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Abstract

Domain adaptive object detection aims to adapt detec-
tion models to domains where annotated data is unavail-
able. Existing methods have been proposed to address
the domain gap using the semi-supervised student-teacher
framework. However, a fundamental issue arises from the
class imbalance in the labelled training set, which can re-
sult in inaccurate pseudo-labels. The relationship between
classes, especially where one class is a majority and the
other minority, has a large impact on class bias. We pro-
pose Class-Aware Teacher (CAT) to address the class bias
issue in the domain adaptation setting. In our work, we ap-
proximate the class relationships with our Inter-Class Rela-
tion module (ICRm) and exploit it to reduce the bias within
the model. In this way, we are able to apply augmenta-
tions to highly related classes, both inter- and intra-domain,
to boost the performance of minority classes while having
minimal impact on majority classes. We further reduce the
bias by implementing a class-relation weight to our clas-
sification loss. Experiments conducted on various datasets
and ablation studies show that our method is able to ad-
dress the class bias in the domain adaptation setting. On
the Cityscapes→ Foggy Cityscapes dataset, we attained a
52.5 mAP, a substantial improvement over the 51.2 mAP
achieved by the state-of-the-art method. 1

1. Introduction
Domain adaptive object detection (DAOD) has been pro-
posed as a solution for object detection in domains where
no annotated data is available. This need is due to the
increasing demands of data tied with annotation being
both cost-prohibitive and potentially inaccurate in chal-
lenging domains. DAOD has been progressing with the
introduction of adversarial learning [5, 33, 43, 48], style

1www.github.com/mecarill/cat

Figure 1. Performance of Class-Aware Teacher (CAT). AT [29]
(top left), with Inter-Class Loss, ICL, (top-right), with Class Rela-
tion Augmentation, CRA, (bottom-left), and CAT (bottom-right).
CAT is able to address misclassification and false positives, blue
and red boxes, respectively, in minority classes such as ’train’. The
combination of ICL and CRA further boosts performance by re-
ducing the number of false positives shown as pink boxes.

transfer [50, 51], and notably, student-teacher frameworks
[1, 8, 16, 24, 26, 29, 37, 49]. Yet, these methods ignore
the critical issue of class imbalance, which is a problem in
many real-life scenarios, such as autonomous driving. For
instance, in the Cityscapes dataset [7], the ’car’ class dom-
inates the dataset with 26,963 instances while classes such
as ’train’ contain only 168 instances.

Previous work to mitigate class imbalance in DAOD has
applied class-specific discriminators [48] to align classes
in distinct domains. Additionally, class weights has been
proposed to boost minority categories while aligning do-
main features [3]. Recently, many DAOD methods employ
the student-teacher framework, leading to improved perfor-
mance. Despite their effectiveness, these student-teacher
methods suffer from the class imbalance problem, resulting
in poor performance for minority classes.

In the student-teacher framework, class-specific thresh-
olding, which provides more lenient thresholds for minor-
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ity classes, has been proposed [23, 27, 46]. Yet, this ap-
proach does not address the fundamental class imbalance.
Even with perfectly accurate pseudo-labels guiding the stu-
dent, the model’s bias would at best align with the bi-
ases present in the dataset, rather than providing an unbi-
ased view. Moreover, inter-class dynamics play a crucial
role in addressing class imbalance, especially when minor-
ity classes share high similarities with majority classes, in-
creasing the likelihood of misclassification.

To address these challenges, in this paper, we introduce
our Class-Aware Teacher (CAT), specifically designed to
tackle class imbalance in the DAOD setting. CAT imple-
ments an Inter-Class Relation module (ICRm) that approx-
imates the model’s existing class biases as well as inter-
class dynamics. With the knowledge of these biases, CAT
applies Class-Relation Augmentation (CRA) to the train-
ing images. CRA increases the representation of minor-
ity classes by blending them with highly similar majority
classes at the instance-level. To aid in this augmentation,
a Cropbank [46] is used to store a collection of cropped in-
stances. Furthermore, this augmentation is not just confined
to the source domain but is also applied across domains.
By allowing cross-domain augmentation, we are able to ad-
dress the domain gap more holistically. To further address
the inter-class bias, we propose an Inter-Class Loss (ICL).
ICL utilises the insights from the ICRm to prioritise the
model’s attention towards minority classes. This priority
is particularly focused on cases where minority classes are
prone to being misclassified as majority classes.

By integrating these methods, our results indicate an im-
provement in the accuracy of minority class predictions,
with a quantifiable increase in performance on benchmarks
such as Cityscapes→ Foggy Cityscapes by +1.3 mAP. Fig-
ure 1 demonstrates the performance of our method. We
summarise the contributions of this paper as follows:
• We propose our Class-Aware Teacher (CAT) model, sup-

ported by our inter-class relation module (ICRm), which
is able to map the model’s existing class biases.

• We present Class-Relation Augmentation which empha-
sises augmentation between related classes across do-
mains, coupled with Inter-Class Loss to further prioritise
the performance of minority classes.

• Thorough experimental analysis that confirms the capa-
bilities of CAT. Our experiments demonstrate significant
improvements in performance compared with the state-
of-the-art methods in DAOD benchmarks.

2. Previous Work
UDA for Object Detection Unsupervised Domain Adap-
tation (UDA) is designed to adapt a model trained on a la-
belled source domain to an unlabelled target domain. In ob-
ject detection tasks, methods like adversarial training cou-
pled with domain classifiers [5, 33, 43, 48] are prevalent

for cultivating domain-invariant image feature representa-
tions. Other strategies, such as image-to-image translation,
use generative models [50, 51] or frequency-based meth-
ods [44] to bridge the gap between domains. Recent ap-
proaches have applied the mean-teacher (MT) framework
[1, 8, 16, 24, 26, 29, 37], initially conceived for semi-
supervised learning, to UDA challenges. For instance,
the UMT [8] leverages CycleGAN-generated images to
train the student-teacher model, aiming to diminish domain
bias. AT [29] employs strong-weak image augmentation,
intentionally degrading the student’s input compared to the
teacher’s, and incorporates adversarial training to further re-
duce the domain gap. 2PCNet [24] takes a two-stage ap-
proach to provide more diverse pseudo-labels with domain
specific augmentation. Despite significant improvements
over their predecessors, these methods often overlook the
class imbalance issue prevalent in benchmark datasets. This
oversight can lead to suboptimal performance on minority
classes, some of which may appear up to 20 times less fre-
quently than majority classes [7].

Class-Imbalanced Object Detection The issue of imbal-
ance in object detection largely stems from an overrepre-
sentation of background over foreground classes in predic-
tions [31]. Our research, however, addresses the imbalance
among foreground classes themselves, which often suffer
from unequal frequency within datasets. A challenge here is
the risk of overfitting to minority classes, particularly when
their instances are sparse [14]. Over-sampling of minority
classes, a strategy borrowed from classification tasks, has
been adapted for object detection as well [46]. In student-
teacher frameworks, a static hard threshold for pseudo-
label generation has evolved into a dynamic, class-specific
threshold to mitigate teacher bias [23, 27]. Although this
approach can enhance the quality of pseudo-labels, it does
not necessarily balance the sample distribution between ma-
jority and minority classes. In the DAOD, methods such as
class-specific discriminators [48] and weighted losses [3]
have been proposed to address class imbalance alongside
domain adaptation. A critical aspect that remains underex-
plored is the inter-class relationship, particularly between
majority and minority classes with similar features. In this
paper, we aim to explore inter-class dynamics to effectively
tackle class imbalance.

3. Preliminaries
Problem Definition In this paper, we propose a method
for class balanced domain adaptive object detection, em-
ploying a labelled source dataset Ds = {Is;Ys} and an un-
labelled target dataset Dt = {It}. Is and Ys = {bs; cs}
denote the images and their corresponding ground-truth la-
bels, which include bounding box and class information,
indicated as bs and cs, respectively.



Figure 2. (a) Class-Aware Teacher (CAT) consists of: a student-teacher network; Inter-Class Relation module (ICRm), which estimates
inter-class biases; Class-Relation Augmentation, which augments images to reduce the inter-class biases by mixing the cropped instances of
related classes; and Inter-Class Loss, which emphasises the loss on highly misclassified minority classes. (b) Class-Relation Augmentation
demonstrated on majority (Car) and minority (Bus) classes.

Mean Teacher We utilise the mean-teacher framework,
comprising of a student and teacher network that shares
identical architectures and network parameters. The
teacher’s network parameters, denoted as θt, are not up-
dated through backpropagation but are instead updated us-
ing the Exponential Moving Average (EMA) of the stu-
dent’s parameters θs, following:

θt ← αθt + (1− α)θs, (1)

where α is the decay rate that controls the update momen-
tum.

The teacher network generates pseudo-labels , Yt =
{bt, ct} from weakly augmented unlabelled images. These
pseudo-labels are utilised by the student network to calcu-
late the unsupervised loss in conjunction with the strongly
augmented inputs. The student’s inputs are intentionally de-
graded compared to the teacher’s inputs to challenge the stu-
dent network further. The supervised loss is consistent with
the Faster R-CNN framework [32], while the unsupervised
loss is formulated as:

Lunsup = Lrpn
obj(It, bt) + L

roi
cls(It, bt, ct). (2)

notably excluding the regression losses in the unsupervised
context. We implement a hard threshold, τ , on the classi-
fication scores generated by the teacher to ensure that only
pseudo-labels with high confidence are utilised by the stu-
dent network, thereby encouraging more reliable learning

outcomes. Following [29], a discriminator is added to en-
courage domain invariant feature representations with an as-
sociated loss, Ldis.

4. Proposed Method

Our method, Class-Aware Teacher (CAT), as depicted in
Figure 2.a, builds on the mean-teacher framework. Cen-
tral to CAT is our Inter-Class Relation module (ICRm), de-
signed to quantify the class biases inherent in the model.
Unlike traditional approaches that address class bias in a
broad sense, ICRm maps the dynamic relationships between
classes. It particularly focuses on minority classes that
are disproportionately misclassified as dominant majority
classes. This mapping is achieved by constructing a con-
fusion matrix for each batch, which is normalised against
the ground truth, allowing for real-time bias estimation. A
global matrix, updated continually with batch-level data,
serves as a robust representation of the model’s class bi-
ases. The ICRm is integral to our methodology, under-
pinning two components: the Class-Relation Augmentation
and the Inter-Class Loss.

Class-Relation Augmentation addresses class imbalance
at the image-level. Minority classes that share a high sim-
ilarity to majority classes in an image are identified using
ICRm. MixUp [47], which has been shown to address the
imbalanced class problem [6, 11], is then used to merge the
related minority and majority classes thus increasing the



representation of these minority classes. Our process not
only boosts the number of minority class samples but also
encourages the model to distinguish between closely asso-
ciated classes, as illustrated in Figure 2.b.

Additionally, ICRm informs the distribution of weights
within our Inter-Class Loss. This weighted loss function
emphasises the loss on minority classes, especially those
frequently mislabelled as majority classes. By doing so,
we provide a counterbalance to the model’s learned biases,
nudging it towards a more balanced classification perfor-
mance.

4.1. Inter-Class Relation module

Prior research addressing class imbalance within domain
adaptation [17, 21, 36] has significantly advanced the per-
formance on imbalanced classes. However, these methods
often overlook the inter-class relationships and their impact
on class imbalance. Our experimental observations sug-
gest that the likelihood of misclassification between minor-
ity and majority classes is heavily influenced by their simi-
larity. For instance, minority vehicle classes are more prone
to be misclassified as ’car’, a majority class, rather than as
’person’, another majority class, due to their inherent re-
semblance.

Our approach aims to leverage these observed relation-
ships through the Inter-Class Relation module (ICRm). Dis-
tinct from general class bias, inter-class dynamics cannot be
directly inferred from the dataset but must be extrapolated
from the model during training. We achieve this by gener-
ating a confusion matrix at each training batch that cross-
references the ground-truth labels with the model’s predic-
tions. This matrix is normalised with respect to the ground
truth to estimate the bias between classes.

Subsequently, we employ EMA to iteratively update a
global matrix, which represents a more stable and compre-
hensive approximation of the model’s class biases. The
EMA’s utility extends beyond smoothing; it removes the
need for each class’s presence in every batch, simplify-
ing the training process. The process for constructing this
matrix is outlined in Algorithm 1. The ICRm is formu-
lated separately for both source images, referencing actual
ground-truth labels, and target images, utilising pseudo-
labels to mirror the ground-truth.

4.2. Class-Relation Augmentation

In classification task, oversampling is a common technique
to counter class imbalance by increasing the presence of mi-
nority images. However, this approach presents challenges
in object detection, where images often contain a mix of
multiple object classes. Our analysis on the Cityscapes [7]
dataset indicates that most images include at least one in-
stance of a majority class, rendering image-level resampling
ineffective. This complexity demands more nuanced aug-

mentation strategies for object detection.
Similar to Zhang et al. [46], we employ instance-level

oversampling. Instances are cropped from their images us-
ing bounding box annotations and are then strategically in-
serted into other images.

Images are randomly selected from each batch and util-
ising the ICRm, we differentiate classes as majority or mi-
nority based on their likelihood of correct classification. We
then derive the mean probability :

ICRmavg =
1

C

C∑
c=0

ICRm(c, c), (3)

where C is the number of classes. Classes with a probabil-
ity, ICRm(c, c), above and below the mean probability are
designated as majority and minority classes, respectively.

Instead of random overlaying, which has been adopted
by other previous approaches, our method matches highly
related minority and majority instances and uses MixUp
[47] to blend them, allowing the model to have better gen-
eralisation towards minority classes.

We achieve this by pairing each base instance in an
image with a sampled instance chosen through weighted
random sampling, using the ICRm class probabilities as
weights. For majority base instances, the corresponding
column in ICRm, namely, ICRm(:, c) is used, discount-
ing the class’s own probability by setting ICRm(c, c) to
zero to avoid self-augmentation. This allows us to se-
lect classes that are frequently misclassified as the major-
ity class. Conversely, for minority base instances, we use
the corresponding row from ICRm as weights without ze-
roing out ICRm(c, c), allowing for the possibility of self-
augmentation, which can be beneficial for minority classes.
This is demonstrated in Figure 2.b.

Sampled instances are resized to match the base instance
dimensions for bounding box consistency. The MixUp aug-
mentation is then applied as per the following formulation,
where a beta distribution determines the mixing ratio:

Î = β · Ibase + (1− β) · Imix,

ĉ = β · cbase + (1− β) · cmix,
(4)

where Ibase and Imix represent the cropped images of the
base and mixed instances, respectively, with Î denoting the
resulting augmented image. Similarly, cbase and cmix re-
fer to the classes of the base and mixed instances, while ĉ
indicates the class vector of the augmented instance.

For source domain images, we incorporate instances
from both domains to leverage accurate source labels and
to aid domain adaptation with target domain samples.
Whereas for target domain images, we prioritise target in-
stances, using source instances only when no target in-
stances are available for a specific class. This ensures that



Algorithm 1 Inter-Class Relation module (ICRm)

Require: Global class-relation matrix ICRm with shape
(C,C), where each element equals 0.
while training do

Create batch matrix ICRml with shape (C,C), where
each element equals 0.
for ground-truth, ci, and prediction,xi, in Y,X do
ICRml[ci, xi]← ICRml[ci, xi] + 1

end for
for each class c in C do

Normalise class matrix ICRml[c]
if global class matrix ICRm[c] is empty then

//Copy batch class matrix to global
ICRm← ICRml

else
//Update global class matrix with EMA
ICRm← β ∗ ICRm+ 1(1− β) ∗ ICRml

end if
end for

end while

more focus is put onto the target domain for stronger do-
main adaptation. Additionally, we do not apply augmen-
tations to minority base instances in the target domain to
preserve their integrity. This ensures that the model is able
to focus on the target domain and does not drift to an inter-
mediate domain.

To implement Class-Relation Augmentation, we store
class-specific instance crops from each batch, which we
term a Cropbank [46]. These crops are extracted from
bounding box annotations of labelled source images and
pseudo-labelled target images. Separate Cropbanks are
maintained for both the source and target datasets, allow-
ing for more targeted augmentation. To ensure a diverse
range of samples, we update the class instances on a first-in-
first-out basis. This is particularly beneficial for the target
Cropbank, where earlier samples may less accurate due to
the early pseudo-labels’ robustness.

4.3. Inter-Class Loss

To further mitigate class bias, we introduce a weighted pa-
rameter to the classification loss, informed by the Inter-
Class Relation module (ICRm) for foreground classes. This
weighting prioritises classes that are frequently misclassi-
fied as majority classes, allowing the model to concentrate
on refining their performance. To emphasise the focus on
underperforming classes, we employ a non-linear transfor-
mation on the ICRm values:

wi =

{√
1− ICRm(ci, xi), if ci = xi√
ICRm(ci, xi)/ICRm(ci, ci), otherwise,

(5)

where wi is the ith weight in W , and ci and xi are the
ith ground-truth and predicted class, respectively. We nor-
malise on the diagonal when ci ̸= xi as our primary ob-
jective is to prioritise low performing classes. Weights for
background classes are uniformly set to 1 to avoid biasing
the model against them. To reconcile the disparity between
foreground and background class weights, the weights of
the foreground instances are normalised so that their mean
equals the background class weight:

Wf = Wf/mean(Wf ), (6)

where Wf denotes the collection of foreground instance
weights. Moreover, we integrate an additional regularisa-
tion term, λl, across all class-relation weights to prevent
extreme weight values from distorting the loss:

W =
(W + λl)

(1 + λl)
(7)

This regularisation ensures a moderated, balanced impact
on the classification loss, which is now defined as:

Lcls =
1

N

N∑
i=0

wi ∗ CE(ci, xi) (8)

where N is the number of instances and CE is the cross-
entropy loss.

The overall loss is then:

L = Lsup + λuLunsup + λdLdis, (9)

where λu and λd represent the weights for the unsupervised
and discriminator losses, respectively.

5. Experiments
5.1. Datasets

We assess the performance of Class-Aware Teacher (CAT)
using benchmarks in domain adaptive object detection
(DAOD) following prior work [29].

Cityscapes→ Foggy Cityscapes: The Cityscapes dataset
[7] is a road-centric dataset with 2,975 training and 500
validation images from various urban settings under clear
weather, annotated across 8 classes. Foggy Cityscapes [34]
is a synthesised dataset generated on Cityscapes to simu-
late foggy weather, using the same base images and anno-
tations. We conduct our experiment on the most severe fog
level (0.02) where Foggy Cityscapes is used as the target
domain.

PASCAL VOC → Clipart1K: We use PASCAL VOC
2012 [10], which comprises of 11,540 real-world images



Method Detector person rider car truck bus train mcycle bicycle mAP
Source [38] FCOS 36.9 36.3 44.1 18.6 29.3 8.4 20.3 31.9 28.2
SIGMA [28] FCOS 46.9 48.4 63.7 27.1 50.7 35.9 34.7 41.4 43.5
OADA [45] FCOS 47.8 46.5 62.9 32.1 48.5 50.9 34.3 39.8 45.4

HT [9] FCOS 52.1 55.8 67.5 32.7 55.9 49.1 40.1 50.3 50.4
Source [52] Def DETR 37.7 39.1 44.2 17.2 26.8 5.8 21.6 35.5 28.5
AQT [19] Def DETR 49.3 52.3 64.4 27.7 53.7 46.5 36.0 46.4 47.1
MRT [49] Def DETR 52.8 51.7 68.7 35.9 58.1 54.5 41.0 47.1 51.2

Source [32] FRCNN 22.4 26.6 28.5 9.0 16.0 4.3 15.2 25.3 18.4
Oracle FRCNN 39.5 47.3 59.1 33.1 47.3 42.9 38.1 40.8 43.5

MeGA [39] FRCNN 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
TIA [48] FRCNN 34.8 46.3 49.7 31.1 52.1 48.6 37.7 38.1 42.3
UMT [8] FRCNN 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.3 41.7
TDD [16] FRCNN 39.6 47.5 55.7 33.8 47.6 42.1 37.0 41.4 43.1

PT [4] FRCNN 40.2 48.8 59.7 30.7 51.8 30.6 35.4 44.5 42.7
AT‡ [29] FRCNN 45.3 55.7 63.6 36.8 64.9 34.9 42.1 51.3 49.3
CMT [1] FRCNN 45.9 55.7 63.7 39.6 66.0 38.8 41.4 51.2 50.3

MILA [26] FRCNN 45.6 52.8 64.8 34.7 61.4 54.1 39.7 51.5 50.6
CAT (Ours) FRCNN 44.6 57.1 63.7 40.8 66.0 49.7 44.9 53.0 52.5

Table 1. Object detection results on the Foggy Cityscapes test set for Cityscapes → Foggy Cityscapes (0.02) domain adaptation. We
group methods based on their detector frameworks (FCOS/Def DETR/FRCNN) and highlight the best performing method. CAT is able to
outperform the previous state-of-the-art, MRT, by 1.3 mAP and improve on AT by 3.2 mAP. The mean average precision at .50 IoU (mAP)
is reported for all classes. ‡ AT performance is reproduced on Foggy Cityscapes (0.02) with publicly available code for fairness.

across 20 categories, for training. The Clipart1k dataset
[20] consists of 20 corresponding clipart object categories.
Following [29], we split Clipart1k into 500 training and 500
testing images.

The benchmarks of Sim10K [22]→ Cityscapes and KITTI
[12] → Cityscapes are excluded from our evaluation. De-
spite their popularity in DAOD research, they focus solely
on the ’Car’ category, which does not align with our class
imbalance setting.

5.2. Experimental Setup

Following previous works in DAOD, we adopt the Faster
R-CNN object detector with VGG-16 [35] and ResNet-101
[15] as backbones for our detection model. Our hyperpa-
rameters: EMA decay rate α = 0.9996, beta-distribution
hyper parameters [0.5,0.5], adversarial loss weight, λd 0.1,
and unsupervised loss weight, λu 1.0, regularisation term,
λl 1.0. We employ a hard threshold τ of 0.8 for pseudo-
labelling. Weak-strong augmentation [30] is applied to both
source and target images. We train our student model for
20,000 iterations on the labelled source data. The param-
eters of the student is copied to the teacher which is then
updated via EMA of the student at each iteration. We con-
tinue training for 60,000 iterations with both labelled source
and unlabelled target data. Our framework is developed on

top of the publicly available Detectron2 [41]. Experiments
are performed using a batch size of 8 source and 8 target im-
ages, distributed across 4 NVIDIA RTX3090 GPUs. Addi-
tional details regarding our experimental setup are provided
in the supplementary materials.

5.3. Comparison with SOTA methods

We compare our method with the state-of-the-art in DAOD
as well as reporting a source only FCOS/Def DETR/Faster
RCNN for a baseline comparison. We additionally include
an oracle upper bound, which is trained on only the target
domain and its ground truth annotations.

Foggy Weather Adaptation When object detectors are
deployed in real-world scenarios, the performance could
drop significantly under sub-optimal conditions, e.g. ad-
verse weather. This is because that the samples in adverse
weather do not present in the training of the model resulting
in a domain shift. The domain adaptation task is designed to
overcome this gap between normal and adverse conditions.
To demonstrate this, we conduct an experiment on the com-
monly used Cityscapes→ Foggy Cityscapes benchmark.

Our results are shown in Table 1. We can observe
that methods utilising the student-teacher framework (HT,
UMT, TDD, PT, AT, CMT, MILA, MRT) outperform non-
student-teacher frameworks by a large margin. CAT, which



Method aero bike bird boat bottlebus car cat chair cow table dog horse mtr prsn plant shp sofa train tv mAP
Source [13] 23.0 39.6 20.1 23.6 25.7 42.6 25.2 0.9 41.2 25.6 23.7 11.2 28.2 49.5 45.2 46.9 9.1 22.3 38.9 31.5 28.8

Oracle 33.3 47.6 43.1 38.0 24.5 82.0 57.4 22.9 48.4 49.2 37.9 46.4 41.1 54.0 73.7 39.5 36.7 19.1 53.2 52.9 45.0
I3Net [3] 30.0 67.0 32.5 21.8 29.2 62.5 41.3 11.6 37.1 39.4 27.4 19.3 25.0 67.4 55.2 42.9 19.5 36.2 50.7 39.3 37.8

ICR-CCR [42] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3
HTCN [2] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 20.1 20.1 39.1 72.8 61.3 43.1 19.3 30.1 50.2 51.8 40.3
DM [25] 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8
UMT [8] 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1
TIA [48] 42.2 66.0 36.9 37.3 43.7 71.8 49.7 18.2 44.9 58.9 18.2 29.1 40.7 87.8 67.4 49.7 27.4 27.8 57.1 50.6 46.3
AT‡ [29] 33.1 66.1 35.3 44.9 57.5 44.9 51.0 5.8 59.5 54.9 34.6 23.5 64.3 84.0 75.4 51.5 17.1 30.3 43.3 37.2 45.7
CMT [1] 39.8 56.3 38.7 39.7 60.4 35.0 56.0 7.1 60.1 60.4 35.8 28.1 67.8 84.5 80.1 55.5 20.3 32.8 42.3 38.2 47.0

CAT (Ours) 40.5 64.1 38.8 41.0 60.7 55.5 55.6 14.3 54.7 59.6 46.2 20.3 58.7 92.9 62.6 57.5 22.4 40.9 49.5 46.0 49.1

Table 2. Object detection results on the Clipart1k test set for PASCAL VOC → Clipart1k domain adaptation. CAT improves on the
previous state-of-the-art, CMT, by 2.1 mAP, achieving the new best of 49.1 mAP. The mean average precision at .50 IoU (mAP) is reported
for all classes.‡ AT performance is reproduced following [1].

Method ICRm CRA ICL mAP σ ↓
Base (AT [29]) 49.3 10.8

✓ ✓ 51.0 8.8
CAT (Ours) ✓ ✓ 51.6 10.3

✓ ✓ ✓ 52.5 8.6

Table 3. Ablation studies on CAT components. ICRm is in-
cluded in all studies as it forms the basis of CRA and ICL. We re-
port the mean average precision at .50 IoU (mAP) and the standard
deviation of class-mAP (σ). Our contributions are not included in
the base framework (AT).

is built on existing SOTA mean teacher frameworks, signif-
icantly improves the performance at 52.5 mAP. Addition-
ally, our method is able to improve minority classes while
not impacting majority classes.

Real to Artistic Adaptation Adapting object detection
from real to artistic domains is particularly challenging due
to the significant differences between these domains. In our
experiment, detailed in Table 2, we observe CAT achieves a
mAP of 49.1, outperforming the previous best, by 2.1 mAP
and AT by 3.4 mAP.

Notably, CAT shows substantial improvements in minor-
ity classes, such as ’motorbike’ which in the Clipart1k train-
ing set consists of only 7 images. The results of this exper-
iment demonstrate CAT’s effectiveness in addressing class
imbalances even in dissimilar domains.

5.4. Ablation Studies

To verify the significance of our contributions, we con-
ducted an ablation study. All experiments within this study
were performed on the Cityscapes → Foggy Cityscapes
benchmark using the VGG16 backbone.

Selection Method mAP σ ↓
Random (0.5) 51.8 8.5

CRA (1.0) 50.2 9.2
CRA (0.5) 52.5 8.6

Table 4. Comparison of selecting class instances randomly and
via CRA. Values in brackets refer to the likelihood of an instance
being augmented.

Quantitative Ablation Table 3 quantitatively showcases
the efficacy of each contribution within our framework. The
base framework, prior to integrating our modules, corre-
sponds to the AT model as described in [29]. Since our
Inter-Class Relation module (ICRm) is pivotal for both the
class-relation augmentation and loss, it is a constant across
all experimental variations. To highlight our method’s capa-
bility in addressing class imbalance, we introduce σ. This
value represents the standard deviation of the mAP across
different classes and serves as an indicator of performance
equity among classes.

Inclusion of our Inter-Class Loss (ICL) yields a notable
2.3 mAP gain over the base AT model and a decreased
σ, indicating a more balanced performance across classes.
The Class Relation Augmentation (CRA) also benefits AT,
though to a lesser extent than ICL in terms of mAP. Notably,
CRA significantly narrows the performance gap between
minority and majority classes, as reflected by a reduced σ
of 8.8. Employing both ICL and CRA not only enhances
overall performance but also achieves a lower σ compared
to the base model, reinforcing our method’s effectiveness in
managing class imbalance.

Impact of Augmentation We demonstrate the impact of
augmentation in terms of ratio and selection criteria. Aug-
menting images is a key part of our approach, enriching the
dataset with additional representations of minority classes.



Figure 3. Qualitative results of CAT. We show the results of AT and CAT on the top and bottom, respectively. CAT is able to address
misclassification (col 1,2,4), false negatives (col 1,3), and false positives (col 1,3,4). Box colour represents: Green → true positives, Blue
→ misclassified, Red → false negatives, Pink → false positives.

Yet, if images are augmented excessively, the model may
fail to learn an accurate representation of the classes. To
strike a balance, we selectively augment a random subset
of the images. Additionally, how class instances are paired
is key to improve the quality of augmentation. Compared
to randomly selecting class pairs, CRA is able to prioritise
pairing highly related minority and majority class instances.
This ensures that the Mixup output is more meaningful for
minority class performance.

The experimental results of this approach are given in
Table 4. We compare randomly selecting class instances for
MixUp with our Class-Relation Augmentation at different
values. These values represent the likelihood of a instance
in the base image being augmented. Randomly applying
MixUp improves the overall performance by +0.2 mAP.
However, by using CRA we can further increase perfor-
mance by +0.9 mAP. This shows that pairing highly-related
classes for MixUp strengthens the performance of the mi-
nority class while minimally affecting the majority class. In
addition, our experiments show that too much augmentation
can have a negative effect on the performance of the model.

Weighing Strategy for Class Loss We introduce a
weighted classification loss to improve the performance of
minority class performance in Eq. 5. Class-level loss is
a common strategy that has been adopted to address the
class imbalance in a dataset [18, 40]. We compare our
Inter-Class Loss (ICL) with a variant of previous class-level
losses where only the diagonal of the Inter-Class Relation
module is used. The diagonal corresponds to the ground-
truth class likelihood of accurate classification. In contrast,
ICL uses the likelihood of the ground-truth being classified
as the predicted class to influence its loss. We show in Ta-
ble 5 that by using this inter-class relationship, we are able
to improve the performance by +0.5 mAP. However, there
may be cases where ICL overly penalises well-performing
classes. This is addressed by applying a regularisation term
as seen in Eq. 7. We can see that if this regularisation term

Class Weight mAP σ ↓
Class-Level 52.0 9.0

ICL w/o Reg. 51.3 9.5
ICL 52.5 8.6

Table 5. Class Loss Weighing Strategies. Class-level only uses the
diagonal values in our ICRm along with regularisation, ICL refers
to our Inter-Class Loss.

is removed, performance drops significantly as the weight
of certain classes gets too small during training.

Qualitative Results Figure 3 illustrates the qualitative re-
sults of our method, with the top and bottom row displaying
predictions from AT and CAT, respectively.

CAT is able to correct misclassifications, represented by
blue boxes. Additionally, CAT can bring a reduction in both
false positives and false negatives, represented by pink and
red boxes, showcasing improved detection accuracy across
various scales and classes.

6. Conclusion

In this paper, we propose Class-Aware Teacher (CAT) for
Domain Adaptive Object Detection. We demonstrate that
CAT, by leveraging our Inter-Class Relation module, effec-
tively approximates and mitigates class biases, leading to
more equitable performance across classes. Furthermore,
Class-Relation Augmentation and Inter-Class Loss were
shown to be effective in enhancing minority class represen-
tation. Our experimental results on Cityscapes → Foggy
Cityscapes and PASCAL VOC → Clipart1K have demon-
strated the effectiveness of our method achieving SOTA per-
formance at 52.5 mAP and 49.1 mAP, respectively. Based
on our findings, we believe that further investigation into
inter-class dynamics is a promising direction for advancing
class imbalance in the DAOD setting.
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Supplementary Material

7. Additional Details on Methods
7.1. Additional Details on Class-Relation Augmen-

tation

We further describe the details of our Class-Relation Aug-
mentation (CRA) approach below. CRA augments random
images in a batch based on the source and target augmen-
tation ratio. For each selected image, we identify class in-
stances using labels or pseudo-labels for source and target
images, respectively, termed ’base instances.’

Following the methodology outlined in Section 4.2, we
select ’mix instances’ that exhibit a strong relationship with
the base instances, determined by our Inter-Class Relation
module (ICRm). A ’mixed instance’ is then randomly cho-
sen from a predefined crop bank. To mitigate the effects of
upsampling degradation, we ensure the mixed instances is
at least 0.25 of the base instance’s size.

We resize the mixed instance to the base instance’s di-
mensions, allowing the aspect ratio of the mixed instance to
be adjusted. This resizing allows us to use a single bound-
ing box to represent both the base and mixed instance after
augmentation. Experimental results, presented in Table 1,
demonstrate that this resizing strategy not only maintains
but enhances model performance compared to maintaining
the mixed instance aspect ratio. This is because the am-
biguity of labelling when two bounding boxes are used is
complex, especially when employing mixup.

Once the mixed instance has been resized, mixup [47] is
then applied to combine the two instances and their labels.
Given the distinct class representations, we employ one-hot
encoding to support multi-class labelling. This process is
repeated across all objects in the selected image.

Maintain Aspect
Ratio

mAP

✗ 52.5
✓ 51.1

Table 6. Performance of Class-Aware Teacher (CAT) with and
without maintaining the aspect ratio during CRA. We can see
that disregarding the aspect ratio during resizing improves perfor-
mance while being a simpler resizing strategy.

8. Experiments
8.1. Additional Details on Experimental Setup

In this section, we provide additional details on the experi-
mental setup. Consistent with prior research in the domain
of adaptive object detection, our experiments are conducted

using the Faster R-CNN detection framework. VGG-16
[35] and ResNet-101 [15] are used as the backbones for our
detection model depending on the benchmark used. PAS-
CAL VOC → Cliapart1K utilises the ResNet-101 back-
bone. Both Cityscapes→ Foggy Cityscapes and Cityscapes
→ BDD100K utilises the VGG-16 backbone.

Across all experiments, we maintain consistent hyperpa-
rameter settings, which are detailed in Table 2.

8.2. Additional Details on Dataset Class Distribu-
tions

The distribution of classes in our datasets plays an impor-
tant role during training. Minority classes tend to under per-
form, especially when there is a distribution shift between
training and validation datasets. To validate the effective-
ness of our method, we show the class distributions of the
evaluation datasets and how our method is able to address
minority class performance.

Figure 4 shows the class distribution for the Cityscapes
→ Foggy Cityscapes task. Car and person forms the ma-
jority in all the datasets used for this task and truck, bus,
and train form the minority. This is to be expected as the
datasets are from the same source and would share similar
distributions. This forms a simpler task as we do not need to
account for a distribution shift during testing. Our method
matches or outperforms SOTA for the truck and bus class,
as well as strongly outperforming our base method [29] for
all three minority classes.

The class distribution of the PASCAL VOC→ Clipart1k
task is shown in Figure 5. The PASCAL VOC dataset is
fairly balanced with the only outlier being the person class.
This ensures that the initial training has less bias towards
specific classes, however, Clipart1k exhibits stronger class
imbalance. This results in a distribution shift during unsu-
pervised training and evaluation which may result in subop-
timal performance. CAT is able to have strong performance
on the motorbike minority class and is able to outperform
its base on the bus class.

The Cityscapes → BDD100K (Daytime) task contains
two road-centric datasets taken in different locations which
would result in both imbalanced data as well as a distribu-
tion shift as seen in Figure 6 . This would be a harder task as
a minority class in one dataset may not be the same minority
the other. For example, truck and bus are the minority for
Cityscapes but motorcycle and bicycle are the minority for
BDD100K. CAT is able to outperform SOTA for truck, bus,
and bicycle and is only 0.1 mAP lower for the motorcycle
minority class.



Figure 4. Class distribution of datasets used for the Cityscapes →
Foggy Cityscapes task. We can see that person and car classes
form the majority of all classes. The distribution of classes for the
labeled dataset and validation set is similar which makes for an
simpler task.

Figure 5. Class distribution of datasets used for the PASCAL VOC
→ Clipart1k task. Person is a majority class for all datasets, how-
ever other classes for PASCAL VOC have a similar number of
instance. The imbalance is stronger in the Clipart1K dataset with
classes such as motorbike and bus being a minority.

8.3. Cityscapes→ BDD100K

In addition to experiments performed in Section 5.3 of
the main paper, we include the Cityscapes → BDD100K-
Daytime benchmark.

The BDD100K [? ] dataset is a large-scale dataset con-
taining 100,000 images. For this experiment, we use the
day-time split which contains 36,728 training and 5,258
testing images. We remove the train, traffic light and traffic

Figure 6. Class distribution of datasets used for the Cityscapes
→ BDD100K (Daytime) task. We can see that the car class form
the majority of all classes, especially for the BDD100K dataset.
Note that the class distribution of labeled and validation set dif-
fers, especially for minority classes which can make the task more
difficult.

sign categories following previous work. The Cityscapes
→ BDD100K benchmark covers scene adaptation as well
as small-to-large dataset adaptation.

Table 7 shows the results of our experiment. We can
observe that CAT has stronger performance compared to the
previous SOTA at 38.5 mAP. Minority classes such as rider,
truck, bus, and bicycle also show a significant improvement.
This shows that our strategy to address inter-class dynamics
provides a viable solution to address class imbalance for
domain adaptive object detection.



Method person rider car truck bus mcycle bicycle mAP
Faster RCNN [32] 28.8 25.4 44.1 17.9 16.1 13.9 22.4 24.1

SIGMA [28] 46.9 29.6 64.1 20.2 23.6 17.9 26.3 32.7
TDD [16] 39.6 38.9 53.9 24.1 25.5 24.5 28.8 33.6

PT [4] 40.5 39.9 52.7 25.8 33.8 23.0 28.8 34.9
CAT (Ours) 44.6 41.5 61.2 31.4 34.6 24.4 31.7 38.5

Table 7. Object detection results on the BDD100k-Daytime test set for Cityscapes → BDD100k-Daytime domain adaptation. The mean
average precision at .50 IoU (mAP) is reported for all classes.

Hyperparameter Description C→F PV→CA C→B
- Detector FRCNN FRCNN FRCNN
- Backbone VGG ResNet-101 VGG
- BatchNorm True True False
α Decay rate for student-teacher EMA 0.9996 0.9996 0.9996
β Beta-distribution parameters for mixup [0.5,0.5] [0.5,0.5] [0.5,0.5]
λd Weight for Adverserial Loss 0.1 0.1 0.1
λu Weight for Unsupervised Loss 1.0 1.0 1.0
τ Threshold value for pseudo-label confidence 0.8 0.8 0.8
λl Regularization term for Inter-Class Loss 1.0 1.0 1.0
- Source Augmentation Ratio 0.5 0.5 0.5
- Target Augmentation Ratio 0.5 0.5 0.5
- Burn-Up Step Iterations 20000 20000 20000
- Total Training Iterations 80000 80000 80000
- Learning Rate 0.2 0.2 0.2

Table 8. Model Hyperparameters for Experiments.From left to right, Cityscapes → Foggy Cityscapes, PASCAL VOC → Clipart1K, and
Cityscapes → BDD100K-Day.
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