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ABSTRACT

In implicit collaborative filtering, hard negative mining techniques

are developed to accelerate and enhance the recommendationmodel

learning. However, the inadvertent selection of false negatives re-

mains a major concern in hard negative sampling, as these false

negatives can provide incorrect information andmislead themodel

learning. To date, only a small number of studies have been com-

mitted to solve the false negative problem, primarily focusing on

designing sophisticated sampling algorithms to filter false nega-

tives. In contrast, this paper shifts its focus to refining the loss

function. We find that the original Bayesian Personalized Ranking

(BPR), initially designed for uniform negative sampling, is inade-

quate in adapting to hard sampling scenarios. Hence, we introduce

an enhanced Bayesian Personalized Ranking objective, named as

Hard-BPR, which is specifically crafted for dynamic hard negative

sampling to mitigate the influence of false negatives. This method

is simple yet efficient for real-world deployment. Extensive exper-

iments conducted on three real-world datasets demonstrate the

effectiveness and robustness of our approach, along with the en-

hanced ability to distinguish false negatives.

CCS CONCEPTS

• Information systems→ Collaborative filtering; • Comput-

ing methodologies→ Learning from implicit feedback.
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1 INTRODUCTION

Implicit collaborative filtering (CF) in recommender systems is to

leverage users’ implicit feedback, such as clicks, purchases or view-

ing history, to improve user experiences by offering personalized

content recommendations [13, 21, 23, 25, 26]. Prior efforts in model

architecture design, such as matrix factorization (MF) [7, 17, 19,

20, 24, 30] and graph neural network (GNN) based methods [11,

14, 33, 35, 36], have effectively improved personalized recommen-

dation accuracy. Nevertheless, a gap remains in the data domain,

specifically in addressing the challenge presented by the lack of

explicit negative feedback during recommendation model train-

ing. To address this, Bayesian Personalized Ranking (BPR) [29] for-

mulates the training objective as a pairwise ranking task, which

aims to maximize the probability of user preferring observed pos-

itive items than randomly sampled negative items. In BPR, the

logistic sigmoid function is used to model the individual prefer-

ence probability, which almost remains a fixed paradigm in sub-

sequent studies. However, random sampling to generate negative

samples presents low convergence due to gradients vanishing un-

der the BPR loss. Subsequently, hard negative sampling methods

are developed to adaptively choose challenging items as negatives,

compelling the model to achieve faster and more effective learn-

ing [3, 8, 15, 27, 28, 31, 37–39]. Various hard mining techniques,

such as dynamic negative sampling [38], Generative Adversarial

Network (GAN) based sampling [27, 34] and importance sampling

based hard mining [4, 22], emerge. Among hard sampling methods

focusing on sampling progress, many adopt the BPR loss for model

optimization. Conversely, for hard sampling methods that improve

loss function, it is prevalent to apply importance sampling to the

BPR loss but keep the core BPR unchanged. The question is: Does

the original BPR effectively accommodate hard sampling scenarios?

In practice, the application of hard sampling in optimizing the

recommendation model under the original BPR objective has been

reported to potentially result in overfitting [31, 40]. This is because

http://arxiv.org/abs/2403.19276v1
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false negatives, inadvertently selected during hard negative sam-

pling, contribute significant gradients to model updating and po-

tentially mislead the learning direction. To address the false nega-

tive problem and improve model’s robustness, SRNS [6] introduces

a variance-based sampling strategy to identify real hard negatives

and GDNS [40] considers the expectation gain between two train-

ing iterations as an indicator. Both methods concentrate on craft-

ing sophisticated sampling processes to mitigate the risk of sam-

pling false negatives. However, achieving this task solely through

a single metric, such as variance or expectation gain, is challeng-

ing.

According to the theory that the effects of a specific sampling

strategy on model learning can be equivalently achieved by ad-

justing the loss function [9], our focus shifts from designing intri-

cate sampling process for filtering false negatives towards crafting

the loss function. We introduce an enhanced BPR scheme, named

Hard-BPR, to mitigate the influence of false negatives in hard sam-

pling. Compared to BPR, only the function to estimate the individ-

ual preference probability is modified in Hard-BPR, where three

coefficients are added to lower the gradient magnitudes of exces-

sive hard samples when applying stochastic gradient descent. The

framework is straightforward, employing the hard negative sam-

plingmethodDNS [38] to sample hard negatives and utilizingHard-

BPR as the optimization objective. Since the negative sampling pro-

cess, the primary time-consuming element, remains DNS, our al-

gorithm achieves superior time efficiency compared to other hard

sampling approaches. Moreover, a recent study discloses that em-

ploying DNS under BPR is an exact estimator of One-way Partial

AUC (OPAUC) [32]. We show that equipping DNS under the pro-

posed Hard-BPR also serves as an exact OPAUC estimator.We con-

duct experiments on three real-world datasets, evaluating the ef-

fects of Hard-BPR comprehensively. Our results illustrate its en-

hanced ability to distinguish false negatives from real hard nega-

tives, along with its effectiveness and efficiency in recommenda-

tion model training. In addition, a parameter study on three criti-

cal coefficients in Hard-BPR reveals that only two coefficients re-

quire fine-tunning, providing valuable guidance for algorithm de-

ployment.

In summary, the contributions of this paper are:

• We are, to the best of our knowledge, the first to address the

false negative problem in implicit CF from the perspective

of BPR redesign.

• We introduce an optimization criterion, Hard-BPR, an en-

hanced Bayesian Personalized Ranking for dynamic hard

negative sampling (DNS) in recommender systems.

• Our experiments empirically show the proposed method’s

robustness, efficiency and effectiveness. Moreover, parame-

ter study offers valuable insights for its implementation.

2 PRELIMINARIES

In this section, we present the necessary background about the

derivation of BPR in implicit collaborative filtering and dynamic

hard negative sampling (DNS).

2.1 Bayesian Personalized Ranking (BPR)

In implicit collaborative filtering, only the implicit feedback S ⊆
U × I is observed (such as clicks, views, or purchases), where U
denotes the user set and I the item set. The user-item interaction

pairs in implicit feedback (D, 8) ∈ S are positive observations be-

cause they generally indicate users’ preferences. The remaining

unobserved user-item combinations (U × I) \ S consist of actual

negative feedback (indicating dislikes) and the potential positive

feedback (implying future purchase interests).

For each user D , we define I+ (D) := {8 : (8,D) ∈ S}. The set

I+ (D) contains all items that interact with user D . BPR assumes

that user D prefers item 8 ∈ I+ (D) over 9 ∈ I \ I+ (D) (symbol-

ized as 8 >D 9). The objective of BPR is to learn a scoring function

5 (·|Θ) : I ×U → R to capture users’ above pairwise preferences,

where 5 (8 |D,Θ) is the score of item 8 given by user D and Θ is the

model parameter.We denoteDS =

{
(D, 8, 9) | 8 ∈ I+ (D), 9 ∈ I \ I+ (D)

}
.

The likelihood function of observing all user pairwise preferences

in DS given the model parameters Θ is as follows:

∏
(D,8, 9 ) ∈�(

% (8 >D 9 |Θ), (1)

where % (8 >D 9 |Θ) is the probability that user D prefers item 8

over item 9 . The individual preference probability % (8 >D 9 |Θ) is
modeled as:

% (8 >D 9 |Θ) = f (ĜD8 9 ), (2)

where ĜD8 9 represents the estimated preference difference between

item 8 and item 9 , which can be calculated as 5 (8 |D,Θ) − 5 ( 9 |D,Θ),
and f is the logistic sigmoid function:

f (G) := 1

1 + 4−G . (3)

The logistic sigmoid function f is used to transform the estimated

preference difference between two items into a probability between

0 and 1. This non-linear transformation can help capture the com-

plex nature of user preferences in recommender systems.

Then, the BPR loss is derived as the negative log-likelihood of

the pairwise preferences in DS :

LBPR = −
∑

(D,8, 9 ) ∈�(

lnf (ĜD8 9 ), (4)

In the context of optimizing the Bayesian Personalized Ranking

(BPR) objective, Stochastic Gradient Descent (SGD) is employed,

wherein triplets (D, 8, 9) are uniformly drawn fromDS to facilitate

the updating of model parameters. Specifically, for each positive

user-item interaction (D, 8), a negative item 9 is randomly selected

from the set I \ I+ (D). The gradient of the BPR loss with respect

to a model parameter \ ∈ Θ is as follows:

mLBPR

m\
= −

∑
(D,8, 9 ) ∈�(

(
1 − f

(
ĜD8 9

) ) m (ĜD8 9 )
m\

, (5)

The impact of each triplet (D, 8, 9) on the model’s update is quanti-

fied by the gradient magnitude Δf (ĜD8 9 ), expressed as:

Δf (ĜD8 9 ) := (1 − f (ĜD8 9 )) = (1 − % (8 >D 9 |Θ)) (6)

Rendle and Freudenthaler [28] suggests that uniform sampling

strategy results in slow convergence of the model because most of
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samples yield small gradient magnitudes. Specifically, the scoring

function 5 (·|Θ) generally gives a larger score to positive pair (D, 8)
than pair (D, 9) and the pairwise preference probability % (8 >D

9 |Θ) is close to 1.

2.2 Dynamic Hard Negative Sampling

To accelerate the model’s convergence and enhance its ability to

differentiate between positive and negative items, various non-uniform

sampling methods have been proposed. Among these, hard nega-

tive samplers demonstrate notable efficiency. Hard negative sam-

pling is to choose negative instances that are challenging formodel

to distinguish frompositive examples, thereby enhancing themodel’s

capacity to learn fine-grained features and improving its discrimi-

native ability.

Dynamic Negative Sampling (DNS) [38], supported by various

studies [6, 15, 31], stands as an advanced hard negative sampling

method in recommender systems. Shi et al. [32] has proven that

the BPR loss equipped with DNS serves as an exact estimator of

OPAUC. DNS involves a two-step process. This two-step process

begins by selecting � (≥ 1) random items from the set I \ I+ (D)
for each positive user-item pair (D, 8), creating a negative candidate
pool P = { 91, 92, . . . , 9� }. Then, the item from P that is assigned

the highest score by the scoring function 5 (·|D,Θ) is selected as

the hard negative sample. This is represented as:

9 = argmax
:∈P

5 (·|D,Θ), (7)

The selection of a hard negative item results in a relatively large

gradient magnitude, Δf (ĜD8 9 ), for the triplet (D, 8, 9) since the es-

timated preference difference between the positive item 8 and the

hard negative item 9 is small. Consequently, this leads to a more

significant contribution to the model’s updating process. By effi-

ciently choosing hard negative samples, DNS accelerates training

processes and improves prediction accuracy.

3 METHOD: HARD-BPR

In this section, we introduce the false negative problem for hard

negative sampling in implicit CF. Subsequently, we propose an en-

hanced Bayesian Personalized Ranking, termed as Hard-BPR, to

address the challenges posed by false negatives.

3.1 Challenges of False Negatives

Acritical challenge in hard negative samplingwithin recommender

systems is the risk of inadvertently including false negatives, which

may induce overfitting, potentially compromising the model’s gen-

eralization ability. False negatives in recommender systems are items

that the user has not interacted with, but the user would have

liked or found interesting. As the hardness of the negatives sam-

pled increases, the probability of encountering false negatives cor-

respondingly increases [1, 2, 31]. To be specific, let � ( 9) denote
the hardness of a negative item 9 , and %FN ( 9) be the probability

that item 9 is a false negative. As � ( 9) increases, %FN ( 9) also rises.
This relationship poses a significant limitation to hard negative

sampling methods, as it is challenging to distinguish between real

hard negatives and false negatives.

The corruption of false negatives not only reduces the accuracy

of personalized recommendations but also exacerbates overfitting
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Figure 1: (a) The function curves off (·) and6(·). (b) The func-
tion curves of Δf (·) and Δ6 (·).

during themodel training [31, 40]. Avoiding false negatives in hard

negative sampling is crucial, yet only a limited number of studies

focus on developing robust hard sampling methods.

3.2 Hard-BPR

TheEquivalenceTheory.The foundational principle guiding our

methodology is derived from the equivalence theory between loss

functions and sampling strategies. This theory indicates that the ef-

fects induced by a specific sampling strategy onmodel learning can

be equivalently achieved through modifying the loss function [9].

In implicit CF task, previous works focus on designing complex

and sophisticated sampling algorithms to avoid false negatives in

hard negative sampling. The equivalence theory suggests that an

alternate loss function, when optimized with a simple sampling

method (e.g., DNS), can yield an expected gradient that is similar

to the one obtained with a complex false-negative-exclusive hard

sampling approach. The equivalence theory can bemathematically

expressed in terms of the expected gradient of the loss function, as

follows:

� (D,8, 9 )∼5complex
[∇!BPR (D, 8, 9)] = � (D,8, 9 )∼5DNS [∇!mod(D, 8, 9)] .

(8)

Here, � (D,8, 9 )∼5complex
[∇!BPR (D, 8, 9)] denotes the expected gradi-

ent of BPR loss under the sophisticatedly deigned false-negative-

exclusive hard sampling, and � (D,8, 9 )∼5DNS [∇!mod(D, 8, 9)] represents
the expected gradient of a modified loss function under DNS.

This theory suggests a new perspective on addressing the chal-

lenges of hard negative sampling in implicit CF. Instead of creating

complex sampling algorithms to discern and exclude false nega-

tives, the equivalence theory encourages a shift towards revising

the loss function.

Limitations of BPR inHardNegative Sampling.Asmentioned

in Section 2.1, BPR employs the logistic sigmoid function f (·) to
calculate the individual preference probability % (8 >D 9 |Θ). When

employing BPR, % (8 >D 9 |Θ) approaches 0 if ĜD8 9 is small (e.g.,

≤ −4). In this situation, the gradient magnitude Δf (ĜD8 9 ) is near
1, and thus the triplet (D, 8, 9) can provide useful information for

model optimization via SGD. Conversely, a large ĜD8 9 results in a

negligible Δf (ĜD8 9 ), rendering the triplet (D, 8, 9) useless in param-

eter updating.

Rendle and Freudenthaler [28] states that ĜD8 9 is generally a

large value when item 9 is sampled uniformly from I \I+ (D), and
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only a few (D, 8, 9) triplets may yield small ĜD8 9s. In this case, the

BPR loss is suitable, since it can assign large gradient magnitudes

Δf (ĜD8 9 ) to these few triplets, thereby expediting the model con-

vergence.

However, when adopting hard negative sampling strategies such

as DNS for negative selection, the ĜD8 9 of triplet (D, 8, 9) is typically
small, and items 9 yielding smaller values are more likely to be

false negatives, as discussed in Section 3.1. In this case, the logis-

tic sigmoid function in BPR loss is inappropriate because it easily

generates a large Δf (ĜD8 9 ) for false negatives and misleading the

parameter updating.

The ProposedMethod. The proposed framework is shown in Al-

gorithm 1. To alleviate the negative effects of false negatives on

model learning, we propose Hard-BPR, an enhanced Bayesian Per-

sonalized Ranking. This is achieved by substituting f (·) with 6(·)
for the estimation of individual preference probability. The func-

tion 6(·) is a transformation of f (·) and its mathematical expres-

sion is as below:

6(G) = 1

1 + 0 [f (2G + 1) + 0], (9)

where 0,1 and 2 are constant coefficients with 0 ≥ 0 and 2 > 0.

The Hard-BPR loss is defined as:

LHard-BPR = −
∑

(D,8 ) ∈S
9∼5DNS

ln6(ĜD8 9 ). (10)

Here 9 ∼ 5DNS represents that item 9 is sampled as a negative

by hard negative sampling strategy DNS. The Hard-BPR loss pro-

posed in this study is an exact estimator of OPAUC when equipped

withDNS, because− ln6(·) (0 ≥ 0, 2 > 0) is a convex, differentiable

and monotonically decreasing function, satisfying the sufficient

condition to be consistent for OPAUC maximization according to

works [10, 32]. OPAUC denotes the partial area under the ROC

curve, wherein the false positive rate (FPR) is constrained within

the range [0, V] (0 < V ≤ 1). According to Shi et al. [32], optimiz-

ing OPAUC can lead to improved Top- recommendation perfor-

mance when the parameter V tuned appropriately. This optimiza-

tion strategy allows for emphasizing the ranking of top-ranked

items instead of the whole ranking list.

For the purpose of model optimization under SGD, the gradient

of Hard-BPR loss is calculated as:

mLHard-BPR
m\

= −
∑

(D,8 ) ∈S
9∼5DNS

Δ6 (ĜD8 9 )
m
(
ĜD8 9

)
m\

,

with Δ6 (ĜD8 9 ) =
2f (2ĜD8 9 + 1)(1 − f (2ĜD8 9 + 1))

f (2ĜD8 9 + 1) + 0
.

(11)

Properties. The coefficient 0 in 6(·) is the most critical coefficient,

which is essential for converting the magnitude gradient function

from a monotonically decreasing pattern to unimodal symmetry,

as illustrated in Figure 1(a). Δ6 (·) is bell-shaped under the con-

dition 0 > 0. Additionally, the coefficients 1 and 2 are for Δ6 (·)
translation and stretching. The function Δ6 (·) derived from our

new individual preference probability estimator 6(·) has following
properties:

• The limit of Δ6 (G) as G approaches either positive or nega-

tive infinity is equal to 0.

• Δ6 (G) is unimodal and symmetric with respect to the maxi-

mum point located at G (see Appendix for more details).

• Δ6 (G)’s maximum point Gmax and maximum value Δ6,max

are calculated as:

Gmax =

−1 + ln(
√
0√
1+0 )

2
, (12)

Δ6,max =

√
1 + 0 2

2
√
0 + 203/2 +

√
1 + 0 + 20

√
1 + 0

. (13)

Mechanism Analysis. We analyze the resilience of Hard-BPR to

false negatives in hard negative sampling. We illustrate this by

comparing the functions f (·) and 6(·) in Figure 1(a), along with

their respective gradient magnitudes Δf (·) andΔ6 (·) in Figure 1(b).
For 6(·), we set parameters 0,1 and 2 to 1,−1 and 0.8.

The foundational principle of designing 6(·) is to moderate the

weight assigned to excessively hard negatives in model learning.

Specifically, if a negative item 9 chosen by DNS for the user-item

pair (D, 8) is excessively hard (characterized by a very small ĜD8 9 ),

we avoid modeling % (8 >D 9 |Θ) as nearly zero, as is done with f (·).
Instead, using 6(·), we assign a small positive value to % (8 >D 9 |Θ).
In this way, the gradient magnitude Δ6 (D, 8, 9) is reduced to a rel-

atively small value, thereby decreasing its influence on model up-

dating in cases where the hard negative instance is a false negative.

The Hard-BPR loss allows more flexibility than the BPR loss.

The gradient magnitude curve derived from 6(·) is single-peaked,
by adjusting the constants 0,1 and 2 to change the position of peak

value, the model can focus on learning from a specific hardness

level of selected negatives. Note that setting 0,1 and 2 to (0, 0, 1)
reduces the Hard-BPR loss to the original BPR loss.

Algorithm 1 Optimizing models with Hard-BPR

Input: Training set S = {(D, 8)}, the scoring function 5 (·|Θ) with
learnable parameter Θ, the size of negative candidate pool � ,

constant coefficients 0,1 and 2 in the Hard-BPR loss.

1: for C = 1, 2, · · · ,) do

2: Sample a mini-batch S10C2ℎ ∈ S
3: for each (D, 8) ∈ S10C2ℎ do

4: Randomly sample � items from I \ ID to form the

5: negative candidate pool P for user D;

6: Choose the hard negative item 9 by DNS;

7: Update LHard-BPR.

8: end for

9: Optimize Θ based on LHard-BPR with SGD algorithm.

10: end for

3.3 Complexity analysis

TimeComplexity.We conduct a time complexity comparison be-

tween the proposed algorithm and a set of state-of-the-art negative

sampling approaches, as outlined in Table 1. The proposedmethod

requires lower time complexity among the considered baselines.
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Table 1: Comparison of the proposed method and baselines, where S is the training set containing user-item interactions, U
is the user set, I is the item set, �1 and �2 denote the negative candidate pool size, ) is the time to compute user-item score

and )& is the sampling time for a proposal distribution in AdaSIR.

Learning Objective Time Complexity Robustness to FN

RNS BPR O( |S|) ) ×
AdvIR adversarial loss O (|S|�1) ) ×
IRGAN adversarial loss O( |S| |I|) ) ×
DNS BPR O (|S|�1) ) ×
SRNS BPR O (|S| (�1 +�2)) ) √

GDNS group-wise ranking loss O
(
|U|

(
2�1) + � 2

1

) ) √

MixGCF BPR O (|S|�1) ) ×
AdaSIR importance sampling BPR O

(
|U|�1

(
)& +)

)
+ |S|�2)

)
×

Ours Hard-BPR O (|S|�1) ) √

Table 2: Statistics of datasets.

Dataset #User #Item #Train #Val #Test Density

Taobao 22,976 29,149 351, 444 43, 930 43, 931 0.00066

Tmall 10,000 14,965 369, 520 46, 189 46, 190 0.00309

Gowalla 29,858 40,981 821, 896 102, 737 102, 737 0.00084

For each training epoch, the proposed method takes a computa-

tional cost of$ ( |S|�) ), where |S| denotes the number of positive

user-item observations in set S, � represents the number of nega-

tive candidates selected for each positive user-item pair, and ) de-

notes the runtime for user-item score computation. The time com-

plexity of the proposed method is the same with DNS, since only

the function for estimating pairwise preferences has beenmodified.

Both DNS and our method stand out as two of the most efficient

algorithms in hard negative mining. In comparison, other methods

such as IRGAN, SRNS, GDNS, and AdaSIR, which design specific

sampling procedures, demand relatively higher computational re-

sources.

Space Complexity. In addition to model parameters, the space

complexity of the proposed method comes from storing negative

candidates for each positive user-item pair, incurring a space com-

plexity of $ ( |S|� ).

4 EXPERIMENTS

In this section, we evaluate the performance of our approach on

three real-world datasets, with MF and LightGCN as the base rec-

ommendationmodels. Additionally,we study the proposedmethod’s

ability to discern false negatives and investigate its behavior under

different parameter settings.

4.1 Experimental Settings

Datasets.Weassess ourmethod on three real-world datasets: Taobao1,

Tmall2 and Gowalla. Taobao and Tmall, sourced from e-commerce

platforms, capture diverse user behaviors such as clicks, cart ad-

ditions, and purchases. To address data sparsity, varied interac-

tion behaviors are considered positive labels in the prediction task.

The 10-core setting is applied by randomly selecting users with a

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=121045

minimum of 10 interaction records. Gowalla consists of check-in

recordswith user locations andwe directly utilize the pre-processed

dataset in work [36] for model performance evaluation. For each

dataset, we construct training, validation, and test sets by sorting

interactions based on timestamps and retaining the latest 10% of

records for testing, with the remaining interactions divided into

an 80/10 ratio for training and validation (see details in Table 2).

Metrics. The main aim of personalized recommendation systems

is to provide a ranked list containing the Top- items with the

highest scores for each user. This study uses two widely-adopted

metrics, Recall@ and NDCG@ , to evaluate the model’s ability

to understand users’ preferences. The work by Shi et al. [32] re-

ports the connection between  in Top- metrics and the size of

the negative candidate pool (� ) in DNS, which suggests that the

lower the  , the larger the � when the training curve reaches its

maximumvalues. To controlmemory usage related to storing nega-

tive candidates, we set to 50 as done in previous works [4, 22, 32].

Baselines. A variety of negative samplers in recommender sys-

tems are chosen as baselines to assess the effectiveness of the pro-

posed method. The selected baselines are detailed as follows:

• RNS [29] selects negative instances by a uniform distribu-

tion, which is widely employed in implicit CF studies.

• AdvIR [27] incorporatesGenerative Adversarial Nets to pro-

duce challenging negative instances, and utilizes virtual ad-

versarial training to enhance model performance.

• IRGAN [34] is also a GAN-based hard negative sampler and

optimizes model parameters through a min-max game be-

tween the generative retrieval network and the discrimina-

tive network.

• DNS [38] first randomly samples a set of negative candi-

dates for each positive instance, then chooses the highest-

scored candidate as the hard negative sample.

• SRNS [6] considers the variance of item scores during train-

ing to avoid false negatives in the hard sampling procedure.

• GDNS [40] employs a gain-ware sampler to reduce the prob-

ability of introducing false negatives during hard negative

sampling.

https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
https://tianchi.aliyun.com/dataset/dataDetail?dataId=121045
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• MixGCF [15] introduces hop-mixing and positive mixing

techniques to synthesized hard negative samples for GNN-

based recommender models.

• AdaSIR [4] reuses informative negatives and adopts impor-

tance resampling to approximate the softmax distribution

for effectively selecting hard negatives. AdaSIR(U) and AdaSIR(P)

represent sampling negative candidate using a uniform dis-

tribution and a popularity distribution respectively.

ImplementationDetails.Weperformexperiments using PyTorch

on a single Linux server featuring an AMD EPYC 7543 processor,

128GB RAM, and anNVIDIA GeForce RTX 4090GPU. Adam [16] is

employed as the optimizer, and a fixed batch size of 2048 is utilized

across all experiments. Without loss of generality, our underly-

ing recommendation models includematrix factorization [18] (MF)

and LightGCN [12], where LightGCN is a state-of-the-art GNN-

based framework. For the proposed method, we first conduct grid

search to determine optimal hyperparameters forDNS. Subsequently,

Bayesian optimization is employed to explore coefficients 0,1, 2 in

LHard−BPR. User and item embedding dimensions are tuned from

the set {8, 16, 32, 64}, while the negative candidate pool size for

our method is searched in {8, 16, 32, 64}. !2 regularization is ad-

justed within {0, 0.1, 0.01, 0.001, 0.0001}, and the learning rate is

explored within {0.0005, 0.001, 0.005, 0.01}. Coefficients 0,1 and 2

in LHard-BPR are uniformly searched in the ranges [0, 10], [−10, 10],
and (0, 5], respectively. Hyperparameters are tuned to optimize Re-

call@50 on the validation set, and final results are reported on the

test set. To ensure a fair comparison, all baselines are finely tunned

based on the best Recall@50 achieved on the validation set. Addi-

tionally, two GAN-based samplers are trained from a uniformly

pretrained model.

4.2 Performance comparison

To compare different hard mining methods, we conduct experi-

ments on Taobao, Tmall and Gowalla, employing MF or LightGCN

as the base recommendation model, respectively. The results, pre-

sented in Table 3, yield the following observations:

• Across both recommendation models, MF and LightGCN,

our method consistently outperforms all baselines on the

three datasets in terms of Recall@50 and NDCG@50. This

highlights the effectiveness of the proposed Hard-BPR loss

in a hard negative sampling scenario. Besides, DNS acts as a

competitive approach, achieving a top performance in two

out of six comparisons among baselines.

• The average relative improvement of our method over the

best baseline under MF is 7.40% for NDCG@50, surpassing

the improvement under LightGCN, which is 3.07%. This dif-

ference arises becauseHard-BPR facilitatesMF to learnmore

fine-grained features, thereby unleashing the predictive po-

tential inherent in this simple model.

Furthermore, we present the training curves of RNS, DNS, and

our method under MF and LightGCN, shown in Figure 2. The key

findings are outlined as follows:

• Compared to RNS, the hard negative sampling method DNS

converges (or reaches its maximum value if overfitting oc-

curs) faster and achieves a higher Recall@50. However, the

application of DNS in recommender systems may lead to

overfitting, especially when LightGCN serves as the under-

lying model. As studied in previous works [31], overfitting

may result from the inclusion of false negatives during hard

negative sampling. In addition, overfitting is more severe

under LightGCN compared to MF. This is because the op-

timal hyperparameter !2 regularization under MF is larger

than the one under LightGCN in experiments, thus prevent-

ing overfitting to some extent.

• By replacing f (·) with 6(·), overfitting is effectively elimi-

nated as expected. It verifies that Hard-BPR exhibits the ca-

pacity to mitigate the influence of false negatives in hard

mining process. Our method is thereby demonstrated as a

robust hard negative sampling method in implicit CF.

• The training efficiency of our method is comparable to that

of DNS, both of which exhibit the lowest time complexity

among baselines as shown in Table 1. Notably, when MF

acts as the base recommendation model, our method even

converges faster than DNS. This suggests our method’s ef-

ficiency, which facilitates its deployment in realistic scenar-

ios.

4.3 False negative analysis

False negatives generally indicate a user’s potential preferences.

Accurately identifying false negatives is critical for recommend-

ing items that the user would have liked or interacted with. In the

preceding section, we validate that Hard-BPR effectively prevents

the model from being misled by incorrect information resulting

from false negatives. In this section, we evaluate the recommender

system’s capability to distinguish false negatives from true neg-

atives. Experiments on Taobao employ MF and LightGCN as the

base models, comparing three negative sampling methods: RNS,

DNS and our method. For each user in Taobao, we treat their in-

teracted items in the test set as false negatives in model training

process and the remaining non-interacted items as true negatives.

Models are saved at the point of achieving the best validation Re-

call@50. For each user, we compute his (or her) matching scores

with true negative instances (yellow) and false negative instances

(blue), plotting their distributions in Figure 3. To clearly manifest

the discriminative capability of three negative sampling methods,

we apply Gaussian kernel density estimation to estimate the proba-

bility distributions of true negative scores and false negative scores.

We then calculate the Kullback-Leibler (KL) divergence between

these two probability distributions, as presented in Table 4.

We find that the KLdivergence under LightGCNaverages 1.44278

across RNS, DNS and ourmethod, surpassing that underMF,which

is 1.36869. This observation indicates the superior ability of Light-

GCN to distinguish false negatives compared to MF. With MF as

the base model, our method exhibits a 6.20% relative improvement

in KL divergence over DNS, while with LightGCN, our method

achieves a relative improvement of 10.79% over DNS. It verifies

the capacity of Hard-BPR in false negative identification during

hard mining process. Notably, when employing LightGCN, the KL

divergence between the two distributions is merely 1.35639 under

DNS, even smaller than that under RNS (1.46923). This discrepancy

may be attributed to the adverse impact of false negatives onmodel
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Table 3: Performance comparison. The best results are presented in bold and the second best results are underlined. The

relative improvements of the best results compared to the second best results are listed in the last row.

MF LightGCN

Taobao Tmall Gowalla Taobao Tmall Gowalla

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

RNS 0.0751 0.0268 0.0692 0.0333 0.2230 0.1418 0.1041 0.0378 0.0895 0.0476 0.2712 0.1804

AdvIR 0.0911 0.0327 0.0792 0.0426 0.2603 0.1620 0.1052 0.0382 0.0917 0.0487 0.2710 0.1801

IRGAN 0.0859 0.0314 0.0771 0.0415 0.2421 0.1508 0.1049 0.0380 0.0904 0.0480 0.2799 0.1847

DNS 0.0999 0.0360 0.0688 0.0320 0.2490 0.1582 0.1107 0.0410 0.0970 0.0504 0.2848 0.1878

SRNS 0.0968 0.0349 0.0801 0.0433 0.2588 0.1620 0.1086 0.0392 0.0967 0.0509 0.2819 0.1866

GDNS 0.0970 0.0352 0.0816 0.0440 0.2611 0.1638 0.1089 0.0393 0.0975 0.0516 0.2835 0.1865

MixGCF - - - - - - 0.1110 0.0403 0.0963 0.0508 0.2840 0.1872

AdaSIR(U) 0.0958 0.0336 0.0800 0.0429 0.2711 0.1712 0.1100 0.0401 0.1009 0.0530 0.2816 0.1857

AdaSIR(P) 0.0955 0.0333 0.0810 0.0438 0.2702 0.1700 0.1080 0.0389 0.1016 0.0538 0.2808 0.1853

Ours 0.1055 0.0386 0.0876 0.0480 0.2825 0.1813 0.1150 0.0419 0.1054 0.0556 0.2976 0.1947

5.61% 7.22% 7.35% 9.09% 4.21% 5.90% 3.60% 2.20% 3.74% 3.35% 4.49% 3.67%
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Figure 2: The training curves of RNS, DNS and the proposed method on the test sets of three datasets. (a)(b)(c) With MF as the

base model. (d)(e)(f)With LightGCN as the base model.

Table 4: The Kullback-Leibler divergence between the distri-

butions of predicted true negative scores and predicted false

negative scores.

MF LightGCN

RNS DNS Ours RNS DNS Ours

KL divergence 1.32216 1.35012 1.43378 1.46923 1.35639 1.50273

updating with DNS under LightGCN, which not only gives rise to

severe overfitting as shown in Figure 2(d)-(f) but also diminishes

the model’s discriminative ability for false negatives.

4.4 Parameter study

While the implementation of our method alleviates the need for

tunning sophisticated sampling process, there remains a necessity

to finely adjust coefficients 0,1 and 2 (0 ∈ [0,+∞), 1 ∈ (−∞,+∞),
and 2 ∈ (0,+∞)) in Hard-BPR loss. In this section, we study the

effect of these three coefficients on model performance to provide

insights for fine-tuning the model. Experiment results on Tmall

under MF are presented in Figure 4(a), Figure 4(b) and Figure 4(c).
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Figure 3: The distributions of predicted true negative scores and predicted false negative scores, employing different base

recommendation models and different negative sampling methods (RNS, DNS and the proposed method).

The left column of Figures shows the curves of Δ6 (·)/2 under var-
ious settings (for gradient magnitude, dividing by a constant has

no influence on model training under Adam).

In Figure 4(a), we set 0 and 2 as 1 and vary the 1 value to in-

vestigate the effect of Δ6 curve’s position on model performance.

We observe that the model performs optimally when 1 is 0 or 0.9,

while suboptimal performance is observed when the Δ6 curve is

positioned towards the far left or far right. Hence, ensuring the Δ6
curve concentrated within an appropriate user-item score range

is critical for effective model training. In addition, compared to

DNS method, our method with1 as 0.9 exhibits faster convergence,

higher Recall@50 and mitigated overfitting.

Both 1 and 2 affect the position of Δ6 curve along x-axis, while

2 also controls the curve’s shape. In Figure 4(b), we fix the coeffi-

cient 0 to 0.1, and vary the curve from a sharp to a broader shape

by reducing the coefficient 2 . Meantime, we correspondingly adjust

the 1 to maintain the maximum point Gmax of curves as the same.

We observe that a sharp Δ6 curve results in a bad performance in

model effectiveness and efficiency, because it places excessive im-

portance on a small range of ĜD8 9 around Gmax for model learning.

It leads to information loss from other hard negatives. Conversely,

when the curve becomes boarder under a smaller 2 , more hard neg-

atives can participate in parameter updating, thereby enhancing

learning speed and model performance. Notably, excessive exten-

sion of the curve tails can also lead to performance deterioration.

For example, at a 2 value of 0.4 or 0.24, the training curve initially

peaks and then declines.

Figure 4(c) demonstrates that under various 0 settings, similar

Δ6 curves can be obtained by adjusting 1 and 2 , leading to com-

parable performance. The coefficient 0 is critical to make the Δ6

curve bell-shaped, but it is not hard to tune. In practice, we can

manually set 0 to a small value such as 1, while fine-tuning is pri-

marily required for 1 and 2 .

5 RELATED WORK

Negative sampling approaches in implicit collaborative filtering

are developed into several branches in recent years. The simplest

way is to follow a static distribution such as uniformdistribution [29]

or popularity-based distribution [5], however, whichmay encounter

challenges such as gradient vanishing or fail to adapt to dynamic

changes in predicted user preferences. To address these limitations

and enhance the quality of sampled negatives, various hard neg-

ative sampling strategies, including GAN-based samplers (e.g., IR-

GAN [34], AdvIR [27]), DNS and its extensions, and softmax-based

sampling approaches, have been proposed. GAN-based samplers

leverage GANs to iteratively generate informative negative instances.

DNS [38], a simple yet effective framework, involves random sam-

pling of negative candidates for each user and subsequent selec-

tion of the highest-scored candidate for model updating. Exten-

sions of DNS, such as MixGCF [15], SRNS [6], GDNS [40], and

DNS(", # ) [32], have further contributed to the evolution of hard

negative sampling strategies. Softmax-based samplers, such as AdaSIR [4]

or Softmax-v(d, # ) [32], assign resampling weights to each nega-

tive candidate. This strategy aims to align the negative sampling

probabilitywith the ideal softmax distribution, where greater weights
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Figure 4: Parameter study of the proposed method. Experi-

ments on Tmall underMF. The left column: curves ofΔ6 (·)/2.
The right column: training curves of our method.

are typically allocated to negative samples that are more informa-

tive. Moreover, Shi et al. [32] proves that the BPR loss combined

with DNS is an exact estimator of OPAUC, and they extend DNS to

DNS(", # ) to suit various Top-K metrics. In our study, without ap-

plying important resampling, we directly modify the loss function

to ensure the contribution of hard negatives on parameter updat-

ing.

For hard negative sampling, the inadvertent inclusion of false

negatives poses a challenge on effective model learning. Cai et al.

[2] formulates the false negative problem as learning from labeled

data with inherent bias, and adopts a Coupled Estimation Tech-

nique to correct the bias. To avoid false negatives, SRNS develops

a scored-based and variance-based sampling strategy, and GDNS

proposes a gain-aware sampler to distinguish true hard negatives.

However, both SRNS and GDNS center their efforts on crafting so-

phisticated sampling progress to avoid the inclusion of false nega-

tives, lacking a desired level of elegance. The investigation of over-

fitting related to false negatives in the study [31] provides valuable

insights into our research.

6 CONCLUSION

This paper aims to address the false negative problem of hard neg-

ative sampling in implicit collaborative filtering. Inspired by the

equivalence theory, our approach diverges from focusing on the

sampling process design. Instead, we put efforts on loss function

crafting, proposing an enhanced BPR objective, Hard-BPR, specifi-

cally tailored for dynamic hard negative sampling. Employing DNS

under Hard-BPR is simple and efficient enough for real-world de-

ployments. This approach not only demonstrates resilience to false

negatives during hard sampling, but also exhibits a notable advan-

tage in terms of time complexity. Moreover, equipping DNS with

Hard-BPR serves as an exact estimator of OPAUC. Extensive exper-

iments are conducted to assess the proposed method’s robustness

and effectiveness, and the parameter study is conducted to provide

guidance for optimal tunning.

A APPENDIX

A.1 Derication of Δ6 (·) properties.
The fist derivative of Δ6 (G) is calculated as:

Δ
′
6 (G) =

22
(
1 − 1

4−1−2G+1

)
4−1−2G(

4−1−2G + 1
)2 (

0 + 1
4−1−2G+1

) − 224−1−2G(
4−1−2G + 1

)3 (
0 + 1

4−1−2G+1

)

−
224−1−2G

(
1 − 1

4−1−2G+1

)
(
4−1−2G + 1

)3 (
0 + 1

4−1−2G+1

)2

= −
2241+2G

(
0
(
42(1+2G ) − 1

)
+ 42(1+2G )

)
(
41+2G + 1

)2 (
041+2G + 0 + 41+2G

)2
(14)

By solving Δ
′
6 (G) = 0, the critical point of Δ6 (G) is calculated as

Gc =

(
−1 + ln(

√
0√
1+0 )

)
/2 . Since the graph of Δ6 (G) = 0 (0 > 0) is

unimodal, Gc is the maximum point, termed as Gmax.
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To prove the symmetry about the maximum point Gmax:

Δ6 (G + Gmax) =
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Δ6 (−G + Gmax) =
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Hence, we have Δ6 (G + Gmax) = Δ6 (−G + Gmax).
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