
Influence of disorder at Insulator-Metal interface on spin transport

Mahsa Seyed Heydari, Wolfgang Belzig, and Niklas Rohling
Department of Physics, University of Konstanz, Konstanz, Germany

(Dated: March 28th 2024)

Motivated by experimental work showing enhancement of spin transport between Yttrium Iron
Garnet and Platinum by a thin antiferromagnetic insulator between them, we consider spin trans-
port through the interface of a non-magnetic metal and compensated antiferromagnetically ordered
insulator and focus on the significance of the interface itself. The spin transport is carried by spin-
polarized electrons in the metal and by magnons in the insulator. We compute the spin current in
the presence of a spin accumulation in the metal, cause by the spin Hall effect, and a thermal gradi-
ent using Fermi’s Golden Rule in the presence of interfacial disorder. For a perfectly clean interface,
the in-plane momentum is conserved by the electron-magnon scattering events that govern the spin
transport through the interface. We calculate how disorder-induced broadening of scattering matrix
elements with respect to the in-plane momentum influences the spin current. As a general result, we
observe that for many experimental setups, specifically for high temperatures, one should expect a
rather small effect of interface disorder on the measured spin current, while for small temperatures
there is a significant reduction of a spin current with increasing disorder.

I. INTRODUCTION

Spintronics based on antiferromagnets (AFM) is a ris-
ing field due to its possible applications related to cer-
tain advantages compared to ferromagnetic spintronics.
Specifically, the antiferromagnetic order is to large ex-
tends unaffected by magnetic fields and the high fre-
quencies of its elementary excitations [1, 2]. For spin
transport between metals and magnetically ordered insu-
lators, there have been exciting results for the spin cur-
rent through a thin antiferromagnetic insulator. Namely,
in trilayer systems consisting of a heavy metal, the thin
antiferromagnetic layer, and an insulating ferromagnetic
(FM) a spin-current enhancement was observed com-
pared to the metal-FM bilayer system [3–5]. In general,
the spin current in these systems can be generated by
(i) an electric current in the heavy metal parallel to the
interface via the spin Hall effect effectively transferring
angular momentum to the magnetically ordered insulator
(spin transfer torque), by (ii) a microwave field exciting
spin waves in the magnetically ordered insulator (spin
pumping), or by (iii) a thermal gradient (spin Seebeck
effect). Independent of its generation, the nature of the
spin current changes at the interface between the metal
and the insulator from spin polarized electrons in the
metal to spin waves in the insulator.

The spin transport through the interface between a
non-magnetic metal and a ferromagnetically, antiferro-
magnetically or ferrimagnetically ordered insulator has
been theoretically described in multiple papers [6–13].
The theoretical descriptions include scattering theory
with classical equations of motion for the sublattice mag-
netization [8], Fermi’s Golden Rule treating the interface
exchange coupling as a perturbation [6, 10], and Green’s
functions formalism applied to both, magnons and elec-
trons [13].

We note that the specifications of the interface be-
tween the metal and the antiferromagnetic insulator can
be of crucial importance as they might be responsible

for the sample dependence observed in experiments e.g.
in Ref. [3]. Furthermore, the sign of the spin current be-
tween an antiferromagnetic insulator with two sublattices
with opposite spin orientation depends on which of the
sublattices couples more strongly to the metal [14, 15].
Here we focus on the influence of interface disorder on

spin-transport. So far in the theoretical description, ei-
ther the clean limit with conservation of the components
of the quasi momentum parallel to the interface was con-
sidered [10, 14] or the dirty limit where the scattering
amplitudes are considered to be independent of the elec-
tron and magnon momenta [13]. We present a general ap-
proach to investigate the influence of interface-roughness
on the spin transport.
The remainder of the paper is organized as follows. In

Sec. II, we introduce the model for the metal, the an-
tiferromagnetically ordered insulator and its exitations,
i.e., magnons, and the interaction. Then, in Sec. III,
we compute the spin current caused by a spin-Hall-
effect-induced spin accumulation under the influence of
roughness-induced broadening of the scattering ampli-
tudes. We follow the formalism using Fermi’s Golden
Rule from Refs. [6, 10, 16]. We present our numerical
results in Sec. IV finding most notably that the interface
disorder leads to a reduction of the spin current most
prominently for small temperatures. Finally, we conclude
in Sec. V.

II. MODEL

The system under investigation is a bilayer consisting
of a magnetically ordered insulator adjoining a nonmag-
netic metal including a metal-insulator interface. The
lattice structure of the normal metal and the antiferro-
magnetic insulator is identical and cubic and the easy
axis of the antiferromagnet is in z direction considering
the anisotropy term in the Hamiltonian. As a conse-
quence, the spins are pointing in ±z direction in the
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FIG. 1. Schematic representation of the lattice structure of
the system including metal, interface and compensated AFM
insulator.

magnetically ordered ground state. The x direction is
normal to the interface. At the interface, there can be a
spin accumulation on the metallic side cause by an elec-
tric current parallel to the interface via the spin Hall
effect. In metal-based spintronics, a spin accumulation is
synonymous with a chemical potential difference between
spin up and down bands.

In order to have spin current through the interface,
there are different methods, such as the spin Seebeck ef-
fect [17, 18] in which TM is magnon temperature and
TN is normal metal temperature, where TN ̸= TM , spin
transfer torque [19] where ∆µ ̸= 0 and spin pumping
where spin-waves in the insulator are excited by a mi-
crowave field [20]. Without considering external pertur-
bations, the Hamiltonian includes three parts

H = HN +HM +HI . (1)

The first term describes electrons in the normal metal
by using a tight-binding Hamiltonian that describes the
energy of an electron in a simple cubic lattice by taking
into account the hopping of electrons between neighbor-
ing lattice sites,

HN = −t
∑
⟨i,j⟩

∑
σ=↑,↓

(
c†i,σcj,σ + c†j,σci,σ

)
. (2)

Here, c†i,σ and ci,σ are the creation and annihilation op-
erators for an electron at site i with spin σ, respec-
tively. The expression ⟨i, j⟩ denotes nearest neighbors.
Including an easy-axis anisotropy term, the antiferromag-
netic Hamiltonian can be described using the Heisenberg
model,

HM = J
∑

⟨i,j⟩|i,j∈AF

Si · Sj −Kz

∑
i

S2
iz. (3)

Here, Si and Sj are the spin operators at lattice sites
i and j, respectively and J is the exchange interaction.
In the second term Kz is the anisotropy constant in z
direction which is preferred direction for the spins to
alignment in their future. Antiferromagnet insulator and
metal are coupled at the interface. Noting that the inter-
action occurs only between the nearest neighbors across

the interface the local exchange interaction between them
is described as

H̃I = JI
∑

⟨i,j⟩|i∈AF,j∈N

Si · c†σjτσσ′cσ′j , (4)

where JI is the exchange interaction between metal and
AFM and τ is a vector of Pauli matrices.
For the purpose of describing spin operators in terms

of bosonic annihilation (creation) operators a(†) and b(†)

the second-order truncated Holstein-Primakoff transfor-
mation,

Sj+ = ℏ
√
2saj , Sj− = ℏ

√
2sa†j , Sjz = ℏ(s− a†jaj),

for the lattice site j being part of sublattice A and

Sj+ = ℏ
√
2sb†j , Sj− = ℏ

√
2sbj , Sjz = ℏ(b†jbj − s)

for the lattice site j being part of sublattice B with
Sj± = Sjx ± iSjy is used. With the assumption that
the contributions from higher-order terms are negligible
as well as the effect of the zeroth-order staggered field at
the interface, we obtain an effective interaction Hamilto-
nian

HI =
JIℏ2

2

∑
⟨i,j⟩|i∈A,j∈N

(
aic

†
↓jc↑j + a†i c

†
↑jc↓j

)
+
JIℏ2

2

∑
⟨i,j⟩|i∈B,j∈N

(
b†i c

†
↓jc↑j + bic

†
↑jc↓j

)
. (5)

A. Scattering amplitude

Next, substituting the delocalized states for magnons
and scattering states for conduction electrons we will
have

HI =
∑
qkk′

[V +
qkk′α

+
q c

†
↓kc↑k + V −

qkk′α
−
q c

†
↑kc↓k] + h.c., (6)

Here, the V ±
qkk′ represent matrix elements while (α±)(†)

denotes the magnon annihilation (creation) operator with
spin ℏ in ∓z direction. We have

V ±
qkk′ =

√
s

2
JI sin(kxa) sin(k

′
xa)uq0F (q,k,k

′) (7)

where uq0 is the amplitude of a magnon state (α±)
at the interface, a is the lattice constant, and sin(kxa)
and sin(k′xa) come from the amplitudes of the electronic
eigenstates of Eq. (2), denoted by cσk, at the interface.
We will use the function F (q,k,k′) in the following to
quantify the roughness of the interface. The electron-
magnon interaction at the interface is described by a
processes in which an electron spin is flipped during scat-
tering and a magnon is either created or annihilated, as
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FIG. 2. Schematic representation of the system and the in-
terfacial electron-magnon scattering. Two types of magnons,
denoted by ±, with opposite angular momentum exist, which
are related by a reflection in the x−y plane. An electron flip-
ping its spin in the scattering from up to down corresponds
to the creation of a − magnon (gray) or the annihilation of a
+ magnon (black) and the other way around for the electron
spin changing from down to up at scattering.

is shown in Fig. 2. By using the following Ansatz the
magnonic eigenstates are determined [10]

α+
q =

∑
i∈A

uq (xi)√
N/2

e−iq∥·ri∥ai −
∑
i∈B

vp (xi)√
N/2

eiq∥·ri∥b†i ,

α−
q =

∑
i∈B

uq (xi)√
N/2

e−iq∥·ri∥bi −
∑
i∈A

vp (xi)√
N/2

eiq∥·ri∥a†i ,

(8)

where we introduced the in-plane momenta q∥ = (qy, qz)

and position r∥ = (y, z). The magnon energy for both
types of magnons, with spin ∓ℏ, is taken in the long-
wavelength limit as

εq =
√

(ℏvq)2 + E2
0 (9)

with v =
√
3ℏJa being the spin-wave velocity and

E0 = ℏ2
√
6JKz is the spin-wave gap including the small

anisotropy. This long-wavelength assumption is justi-
fied since the temperature is assumed smaller than the
Néel temperature, which has the same order of magni-
tude as the exchange energy 2J . With this we can ex-
press the magnon amplitude at the interface in the long-
wavelength limit as [10]

uq0 =

√
3ℏ2J
εq

. (10)

The dispersion relation for the conduction electrons reads

Ek = −2t(cos (kxa) + cos (kya) + cos (kza)) + 6t. (11)

in which 6t is the Fermi energy and electronic states are
used as follows

cσk ∼
∑
j

exp (−ik∥ · rj∥) sin(kx(xj−xI−a))cσj (12)

where xI is the x coordinate of the interfacial metal layer.

III. TRANSPORT RATE

To find the transport rate, we use Fermi’s Golden Rule
[6] which describes the probability of transition a quan-
tum state from an initial to a final state under the in-
fluence of a weak perturbation. Due to the loss of phase
coherence within each subsystem, the overall density ma-
trix describing the insulator ρ̂M and conductor ρ̂N can
be written by a decoupled state as ρ̂tot = ρ̂M ⊗ ρ̂N . In
equilibrium, the magnons follow the Bose-Einstein dis-
tribution and electrons the Fermi-Dirac distribution. By
considering the interaction term the system is taken out
of equilibrium. Since the interaction at the interface is
assumed to be slow compared to thermalization effects so
the system will be in the quasi-equilibrium state. This
asserts

Tr[ρ̂N ĉ
†
σkĉσ′k′ ] = nF (βN (Ek − µσ)) δkk′δσσ′ (13)

Tr[ρ̂M (α̂q)
†α̂±

q′ ] = nB
(
βM (ε±q − µL)

)
δqq′ , (14)

where nF (x) = [exp(x)+1]−1 and nB(x) = [exp(x)−1]−1

are the Fermi-Dirac and Bose-Einstein distributions, re-
spectively, µσ is the chemical potential of the electrons
with spin σ, µL is the magnon chemical quasi poten-
tial [21], which will be set to zero in the remainder of
the paper, βN = (kBTN )−1 and βM = (kBTM )−1 are
the inverse temperatures of the electrons and magnons,
respectively, and kB is the Boltzmann constant. The dif-
ference ∆µ = (µ↑−µ↓)/2 is the spin accumulation in the
metal. It is straightforward to calculate the spin current
(per interfacial area) flowing into the insulator from the
conductor in dependence of temperatures and chemical
potentials.

By considering HI as perturbation term, Fermi’s
Golden Rule provides the transition rate

Ii→f =
2π

ℏ
|⟨ψf |HI |ψi⟩|2δ(Ef − Ei) (15)

such that ψf and ψi are the final and initial state and
Ef and Ei their respective energies of the non-interacting
model. We obtain for the individual magnon branches
the transport rates

I± =
2π

ℏ
|V ±

qkk′ |2
∑
qkk′

[
Tr

{
ρα±

q c
†
↓kc↑k′(α±

q )
†c†↑k′c↓k

}
−Tr

{
ρ(α±

q )
†c†↑k′c↓kα

±
q c

†
↓kc↑k′

}]
δ(Ef−Ei).

(16)

Here, the creation and annihilation of magnons causes
a change in the spin angular momentum of the itiner-
ant electrons. Note that magnon-magnon and electron-
electron interactions in the bulk are only included in so
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far that we assume them to contribute, combined with
coupling to phonons, to the thermalization. This is con-
sistent with the assumption of the magnon number is
not affected by bulk effects. Due to the symmetry of
the Hamiltonian, the total angular momentum and total
number of magnons of each type is conserved. Another
assumption is that the Fermi energy EF and the exchange
energy J are considerably larger than the magnon gap E0

and the spin accumulation ∆µ. Depending on the direc-
tion of the scattered spin, both types of magnons, those
with spin −ℏ and ℏ will be appeared and they will be
affected differently by the polarization of spin accumula-
tion.

A. Current

We are interested in calculating the overall rate transi-
tion of the magnon number I. By starting from Eq. (15)
and summing over all final states to have the probability
of scattering out of the initial state into the final states
we obtain [10]

I± =
2π

ℏ

∫
dε[ε±∆µ] [nB (βN (ε±∆µ))−nB(βMε)]

|V ±
qkk′ |2

∑
qkk′

δ(EF−Ek)δ(ε−εq)δ(εq + Ek−Ek′)

(17)

where ± again indicates two types of magnons that exist
in the AFM. Note that Eq. (17) results from rewriting the
Fermi-Dirac distributions for the electrons [6]. Eq. (17)
is simplified as

I± =
2π

ℏ

∫
dqdkdk′ |V ±

qkk′ |2(εq ±∆µ)δ(EF−Ek)

× [nB (βN (εq ±∆µ))−nB(βMεq)] δ(εq+Ek−Ek′)
(18)

Two cases are investigated here, in the case of clean limit,
there is a conservation of in-plane quasi momentum and
by adding disorder at the interface, the conservation is
broken and the interface is not considered as clean any-
more. We quantify this effect via the function F (q,k,k′)

F (q,k,k′) =

{
δk∥+q∥,k

′
∥

for the clean limit

Bσ(Q) with disorder
(19)

introducing Q = Qyey+Qyez with Qz = qz−kz+k′z and
Qy = qy − ky + k′y. Note that we include only Umklapp

processes in the scattering matrix elements V ±
qkk′ as those

processes are dominating for JI/t≪ 1[10]. The Gaussian
distribution function is used in order to describe the effect
of disorder

Bσ(Q) =
1

2πσ2
exp

(
− Q2

2σ2

)
. (20)

To avoid artefacts from a specific form of the func-
tion Bσ(Q), we also performed the computation with a
Lorentzian distribution function. By using the disper-
sion relation for the conduction electrons in Eq. (11),
the integral over kx is calculated. The system is consid-
ered exactly at half filling and the Fermi energy is 6t.
The spin transport is dominated by electrons at ener-
gies close to the Fermi energy E ≈ EF . Under this as-
sumption one approximation is considered: In the term
δ(ε±q +Ek−Ek′) the magnon energy εq can be disregarded
due to the fact that it is small compare to the Ek. We ob-
tain δ(EF−Ek′) = −1

2t δ(cos k
′
xa+ cos k′ya+ cos k′za). We

see that the approximation introduced above, accounts
for dynamics near the Fermi surface. Now, we solve in-
tegral over k′x. In order to write the equation in more
compressed way, we introduce

f(ky, kz) =
√

1−(cos(kya)+ cos(kza))2

× θ(1− | cos(kya)+ cos(kza)|) (21)

B. Numerical solution for the current integral

By using Eq. (18) and Eq. (20), a seven-fold integral
remains and should be solved. It can be simplified by
rotating the coordinate system by replacing ky and kz
with average and difference as of kz,y and ∆kz,y, in order
to separate dependency of the integration in magnonic
and electronic momentum so new axes are introduced as
follows

k̄z =
k′z + kz

2
, k̄y =

k′y + ky

2
,

∆kz = k′z − kz, ∆ky = k′y − ky,

f(k∥,k
′
∥) = f̄(k̄∥,∆k∥). (22)

We also define

h(q) =
εq ±∆µ

εq
[nB (βN (εq±∆µ))− nB (βMεq)] (23)

and rewrite Eq. (18) as

I± ∼
∫
h(q)f̄(k̄∥,∆k∥)Bσ(q,∆k∥)dk̄∥d(∆k∥)dq. (24)

The function f̄(k̄∥,∆k∥) can be integrated over k̄∥ sepa-
rately since there is no dependency on q and leads us to
define ∫

f̄(k̄∥,∆k∥)dk̄∥ = F̄ (∆k∥). (25)

We solve this integral numerically. Next, we will have a
2D convolution integration as follows

F̃ (q∥) =

∫
Bσ(q∥ −∆k∥)F̄ (∆k∥)d(∆k∥) (26)
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FIG. 3. (a) The function F̃ (qy, qz), defined in Eq. (26), in the clean limit σ = 0. (b) F̃ (qy, qz) for disordered interface at σ = 1
using a Gaussian distribution function.

Then, the remaining integrals are finally

I± ∼
∫
F̃ (q∥)h(q)dq. (27)

In Fig. 3, Eq. (26) is plotted in the case of clean limit,

F̃clean(q∥) = F̄ (q∥) and in the presence of disorder. It

can be seen how broadening of the function F̃ (q∥) hap-
pens from the Gaussian replacing the δ peak in the clean
interface shown in Fig 3(b), also it is visible that as an
effect of disorder the peak goes lower.

IV. SPIN CURRENT IN AFM

In order to evaluate the effect of the spin accumulation,
the Bose-Einstein distribution function and Gaussian dis-
tribution function included in the formula for the current
Eq. (28) have to be considered. From

I±=

∫
εq ±∆µ

εq
[nB (βN (εq±∆µ))−nB (εqβM )] F̃ (q∥)dq,

(28)
we obtain the spin current as Iσ = I− − I+. The index
σ indicates the σ dependence via the function F̃ (q∥).
The result for the ratio of the current with respect to
the current of the clean interface, Iσ=0, as a function of
temperature for various strengths of broadening is shown
in Fig 4. It can be seen that by increasing the disorder,
i.e., increasing values of σ the current passing through
the antiferromagnetic insulator-metal interface decreases.
Specifically, this effect is remarkable for low temperature.
We found similar results for the Lorentzian form of Bσ.

A. Expansion of spin accumulation

In order to check the linearity of the current with re-
spect to ∆µ, the formula for the spin current, Eq. (28), is
expanded in ∆µ and ∆T for ∆µ,∆T ≪ TN . We obtain

Iσ ∼ 2∆µβNn
′
B(εqβN )

(
1 +

∆T

TN

)
(29)

where n′B(x) = dnB(x)/dx. The current at ∆µ → 0 is
linear and, due to compensated interface, the tempera-
ture gradient alone does not cause spin current.

V. CONCLUSIONS

Following experiments highlighting the possibilities of
a thin antiferromagnetic insulators for spintronics appli-
cations [3–5], we focused here on the importance of the
interface properties which naturally appears to be more
significant for thin layers. A spin current is produced
by a spin accumulation in the metal. Our study cov-
ered the case of a clean interface as well as the influence
of disorder via the broadening of the scattering matrix
elements with respect to the in-plane momentum quan-
tified by using Gaussian or Lorentzian distribution. By
increasing the effect of disorder introduced the quantity
as σ, the spin current is in general reduced. Moreover,
we found that at low temperatures, the reduction of the
spin current can be much more prominent. Future work
might cover also influence of disorder on the electronic
states as well as disorder between magnetically ordered
insulators in a trilayer structure.
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FIG. 4. (a) Spin current Iσ=0 as function of temperature in the clean interface limit. (b) Ratio of spin current Iσ with

Gaussian broadening of F̃ (q∥) to Iσ=0 as function of temperature for four strengths of disorder.
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