce additional assumptions which we impose on (and verify for specific) continuous-
time cocycles Φ throughout this work.

(I) compact. The operators Φt
θ ∈ L(H) are compact ∀θ ∈ Θ, t > 0;

(II) norm-continuous in θ. For each t ≥ 0, the map θ 7→ Φt
θ ∈ L(H) is norm-continuous;

(III) strongly-continuous. For each x ∈ H, the map (θ, t) 7→ Φt
θx ∈ H is continuous.

6



(IV) exponentially bounded. There are constants K > 0 and L > 0 such that ∥Φt
θ∥ ≤ KeLt,

∀t ≥ 0.

Assumptions (I) and (II) are necessary to obtain a nice representation of the Sacker–Sell spec-
trum, cf. Proposition 2.4. Assumptions (III) and (IV) are needed to define the Mather semi-
group, cf. Section 2.3.

2.2 The Sacker–Sell spectrum

This section introduces the Sacker–Sell spectrum, also called dichotomy spectrum, of a continuous-
time linear cocycle Φ satisfying conditions (I)–(IV). For the most part, we follow [CL99, Chapter
6.1].

Definition 2.1. We say that a cocycle Φ has an exponential dichotomy at λ ∈ R if there are
constants β > 0 and C > 0 and a strongly continuous, projection-valued function Π : Θ → L(H)
with complemented subspaces

S(θ) := ran(Π(θ)), U(θ) := ker(Π(θ)),

that together satisfy the following properties for every θ ∈ Θ and t ≥ 0:

(i) Π(ϕtθ)Φt
θ = Φt

θΠ(θ);

(ii) The restriction Φt
θ|U : U(θ) → U(ϕtθ) is invertible;

(iii) ∥Φt
θ|S∥ ≤ Ce(λ−β)t,

∥∥ (Φt
θ|U)

−1
∥∥−1 ≥ C−1e(λ+β)t,

where Φt
θ|S is defined analogously to Φt

θ|U .

The letters S and U stand for the stable and unstable bundles, respectively.

Remark 2.2. One can verify that the first property is equivalent to Φt
θS(θ) ⊂ S(ϕtθ) and

Φt
θU(θ) ⊂ U(ϕtθ). Since Φt

θ|U is assumed to be invertible and thereby surjective, we can even
conclude Φt

θU(θ) = U(ϕtθ). The third property implies ∥Φt
θu∥ ≥ C−1e(λ+β)t for all u ∈ U(θ) and

t ≥ 0. If U(θ) was infinite-dimensional, this would imply that Φt
θ is not compact. Hence, for any

cocycle Φ satisfying the compactness assumption (I), that admits an exponential dichotomy,
the unstable bundle U(θ) is finite-dimensional.

Definition 2.3. The Sacker–Sell spectrum Σ(Φ) is defined as

Σ(Φ) := {λ ∈ R | Φ does not have an exponential dichotomy at λ}.

By definition, Σ(Φ) ⊂ R is a closed set. For cocycles Φ satisfying assumptions (I)–(IV), the
Sacker–Sell spectrum is of the following form. For a proof, see [CL99, Theorem 8.12].
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Proposition 2.4. The Sacker–Sell spectrum Σ(Φ) consists of a finite or countably infinite
number of closed segments

Σ(Φ) =
N⋃
k=1

[r−k , r
+
k ],

where N ∈ N0 ∪ {∞} and −∞ ≤ . . . < r−2 ≤ r+2 < r−1 ≤ r+1 .
Assume dim(H) = ∞. If N <∞, then r−N = −∞. If N = ∞, we find

lim
k→∞

r±k = −∞.

Note that r−k = r+k is allowed, such that the segment [r−k , r
+
k ] consists of a single point. In

general, the cases Σ(Φ) = ∅ and Σ(Φ) = (−∞, r+1 ] can occur. In Section 2.5 we further specify
the structure of the Sacker–Sell spectrum in the special case where Φ is autonomous, i.e. the
operators Φt

θ do not depend on θ.

Remark 2.5. In the literature, e.g. [CL99], exponential dichotomies are commonly only defined
at λ = 0. A cocycle Φ has an exponential dichotomy at λ if and only if the cocycle defined by
Ψt

θ := e−λtΦt
θ has an exponential dichotomy at 0. This type of rescaling argument is used on

multiple occasions throughout this work.

2.3 The Mather semigroup

In this section we consider the evolution of elements under a cocycle Φ for all θ ∈ Θ simulta-
neously. Let F be either the Bochner space L2(Θ,H) or C(Θ,H), where the latter is the space
of continuous functions equipped with the supremum norm ∥·∥∞. Functions in F are denoted
by bold letters. For each t ≥ 0, define the linear operator Mt : F → F by[

Mtf
]
(θ) = Φt

ϕ−tθf(ϕ
−tθ). (2)

The operators (Mt)t≥0 satisfy the semigroup property, i.e. Mt ◦ Ms = Ms+t, for all s, t ≥ 0.
The semigroup (Mt)t≥0 is called the Mather semigroup. The action of the Mather semigroup
can be interpreted as evolving f fibre-wise through the cocycle Φ. Hence, the θ-fibre of f is
mapped to the ϕtθ-fibre of Mtf . Different fibres of f do not interact.

In this section, we state our results for the Mather semigroup constructed over either
L2(Θ,H) or C(Θ,H). In Section 5, we discretize the operators Mt using a Galerkin projection
onto Fourier modes, which requires us to consider the Mather semigroup over the Hilbert space
L2(Θ,H). In Section 4, we need higher regularity than L2, for which considering C(Θ,H) is
necessary. We note that the chosen function space only plays a role in the theoretical study,
since a computational implementation of our methods is unable to distinguish continuous and
measurable functions. For the study of the Mather semigroup over different function spaces in
a more general setting, see [BV19].

By [CL99, Theorem 6.20 and Lemma 6.33], (Mt)t∈R≥0
is a strongly continuous semigroup,

given that Φ is strongly continuous and exponentially bounded, which is satisfied with assump-
tioins (III) and (IV). Hence, the Mather semigroup has a generator defined pointwise by

G = lim
t→0

Mt − Id

t
.
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The (potentially unbounded) operator G is closed and has a dense domain D(G) ⊂ F, see
e.g. [Paz12, Corollary 2.5]. We call G the augmented generator. The following theorem charac-
terizes the spectrum of Mt and its generator G in terms of the Sacker–Sell spectrum Σ(Φ). A
schematic representation of the spectra σ(G) and σ(Mt) is given in Figure 2. We note that even
when the spectrum of Mt and G is non-empty, their point spectrum may be empty, i.e. they
might not possess eigenfunctions.

Theorem 2.6. The spectra of Mt, where t > 0, and G are given by

σ(Mt) \ {0} = {eλt+ηi | λ ∈ Σ(Φ), η ∈ [0, 2π)},
σ(G) = {λ+ ηi | λ ∈ Σ(Φ), η ∈ R}.

In other words, σ(Mt) consists of annuli around the center, and σ(G) consists of bands parallel
to the imaginary axis.

Proof. The spectral mapping theorem [CL99, Theorem 6.30, Theorem 6.37] states that for all
t > 0 we find

σ(Mt) \ {0} = etσ(G). (3)

Additionally, it states that σ(Mt) is invariant under rotations around the center and that
σ(G) is invariant under translations by imaginary values. The cocycle Φ has an exponential
dichotomy at 0 if and only if σ(Mt) ∩ S1 = ∅. For F = L2(Θ,H), this follows from [LS91,
Assertion 1.4]. For F = C(Θ,H), the statement is shown in [CL99, Theorem 6.41]. By rescaling,
the cocycle Φ has an exponential dichotomy at λ ∈ R if and only if σ(Mt) ∩ eλtS1 = ∅. Since
the Sacker–Sell spectrum Σ(Φ) consists exactly of those λ ∈ R for which Φ does not have an
exponential dichotomy, we conclude

σ(Mt) \ {0} = {eλt+ηi | λ ∈ Σ(Φ), η ∈ [0, 2π)}.

The characteriziation of the spectrum of G follows directly from (3) together with the fact that
σ(G) is invariant under translations by imaginary values.

2.4 Spectral projections

Theorem 2.6 provides a direct link between the spectrum of the Mather semigroup Mt and
the Sacker–Sell spectrum Σ(Φ). In this section, we show that this connection extends to the
level of the corresponding subspaces, in the sense that the spectral projections of Mt can be
described in terms of the projection-valued functions that make up the exponential dichotomies
of Φ, cf. (4). In the following, we give a brief introduction to spectral projections.

In a finite-dimensional vector space V , each eigenvalue λ of a linear operator T : V → V has
a corresponding generalized eigenspace Eλ. These generalized eigenspaces decompose the vector
space V , and the spectrum of the restriction T |Eλ

is the set {λ}. For an infinite-dimensional
Banach space B and a closed linear operator T : B → B, a similar decomposition is obtained
using Riesz-projections [RN12], also called spectral projections. For a more recent introduction,
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Figure 2: A schematic representation of the spectrum of the generator G (left), and the spec-
trum of the Mather operator M1 (right). The unit circle S1 is marked as a dashed circle. In
this example, the Sacker–Sell spectrum consists of four intervals, one of which is a single point.

we refer to [vN22, Chapter 6]. Let Λ ⊂ σ(T ) be an isolated part of the spectrum of T . We call
Λ a spectral set. Consider a closed contour Γ ⊂ ρ(T ) around Λ with positive orientation. The
Riesz-projection PΛ : B→ B is defined by

PΛ = − 1

2πi

∮
Γ

(T − z)−1dz.

The linear operator PΛ : B → B is a bounded projection that splits the Banach space into
its range ran(PΛ) ⊂ B and its kernel ker(PΛ) ⊂ B. The subspaces ran(PΛ) and ker(PΛ)
are invariant under T and the spectrum of their restrictions is given by σ(T |ran(PΛ)) = Λ
and σ(T |ker(PΛ)) = σ(T ) \ Λ. Hence, the subspace ran(PΛ) can be considered as an infinite-
dimensional version of the generalized eigenspace of the spectral set Λ ⊂ σ(T ). We call
ran(PΛ) ⊂ B the spectral subspace of Λ.

We use Riesz-projections to describe a connection between the spectrum of the Mather
semigroup Mt and the stable/unstable bundles of the cocycle Φ. Let [r−, r+] be an isolated
segment of the Sacker–Sell spectrum Σ(Φ), and let γ− < r− ≤ r+ < γ+ be such that [γ−, γ+]∩
Σ(Φ) = [r−, r+]. By Theorem 2.6, the annulus Λt := {eλt+ηi | λ ∈ [r−, r+], η ∈ [0, 2π)} is an
isolated component of the spectrum of Mt, and the rings of radius eγ

−t and eγ
+t separate Λt

from the rest of the spectrum of Mt. Let D ⊂ C be the unit disk. The Riesz-projection onto
the spectral sets σ(Mt) ∩ eγ−tD, respectively σ(Mt) ∩ eγ+tD, are given by

Peγ−t := − 1

2πi

∮
eγ

−tS1

(Mt − z)−1dz, Peγ+t := − 1

2πi

∮
eγ

+tS1

(Mt − z)−1dz.

In particular, the projection onto the spectral set Λt is given by

PΛt = Peγ+t −Peγ−t .
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Since γ− and γ+ lie outside of Σ(Φ), the cocycle Φ has exponential dichotomies at γ− and γ+.
Therefore, there are strongly continuous projections Π−(θ), Π+(θ) that split the space H into
the respective stable and unstable bundles S±(θ) := ran(Π±(θ)) and U±(θ) := ker(Π±(θ)). Note
that S−(θ) ⊂ S+(θ) and U+(θ) ⊂ U−(θ). In particular, for each θ ∈ Θ, we obtain a splitting
H = S(θ)⊕E(θ)⊕U(θ), where S(θ) := S−(θ), E(θ) := S+(θ)∩U−(θ), and U(θ) := U+(θ). The
operator Π(θ) := Π+(θ)−Π−(θ) is a projection onto E(θ) along S(θ)⊕U(θ). Vectors s ∈ S(θ)
decay uniformly faster than the rate γ− under Φt

θ, vectors u ∈ U(θ) grow uniformly faster than
rate the γ+, and vectors x ∈ E(θ) decay/grow uniformly at rate between γ− and γ+.

The connection between the spectral projection PΛt and the dichotomy projections Π±(θ)
is of the following form: The projections Peγ±t are given by

[Peγ±tf ](θ) = Π±(θ)f(θ).

For F = L2(Θ,H), this is shown in [LS91, Assertion 1.4]. For F = C(Θ,H), the statement is
found in [CL99, Theorem 6.38]. We conclude that the projection PΛt is given by

[PΛtf ](θ) = Π(θ)f(θ).

Therefore, the spectral subspace of Λt is given by

ran(PΛt) = {f ∈ F | f(θ) ∈ E(θ), ∀θ ∈ Θ}. (4)

In the case F = L2(Θ,H), functions f ∈ F are only defined up to µ-null sets. In that case,
(4) is to be understood as an µ-a.e. statement. We conclude that the spectral subspace of an
annulus Λt is made up of functions f ∈ F whose fibres decay/grow uniformly at rate between
r− and r+.

2.5 The autonomous case

In this section we study the special case where the operators Φt
θ do not depend on θ ∈ Θ, but

only on t ≥ 0. We will encounter such cocycles in examples of Section 6. Since Φt
θ does not

depend on θ, we write Φt ∈ L(H) for the time-t-operator. By the cocycle property, (Φt)t≥0 is a
one-parameter semigroup, i.e. Φ0 = Id, and for all s, t ≥ 0 we find Φs+t = Φt ◦Φs. Since Φ is a
cocycle satifying assumptions (I)–(IV), (Φt)t≥0 is a strongly continuous, exponentially bounded
semigroup that is compact for t > 0. For the general study of one-parameter semigroups, we
refer to standard textbooks [ENB00, Paz12].

By [ENB00, Proposition V.1.15], the cocycle Φ has an exponential dichotomy at 0 if and
only if σ(Φt) ∩ S1 = ∅ for one, and therefore all, t > 0. Consequently, Φ has an exponential
dichotomy at λ ∈ R if and only if σ(Φt) ∩ eλtS1 = ∅ for one, and therefore all, t > 0. Given
that Φ has an exponential dichotomy at λ ∈ R, the corresponding projection-valued function
Π : Θ → L(H) is constant. For t > 0, the operator Φt is compact. By the Riesz–Schauder
theorem, cf. [vN22, Theorem 7.11], the spectrum σ(Φt) consists of discrete points (zk)1≤k≤N

for N ∈ N ∪ {∞} that may only accumulate at 0. Additionally, each nonzero element of the
spectrum is an eigenvalue, i.e. lies in the point spectrum. We conclude that the Sacker–Sell
spectrum of Φ is given by

Σ(Φ) =
{
log(|zk|) | 1 ≤ k ≤ N

}
.
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Hence, Σ(Φ) consists only of discrete points. Let . . . < λ2 < λ1 be the discrete values such that
Σ(Φ) = {λk | 1 ≤ k ≤ N}. For each λk there is a vector x ∈ H and a complex value zk ∈ C
with |zk| = λk such that for each t ≥ 0 we find Φtx = ezktx.

Theorem 2.6 implies that the spectrum of Mt consists of circles around the origin at radii
eλkt and the spectrum of G consists of lines parallel to the imaginary axis at real parts λk.
Furthermore, the existence of eigenfunctions is guaranteed. Let x ∈ H such that Φtx = ezktx
for all t ≥ 0. Then, the function f ∈ F that admits the constant value x, i.e. f(θ) = x for all
θ ∈ Θ, is an eigenfunction of the Mather operators Mt and of the generator G with eigenvalue
ezkt and zk, respectively.

3 The transfer-operator cocycle

We consider the evolution of particles on a compact domain advected by a nonautonomous
vector field and subject to small diffusion. The goal of our analysis is to characterize and nu-
merically compute coherent sets, which are time-dependent regions in space that only mix
slowly with their surrounding. This problem has been studied for finite-time horizons in
[DJM16, FKS20] and for periodically driven vector fields in [FK17]. In this work, we ap-
ply a similar approach to find coherent sets in vector fields that are driven by an ergodic base
dynamics.

Let Θ be a compact smooth manifold equipped with a continuous vector field Ψ. Let
M ⊂ Rd be an open, bounded domain with piecewise C4 boundary (such that M ⊂ Rd is
compact) or a torus M = Td ∼= [0, 1]d/∼. We call Θ the parameter space and M the physical
space. We consider the nonautonomous SDE

dθt = Ψ(θt)dt,

dxt = v(θt, xt)dt+ ε dwt,
(5)

where ε > 0 and wt is a d-dimensional standard Wiener process. We impose reflecting boundary
conditions, unless M = Td. We assume that Ψ is a continuous vector field on Θ that generates
an invertible flow ϕt : Θ → Θ, for which the aperiodic points are dense, and fix an ergodic
measure µ on Θ. The vector field v : Θ×M → Rd is assumed to be divergence-free and smooth
in both variables. For all θ ∈ Θ, the vector field v(θ, ·) should have no flow across the boundary
of M , i.e. v(θ, x) · n(x) = 0 for all x ∈ ∂M , where n(x) is the outer normal unit vector in x.

We study how distributions of particles evolve in time under the SDE (5) on the domain M
with reflecting boundary conditions. For a formal introduction to the Fokker–Planck equation
and its unique solvability, we refer to [Sta22, Chapter 2]. In the following, we consider particle
distributions represented by functions f ∈ L2(M,R). The temporal evolution of an initial
distribution f0 ∈ L2(M,R) under the SDE (5) with starting parameter θ0 ∈ Θ is governed by
the Fokker–Planck equation

∂tf(t, x) =
1

2
ε2∆xf(t, x)− divx

(
f(t, ·)v(ϕtθ0, ·)

)
(x), f(0, ·) = f0,

∂f(t, ·)
∂n

∣∣∣
∂M

= 0. (6)

The third term is the reflecting boundary condition, which requires that the derivative of
f(t, ·) in the direction of the outer normal unit vector on ∂M vanishes for all t > 0. We use
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the convention f(t) := f(t, ·) ∈ L2(M,R). The Fokker–Planck equation can be written as a
nonautonomous abstract Cauchy problem (NACP) on the space C(R≥0, L

2(M,R))

∂tf(t) = G(ϕtθ0)f(t),

f(0) = f0.
(7)

The generator G(θ) is the unbounded operator defined on a dense domain D(G(θ)) ⊂ L2(M,R),
and is given by [

G(θ)f
]
(x) =

1

2
ε2∆xf(x)− divx (v(θ, ·)f) (x)

=
1

2
ε2∆xf(x)−∇xf(x) · v(θ, x).

The simplification of the divergence term is possible since v was assumed to be divergence-free.
The implementation of reflecting boundary conditions is discussed below.

Definition 3.1. A classical solution to the NACP (7) is a function f ∈ C(R≥0, L
2(M,R)) ∩

C1(R>0, L
2(M,R)) with f(0) = f0 that, for all t > 0 satisfies ∂tf(t) = G(ϕtθ0)f(t) and f(t) ∈

D(G(ϕtθ0)).

The reflecting boundary condition can be encoded in the domain of the operator. We choose,
independently of θ,

D(G) = D(G(θ)) :=
{
f ∈ H2(M)

∣∣∣ ∂f
∂n

∣∣∣
∂M

= 0
}
, (8)

where H2(M) = W 2,2(M) the usual Sobolev space. In the case M = Td there is no boundary
and the domain of the generator is simply H2(M). Note that D(G) ⊂ L2(M,R) is dense. With
this choice of the domain of G, any classical solution to the NACP (7) naturally satisfies the
boundary condition, and hence, is a solution to the Fokker–Planck equation (6) and vice versa.
Therefore, we call both (6) and (7) the Fokker–Planck equation and use whichever formulation
is suitable in the situation at hand. The following theorem asserts the existence of a unique
classical solution to the Fokker–Planck equation.

Theorem 3.2. For any f0 ∈ L2(M,R) and θ0 ∈ Θ, the NACP (7) with domain D(G) = {f ∈
H2(M) | ∂f

∂n
|∂M = 0} has a unique classical solution.

Proof. See [Sta22, Theorem 3.12]. For further details on parabolic PDEs generating NACPs
we refer to the classical textbooks [Lun12, Tan17].

For a starting parameter θ ∈ Θ and a time t > 0, we define P t
θ : L

2(M,R) → L2(M,R) to be
the solution operator, also called Perron–Frobenius operator or Kolmogorov forward operator,
for time t of the Fokker–Planck equation, i.e. P t

θf0 = f(t). By convention, we set P0
θ = Id. It

is well-known, that the operators P t
θ are Markov operators, i.e.

f0 ≥ 0 ⇒ P t
θf0 ≥ 0, and

∫
M

[P t
θf0](x) dx =

∫
M

f0(x) dx.

13



Since v is divergence-free, the constant function 1 ∈ L2(M,R) is an invariant solution to the
Fokker–Planck equation, i.e. P t

θ1 = 1 for all θ ∈ Θ and t ≥ 0. Due to diffusion, P t
θf converges

to a constant function as t → ∞ for any f ∈ L2(M,R). Hence, functions that integrate to 0
converge to the 0-function under P . Proposition 3.3 below gives a quantitative formulation of
this fact.

We can extend P t
θ by linearity to act on complex-valued functions. Define the Hilbert space

H := L2(M,C).

By construction, the operators P t
θ are real, i.e. they map real-valued functions to real-valued

functions. We also define the space of functions whose integral vanishes

H0 := {f ∈ L2(M,C) |
∫
M
f(x)dx = 0}.

Since the operators P t
θ leave the integral of a function invariant, the subspace H0 is forward

invariant, i.e. P t
θH0 ⊂ H0. From now on, we restrict our attention to the subspace H0 and

study the solution operators P t
θ as operators on H0.

Proposition 3.3. There is a constant ϱ < 0 such that the transfer operators P t
θ : H0 → H0

satisfy ∥∥P t
θ

∥∥ ≤ eϱt,

for all θ ∈ Θ and t ≥ 0.

Proof. See Appendix A.

We address the regularity of the operators P t
θ in both θ and t. The Perron–Frobenius

transfer operator of a deterministic dynamic is strongly continuous with respect to the vector
field and to time, but not norm continuous. In the case of additive noise, [KLP19] showed
that P t

θ is not only norm continuous in θ, but even Fréchet-differentiable. The following lemma
characterizes the regularity of P t

θ in both θ and t simultaneously.

Lemma 3.4. Fix t ≥ 0 and θ1, θ2 ∈ Θ. Let δ > 0 such that

∥v(ϕsθ2, x)− v(ϕsθ1, x)∥e ≤ δ,

in the Euclidean norm, for all s ∈ [0, t] and x ∈ M . Then, the following bound in operator
norm holds: ∥∥P t

θ1
− P t

θ2

∥∥ ≤ δ

ε

√
t.

Proof. See Appendix A.

We verify that the solution operators P form a cocycle over ϕ satisfying assumptions (I)–
(IV). By invariance of the subspace C1, analogous assertions hold when P is considered as a
cocycle over H instead of H0.
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Theorem 3.5. The Perron–Frobenius operators P t
θ : H0 → H0 of the Fokker–Planck equa-

tion (6) form a well-defined linear cocycle over the driving ϕ that satisfies assumptions (I)–(IV)
introduced in Section 2.1.

Proof. To apply the results of [Sta22], we restrict ourselves to the time interval [0, T ] for now
and fix a starting parameter θ ∈ Θ. By [Sta22, Theorem 3.12], the solution operator to the
Fokker–Planck equation (6) is given by a two-parameter evolution family Ps,t : H → H, where
Ps,t is the solution operator from time s ≥ 0 to time t ≥ s. By definition, we find P t

θ = P0,t|H0 ,
as well as P t

ϕsθ = Ps,s+t|H0 . The evolution property of P yields

Ps+t
θ = P0,s+t|H0 = Ps,s+t|H0 ◦ P0,s|H0 = P t

ϕsθ ◦ Ps
θ .

This holds for all θ ∈ Θ and 0 ≤ s ≤ t ≤ T . Since T > 0 was arbitrary, the operators P form
a well-defined cocycle over ϕ.

We show that the cocycle P satisfies assumptions (I)–(IV) defined in Section 2.1.

(I) compact. Compactness of P t
θ for t > 0 follows from [Sta22, Theorem 3.12].

(II) norm-continuous in θ. Fix t ≥ 0 and let θn → θ ∈ Θ. The vector field v is smooth
in both variables and the flow ϕ is continuous. Hence, as θn → θ the smallest number
δn > 0 that satisfies

∥v(ϕsθn, x)− v(ϕsθ, x)∥e ≤ δn,

for all s ∈ [0, t] and x ∈ M , approaches 0. The statement of Lemma 3.4 implies that∥∥P t
θn

− P t
θ

∥∥ → 0. This shows that θ 7→ P t
θ is norm-continuous.

(III) strongly continuous. Fix f ∈ H0. Let θn → θ ∈ Θ and tn → t ≥ 0. We compute∥∥P tn
θn
f − P t

θf
∥∥ ≤

∥∥P tn
θn
f − P tn

θ f
∥∥+

∥∥P tn
θ f − P t

θf
∥∥ . (9)

The sequence tn is bounded from above by some value T > 0. As θn → θ, the smallest
number δn > 0 that satisfies

∥v(ϕsθn, x)− v(ϕsθ, x)∥e ≤ δn,

for all s ∈ [0, T ] and x ∈M , approaches 0. By Lemma 3.4, we find
∥∥P tn

θn
− P tn

θ

∥∥ → 0 as
n→ ∞. In particular, the first summand in (9) tends to 0 as n→ ∞.

Since f(s) = Ps
θf is the solution to the NACP (7) with starting parameter θ, and f(s)

is continuous in s, the second summand in (9) vanishes as well as n → ∞. Hence,
(θ, t) 7→ P t

θf is continuous.

(IV) exponentially bounded. By Proposition 3.3, we find ∥P t
θ∥ ≤ eϱt, for some ϱ < 0. Hence,

the cocycle P is exponentially bounded with K = 1 and L = ϱ.

This finishes the proof.
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Since the Perron–Frobenius cocycle P satisfies assumptions (I)–(IV), the theory of the
previous sections is applicable. Let F be either L2(Θ,H0) or C(Θ,H0). The Mather semigroup
Mt : F → F defined by (2) is a strongly continuous semigroup with closed generator G. Since
P is the strongly continuous cocycle that is the solution to the NACP (7), we apply [CL99,
Example 6.22, Proposition 6.23]1 to compute the augmented generator G:

[Gf ](θ) = G(θ)f(θ)− [df ](θ),

where d is the generator of the translation semigroup on F in the direction of Ψ. The operator
is defined on its maximal domain and given by

[df ](θ) = ∂tf(ϕ
tθ)|t=0 = ∂θf(θ) ·Ψ(θ).

We note that for F = L2(Θ,H0) the derivative is in the weak sense. The generator G is defined
on

D(G) := {f ∈ F | f ∈ D(d), f : Θ → D(G), G(·)f(·)− df ∈ F}. (10)

The key property of this domain which will be used later is the fact that for any function
f ∈ D(G) the fibres f(θ) lie in D(G). An explicit form of the augmented generator is given by

[Gf ](θ, x) =
1

2
ε2∆xf(θ, x)−∇xf(θ, x) · v(θ, x)− ∂θf(θ, x) ·Ψ(θ). (11)

By Theorem 2.6, the spectrum of G is given by

σ(G) = {λ+ ηi | λ ∈ Σ(P), η ∈ R}.

Since ∥P t
θ∥ ≤ eϱt for all θ ∈ Θ and t ≥ 0, we find Σ(P) ⊂ (−∞, ϱ]. In general, the existence of

eigenvalues of G cannot be guaranteed. The existence of so-called approximate eigenfunctions
is discussed in Section 4.2.

Remark 3.6. The space L2(Θ,H) is isomorphic to L2(Θ × M,C). The Mather operators
Mt, interpreted as operators on the space L2(Θ × M,C) are, in fact, transfer operators of
the dynamics on Θ ×M defined in (5). Hence, the Mather semigroup on L2(Θ,H0) can be
interpreted as the semigroup of transfer operators of the autonomous (skew product) SDE (5)
on Θ×M in which the noise only acts in the dimensions of M .

4 Coherent sets

Given a nonautonomous particle flow like (5), there are regions in space that experience more
mixing than other regions. Due to the nonautonomous nature of the system, these regions
are in general time-dependent. We call a time-evolving region that experiences little mixing a
coherent set. We characterize coherent sets by the property that particles that start inside a

1In [CL99], the statement is formulated for the Mather semigroup on C(Θ,H0). However, the proof is
directly transferable to L2(Θ,H0).
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coherent set stay inside the coherent set for a long time. Given a starting parameter θ ∈ Θ,
consider a family of sets A•

θ := (At
θ)t≥0, with A

t
θ ⊂M . We say that A•

θ is coherent if the survival
probability

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t])

decays slowly, or alternatively we call A•
θ a coherent set. The initial condition x0 ∼ A0

θ asserts
that x0 is uniformly distributed on the set A0

θ. This is not a rigorous definition of a coherent
set until we have made more precise what slow decay means. To this end, we introduce two
quantities that quantify the coherence of A•

θ. The first notion is the escape rate2

E(A•
θ) := lim inf

t→∞

1

t
log
Ä
Px0∼A0

θ
(xs ∈ As

θ, ∀s ∈ [0, t])
ä
, (12)

which considers the asymptotic decay rate of the survival probability. By definition, the escape
rate is non-positive. An escape rate close to 0 corresponds to a highly coherent set. The escape
rate E(A•

θ) has been studied for periodically driven systems in [FK17]. Note that the escape
rate does not guarantee coherence on any finite time horizon. It might happen that the survival
probability quickly approaches 0, before transitioning to an exponential decay at rate E(A•

θ).
For this reason, we introduce another quantity of coherence, the cumulative survival probability

C(A•
θ) :=

∫ ∞

0

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) dt.

The goal of this section is to elaborate how coherent sets A•
θ with an escape rate E(A•

θ)
close to 0 or a high cumulative survival probability C(A•

θ) can be extracted from spectral
objects associated with Mt or the cocycle P . Ultimately, we want to compute coherent sets A•

θ

for every starting parameter θ ∈ Θ simultaneously, since Mt allows to simultaneously evolve
functions fθ by all P t

θ, for all θ ∈ Θ, respectively. Hence, we are looking for a family of sets
A•

• := (At
θ)θ∈Θ,t≥0 such that A•

θ := (At
θ)t≥0 is coherent for each θ ∈ Θ. In some cases it is

possible to choose the sets At
θ such that At

θ = A0
ϕtθ for each θ ∈ Θ and t ≥ 0. Then, the family

A•
• is fully characterized by the sets A0

θ for θ ∈ Θ. If this is the case, we omit the superscript
0 and simply write A• = (Aθ)θ∈Θ. Such a representation is particularly nice in practice, since
once the sets Aθ are determined for all θ ∈ Θ, one obtains a coherent set for any starting
parameter θ.

In [FK17] it was shown that for fixed θ ∈ Θ, coherent sets can be extracted from functions
f ∈ H0 that decay slowly under P . This construction requires the point-wise evaluation
of P t

θf in x. Since we work with L2-functions, point-wise evaluations are a priori not well-
defined. However, we know that P t

θf ∈ D(G) ⊂ H2(M) such that there is a unique continuous
representative of P t

θf . We state an even stronger regularity result. To apply a suited Sobolev
embedding, the dimension of the physical space M should not exceed 3.

Proposition 4.1. Assume that the dimension d of M is at most 3. Let f0 ∈ D(G) and let
θ ∈ Θ. Then f : R≥0 → H0, defined by f(t) = [P t

θf0], is represented by a continuous function
f ∈ C(R≥0 ×M,C).

2In the literature, the escape rate is sometimes defined using the lim sup. Hence, our definition corresponds
to the “pessimistic” escape rate.
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Proof. See [FKS20, Theorem A.4]. The assumption d ≤ 3 is needed such that the Sobolev
embeddingW 2,2(M) ⊂ Cα(M) holds for α = 2− d

2
, where Cα(M) is the usual Hölder space.

The following theorem is almost identical to [FK17, Theorem 19] with the difference that
the latter result requires slightly stronger assumptions.

Theorem 4.2. Let f0 ∈ D(G) be a real function with
∫
M
f0(x)dx = 0 and let θ ∈ Θ. Define

the sets
At

θ := {x ∈M | [P t
θf0](x) ≥ 0}. (13)

Then, for any t ≥ 0, we find

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) ≥ 1

2
∥f0∥−1

∞
∣∣A0

θ

∣∣−1 ∥∥P t
θf0

∥∥
1
.

Proof. See Appendix A.

Recall that D(G) ⊂ H2(M), cf. (8), such that ∥f0∥∞ is finite. Note that the theorem
above bounds the decay of the survival probability by the L1-norm of P t

θf . Since we work on
H0 ⊂ L2(M,C), we need an additional estimation to express the decay in terms of the L2-norm
of P t

θf . Bounding the L1-norm ∥f∥1 from below by ∥f∥−1
∞ ∥f∥22 via Hölder, we obtain

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) ≥ 1

2
∥f∥−2

∞
∣∣A0

θ

∣∣−1 ∥∥P t
θf
∥∥2

2
. (14)

The bound on the the L1-norm in terms of the ∞-norm and the square of the L2-norm is in
general rather crude. Hence, (14) is expected to underestimate the survival probability of A•

θ.
In Section 6, we compute and evaluate coherent sets for some examples. Discretizing the system
introduces errors that decrease the coherence of the computed coherent sets. The results of
Section 6 indicate that the discretization error and the crude bound on the L1-norm seem to
cancel, in the sense that the simulated survival probabilities decay similarly to the right-hand
side of (14).

Remark 4.3. Theorem 4.2 establishes a connection between the decay rate of a function
f ∈ C(M,R) under P and the escape rate of the corresponding coherent set A•

θ defined in (13).
We find

E(A•
θ) ≥ lim inf

t→∞

1

t
log

Å
1

2
∥f∥−1

∞
∣∣A0

θ

∣∣−1 ∥∥P t
θf
∥∥
1

ã
= lim inf

t→∞

1

t
log

(∥∥P t
θf
∥∥
1

)
.

This quantity is called the Lyapunov exponent (in the L1-norm) of f under P . The study of
Lyapunov exponents to characterize coherent sets has been pioneered in [FLS10].
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4.1 Coherent sets from eigenfunctions

In the previous works [FK17, FKS20], coherent sets were extracted via Theorem 4.2 from eigen-
functions of an augmented generator, as these provided functions that decayed slowly. In our
setting, the augmented generator G and the Mather operators Mt do in general not possess
eigenfunctions. However, in Section 5 we construct finite-dimensional approximations of the
linear operator G and the Mather operators Mt. Naturally, these matrices admit eigenfunc-
tions. In the following paragraph we assume the existence of an eigenfunction f of the Mather
semigroup and its generator over C(Θ,H0) and show how to construct coherent sets from f .
Hence, this subsection should be understood as the derivation of a heuristic method that can
be applied to eigenfunctions of the discrete generator.

Assume there was an eigenfunction f ∈ C(Θ,H0) of the augmented generator G with
eigenvalue z = λ + ηi ∈ C. Consequently, f is an eigenfunction of Mt with eigenvalue ezt for
every t ≥ 0. In particular, we find

P t
θf(θ) = eztf(ϕtθ), (15)

for all θ ∈ Θ and t ≥ 0. By Theorem 3.2, we find fR(θ) ∈ D(G) for all θ ∈ Θ. Let fR := Re(f)
be the real part of f . Since P is a real cocycle, (15) implies

P t
θf

R(θ) = eλtRe(eηtif(ϕtθ)).

We define a coherent family A•
• = (At

θ)θ∈Θ,t≥0 by

At
θ := {x ∈M | Re(eηtif(ϕtθ, x)) ≥ 0}. (16)

The estimate (14) yields

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) ≥ 1

2
e2λt

∥∥fR(θ)∥∥−2

∞

∣∣A0
θ

∣∣−1 ∥∥Re(eηtif(ϕtθ))
∥∥2

2
. (17)

Assuming that the real part of the fibres eηtif(ϕtθ) is uniformly bounded from below, we con-
clude that the survival probability of A•

θ decays at most at rate e2λt, up to constants. Hence,
we expect

E(A•
θ) ≥ 2λ, C(A•

θ) ≳
∫ ∞

0

e2λtdt = − 1

2λ
. (18)

The results of Section 6 show that − 1
2λ

seems to be a good estimate of the cumulative survival
probability that we computed in numerical examples.

Using (16) to define a coherent set enables us to derive theoretical bounds on the survival
probability, but the resulting coherent sets might not provide much insight into the dynamical
properties of the underlying vector field. The definition simply divides the space M into two
regions of roughly the same size. Considering the function −f shows that the complement Bt

θ :=
M \At

θ satisfies the same bounds on the survival probability. Hence, the method (16) is unable
to identify multiple smaller coherent regions. It was, however, extended in [FKS20, Proposition
4.6] to use linear combinations of multiple eigenfunctions to obtain multiple coherent sets from
them. Here, in Section 5.3 we propose alternative methods to identify coherent sets from the
fibres of an eigenfunction f .
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4.2 Coherent sets from approximate eigenfunctions

In general, the augmented generator G does not possess eigenfunctions. However, the existence
of approximate eigenfunctions is guaranteed. While less applicable in practice, we show how
approximate eigenfunctions can be utilized to construct coherent sets. We briefly introduce the
approximate spectrum of an operator.

Let B be a Banach space and let T : D(T ) → B be a closed operator, where D(T ) ⊂ B is
the domain of T . The approximate spectrum of T is defined by

σap(T ) = {z ∈ C | ∃xn ∈ D(T ) with ∥xn∥ = 1 : ∥(T − z)xn∥ → 0, as n→ ∞}.

We call the sequence (xn)n∈N, and any element of it, an approximate eigenfunction to the
approximate eigenvalue z. We find ∂σ(T ) ⊂ σap(T ) ⊂ σ(T ), where ∂σ(T ) is the boundary of
the spectrum of T . For a proof of this fact, see [ENB00, Chapter IV, Proposition 1.10].

Recall Theorem 2.6, which characterized the spectrum of the Mather operators Mt and
augmented generator G. In particular, the spectrum of G is given by

σ(G) = {λ+ ηi | λ ∈ Σ(P), η ∈ R}. (19)

As mentioned at the end of Section 3, the Sacker–Sell spectrum Σ(P) is contained in (−∞, ϱ] for
the constant ϱ < 0 from Proposition 3.3. Assume that Σ(P) ̸= ∅, and let λ < 0 be its maximum
value. By (19), we find λ ∈ ∂σ(G), and, therefore, λ ∈ σap(G). This holds independently of
whether we consider the Mather semigroup and its generator on L2(Θ,H0) or C(Θ,H0).

Since G is real and λ ∈ R, we find

∥(G− λ)fn∥∞ ≥ max{∥Re((G− λ)fn)∥∞ , ∥Im((G− λ)fn)∥∞}
= max{

∥∥(G− λ)fRn
∥∥
∞ ,

∥∥(G− λ)f In
∥∥
∞},

where fRn and f In are the real and imaginary parts of fn. Note that both fRn and f In are real func-
tions with ∥fn∥∞ ≤

∥∥fRn ∥∥∞+
∥∥f In∥∥∞. Hence, w.l.o.g. we can choose an approximate eigenfunction

(fn)n∈N such that fn ∈ C(Θ, L2(M,R)) are real functions. In particular, since fn ∈ D(G), we
have that fn(θ) ∈ D(G) for every θ ∈ Θ, cf. (10).

Proposition 4.4. For any T > 0 and δ > 0, there is an n ∈ N such that the family of sets
defined by

At
θ := {x ∈M | [P t

θfn(θ)](x) ≥ 0} (20)

satisfies the following estimate for all θ ∈ Θ and t ∈ [0, T ]:

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) ≥ 1

2
e2λt ∥fn(θ)∥−2

∞
∣∣A0

θ

∣∣−1 ( ∥∥fn(ϕtθ)
∥∥
2
− δ

)2
. (21)

Proof. The unbounded, closed operator (G−λ) generates the strongly continuous semigroup e−λMt.
Since fn ∈ D(G− λ), we apply [Paz12, Theorem 2.4] to compute

e−λtMtfn − fn =

∫ t

0

Ms(G− λ)fn ds.
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We use the fact ∥Ms∥ ≤ eϱs ≤ 1, by Proposition 3.3, to obtain∥∥e−λtMtfn − fn
∥∥
∞ ≤ t ∥(G− λ)fn∥∞ .

As n → ∞, the right-hand side approaches 0. For fixed T > 0 and δ > 0 there is an n ∈ N
such that ∥∥e−λtP t

θfn(θ)− fn(ϕ
tθ)

∥∥
2
≤ δ

for all θ ∈ Θ and t ∈ [0, T ]. Rearranging the inequality yields∥∥P t
θfn(θ)

∥∥
2
≥ eλt

( ∥∥fn(ϕtθ)
∥∥
2
− δ

)
.

Now, the statement follows from (14).

Note that the bound (21) bound is almost identical to (17), the bound on the survival
probability of a coherent set extracted from an eigenfunction of G, up the error term δ.

In conclusion, a coherent sets A•
θ extracted from an approximate eigenfunction is expected

to have a similar survival probability as a coherent set extracted from an eigenfunction of G.
However, the bounds on the survival probability of A•

θ only hold up to a finite time-horizon T .
Hence, we cannot make any statement about the asymptotic decay rate E(A•

θ), but we expect
the cumulative survival probability to be of order− 1

2λ
. Another drawback of extracting coherent

sets from an approximate eigenfunction versus from an eigenfunction is that the definition of
A•

θ in (20) requires knowledge of the cocycle evaluations P t
θfn(θ), unlike the definition (16) of

a coherent set extracted from an eigenfunction f , which only required knowledge of the fibres
of f .

4.3 Coherent sets from spectral projections

In the previous section we studied coherent sets extracted from approximate eigenfunctions of
the augmented generator G. However, we were only able to derive bounds on the decay rate
up to a finite time horizon [0, T ]. In this section we show how coherent sets can be extracted
from spectral subspaces, given the existence of exponential dichotomies. The advantage of this
approach is that we are able to obtain a uniform decay rate for t → ∞. In particular, we are
able to derive a bound on the asymptotic escape rate E(A•

θ).
By Proposition 2.4 the Sacker–Sell spectrum Σ(P) consists of the union of closed segments

[r−k , r
+
k ] ⊂ R for 1 ≤ k ≤ N and N ∈ N0 ∪ {∞}. Assume that Σ(P) ̸= ∅ and that r−1 > −∞,

i.e. the interval [r−1 , r
+
1 ] is an isolated segment of Σ(P). Fix λ < r−1 close to r−1 . There is an

exponential dichotomy at λ that splits the space H0 into a stable bundle S(θ) and an unstable
bundle U(θ). There is a constants β > 0 and C > 0 such that∥∥P t

θf
∥∥
2
≥ C−1e(λ+β)t ∥f∥2 ,

for all θ ∈ Θ, t ≥ 0 and f ∈ U(θ). The next lemma shows that w.l.o.g. we can choose f ∈ U(θ)
to be a real function.

Lemma 4.5. If f ∈ U(θ), then both fR := Re(f) and f I := Im(f) lie in U(θ) as well.
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Proof. See Appendix A.

Let f ∈ U(θ) be a real function with ∥f∥2 = 1. By the definition of an exponential
dichotomy, we find f ∈ ran(P t

ϕ−tθ) for some t > 0, and thereby, f ∈ D(G). Define a coherent
set by

At
θ := {x ∈M | [P t

θf ](x) > 0}.
By (14), the survival probability of this coherent set satisfies

Px0∼A0
θ
(xs ∈ As

θ, ∀s ∈ [0, t]) ≥ 1

2
∥f∥−2

∞
∣∣A0

θ

∣∣−1
C−1e(λ+β)t.

This bound provides an estimate on the escape rate defined in (12):

E(A•
θ) ≥ λ+ β.

Since λ < r−1 was arbitrary, we find coherent sets with escape rate arbitrarily close to r−1 .
In Theorem 2.6, it was shown that for any t ≥ 0 the spectrum of the Mather operators

Mt contains the isolated annulus Λt := {etλ+ηi | λ ∈ [r−1 , r
+
1 ], η ∈ [0, 2π)}. By the contents of

Section 2.4, in particular (4), the range of the Riesz-projection PΛt consists of functions with
fibres in U(θ). Hence, given a function f ∈ ran(PΛt), the nonzero fibres f(θ) ∈ U(θ) induce
coherent sets with escape rate at least λ+β (note that due to the negative sign a larger escape
rate corresponds to higher coherence).

5 Numerical implementation

5.1 The augmented generator in Fourier space

The theoretical results of the previous two section were valid for domains M that were either
open, bounded subsets of Rd with piecewise C4 boundary, or a torus Td. In the following, to
enable the use of Fourier series, we consider the case Θ = Tdd and M = Tdp . The dimensions
dd and dp stand for the driving dimension and the physical dimension, respectively. For the
ergodic driving dynamic we choose a quasi-periodic rotation on the torus, i.e.

∂tθt = Ψ(θt) = α,

where α ∈ Rdd is a constant vector whose entries are rationally independent. We derive a
finite-dimensional approximation of the Mather semigroup Mt and its generator G.

Note that the space L2(Θ,H) is isomorphic to L2(Θ ×M,C) = L2(Tdd × Tdp ,C) which is
a Hilbert space with inner product

⟨f ,g⟩ =
∫
Tdd

∫
Tdp

f(θ, x)g(θ, x) dx dθ.

An orthonormal basis, also called Hilbert basis, is given by the Fourier modes

Fm,n(θ, x) := e2πi(θ·m+x·n),
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for m ∈ Zdd and n ∈ Zdp . We represent functions f ∈ L2(Tdd × Tdp ,C) with respect to this
basis, i.e.

f =
∑
m,n

f̂(m,n)Fm,n,

where the summation is over all (m,n) ∈ Zdd × Zdp . The Fourier coefficients f̂(m,n) ∈ C can
be computed by

f̂(m,n) = ⟨Fm,n, f⟩ =
∫
Tdd

∫
Tdp

e−2πi(θ·m+x·n)f(θ, x) dx dθ.

Analogously, we can represent the vector field v : Tdd×Tdp → Rdp in Fourier coordinates. Each
of the dp components vj has its individual Fourier coefficients “vj(m,n). We write v̂(m,n) ∈ Cdp

for the vector of Fourier coefficients.

Lemma 5.1. Let v : Tdd × Tdp → Rdp be a divergence-free vector field. For any (m,n) ∈
Zdd × Zdp, we find

v̂(m,n) = v̂(−m,−n),
n · v̂(m,n) = 0.

Proof. See Appendix A.

Similar to how we write functions f ∈ L2(Tdd ×Tdp ,C) in terms of their Fourier coefficients,
we can be represent the augmented generator G as an infinite-dimensional matrix with rows
and columns indexed by Zdd ×Zdp , respectively. Recall that we defined the Mather semigroup
(Mt)t≥0 and its generator G over functions f with fibres f(θ) in the Hilbert space H0 of L2-
functions that integrate to 0. This corresponds to only considering those Fourier modes Fm,n

for which n ∈ Zdp is nonzero. To avoid additional case distinctions, in this section we include
functions that do not integrate to 0. We discuss this choice further in Remark 5.3.

Proposition 5.2. Let f ∈ D(G). We find”Gf(m,n) =
∑
m′,n′

Γ(m,n ; m′, n′)f̂(m′, n′).

The infinite-dimensional matrix Γ ∈ C(Zdd×Zdp )×(Zdd×Zdp ) is given by

Γ(m,n ; m′, n′) :=

®
1
2
ε2(2π ∥n∥e)2 − 2πi

(
m · α + n · v̂(0, 0)

)
, (m,n) = (m′, n′)

−2πi(n · v̂(m−m′, n− n′)), (m,n) ̸= (m′, n′).
(22)

Proof. Let f ∈ D(G). Since the operator G is closed, we find

Gf =
∑
m′,n′

f̂(m′, n′)GFm′,n′ .
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We conclude ”Gf(m,n) =
∑
m′,n′

◊�GFm′,n′(m,n)f̂(m′, n′).

In the following we show ◊�GFm′,n′(m,n) = Γ(m,n ; m′, n′), which will complete the proof. Using
(11), we explicitly compute GFm′,n′ .

GFm′,n′(θ, x) =
1

2
ε2∆xFm′,n′(θ, x)−∇xFm′,n′(θ, x) · v(θ, x)− ∂θFm′,n′(θ, x) ·Ψ(θ)

=

Å
1

2
ε2(2π ∥n′∥e)

2 − 2πi(n′ · v(θ, x))− 2πi(m′ · α)
ã
Fm′,n′(θ, x).

From this formula, we can extract the Fourier coefficients, which are made up of three sum-
mands ◊�GFm′,n′(m,n) = ⟨Fm,n,GFm′,n′⟩

=
1

2
ε2(2π ∥n′∥e)

2⟨Fm,n, Fm′,n′⟩

− 2πi(m′ · α)⟨Fm,n, Fm′,n′⟩
− 2πi⟨Fm,n, (n

′ · v)Fm′,n′⟩.

(23)

Since the Fourier functions form an orthonormal basis, ⟨Fm,n, Fm′,n′⟩ is 1 if (m,n) = (m′, n′)
and 0 otherwise. Therefore, the first two summands are 0 unless (m,n) = (m′, n′). In that
case, we can replace m′ and n′ by m and n. We compute the third summand

−2πi⟨Fm,n, (n
′ · v)Fm′,n′⟩ = −2πi⟨Fm−m′,n−n′ , n′ · v⟩

= −2πi(n′ · ⟨Fm−m′,n−n′ , v⟩)
= −2πi(n′ · v̂(m−m′, n− n′))

= −2πi(n · v̂(m−m′, n− n′)),

(24)

where in the last line we used Lemma 5.1. Inserting (24) into (23) shows that ◊�GFm′,n′(m,n) =
Γ(m,n ; m′, n′) as defined in (22).

Remark 5.3. An off-diagonal entry of Γ(m,n ; m′, n′) is nonzero if and only if n · v̂(m−m′, n−
n′) ̸= 0. By Lemma 5.1, this is equivalent to n′ · v̂(m−m′, n− n′) ̸= 0. Hence, if either n = 0
or n′ = 0, then Γ(m,n ; m′, n′) = 0. This shows that Fourier modes Fm,n with n = 0 do not
“communicate” with other Fourier modes under Γ. This justifies including these Fourier modes
in Γ, even though in Section 3 the augmented generator G was constructed over functions f
whose fibres f(θ) lie in H0. In particular, any Fourier mode Fm,0 is an eigenfunction of G with
purely imaginary eigenvalue (essentially owing to the constant function in physical space being
invariant under P t

θ and Fourier modes on the base being eigenfunctions of the ergodic torus
rotation). We include these Fourier modes to visualize the spectral gap between ϱ and 0 in the
examples of Section 6.
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5.2 The discrete augmented generator

We discretize the generator G by a Galerkin projection onto a chosen set of Fourier modes,
e.g. those with m,n close to 0. Let Sd ⊂ Zdd and Sp ⊂ Zdp be a selection of Fourier modes in
the driving space and in physical space, respectively. To have the discrete operator mapping
real-valued functions to real-valued ones again, Lemma 5.1 suggests to choose the sets Sd and
Sp such that m ∈ Sd if and only if −m ∈ Sd and n ∈ Sp if and only if −n ∈ Sp. We project
onto the Fourier modes given by

S := Sd × Sp ⊂ Zdd × Zdp .

A natural choice for Sd, respective Sp, are all modes in Zdd , respective Zdp , that are within
a given radius of the origin, with respect to either the Euclidean or ℓ∞-norm. In two of the
examples of Section 6, we fix constants K ∈ N and r > 0 and define

Sd := {m ∈ Zdd | ∥m∥∞ ≤ K}, Sp := {n ∈ Zdp | ∥n∥e ≤ r}. (25)

Given a set S ⊂ Zdd × Zdp , we obtain the discrete generator ΓS ∈ CS×S as the restriction
of the matrix Γ from Proposition 5.2 to the Fourier modes in S. We can write ΓS as the sum
of two diagonal and a skew-Hermitian matrix

ΓS = D +R + A. (26)

The matrices D,R ∈ CS×S are diagonal and given by

D = diag

Å
1

2
ε2(2π ∥n∥e)

2 | (m,n) ∈ S

ã
,

R = diag (−2πi(m · α) | (m,n) ∈ S) .

Note that D is real while R is purely imaginary. The matrix A ∈ CS×S is given by

A(m,n ; m′, n′) = −2πi(n · v̂(m−m′, n− n′)). (27)

Using Lemma 5.1, one can verify thatA is skew-hermitian, i.e., A(m′, n′;m,n) = −A(m,n ; m′, n′).
The matrix ΓS ∈ CS×S is the Galerkin projection onto the subspace

VS := span{Fm,n | (m,n) ∈ S}.

The orthogonal projection ΠS : L2(Tdd×Tdp ,C) → L2(Tdd×Tdp ,C) onto the subspace S can be
expressed as a concatenation ΠS = P ∗

SPS. Define the linear operator PS : L2(Tdd×Tdp ,C) → CS

by
(PSf)m,n = f̂(m,n),

where (m,n) ∈ S. Let f̂S ∈ CS. The adjoint P ∗
S : CS → L2(Tdd × Tdp ,C) is given by

P ∗
S f̂S =

∑
(m,n)∈S

f̂S(m,n)Fm,n.
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Note that P ∗
SPS is the identity on CS. The matrix ΓS is a Galerkin projection of augmented

generator G in the sense that
ΓS = PSGP

∗
S .

For any t ≥ 0 we obtain a finite-dimensional approximation of the Mather operator Mt given
by exp(tΓS). In general, projection and exponentiation will not commute, hence PSM

tP ∗
S ̸=

exp(tΓS).

5.3 Coherent sets

Let ΓS ∈ CS×S be a finite-dimensional approximation of the augmented generator G, like
introduced in the previous section. Let f̂S ∈ CS be an eigenfunction of ΓS with eigenvalue
z = λ + ηi ∈ C. Consequently, f̂S is an eigenfunction of the discrete Mather operator
exp(tΓS) with eigenvalue etz. Recall the decomposition ΓS = D + R + A from (26). Since
A + R is skew-Hermitian and D is diagonal with real, non-positive entries, all eigenvalues
of ΓS have non-positive real part. The unit vector e(0,0) ∈ CS corresponding to the Fourier
mode F0,0 is in the kernel of ΓS. In fact, all unit vector e(m,0) ∈ CS are eigenfunctions of ΓS

with purely imaginary eigenvalues. A finite-dimensional vector f̂S ∈ CS represents a function
f := P ∗

S f̂S ∈ L2(Tdd × Tdp ,C). For the computation of coherent sets, we are only interested in
those functions f whose fibres f(θ) integrate to 0. Hence, we only consider eigenfunctions f̂S of
ΓS to eigenvalues with negative real part λ < 0. We extract coherent sets from f as if it was
an eigenfunction of G.

In Section 4, we presented methods to compute coherent sets from from functions f that are
either (approximate) eigenfunction of the generator G or that lie in the spectral set correspond-
ing to an annulus in σ(Mt) with large radius. In the finite-dimensional case, any approximate
eigenvalue is an eigenvalue and every spectral set contains at least one eigenfunction. Hence,
heuristically, all three methods of Section 4 apply to the function f = P ∗

S f̂S. In all three meth-
ods, we defined a coherent set A•

θ as the positive support of Re(P t
θf(θ)). We treat f as if it

was an eigenfunction of G and assume that P t
θf(θ) = eztif(ϕtθ). Hence, we define coherent sets

as the positive level sets Re(eηtif(ϕtθ)). In practice, other methods to extract almost-invariant
sets from an eigenfunction have also proven successful [Fro05]. In the numerical example of
Section 6 we implement three different methods to extract coherent sets from an eigenfunction
f of the generator G.

(CS1) At
θ := {x ∈M | Re(eηtif(ϕtθ, x)) > 0}.

(CS2) Fix q > 0. Define At
θ := {x ∈M | ∥Re(eηtif(ϕtθ))∥−1

1 |Re(eηtif(ϕtθ, x))| > q}.

(CS3) Fix q > 0. Define At
θ := {x ∈M | ∥f(ϕtθ)∥−1

1 |f(ϕtθ, x)| > q}.

Note that due to the normalization applied, the choice q = 1 is natural in (CS2) and (CS3).
The first method is the one described in (16). The second method is almost identical, but
instead of identifying the positive support of Re(eηtif(ϕtθ, x)) as part of the coherent set, we
choose the regions in which eηtif(ϕtθ, x) has a large absolute real part. Thus, the resulting
sets At

θ consist of multiple smaller regions, rather than one large region. Additionally, unlike
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for the first method, the complement Bt
θ = M \ At

θ is in general not coherent. The third
method is similar to the second, but instead of the absolute real part, the absolute value in C
is considered. Note that the factor eηti is omitted, as it does not influence the absolute value.
The third method is special in the sense that the resulting coherent sets satisfy At

θ = A0
ϕtθ.

Hence, the resulting coherent set is of the form A• = (Aθ)θ∈Θ with

Aθ := {x ∈M | ∥f(θ)∥−1
1 |f(θ, x)| > q}.

The third method is to be used with caution. It may happen that |f(θ, x)| = 1 for all θ ∈ Θ
and x ∈M such that Aθ is either empty or the entire set M , thus rendering the method futile.
In Section 6, we present two examples for which the third method has proven successful.

Given an eigenfunction f̂S of ΓS and having chosen one of the three methods described above,
we can determine whether a given point x ∈ M lies inside or outside the set At

θ by evaluating
f(ϕtθ) in the point x. For fixed starting parameter θ ∈ Θ, this allows us to estimate the survival
probability of the coherent set A•

θ experimentally. At time t = 0, we initialize a large number
of particles that are uniformly distributed in M . As time progresses, the parameter θ evolves
according to Ψ, while the particles evolve according to the nonautonomous vector field v. In
each time frame t > 0 of the simulation, we evaluate f(ϕtθ) in the positions of each of the
particles and determine whether they lie inside or outside of At

θ. We obtain an estimate of
the survival probability of A•

θ up to time t by computing the fraction of particles that have
remained inside the coherent set up to time t divided by the number of particles that started
inside A0

θ.

5.4 Computational aspects

In this section, we discuss aspects such as how to use sparsity of ΓS to shorten the computational
time it takes to construct ΓS and to compute its eigenvalues with largest real part.

Recall the representation ΓS = D + R + A as the sum of two diagonal, and one skew-
Hermitian matrix, cf. (26)–(27). The matrix D is diagonal with real, nonpositive entries; R is
diagonal with purely imaginary entries; and A is skew-Hermitian. Therefore, the off-diagonal
entries of ΓS are skew-Hermitian, i.e. they satisfy ΓS(m,n ; m′, n′) = ΓS(m′, n′ ; m,n) for all
(m,n) ̸= (m′, n′) ∈ S. Hence, it suffices to compute the upper-right half of ΓS. From (27), it
follows that an off-diagonal entry ΓS(m,n ; m′, n′) is nonzero if and only if

n′ · v̂(m−m′, n− n′) = n · v̂(m−m′, n− n′) ̸= 0.

The fact that n can be exchanged for n′ follows from Lemma 5.1. If v only has a small number
of nonzero Fourier modes, then ΓS only has a small number of entries in each column, which
leads to a high degree of sparsity. The vector field v is assumed to be smooth, and smooth
functions are well-approximated by a small number of Fourier modes. Hence, we set v̂(m,n) = 0
whenever |v̂i(m,n)| is below a given threshold err > 0 for all 1 ≤ i ≤ dp. In the examples
of the next section, we used a threshold of err = 10−4. Using this threshold, no vector field
considered in Section 6 had more than 150 nonzero Fourier modes.

We compute the eigenvalues of ΓS using the MATLAB function eigs, which approximates
the k smallest magnitude eigenvalues of a given matrix. This function is based on matrix inverse
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iterations which requires a shift if ΓS is singular. Hence, we perform an eigenvalue shift by 1.
We use eigs to compute the k smallest magnitude eigenvalues of ΓS − Id and afterwards add 1
to all computed eigenvalues. This effectively computes the k eigenvalues of ΓS that are closest
to 1 ∈ C. The shift 1 is chosen if the spectral gap of Γ is unknown. To obtain eigenvalues with
more diverse real parts, the heuristic of taking the upper bound |ϱ| on the spectral gap from
Proposition 3.3 suggests itself. Note that |ϱ| ∝ ε2

2
.

Using these methods, we are able to construct ΓS and compute 100 eigenvalues around the
origin on a conventional computer within minutes for sets S with more than 30.000 entries.

6 Examples

We apply the numerical methods described in the previous section to three different types of
nonautonomous dynamics. In all of the following examples, we consider Θ = T2 and M = T2.
Fix α ∈ R2 that is rationally independent. Throughout, the dynamic on Θ is given by the
quasi-periodic torus rotation by α.

The first two examples consist of a 2×2 grid of counter-rotating gyres that is translated in
space by an offset that depends on θ. The third example consists of two shears of oscillating
strength. The first example is special in the sense that it is dynamically equivalent to an
autonomous dynamics. Therefore, we are able to derive the existence of exponential dichotomies
and of eigenfunctions of the augmented generator G. For the second example, the existence
of eigenfunctions of G is no longer given. However, our methods are still able to determine
coherent sets that have slowly decaying survival probabilities. In the third example, there are
no clear coherent structures apparent. However, using our methods we are able to determine
coherent sets whose survival probabilities are close to the theoretical bound.

6.1 Translated gyres

Consider the autonomous vector field on M = T2,

vaut(x) =

Å
cos(2πx1) sin(2πx2)
− sin(2πx1) cos(2πx2)

ã
. (28)

This vector field corresponds to the stream function ψ(x) = 1
2π

cos(2πx1) cos(2πx2), and yields
to a 2×2 grid of rotating gyres, cf. Figure 3. We construct a nonautonomous dynamics by
translating vaut in space by θ ∈ T2. Define

v(θ, x) := vaut(x+ θ). (29)

The dynamics on the parameter space Θ = T2 is given by a quasi-periodic torus rotation
by α ∈ R2.

Conjugacy to an autonomous flow. We claim that the vector field v is dynamically equiv-
alent to the vector field vaut with a constant drift in direction α, i.e.

veff(x) = vaut(x) + α.
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Figure 3: Left: Stream function ψ(x) = 1
2π

cos(2πx1) cos(2πx2). Right: The corresponding
vector field vaut.

This dynamic equivalence can be understood as follows: As time progresses, the parameter
θ ∈ T2 moves constantly in direction α. Hence, the vector field v(θ, ·) is translated at a constant
rate in the direction −α. By changing the inertial frame of reference, this dynamics is equivalent
to the vector field remaining constant and its associated particle motion is superimposed with
a translation of constant rate in the opposite direction α.

This heuristic is rigorously described by Proposition 6.1 below. Let P t
θ be the solution

operators to the Fokker–Planck equation with the nonautonomous vector field v, and let P t
eff

be the solution operators to the Fokker–Planck equation with the autonomous vector field veff.
For β ∈ T2, let Tβ : H → H be the translation by β, i.e.

[Tβf ](x) = f(x− β).

Note that Tβ is an isometric isomorphism with inverse T−β.

Proposition 6.1. The following diagram commutes for every θ ∈ T2 and t ≥ 0.

H H

H H

Pt
θ

Tθ Tϕtθ

Pt
eff

(30)

Proof. See Appendix A.

Mather and Sacker–Sell spectra. The fact that the cocycle P is cohomologous to the
autonomous cocycle Peff implies that the Mather operators Mt admit eigenfunctions and that
the Sacker–Sell spectrum Σ(P) consists of discrete points.

Recall Section 2.5, in which we studied autonomous cocycles, i.e. one-parameter semigroups.
The Sacker–Sell spectrum of Peff consists of discrete values Σ(Peff) = {λk | 1 ≤ k ≤ N}, for
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N ∈ N0 ∪ {∞}. For each λk there is zk ∈ C with |zk| = λk and a function f ∈ H0 such that
P t

efff = ezktf for all t ≥ 0. Let f be such an eigenfunction. Define a function f ∈ L2(T2,H) by

f(θ) = T−θf.

The commutative diagram (30) yields

[Mtf ](θ) = P t
ϕ−tθf(ϕ

−tθ) = (T−θ ◦ P t
eff ◦ Tϕ−tθ)T−ϕ−tθf

= ezktT−θf = ezktf(θ).

This shows that f is an eigenfunction of the Mather semigroup with eigenvalue zk.

Proposition 6.2. We find Σ(P) = Σ(Peff) = {λk | 1 ≤ k ≤ N}.

Proof. See Appendix A.

By Theorem 2.6, the spectrum of the augmented generator G is given by lines parallel to
the imaginary axis with real parts λk. The spectrum of the discretized generator ΓS, which we
will construct next, is compatible with this structure seen in Figure 4.

Discrete generator. We construct a numerical approximation ΓS ∈ CS×S of the augmented
generator G, as described in Section 5. This requires us to select a set of Fourier modes S ⊂ Z4.
We use the sparsity structure of Γ to choose a suited set S. Recall that an off-diagonal entry of
Γ is only nonzero if n · v̂(m−m′, n− n′) ̸= 0, cf. (22). The vector field v, defined by (29), only
has four nonzero Fourier modes v̂(m,n). Since m,n ∈ Z2, we write them as v̂(m1,m2, n1, n2).
The four nonzero Fourier modes of v are

v̂(+1,+1,+1,+1) =
1

4
i

Å
−1
+1

ã
, v̂(+1,−1,+1,−1) =

1

4
i

Å
+1
+1

ã
,

v̂(−1,+1,−1,+1) =
1

4
i

Å
−1
−1

ã
, v̂(−1,−1,−1,−1) =

1

4
i

Å
+1
−1

ã
.

The fact that these are the only nonzero Fourier modes implies that Γ has a block diagonal
structure after suitably reordering the indices, i.e. there are sets Ik ⊂ Z4 such that Γ(Ik; Iℓ) =
Γ(Iℓ; Ik) = 0 for any k ̸= ℓ. More precisely, an off-diagonal entry Γ(m,n;m′, n′) that is nonzero
requires m −m′ = n − n′ = (±1,±1), and in particular, m − n = m′ − n′. The requirement
m1 − n1 = m′

1 − n′
1 and m2 − n2 = m′

2 − n′
2 suggests to define for (k, ℓ) ∈ Z2 the class

Ik,ℓ := {(n1 + k, n2 + ℓ, n1, n2) | (n1, n2) ∈ Z2} ⊂ Z4. (31)

Now for two different classes I,J ⊂ Z4 we obtain Γ(I;J ) = Γ(J ; I) = 0. We note that ΓS

can be decomposed along an even finer set of equivalence classes.
Note that the blocks of Γ are of infinite size. However, after choosing S ⊂ Z4, the result-

ing finite-dimensional matrix ΓS ∈ CS×S inherits a block diagonal structure from Γ. Hence,
the spectrum of ΓS and the corresponding eigenfunctions are given by the spectrum and the
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eigenfunctions of each of the individual blocks. It is desirable to choose S ⊂ Z4 such that ΓS

contains few diagonal block, each of high resolution, rather than many diagonal blocks of low
resolution. We define S in the following way: Fix K ∈ N and r > 0. Define

S := {(n1 + k, n2 + ℓ, n1, n2) ∈ Z4 | k, ℓ ∈ {−K, . . . ,K}, ∥(n1, n2)∥e ≤ r}. (32)

The set S intersects (2K + 1)2 equivalence classes of the type (31). The resolution of each of
the classes is determined by the radius r.

Results. In the following we present experimental results for the described system. We
choose α = 0.2(1,

√
2) as the direction of the quasiperiodic driving and ε = 0.03 as the diffusion

constant. The set S is constructed like described in (32) with constants K = 2 and r = 11.
This results in a set S ⊂ Z4 with 9425 elements. We compute the discrete generator ΓS,
which is a sparse matrix with 0.04% nonzero entries. In Figure 4 we show the spectrum of
ΓS around the origin, computed as described in Section 5.4. Note that the spectrum of ΓS is
distributed on lines parallel to the imaginary axis. This fits to the description of the spectrum
of G, which we showed to consist of discrete lines parallel to the imaginary axis. We pick an
eigenvalue z = −0.089− 1.041i of ΓS of largest nonzero real part. Hence, the real part is given
by λ = −0.089. Let f̂S be the corresponding eigenfunction. As described in Section 5.3, f̂S
represents a function f := P ∗

S f̂S ∈ L2(T2 × T2,C). For a given θ ∈ T2, we compute a coherent
set A•

θ based on the real part of the fibres of f , cf. method (CS2). Fix the threshold q = 1 and
define

At
θ := {x ∈ T2 |

∥∥Re(eηtif(ϕtθ))
∥∥−1

1

∣∣Re(eηtif(ϕtθ, x))
∣∣ > q}.

We estimate the survival probability for the starting parameter θ = (0, 0). At time t = 0, we fill
the domain T2 with a 150× 150 grid of particles and let them evolve in time according to the
SDE (5) with the nonautonomous vectorfield v. For each time t > 0, we obtain an experimental
estimate on the survival probability of A•

θ up to time t, as described in Section 5.3. In Figure
5, we show snapshots of the simulation for three selected times. In Figure 4, there is a plot
of the experimental survival probability up to time t = 10. From (17), we expect that the
survival probability of A•

θ decays at most at rate 2λ, up to constants. The results in Figure 4
agree with this estimate. For t close to 0, the survival probability decays quickly but for later
times t, the decay of the survival probability is significantly slower than e2λt. The computed
cumulative survival probability is C(A•

θ) = 6.070. This is more than the estimate − 1
2λ

= 5.682
from (18). Determining coherent sets based on the absolute value of the fibres f(θ) rather than
their absolute real part, i.e. based on method (CS3), yields almost identical results. Applying
the method (CS1) also yields a coherent set with slowly decaying survival probability (not
depicted here).

6.2 Oscillating gyres

This example is defined similarly to the previous one. However, unlike in the previous case,
the nonautonomous vector field we construct is not dynamically equivalent to an autonomous
one. Like before, consider the autonomous vector field vaut, defined in (28), that consists of a
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Figure 4: Translated gyre example. Left: 100 eigenvalues of the discrete generator ΓS around
the origin. Right: In blue, the simulated survival probability of the coherent sets extracted
from an eigenfunction f to an eigenvalue z using method (CS3) with threshold q = 1. The black
lines show the curves eλt (dashed) and e2λt (solid) for comparison, where λ is the real-part of
z. The computed cumulative survival probability is C(A•

θ) = 6.070.

2×2 grid of counter-rotating gyres, cf. Figure 3. We construct a nonautonomous vector field
by letting the grid of gyres oscillate in a quasi-periodic manner. Let δ > 0 be the amplitude of
the oscillation. Define

v(θ, x) = vaut

Å
x+ δ

Å
sin(2πθ1)
cos(2πθ2)

ãã
. (33)

Since θ ∈ T2 evolves constantly in direction α ∈ R2, the grid of gyres oscillates in direction of
x1 with a period of α−1

1 and in direction x2 with a period of α−1
2 . A trajectory of the oscillation

is depicted in Figure 6.

Mather and Sacker–Sell spectra. For δ close to 0, the vector field is almost autonomous.
Unlike in the previous example, this does not guarantee the existence of eigenfunctions of
the Mather operator Mt, but for δ small enough, we can prove the existence of exponen-
tial dichotomies. Let Paut be the autonomous cocycle of transfer operators corresponding to
the autonomous vector field vaut. From Section 2.5, we know that the Sacker–Sell spectrum
Σ(Paut) = {λk | 1 ≤ k ≤ N}, for N ∈ N0 ∪ {∞}, consists of discrete points. Let λ /∈ Σ(Paut).
Hence, the spectrum of the Mather operators Mt

aut of Paut satisfies σ(M
t
aut) ∩ eλtS1 = ∅. In

other words, the ring eλtS1 lies in the resolvent set of Mt
aut for each t > 0. By [CL99, Corollary

6.44], the nonautonomous cocycle P has an exponential dichotomy at λ if for some t > 0

sup
θ∈Θ

∥∥P t
aut − P t

θ

∥∥ < inf
z∈eλtS1

∥∥(Mt
aut − zId)−1

∥∥−1
. (34)

For fixed t > 0, the right-hand side defines a constant that only depends on t and λ. As δ
approaches 0, the difference between the vector fields v and vaut tends to 0 uniformly on T2.

32



Figure 5: Translated gyre example: Evolution of the coherent sets, marked in black, determined
using method (CS3) with threshold q = 1. The snapshots are taken at time t = 0, 5, 10. The
top row depicts a particle simulation. Particles that started inside A0

θ and have remained there
until time t are colored in blue. Particles that have started inside A0

θ but were outside the
coherent set at some time 0 < s ≤ t are colored in red. Other particles are colored in grey.
The bottom row locates the coherent set with respect to the position of the gyres, as indicated
by the stream function at the respective time. A video of the particle simulation for the time
interval [0, 10] can be found at https://github.com/RobinChemnitz/MatherCoherent.
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Figure 6: Oscillating gyre example: The trajectory up to time t = 10 of the midpoint of the
central gyre of the vector field v, defined in (33) for parameters α = 0.2(1,

√
2), δ = 0.15, and

strating parameter θ = (0, 0).

By Lemma 3.4, the left-hand side of (34) vanishes as δ → 0. We conclude that for sufficiently
small δ, the nonautonomous cocycle P has an exponential dichotomy at λ and the spectrum of
the augmented generator G does not contain the line {λ+ηi | η ∈ R}, cf. Theorem 2.6. Hence,
for small values of δ, we expect the spectrum of G to consist of thin bands along the imaginary
axis, at least for regions close to the origin. In Figure 7, we show the spectrum of the discrete
generator ΓS for δ = 0.15. This value of δ seems to be not small enough such that the spectrum
consists of clear lines, nevertheless, the band structure of the spectrum is recognizable in the
region close to 0.

Results. In the following the present experimental results for the described system. We
choose α = 0.2(1,

√
2) as the direction of the quasiperiodic driving, ε = 0.03 as the diffusion

constant, and δ = 0.15 as the strength of the oscillation. We define the set S ∈ Z4 of Fourier
modes as described in (25).

S := {(m1,m2, n1, n2) ∈ Z4 | ∥(m1,m2)∥∞ ≤ K, ∥(n1, n2)∥e ≤ r},

where K = 6 and r = 8. The constant K determines the resolution in the driving and r
determines the resolution in physical space. The chosen values of K and r result in a set S ⊂ Z4

with 33293 elements. We compute the discrete generator ΓS, which is a sparse matrix with
0.31% nonzero entries. In Figure 7 we show the spectrum of ΓS around the origin, computed
as described in Section 5.4. We pick a real eigenvalue z = −0.071 of ΓS of largest nonzero real
part. Since z is real, we have λ = z. Let f̂S be the corresponding eigenfunction. As described
in Section 5.3, f̂S represents a function f := P ∗

S f̂S ∈ L2(T2 × T2,C). For a given θ ∈ T2, we
compute a coherent set A•

θ based on the absolute value of the fibres of f , cf. method (CS2). Fix
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Figure 7: Oscillating gyre example. Left: 100 eigenvalues of the discrete generator ΓS around
the origin. Right: In blue, the simulated survival probability of the coherent sets determined
by the absolute value of an eigenfunction f to an eigenvalue z with threshold q = 1. The black
lines show the curves eλt (dashed) and e2λt (solid) for comparison, where λ is the real-part of
z. The computed cumulative survival probability is C(A•

θ) = 6.158.

the threshold q = 1 and define

At
θ := {x ∈ T2 |

∥∥f(ϕtθ)
∥∥−1

1

∣∣f(ϕtθ, x)
∣∣ > q}.

Recall that these sets satisfy At
θ = A0

ϕtθ. Hence, the coherent family can be written as A•. We
estimate the survival probability for the starting parameter θ = (0, 0). At time t = 0, we fill
the domain T2 with a 150× 150 grid of particles and let them evolve in time according to the
SDE (5) with the nonautonomous vectorfield v. For each time t > 0, we obtain an experimental
estimate on the survival probability of A•

θ up to time t, as described in Section 5.3. In Figure 8,
we show snapshots of the simulation for three selected time points. In Figure 7, there is a plot
of the experimental survival probability up to time t = 10. From (17), we expect that the
survival probability of A•

θ decays at most at rate 2λ, up to constants. The results in Figure 7
agree with this estimate as the estimated survival probability decays very similarly to e2λt. The
computed cumulative survival probability is C(A•

θ) = 6.158. This is less than the estimate
− 1

2λ
= 7.042 from (18). Determining coherent sets based on the absolute real part of the

fibres f(θ) rather than their absolute value, i.e. based on method (CS2), yields almost identical
results. Applying the method (CS1) also yields a coherent set with slowly decaying survival
probability (not depicted here).

6.3 Shear

In both of the previous examples, the coherent sets we identified were regions around the center
of the four gyres, close to sets that could have been determined from considering the individual
vector fields v(θ, ·) for each fixed θ ∈ T2. The example we present next is of different nature.
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Figure 8: Oscillating gyre example: Evolution of the coherent sets, marked in black, determined
using method (CS2) with threshold q = 1. The snapshots are taken at time t = 0, 5, 10. The
top row depicts a particle simulation. Particles that started inside A0

θ and have remained there
until time t are colored in blue. Particles that have started inside A0

θ but were outside the
coherent set at some time 0 < s ≤ t are colored in red. Other particles are colored in grey.
The bottom row locates the coherent set with respect to the position of the gyres, as indicated
by the stream function at the respective time. A video of the particle simulation for the time
interval [0, 10] can be found at https://github.com/RobinChemnitz/MatherCoherent.
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Figure 9: Shear example: The vector field defined in (35) in blue and the corresponding stream
function in grey for parameters θ = (0.25, 0), (0.25, 0.05), (0.25, 0.25). From left to right, the
strength of the shear in x-direction stays constant at 1 while the shear in y-direction increases
from 0 to 1.

A well-studied dynamical feature that is known to result in chaotic behavior is shear. In
this example we overlay two shears of oscillating strength, by considering the nonautonomous
vector field

v(θ, x) = sin(2πθ1)

Å
sin(2πx2)

0

ã
+ sin(2πθ2)

Å
0

sin(2πx1)

ã
. (35)

Figure 9 shows a representation of this vector field for selected values of θ. Determining
coherent sets of v is non-trivial, since vector fields with shears are known for their mixing
properties [CS89, BCZG23, FK23], while coherent sets are characterized by experiencing little
mixing with their surrounding. Despite this feature, which opposes the existence of coherent
sets, our methods are able to identify a coherent set whose survival probability decays at a
similar rate as the survival probability of the previous example of the oscillating gyres. Note
that this comparison is fair in the sense that the velocity field strength is of the same order of
magnitude and below we take the same diffusion coefficient ε as in the previous examples.

Results. In the following we present experimental results for the described system. We
choose α = 0.2(1,

√
2) as the direction of the quasiperiodic driving and ε = 0.03 as the diffusion

constant. We define the set S ∈ Z4 of Fourier modes like described in (25):

S := {(m1,m2, n1, n2) ∈ Z4 | ∥(m1,m2)∥∞ ≤ K, ∥(n1, n2)∥e ≤ r},

where K = 6 and r = 8. The constant K determines the resolution in the driving and r
determines the resolution in physical space. The chosen values of K and r result in a set S ⊂ Z4

with 33293 elements. We compute the discrete generator ΓS, which is a sparse matrix with
0.023% nonzero entries. In Figure 10 we show the spectrum of ΓS around the origin, computed
as described in Section 5.4. Unlike in the previous two examples, there are no recognizable bands
of eigenvalues parallel to the imaginary axis. This could indicate the absence of exponential
dichotomies for this example. We pick a real eigenvalue z = −0.097 of ΓS with the largest
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Figure 10: Shear example. Left: 100 eigenvalues of the discrete generator ΓS around the origin.
Right: In blue, the simulated survival probability of the coherent sets determined by positive
support of an eigenfunction f to an eigenvalue z. The black lines show the curves eλt (dashed)
and e2λt (solid) for comparison, where λ is the real-part of z. The computed cumulative survival
probability is C(A•

θ) = 5.680.

nonzero real part. Since z is real, we have λ = −0.097 and η = 0. Let f̂S be the corresponding
eigenfunction. As described in Section 5.3, f̂S represents a function f := P ∗

S f̂S ∈ L2(T2×T2,C).
For a given θ ∈ T2, we compute a coherent set A•

θ based on the positive support of the fibres
of f , cf. method (CS1). Define

At
θ := {x ∈M | Re(eηtif(ϕtθ, x)) > 0}.

Since η = 0, these sets satisfy At
θ = A0

ϕtθ. Hence, the coherent family can be written as A•. We
estimate the survival probability for the starting parameter θ = (0, 0). At time t = 0, we fill
the domain T2 with a 150× 150 grid of particles and let them evolve in time according to the
SDE (5) with the nonautonomous vectorfield v. For each time t > 0, we obtain an experimental
estimate on the survival probability of A•

θ up to time t, as described in Section 5.3. In Figure 11,
we show snapshots of the simulation for three selected time instances. In Figure 10, there is a
plot of the experimental survival probability up to time t = 10. From (17), we expect that the
survival probability of A•

θ decays at most at rate 2λ, up to constants. The results in Figure 10
agree with this estimate as the estimated survival probability decays very similarly to e2λt. The
computed cumulative survival probability is C(A•

θ) = 5.680. This is more than the estimate
− 1

2λ
= 5.133 from (18). Using method (CS2) or (CS3) did not result in coherent sets with a

slowly decaying survival probability.

7 Conclusion

Our numerical implementation to compute coherent sets is mainly based on heuristic deriva-
tions and experimental evidence. There are two aspects we would like to discuss further.
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Figure 11: Shear example: Evolution of the coherent sets, marked in black, determined using
method (CS1). The snapshots are taken at time t = 0, 5, 10. Particles that started inside A0

θ

and have remained there until time t are colored in blue. Particles that have started inside A0
θ

but were outside the coherent set at some time 0 < s ≤ t are colored in red. Other particles
are colored in grey. A video of the particle simulation for the time interval [0, 10] can be found
at https://github.com/RobinChemnitz/MatherCoherent.

Additionally, we provide an outlook on the application of our methods to more general flows.

Discussion. The selection of the set of Fourier modes S, which is a crucial choice for the
construction of the discrete generator ΓS, has so far been made on the basis of experimental
evidence. In both examples of Section 6.2 and Section 6.3, we chose S = Sd × Sp ⊂ Zdd × Zdp

with Sd a ball of radius K in the ℓ∞-norm and Sp a ball of radius r in the Euclidean norm. The
radii that performed best in these examples, while keeping the computational effort feasible,
were K = 6 and r = 6. This results in |Sd| = 169 and |Sp| = 197, i.e. the resolution in the
driving and the physical space is similar. The reason we believe that the Euclidean norm works
best in the physical space is that the decay of a Fourier mode Fm,n due to diffusion scales
proportionally to the Euclidean norm of n, cf. (22). Hence, Fourier modes Fm,n, where n has
large Euclidean norm decay fast and are thus expected to contribute less to the eigenfunctions
of ΓS. In the driving, there is no diffusion, which is a possible explanation why the ℓ∞-norm
worked best in our cases. However, these observations have been made only for a small number
of examples at a medium resolution |S| ∼ 105. To apply or methods to more complex dynamics
at higher resolutions, it is worth to investigate theoretically what choices of Sd and Sp lead to
an optimal approximation of the spectrum of G by the spectrum of ΓS.

The other aspect we discuss is the extraction of coherent sets from an eigenfunction f̂S of ΓS

with eigenvalue z. In the derivation of our method, we treated f̂S as if it was an eigenfunction
of Γ, i.e. as if P ∗

S f̂S was an eigenfunction of G. However, even for a high resolution of S, we
cannot guarantee that ∥(Γ− z)f̂S∥2 is small. Hence, P ∗

S f̂S is a priori not even an approximate
eigenfunction of G. The reason for this is that, unlike in the physical space, there is no diffusion
in the driving. Due to diffusion in physical space, an eigenfunction f̂S is expected to have low
Fourier coefficients f̂S(m,n) for large n; however, it may have large Fourier coefficients f̂S(m,n)
for large values of m, but small values of n. Hence, at the boundary of S, where m is large,
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but n is small, there may be a significant discrepancy between ΓS f̂S and Γf̂S. Numerically our
method still performed well, which could indicate that in practice this problem plays a minor
role. Finding theoretical bounds for the survival probability of coherent sets extracted from
eigenfunctions of the discrete generator ΓS is a challenging task that can be the topic of future
research.

Outlook. The numerical discretization of the Mather operators Mt and their generator G
using a Galerkin projection onto Fourier modes required Θ = Tdd andM = Tdp . For simplicity,
we additionally restricted ourselves to the case that the driving dynamics on Θ is given by a
quasiperiodic rotation. In Section 3, the transfer operator cocycle P and the corresponding
Mather semigroup have been constructed for more general domains Θ and M than just tori,
and for general ergodic driving. Our results can be viewed as a proof of concept that coherent
sets of a nonautonomous dynamics with ergodic driving of the form (5) can be extracted
from eigenfunctions of a discretization of the augmented generator G. For domains Θ and
M which are not tori, other discretization methods, like an Ulam discretization, are needed.
Hybrid methods are possible as well [GD20], such as using a Fourier discretization in Θ and an
Ulam discretization in M [FK17]. A significant advantage of the Fourier discretization in the
case Θ = Tdd and M = Tdp is that a finite-dimensional vector f̂S ∈ CS represents a function
f := P ∗

S f̂S ∈ L2(Θ×M,C) in an infinite-dimensional space. Hence, coherent sets A•
• extracted

from f , as described in Section 5.3, have a continuous resolution in both θ and physical space.
Recently, methods have been proposed to faithfully approximate (parts of) the spectrum

of transfer-type operators, such as the Koopman operator, see [DG19, KPM20, Gia21, CT24,
Col23, VG23]. Since some of these methods explicitly aim at approximating continuous spectra
and associated spectral projections, their adaptation to the augmented generator G could be
an interesting future avenue.
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compute the decay of ∥f(t)∥22, where f(t) is a solution to the Fokker–Planck equation (6),

∂t ∥f(t)∥22 = ∂t

∫
M

f(t, x)2 dx

=

∫
M

2f(t, x)∂tf(t, x) dx

=

∫
M

ε2f(t, x)∆xf(t, x)− 2f(t, x)∇xf(t, x) · v(t, x) dx

= −ε2
∫
M

∇xf(t, x) · ∇xf(t, x) dx−
∫
M

∇x(f(t, x)
2) · v(t, x) dx

= −ε2 ∥∇xf(t)∥22 −
∫
M

divx(f(t, ·)2v(t, ·)) dx.

By the divergence theorem, the second integral vanishes. Hence, the decay of ∥f(t)∥22 is given
by

∂t ∥f(t)∥22 = −ε2 ∥∇xf(t)∥22 . (36)

The Poincaré–Wirtinger inequaility states that there is a constant c > 0, depending only on
M , such that for each f ∈ H0 we find

∥∇xf∥2 ≥ c ∥f∥2 .

If f(0) ∈ H0, then f(t) ∈ H0 for all t ≥ 0. Hence, we find

∂t ∥f(t)∥22 ≤ −ε2c2 ∥f(t)∥22 .

By the Grönwall’s lemma, we obtain the bound

∥f(t)∥22 ≤ ∥f(0)∥22 e
−ε2c2t

Lastly, let f = f(0) ∈ H0 have ∥f∥2 = 1. By definition of P t
θ, we have P t

θf = f(t), and
consequently ∥∥P t

θf
∥∥
2
≤ e−

ε2c2

2
t.

This shows that ∥P t
θ∥ ≤ eϱt for ϱ = − ε2c2

2
, which completes the proof. □

Proof of Lemma 3.4. Let f(0) = f ∈ H0 with ∥f∥2 = 1. The functions fi(t) := P t
θi
f ∈

H0, for i = 1, 2, are the unique classical solutions to the Fokker–Planck equation with starting
parameter θi. In particular, we have for t > 0

∂tfi(t, x) =
[
G(ϕtθi)fi(t)](x)

=
1

2
ε2∆xfi(t, x)−∇xfi(t, x) · v(ϕtθi, x).

(37)

We can rewrite the equation (37) for f1(t), to be

∂tf1(t, x) =
1

2
ε2∆xf1(t, x)−∇xf1(t, x) · v(ϕtθ2, x) +∇xf1(t, x) ·

(
v(ϕtθ2, x)− v(ϕtθ1, x)

)
=

[
G(ϕtθ2)f1(t)

]
(x) + g(t),

(38)
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where the nonhomogeneous part g(t) ∈ H0 is given by

g(t, x) := ∇xf1(t, x) ·
(
v(ϕtθ2, x)− v(ϕtθ1, x)

)
. (39)

The nonautonomous generator G(ϕtθ2) generates the operators P t
θ2
. Since f1 is a classical

solution to (38), the function P t
θ1
f = f1(t) is given by the mild solution

[
P t

θ1
f
]
(x) =

[
P t

θ2
f
]
(x) +

∫ t

0

[
P t−s

θ2
g(s)

]
(x)ds.

Hence, we can bound the distance between the solutions P t
θ1
f and P t

θ2
f .

∥∥P t
θ1
f − P t

θ2
f
∥∥2

2
=

∫
M

Å∫ t

0

[P t−s
θ2
g(s)](x)ds

ã2

dx

≤
∫
M

t

∫ t

0

[P t−s
θ2
g(s)](x)2 ds dx

= t

∫ t

0

∫
M

[P t−s
θ2
g(s)](x)2 dx ds

= t

∫ t

0

∥∥P t−s
θ2
g(s)

∥∥2

2
ds

< t

∫ t

0

∥g(s)∥22 ds,

(40)

where in the second line we used Jensen’s inequality and in the third line the Fubini–Tonelli
theorem. We claim that as the distance between θ1 and θ2 approaches 0, the integral in the
last line tends to 0. By definition of δ and g(s) in (39), we find

|g(s, x)| ≤ ∥∇xf1(s, x)∥e δ,

and consequently ∥g(s)∥22 ≤ δ2 ∥∇xf1(s)∥22 for s ∈ [0, t]. In the proof of Proposition 3.3, namely
equation (36), we showed

∥∇xf1(s)∥22 = − 1

ε2
∂s ∥f1(s)∥22 .

This yields

∥g(s, x)∥22 ≤ −δ
2

ε2
∂s ∥f1(s)∥22 .

Inserting this bound into (40) yields∥∥P t
θ1
f − P t

θ2
f
∥∥2

2
≤ −δ

2t

ε2

∫ t

0

∂s ∥f1(s)∥22 ds

=
δ2t

ε2
[
∥f1(0)∥22 − ∥f1(t)∥22

]
≤ δ2t

ε2
,
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where we used ∥f1(0)∥2 = ∥f∥2 = 1 and that ∥f1(t)∥2 ≤ ∥f1(0)∥2, because P t
θ is a contraction.

This estimate holds for any function f ∈ H0 with ∥f∥2 = 1. We conclude

∥∥P t
θ1
− P t

θ2

∥∥ ≤ δ
√
t

ε
.

This completes the proof. □

Proof of Theorem 4.2. Our proof closely follows [FK17, A.6]. Their proof requires
that the family of sets A•

θ is sufficiently nice. We use arguments from [FKS20] to avoid this
assumption.

Firstly, by Proposition 4.1, the solution f(t) = P t
θf0 is represented by a function f ∈

C(R≥0 ×M,R) such that A•
θ is well-defined. Fix a time T ≥ 0 and let (tk)k∈N be a dense

sequence in [0, T ] with t1 = T . Let xt(ω) be a random trajectory of the SDE (5), where Ω is
the probability space on which the SDE is defined. Define the events

En := {ω ∈ Ω | xtk(ω) ∈ Atk
θ , ∀k ∈ {1, . . . , n}},

E := {ω ∈ Ω | xt(ω) ∈ At
θ, ∀t ∈ [0, T ]}.

Since f is continuous and (tk)k∈N is dense in [0, T ], we find

f(t, xt(ω)) ≥ 0, ∀t ∈ [0, T ] ⇐⇒ f(tk, xtk(ω)) ≥ 0, ∀k ∈ N.

We conclude En ↓ E .
Given a probability measure π on M , let Px0∼π denote the probability measure on Ω,

conditioned on the initial condition x0 ∼ π. If π is a finite measure that is not a probability
measure, we define Px0∼π = π(Ω)Px0∼π/π(Ω). If π is a finite signed measure, consider the Hahn
decomposition π = π+−π−, and define Px0∼π = Px0∼π+ −Px0∼π− . Observe that the statement
of the theorem does not depend on the scaling of f0. Hence, w.l.o.g. we may assume ∥f0∥1 = 2.
In particular, the positive and negative part of f0, which we denote by f+

0 , respectively f
−
0 ,

integrate to 1. Hence, f+
0 and f−

0 are the densities of probability measures ν+ and ν− on M .
In particular, f0 is the density of the signed measure ν = ν+ − ν−.

Since PT
θ f0 is the distribution of particles after time T with initial distribution ν, we find

Px0∼ν(xT ∈ AT
θ ) =

∫
AT

θ

[PT
θ f0](x) dx =

1

2

∥∥PT
θ f0

∥∥
1
.

The last equality follows from the definition of AT
θ and the fact that PT

θ f0 integrates to 0. For
n ∈ N, consider the decomposition

Px0∼ν(xT ∈ AT
θ ) = Px0∼ν(xtk ∈ Atk

θ , ∀k ∈ {1, . . . , n})

+
n∑

j=2

Px0∼ν(xtj /∈ A
tj
θ , xtk ∈ Atk

θ , ∀tk > tj)︸ ︷︷ ︸
=:pj

.
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One can show [FJK13] that pj ≤ 0. We conclude

Px0∼ν(En) ≥
1

2

∥∥PT
θ f0

∥∥
1
.

The σ-additivity of Px0∼ν implies limn→∞Px0∼ν(En) = Px0∼ν(E). This shows that also Px0∼ν(E)
is bounded from below by 1

2

∥∥PT
θ f0

∥∥
1
.

It remains to argue that the measure ν is dominated by ∥f∥∞ |A0
θ|1A0

θ
, where 1A0

θ
is the

uniform distribution on A0
θ. This concludes the proof. □

Proof of Lemma 4.5. Let Π : Θ → L(H0) be the strongly continuous projection-valued
function corresponding to the exponential dichotomy at λ. We have S(θ) = ran(Π(θ)) and
U(θ) = ker(Π(θ)).

Since f ∈ U(θ), the inverse gt := (P t
ϕ−tθ)

−1f ∈ U(ϕ−tθ) is well-defined for each t ≥ 0. In
particular, we find P t

ϕ−tθg
R
t = fR and P t

ϕ−tθg
I
t = f I . Now, assume fR /∈ U(θ). Consider the

decompositions

fR = sf + uf , sf := Π(θ)fR ∈ S(θ), uf := (Id− Π(θ))fR ∈ U(θ),

gRt = sgt + ugt , sgt := Π(ϕ−tθ)gRt ∈ S(ϕ−tθ), ugt := (Id− Π(ϕ−tθ))gRt ∈ U(ϕ−tθ),

in particular sf ̸= 0 by our assumption. By definition of Π, we have P t
ϕ−tθsf = sgt , P t

ϕ−tθuf = ugt
and

∥sf∥2 =
∥∥P t

ϕ−tθsgt
∥∥
2
≤ Ce(λ−β)t ∥sgt∥2 ,

∥ugt∥2 =
∥∥(P t

ϕ−tθ)
−1uf

∥∥
2
≤ Ce−(λ+β)t ∥uf∥2 .

This shows that ∥sgt∥2 grows at least at rate −(λ − β) in t, while ugt grows at most at rate
−(λ+ β) . We conclude∥∥(P t

ϕ−tθ)
−1f

∥∥
2
≥

∥∥(P t
ϕ−tθ)

−1fR
∥∥
2
=

∥∥gRt ∥∥2
≥ ∥sgt∥2 − ∥ugt∥2

≥ C−1e−(λ−β)t ∥sf∥2 − Ce−(λ+β)t ∥uf∥2 .
(41)

Definition 2.1 implies that ∥(P t
θ|U)−1∥ ≤ Ce−(λ+β)t for t ≥ 0 uniformly in θ ∈ Θ. Since

f ∈ U(θ), it follows that e(λ+β)t∥(P t
ϕ−tθ)

−1f∥2 is bounded by the constant C∥f∥2 for every t ≥ 0.
This contradicts (41), which predicts that e(λ+β)t∥(P t

ϕ−tθ)
−1f∥2 grows to infinity at least with

rate 2β > 0, neglecting additive constants. We conclude sf = 0 and, therefore, fR ∈ U(θ). The
proof for f I ∈ U(θ) is analogous. □

Proof of Lemma 5.1. The first equality is standard and holds for any real-valued function.
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We express the divergence of v is terms of its Fourier coefficients.

divx(v)(θ, x) =

dp∑
j=1

∂xj
vj(θ, x)

=

dp∑
j=1

∂xj

∑
m,n

Fm,n(θ, x)“vj(m,n)
= −2πi

dp∑
j=1

∑
m,n

njFm,n(θ, x)“vj(m,n)
= −2πi

∑
m,n

(n · v̂(m,n))Fm,n(θ, x).

This shows that the Fourier coefficients of the divergence of v are given by n · v̂(m,n). Since the
divergence of v is zero as a function, all the Fourier coefficients of the divergence must vanish.
We conclude n · v̂(m,n) = 0 for all m,n ∈ Zdd × Zdp . □

Proof of Proposition 6.1. Fix a fixed starting parameter θ ∈ T2 and a starting dis-
tribution f ∈ H0. Define f1(t) := (Tϕtθ ◦ P t

θ)f and f2(t) := (P t
eff ◦ Tθ)f . Both functions

satisfy f1(0) = f2(0) = Tθf . We compute the time-derivatives of both functions using the
Fokker–Planck equation (6)

∂tf1(t, x) = ∂t
[
[P t

θf ](x− θ − αt)
]

=
1

2
ε2∆x[P t

θf ](t, x− ϕtθ)−∇x[P t
θf ](t, x− ϕtθ) ·

(
v(ϕtθ, x− ϕtθ) + α

)
=

1

2
ε2∆xf1(t, x)−∇xf1(t, x) ·

(
vaut(x) + α

)
.

∂tf2(t, x) = ∂t[P t
eff(Tθf)](x)

=
1

2
ε2∆x[P t

eff(Tθf)](x)−∇x[P t
eff(Tθf)](x) · veff(x)

=
1

2
ε2∆xf2(t, x)−∇xf2(t, x) ·

(
vaut(x) + α

)
.

Since f1 and f2 solve the same NACP, which is known to have a unique solution, we conclude
f1(t) = f2(t) for all t ≥ 0. This concludes the proof. □

Proof of Proposition 6.2. Consider λ /∈ Σ(Peff), such that there is a strongly continuous
projection-valued function Πeff : T2 → L(H) that defines an exponential dichotomy of Peff at
λ. By Section 2.5, the function Πeff is constant, i.e. does not depend on θ. Define another
projection-valued function Π : T2 → L(H0) by Π(θ)f = T−θ ◦Πeff ◦Tθ. We show that Π defines
an exponential dichotomy of P . Let θ ∈ Θ and t ≥ 0. Using the commutativity of (30), we
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compute

P t
θΠ(θ) = T−1

ϕtθ ◦ P
t
eff ◦ Tθ ◦ T−θ ◦ Πeff ◦ Tθ

= T−ϕtθ ◦ Πeff ◦ P t
eff ◦ Tθ

= T−ϕtθ ◦ Πeff ◦ Tϕtθ ◦ T−ϕtθ ◦ P t
eff ◦ Tθ

= Π(ϕtθ)P t
θ.

Let S(θ) and U(θ) be the range and kernel of Π(θ). Analogously, let Seff and Ueff be the range
and kernel of Πeff. By definition of Π, we find U(θ) = T−θUeff and S(θ) = T−θSeff. Hence the
restriction P t

θ|U : U(θ) → U(ϕtθ) is given by

P t
θ|U = (T−1

ϕtθ ◦ P
t
eff ◦ Tθ)|U = T−1

ϕtθ ◦ P
t
eff|Ueff

◦ Tθ. (42)

Since P t
eff|Ueff

is invertible, this shows that P t
θ|U is invertible.

Let C > 0 and β > 0 be the constants of the exponential dichotomy Πeff. Consider f ∈ S(θ),
such that Tθf ∈ Seff. We find∥∥P t

θf
∥∥
2
=

∥∥∥T−1
ϕtθ ◦ P

t
θ ◦ Tθf

∥∥∥
2
≤ Ce(λ−β)t ∥Tθf∥2 .

Since Tθ is an isometry, this proves ∥P t
θ|S∥ ≤ Ce(λ−β)t. Now, consider f ∈ U(ϕtθ), such that

Tϕtθf ∈ Ueff. From (42), we derive∥∥(P t
θ)

−1f
∥∥
2
=

∥∥T−1
θ ◦ (P t

eff)
−1 ◦ Tϕtθf

∥∥
2
≥ Ce−(λ+β)t ∥Tϕtθf∥2 .

Since Tϕtθ is an isometry, this proves ∥P t
θ|U∥

−1 ≥ C−1e(λ+β)t. This shows that Π defines an
exponential dichotomy of P at λ. □
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