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Quantum coherence has been shown to impact the operational capabilities of quantum systems
performing thermodynamic tasks in a significant way, and yet the possibility of genuine coherence-
enhanced thermodynamic operation remains unclear. Here we show that only the presence of ener-
getic coherence —coherence between levels with different energies— in steady-state quantum ther-
mal machines can lead to genuine thermodynamic advantage. On the other hand, engines showing
coherence between degenerate levels, or subjected to noise-induced coherence, are shown to be sys-
tematically outperformed by classical stochastic engines using exactly the same set of (incoherent)
resources. We illustrate our results with three prototypical models of heat engines and refrigerators
and employ multi-objective optimization techniques to characterize quantum-enhanced regimes in
connection with the thermodynamic uncertainty relation.

I. INTRODUCTION

The determination of the interplay between quantum
coherence —i.e. the ability of quantum systems to ex-
ist in superpositions of multiple states— and thermody-
namic operation, constitutes one of the main challenges
in quantum thermodynamics, attracting increasing at-
tention during the last decade [1, 2]. One of the main
approaches to explore this link, in line with the original
spirit of thermodynamics, has consisted in the construc-
tion and analysis of minimal models of quantum ther-
mal machines showing different types of coherent evolu-
tion [3–9]. These machines consist of a quantum system
—the working medium— composed by few energy levels
or qubits which, by coupling to thermal baths at different
temperatures and external work sources, are able to per-
form useful thermodynamic tasks, such as work extrac-
tion, heat pumping, or refrigeration. Recent advances
in the manipulation and control of quantum systems in
the laboratory allowed the implementation of first pro-
totypes, where the basic principles of these models can
be mapped to realistic devices in platforms ranging from
ion-traps [10, 11] to NV centers in diamond [12], just to
mention a few of them [1, 13].

Since the pioneering works of Scully et al. introduc-
ing a photo-Carnot engine [14], quantum coherence has
been claimed to increase the power output or efficiency of
many different types of quantum heat engines and refrig-
erators. Such improvements are particularly relevant in
the case of continuous machines working in steady-state
conditions [15], which in principle require less control of
the dynamics and couplings with reservoirs. Particularly
relevant examples include power-enhancements by noise-
induced coherence in lasers, photocell engines, or quan-
tum dots engines [16–18] (with applications in photosyn-
thetic light harvesting [19]), or by input external coherent
fields [9, 12], as well as cooling boosts by degenerate co-
herence in local models of quantum absorption refrigera-
tors [20–22]. In all such cases, coherence has been found

to play a positive role in the output mechanism, even-
tually leading to an increased ability of the machine for
work extraction or refrigeration. However, since all such
output mechanisms are model-dependent, it remains un-
clear whether the performance shown by these machines
cannot be achieved by other equivalent classical mod-
els [9, 22, 23], so that a truly quantum thermodynamic
advantage can be identified. Given the possibility of im-
plementation of these models in the laboratory and their
potential applications, clarifying this point becomes an
urgent and crucial point to the field.

In this paper we show how to identify genuine
coherence-induced quantum thermodynamic advantage
and how to quantitatively characterize it in steady-state
quantum thermal machines by combining three main in-
gredients. The first one is the systematic construction
of thermodynamically-equivalent classical thermal ma-
chines that are able to produce the same average currents
than their quantum-coherent counterparts, while using
exactly the same amount of incoherent resources (essen-
tially bath temperatures and energy structure). How-
ever, even if same average currents can be reproduced
by classical models, fluctuations as captured by the vari-
ance of the currents might present significant differences.
The comparison of fluctuations in the output currents
(reliability of the machine) with respect to the classi-
cal counterpart is henceforth the second necessary in-
gredient in our analysis. This is connected with viola-
tions in the so-called thermodynamic uncertainty rela-
tion (TUR) [24–26], which provides a universal trade-off
relation between power, efficiency, and output reliability
for any classical Markovian thermal machine operating at
steady-state conditions [27]. The TUR sets up a model-
independent limit in the maximum reliability achievable
by any classical machine at a given power output and
efficiency. Hence the observation of TUR violations in
quantum Markovian machines working in steady-state
conditions [28–33] may be considered as an unambigüous
witness of a quantum thermodynamic signature. Nev-
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FIG. 1. Schematic representation of (a) the coherent three-level amplifier coupled to baths at hot βh and cold βc temperatures
and coherent external driving, (b) the three-qubit autonomous (absorption) refrigerator where each qubit is locally coupled to
baths at hot, cold, and intermediate temperatures βm, and (c) the noise-induced-coherence machine showing collective jumps
induced by the baths at hot and cold temperatures, together with a classical work source given by an infinite-temperature bath.

ertheless, the violation of the TUR in specific parame-
ter regimes is not yet a sufficient (nor necessary) con-
dition for ensuring a practical quantum-thermodynamic
advantage in thermal machines, since these parameter
regimes may be far from optimal performance. The
third ingredient that we employ here is the use of multi-
objective optimization techniques (Pareto optimization)
[34–39] to actually confirm enhanced stability (preci-
sion), power output or efficiency, with respect to classi-
cal thermodynamically-equivalent machines, in relevant
(optimal) regimes of operation of the machine, such as
maximum power conditions.

Although our analysis is applicable to a broad class
of steady-state quantum thermal machines, we em-
ploy three well-known (prototypical) models showing
coherent-induced evolution (see Fig. 1), each correspond-
ing to one of the three possible types of coherence that
can arise in the working medium when approaching the
steady state: (a) coherence between different energy
levels (energetic coherence) induced by external driv-
ing, (b) coherence between levels with degenerate en-
ergies induced by internal Hamiltonian couplings, and
(c) noise-induced coherence on degenerate levels induced
by the reservoir. Our results show that only in the
case of energetic coherence (case a) a practical quantum-
thermodynamic advantage can be unambiguously iden-
tified, leading to enhanced optimal regimes not allowed
by any equivalent classical engine using the same amount
of thermodynamic resources. On the contrary, coherence
in degenerate energy levels (cases b and c) can only lead
to disadvantages in the performance, even in cases where
the quantum machine dynamics contains intrinsic quan-
tum features.

This paper is organized as follows: Sec. II introduces
the different thermal machine models in detail. Sec. III
discusses how to characterize the thermodynamic per-
formance in such systems. In Sec. IV, we describe the
concept of classical equivalent machines and provide a
general recipe for constructing them in the presence of

different types of coherence. Sec. VA demonstrates that,
in the presence of energetic coherence, quantum enhance-
ments can be achieved with respect to classical equiva-
lent machines. Sec. VB demonstrate instead the dis-
advantages of quantum machines with non-energetic (i.e.
degenerate) coherence compared to their classical coun-
terparts. In Sec. VI, we optimize both quantum and clas-
sical thermal machines and compare their optimal solu-
tions. Finally, Sec. VII provides a summary and conclu-
sions of our main results.

II. QUANTUM THERMAL MACHINES
MODELS

We consider thermal machines running continuously in
a steady-state regime described as open quantum systems
interacting with two or more thermal baths at different
temperatures. The machine system has N energy levels,
some of which may be degenerate or not, and intercon-
nected through incoherent transitions mediated by the
baths. Moreover, we consider the possibility of one or
more coherent interactions arising as a consequence of
one of the three following sources (see Fig. 1): (a) ex-
ternal driving by a classical field (such as in quantum
heat engine models of masers and lasers [3–5]); (b) in-
ternal Hamiltonian interactions between subsystems in
few-body machines (e.g. machines composed by several
interacting qubits [6] or harmonic oscillators [7]), and (c)
noise-induced coherence caused from collective dissipa-
tion acting on two or more resonant transitions (as in
some light-harvesting complexes [19] and synthetic heat
engine models [17]).
The general Hamiltonian of the machine can be gener-

ically written as the sum of two terms:

H = H0 + V (t), (1)

where H0 =
∑N−1

i=0 ϵi |i⟩ ⟨i| is a local Hamiltonian de-
scribing N energy levels with ϵ0 ≤ ϵ1 ≤ ... ≤ ϵN−1, and
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V (t) is a (eventually time-dependent) term capturing co-
herent transitions between them. It can either represent
an external field periodically driving a transition in H0,
or, in the case of multipartite systems, the internal inter-
action among machine constituents. An important fea-
ture of this interaction Hamiltonian is that it does not
severely modify the energy level structure of the system,
so that it can be treated as a perturbation to the local
Hamiltonian H0 (i.e. |V | ≪ |H0|). On the other hand,
for thermal machines using only noise-induced coherence
we will typically have V (t) = 0 and then H = H0, since
that type of coherence appears solely from the effect of
the baths. Without loss of generality, we set to zero the
ground-state energy of the machine, ϵ0 ≡ 0.

We are interested in the quantum Markovian dynamics
of the machine in the weak coupling regime. Under Born-
Markov and secular approximations, it is possible to de-
scribe the evolution of the machine state ρ(t) in terms of
a quantum master equation in Lindblad form [40–44]:

dρ(t)

dt
= L(ρ) = −i [H(t), ρ(t)] +

R∑
r=1

∑
k=↑↓

D(r)
k [ρ(t)], (2)

where H(t) is given in Eq. (1) and D(r)
k (ρ) denote the

so-called dissipators, taking into account the effects of
dissipative process k from thermal reservoir r on the sys-
tem. These dissipators are given in terms of Lindblad

operators L
(r)
k associated to each reservoir:

D(r)
k [ρ(t)] :=

(
L
(r)
k ρL

(r) †
k − 1

2

{
L
(r)†
k L

(r)
k , ρ

})
. (3)

The Lindblad operators L
(r)
k here induce jumps between

the H0 levels with fixed energy gap ∆ϵk = ±∆ϵr deter-

mined by bath r, and verify [H0, L
(r)
k ] = −∆ϵkL

(r)
k . They

can be written in general as:

L
(r)
k =

∑
i,j

αk
ij
√
γij |j⟩ ⟨i| , (4)

with αk
ij = 1 if ϵj − ϵi = ∆ϵk and 0 otherwise. In the

case of non-degenerate transitions, the above operators

reduce to simple jumps L
(r)
k =

√
γij |j⟩ ⟨i| between energy

levels i → j. However, the operators in Eq. (4) can also
describe collective jumps where two or more transitions
with same (degenerate) gap ∆ϵk in H0 may occur simul-
taneously, e.g. i → j and i → j′ if ϵj = ϵ′j . In any case,
every transition is connected to a single thermal bath,
the rates γij ≥ 0 being time-independent and verifying

the local detailed balance relation γij = γji e−βr(ϵj−ϵi),
with βr = 1/kBTr the inverse temperature of the bath r
and kB Boltzmann’s constant. In the long-time limit, the
evolution dictated by Eq. (3) converges to a steady-state,
verifying L(π) = 0, where we denote π(t) the steady state
density operator. We notice that, due to the presence of
the time-dependent Hamiltonian V (t), the steady state
can show a (residual) periodic time-dependence in the

phase in the Schrödinger picture, which disappears when
moving to a rotating frame.
Although the results we present here can be applied

to any model of quantum thermal machine whose evolu-
tion can be described within the general framework intro-
duced above, in this paper we will mainly focus on three
representative and well-known models of quantum ther-
mal machines, as illustrated in Fig. 1. They lead to three
different types of coherent evolution respectively: the co-
herent three-level maser (Fig. 1a) which induces energetic
coherence in the H0 basis; the three-qubit autonomous
quantum refrigerator (Fig. 1b), leading to Hamiltonian-
induced coherence in a degenerate subspace of H0, and
the noise-induced-coherence engine (Fig. 1c), showing co-
herence between degenerate levels induced by collective
bath transitions.

A. Coherent three-level amplifier

The three-level maser or amplifier, as initially intro-
duced by Scovil and Schulz-DuBois in Ref. [3], is one
of the simplest models of a thermal machine, capable of
serving either as a heat engine or a refrigerator depend-
ing on the configuration of system parameters [45, 46].
The characteristics and performance of this model has
been largely studied [1, 4, 5, 15, 30, 46–49] owing to its
simplicity and versatile functionality, and a first experi-
mental implementation has been reported in Ref. [12]. It
stands as a main example of a thermal machine where
coherence among non-degenerate energy levels is sup-
ported in the steady state, suggesting the appearance
of regimes where quantum-enhanced thermodynamic op-
eration can be achieved [9] (for a critical view of such
quantum-enhanced performance see e.g. Ref. [23]).
The machine system contains three discrete energy lev-

els and an external driving field acting on its lower tran-
sition, as depicted in Fig. 1a. The Hamiltonian of the
system can be written in this case as:

H = ϵ1 |1⟩ ⟨1|+ ϵ2 |2⟩ ⟨2|+ V (t), (5)

with bare Hamiltonian H0 := ϵ1 |1⟩ ⟨1| + ϵ2 |2⟩ ⟨2| time
dependent driving Hamiltonian V (t) = g(e−iωdt |0⟩ ⟨1|+
h.c) resonant with the first energy gap, i.e. ωd ≡ ϵ1,
and where g is the external driving field strength. In the
absence thermal baths, this driving field generates Rabi-
like oscillations within the first two levels of the machine,
|0⟩ and |1⟩, at frequency g.
The two remaining transitions of the three-level sys-

tem are further weakly coupled to two thermal baths at
different inverse temperatures, denoted as cold and hot
(βc ≥ βh), typically modeled as bosonic reservoirs. They
lead to four incoherent jumps described by Lindblad op-
erators:

L
(c)
↓ =

√
γ21 |1⟩ ⟨2| ; L

(c)
↑ =

√
γ12 |2⟩ ⟨1| ,

L
(h)
↓ =

√
γ20 |0⟩ ⟨2| ; L

(h)
↑ =

√
γ02 |2⟩ ⟨0| ,

(6)
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with rates γ21 = γc(n̄c + 1) and γ12 = γcn̄c associ-
ated respectively to the emission and absorption of en-
ergy quanta ∆ϵc = ϵ2 − ϵ1 into the cold reservoir at
βc. Similarly γ20 = γh(n̄h + 1) and γ02 = γhn̄h stand
for emission and absorption of energy quanta ∆ϵh = ϵ2
into the hot reservoir at temperature βh. Here γr de-
notes the spontaneous emission rate for bath r = c,h
and n̄r = (eβr∆ϵr − 1)−1 is the average number of ther-
mal photons with frequency ∆ϵr in the baths.

As commented before, since we are treating the inter-
action Hamiltonian as a perturbation, our analysis will
be limited to the weak driving regime. In this regime, it
is possible to extract the time dependence of the system’s
Hamiltonian by moving to a rotating frame (interaction
picture with respect to H0). This transformation leads
to the following form of the master equation (2):

dρ′

dt
= −i [VI , ρ

′] +
∑
r=c,h

∑
k=↓,↑

D(r)
k [ρ′], (7)

where ρ′ = eiH0tρe−iH0t and the driving Hamiltonian in
the interaction picture appearing in the Lindblad equa-
tion has the simpler form VI = g (|0⟩ ⟨1|+ |1⟩ ⟨0|).

B. Three-qubit autonomous refrigerator

This fridge model was first presented in Ref. [6] and
consist of one of the smallest thermal machines models
using a multipartite system (see Fig. 1b). It pertains to
the class of autonomous quantum refrigerators [8, 50, 51],
also called quantum absorption refrigerators [7, 21, 52–
55]. It consists of three qubits with different energy gaps,
each of them locally coupled to a corresponding ther-
mal baths at a different temperature. A weak three-
body energy-preserving Hamiltonian interaction among
the qubits allows the generation of heat currents be-
tween the three reservoirs that ultimately power thermo-
dynamic tasks such as heat pumping or refrigeration [8].
Different platforms for the actual implementation of this
or closely related models in the lab has been proposed
using quantum dots [56], optical systems [57], QED ar-
quitectures [58] and trapped ions [11]. In this multipar-
tite setup, genuine quantum features such as quantum
entanglement [20] and discord [52] have been analyzed,
suggesting the possibility of boosting the fridge per-
formance by quantum correlations in some operational
regimes [20].

The Hamiltonian of the three-qubit working substance
here reads:

H = H1 +H2 +H3 + V, (8)

where we identify H0 =
∑

i Hi with Hi = ϵi |1⟩ ⟨1|i
the (bare) Hamiltonians of each individual qubit and
V = g (|101⟩ ⟨010|+ |010⟩ ⟨101|) is a three-body inter-
action Hamiltonian allowing the qubits to exchange en-
ergy (notice the use of the simplified notation |101⟩ ≡

|1⟩1 |0⟩2 |1⟩3, etc.). Here above g ≪ ϵi, ensures that the
interaction can be treated as a perturbation to the bare
three-qubit Hamitlonian H0.
Importantly, by assuming the resonance condition ϵ3 =

ϵ2 − ϵ1, the three qubit interaction verifies strict energy
preservation between the qubits, that is [V,H1 + H2 +
H3] = 0, ensuring that the energy exchanges among the
fridge qubits occur without the need of any extra source
of energy or control, i.e. preserving the autonomy of the
model. At difference from other autonomous fridges, such
as single-qutrit fridges [46], this model exhibits steady-
state coherence between degenerate energy levels |101⟩
and |010⟩ due to the presence of the interaction V [6],
which ultimately leads to entanglement among different
partitions involving the qubits [20].
In this case all the transitions are mediated by the

reservoirs, with either cold, medium or hot temperatures
(βc ≥ βm ≥ βh). Since each qubit i is locally coupled only
to a single bath at inverse temperature βi, and the inter-
action V is weak, the master equation (2) adopts a lo-
cal form [42–44], with six incoherent jumps described by
Lindblad operators promoting local jumps in each qubit:

L
(c)
↓ =

√
γc
10 |0⟩ ⟨1|1 ⊗ 12 ⊗ 13,

L
(m)
↓ =

√
γm
1011 ⊗ |0⟩ ⟨1|2 ⊗ 13,

L
(h)
↓ =

√
γh
1011 ⊗ 12 ⊗ |0⟩ ⟨1|3 ,

(9)

together with the opposite jumps, L
(r)
↑ = e−βr∆ϵr/2L

(r)†
↓ ,

for r = c,m,h. The rates γc
10 = γc(n̄c+1) and γc

01 = γcn̄c

are associated respectively to the emission and absorp-
tion of energy quanta ∆ϵc = ϵ1 into the cold reser-
voir at βc. Similarly we have γm

10 = γm(n̄m + 1) and
γ01 = γmn̄m for the emission and absorption of energy
quanta ∆ϵm = ϵ2 into the medium reservoir at tempera-
ture βm, as well as γ

h
10 = γh(n̄h + 1) and γh

01 = γhn̄h for
the emission and absorption of energy quanta ∆ϵh = ϵ3
into the hot reservoir at temperature βh.

C. Noise-induced-coherence machine

A final set of continuous thermal machines models
showing quantum effects, which we collectively dub noise-
induced-coherence (NIC) machines, were first presented
in a series of papers by Scully et al. [16, 19, 59]. In
these machines, degenerate levels in the energy spec-
trum are combined with a collective action of the baths
on the system transitions to generate coherence in the
steady state [60, 61]. The operation and performance
of these kind of machines has been extensively inves-
tigated within the context of quantum thermal ma-
chines [17, 18, 22, 48, 62–68], pointing to enhancements
in the power output for adequate operational regimes.

A notable example of this coherence is found in a
4-level absorption refrigerator, whose thermodynamics
have been examined in previous studies [66, 68, 69]. In
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this system, two of the levels possess the same energy, as
depicted in Fig. 1c. These levels are subjected to the in-
fluence of two distinct thermal baths, the action of both
of which results in the emergence of horizontal coherences
that persist in the system’s steady state. The system’s
Hamiltonian in this case is as follows

H = ϵ1 |1⟩ ⟨1|+ ϵ2 (|2a⟩ ⟨2a|+ |2b⟩ ⟨2b|) = H0. (10)

In this case all the transitions are mediated by the reser-
voirs at cold, hot and “work” temperatures (βc ≥ βh >
βw → 0). To represent these transitions we will have six
different incoherent jumps, two of them consisting of indi-

vidual jumps L
(w)
↓ =

√
γ10 |0⟩ ⟨1| and L

(w)
↑ =

√
γ01 |1⟩ ⟨0|,

and the other four refer to collective transitions:

L
(c)
↓ =

√
γa1 |1⟩ ⟨2a|+

√
γb1 |1⟩ ⟨2b| ,

L
(c)
↑ =

√
γ1a |2a⟩ ⟨1|+

√
γ1b |2b⟩ ⟨1| ,

L
(h)
↓ =

√
γa0 |0⟩ ⟨2a|+

√
γb0 |0⟩ ⟨2b| ,

L
(h)
↑ =

√
γ0a |2a⟩ ⟨0|+

√
γ0b |2b⟩ ⟨0| ,

(11)

with rates γi1 = γi
c(n̄c + 1) and γ1i = γi

cn̄c for i = a,b,
associated respectively to the emission and absorption of
energy quanta ∆ϵc = ϵ2 − ϵ1 into the cold reservoir at
βc, and similarly γi0 = γi

h(n̄h + 1) and γ0i = γi
hn̄h for

i = a,b, is associated with emission and absorption of
energy quanta ∆ϵh = ϵ2 into the hot reservoir at temper-
ature βh. Finally, since the “work” bath is at an infinite
temperature i.e βw → 0 the rates associated to it satisfy
γ10 = γ01, corresponding in this case for emission and
absorption of a quanta ∆ϵw = ϵ1 from the work source.

III. THERMODYNAMIC PERFORMANCE

We are interested in the performance of the quantum
thermal machine models presented in the previous sec-
tion when operating in non-equilibrium steady-state con-
ditions [1, 15]. By performance, we refer not only to
the size of the output current generated by the machine
operation (output power in the case of heat engines or
cooling power for the case of refrigerators) and the ma-
chine thermodynamic efficiency (ratio of useful output to
source input), but also to the size of the fluctuations in
the output current, which can be viewed as measure of
the “quality” of that output in stochastic machines [27].

Under steady-state conditions, L(π) = 0, the average
output power generated by the machine on the exter-
nal drive and the average heat current absorbed from
reservoir r, are given, respectively, by standard defini-
tions [70]:

⟨Ẇ ⟩ := −Tr[Ḣ(t)π(t)] = −Tr[V̇ (t)π(t)], (12)

⟨Q̇r⟩ :=
∑
k

Tr[H0D(r)
k [π(t)]], (13)

where we recall that π(t) may acquire a periodic time-
dependence (in Schrödinger picture) due to the presence

of non-diagonal elements (coherences) in the steady-state
density operator. We also emphasize that for weak per-
turbations as the ones considered here, only the bare
Hamiltonian H0 enters in the heat currents [71, 72], en-
suring consistency with the second law [73]. The first

law takes the form ⟨Ẇ ⟩ =
∑

r⟨Q̇r⟩, imposing that any
output power is sustained by input heat currents from
the baths. Explicit expressions of the heat currents ⟨Q̇r⟩
valid for generic machines (with or without degeneracy)
are given in Appendix A.
As a consequence of Markovianity, the second law in

the setup is manifested through the non-negativity of the
entropy production rate:

⟨Ṡtot⟩ = −
∑
r

βr⟨Q̇r⟩ ≥ 0, (14)

which characterizes the irreversibility of the machine op-
eration in its nonequilibrium steady-state [2, 71]. Here
it is also work remarking that whenever the temperature
of some of the reservoirs r approaches infinity, βr → 0,
the associated energy current does not contribute to the
entropy production and hence it should be considered as
(incoherent) work rather than heat, see also Refs. [7, 74].
In that case the output power associated to such a work

reservoir reads ⟨Ẇ ⟩ = −
∑

k Tr[H0D(r)
k [π(t)]].

The efficiency of thermal machines can be defined from
the ratio of the average output useful current to the aver-
age input resource one, as determined by the operational
mode of the machine:

η :=
⟨Jout⟩
⟨Jin⟩

, (15)

where in the case of heat engine operation Jout = ⟨Ẇ ⟩
and Jin = ⟨Q̇h⟩, while for refrigeration the efficiency (co-

efficient of performance) is given from Jout = ⟨Q̇c⟩ and

either Jin = −⟨Ẇ ⟩ for power-driven refrigerators (as the

models in Secs. II A and IIC), or Jin = −⟨Q̇h⟩ for ab-
sorption refrigerators (as the one in Sec. II B). For exten-
sions of efficiency to multiple inputs and outputs see e.g.
Refs. [75–77].
By combining the first and second laws in the setup

we recover Carnot bound for the efficiency of heat en-
gines η ≤ ηC := 1 − βh/βc, as well as the correspond-
ing (Carnot) bounds for power-driven fridges η ≤ ηfr :=
βh/(βc − βh) and absorption refrigerators, η ≤ ηabs :=
(βm−βh)/(βc−βm), achieved in the limit of zero entropy
production, where all energy currents vanish [1, 15, 50].
The maximum efficiency (zero power) equilibrium

points separate the different modes of operation of the
machines, where heat currents and output power change
sign. In the models presented here they can be easily ob-
tained analytically by noticing that the average steady-
state currents can be rewritten as:

⟨Q̇r⟩ = ∆ϵr⟨Ṅr⟩, (16)

where ⟨Ṅr⟩ is the probability current associated to the
reservoir r (flux of quanta). It results from the fact that
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Heat engine/pump Refrigerator
Three-level amplifier ωd/ϵ2 ≤ ηC ηC ≤ ωd/ϵ2 ≤ 1
Autonomous fridge ηabs ≤ ϵ1/ϵ3 ≤ 1 ϵ1/ϵ3 ≤ ηabs

NIC machine ϵ1/ϵ2 ≤ ηC ηC ≤ ϵ1/ϵ2 ≤ 1

TABLE I. Parameter relations leading to the main modes of
operation of the three thermal machines examined here. In
the case of the autonomous (absorption) refrigerator the heat
engine regime is replaced by heat pumping.

in the models baths are associated to a single energy gap
∆ϵr. In the steady state, due to the absence of leaks,
the system will exchange excitations with all baths at
the same rate, i.e. ∀i, j we have ⟨Ṅi⟩ = ⟨Ṅj⟩ := ⟨Ṅ⟩. In
addition, the first law constrains the average value of the
work to satisfy ⟨Ẇ ⟩ =

∑
r ∆ϵr⟨Ṅ⟩ = ωd⟨Ṅ⟩. The ratio

between the different steady-state currents hence verify

|⟨Ẇ ⟩|
|⟨Q̇j⟩|

=
ωd

ϵj
;

|⟨Q̇i⟩|
|⟨Q̇j⟩|

=
ϵi
ϵj
. (17)

By combining the above proportionality relations with
the efficiency bounds above we can construct a table for
the operational modes of each model (see Table I).

While it is in general desirable for any thermal ma-
chine to have a large output current and a high efficiency
(low rate of entropy production), in microscopic systems
another fundamental factor to consider is the fluctua-
tions associated with the currents, specially in the out-
put power. Therefore, in addition to minimizing entropy
production and maximizing power, low fluctuations (re-
sulting in higher precision) in energy flows are also de-
sirable. In classical systems these three quantities are
not independent, but their trade-off is quantified by the
TUR:

Q = ⟨Ṡtot⟩
Var[Jout]

⟨Jout⟩2
≥ 2, (18)

where ⟨Jout⟩ and Var[Jout] denote the mean and vari-

ance of the useful output current i.e Jout = Ẇ , Q̇c for
work production and refrigerator regimes respectively.
Initially proposed in the context of bio-molecular pro-
cesses [24], the TUR was then formally established in
stochastic thermodynamics [25, 26], and subsequently ap-
plied to classical steady-state heat engines [27], for which
the TUR ratio Q in Eq. (18) can be rewritten in terms
of the output power and efficiency as:

Qhe = βc
Var[Ẇ ]

⟨Ẇ ⟩

(
ηC − η

η

)
, (19)

where we identified Jout = Ẇ and ⟨Ṡtot⟩ = −βh⟨Q̇h⟩ −
βc⟨Q̇c⟩ = βc(ηC/η − 1)⟨Ẇ ⟩. Analogously by taking

Jout = Q̇c and rewriting the expression for the entropy
production rate, we obtain the corresponding TUR ratio
for power-driven refrigerators:

Qfr = (βc − βh)
Var[Q̇c]

⟨Q̇c⟩

(
ηfr − η

η

)
. (20)

Finally, for the case of absorption refrigerators we obtain
the TUR ratio:

Qabs = (βc − βm)
Var[Q̇c]

⟨Q̇c⟩

(
ηabs − η

η

)
, (21)

where in this case we identified Jout = Q̇c and the en-
tropy production rate reads ⟨Ṡtot⟩ = −βh⟨Q̇h⟩−βc⟨Q̇c⟩−
βm⟨Q̇m⟩ = (βc − βm)(ηabs/η − 1)⟨Q̇c⟩. Throughout this
paper, to evaluate fluctuations in the output currents,
i.e. the variances Var[Ẇ ] and Var[Q̇c], we employ the
full-counting statistics (FCS) formalism [78, 79] (see de-
tails in Appendix B).
In any of the three cases, the TUR implies that be-

yond a certain threshold, a classical Markovian engine
can only enhance its precision in the output (cooling)
power at the cost of either reducing the output itself or
reducing the energy efficiency, so that the above ratio re-
mains bounded by 2, i.e. Q ≥ 2. However, some models
of quantum thermal machines have been shown to pro-
duce violations of the TUR, that is, they verify Q < 2
(see e.g. Refs. [28–33]). Such violations act as a witness
indicating an enhanced tradeoff between power, precision
and efficiency that arise in certain parameter regimes.
Nevertheless, it is in principle unclear whether that vio-
lations may occur in relevant regimes, i.e. where the ma-
chine performs in an optimal way, providing a practical
quantum-thermodynamic advantage. In addition, such
quantum-thermodynamic advantages may arise even if
the TUR is not violated, since classical machines may
not saturate the TUR in such relevant regimes. Hence in
order to provide a fair and accurate assessment of practi-
cal quantum-thermodynamic advantages in thermal ma-
chines both optimization of the machine performance and
comparison to classical models become necessary.

IV. CLASSICAL-THERMODYNAMIC
EQUIVALENTS OF THERMAL MACHINES

Throughout this paper, inspired by the notion of clas-
sical emulability introduced in Ref. [23], we use the term
“classical-thermodynamic equivalent” (or simply “classi-
cal equivalent”) of a quantum thermal machine to refer
to a thermal machine model with same bare Hamilto-
nian, H0, but whose evolution can be described using
only classical (Markovian) dynamics, while being capa-
ble of producing the same average currents as the quan-
tum machine using the same amount of incoherent re-
sources. Notice that if the classical equivalent machine is
capable of producing the same average currents, this also
ensures the same efficiency as the original quantum ma-
chine. However, quantum and classical equivalent models
may different in general in their fluctuations.
By using same incoherent resources we mean that the

classical-thermodynamic equivalent model is in contact
with the same thermal baths, and therefore have access
to the same temperatures. Furthermore the requisite of
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having same bare Hamiltonian implies that the classical
equivalent also has the same energy level structure as
the original quantum machine, which allow us to iden-
tify them as the “same machine”. This is in contrast
with other notions of classical analogs in thermal ma-
chines where all the parameters of the classical model
are imposed to be exactly equal, including the couplings
to the baths or the driving strength [9, 12] (this is also
the case of introducing extra dephasing in the quantum
model). Here instead we allow to vary these parame-
ters as long as the requirements for weak-coupling and
Markovian dynamics assumed for the thermal machine
models are satisfied. This choice is not arbitrary, but al-
lows for an stringer notion of quantum-thermodynamic
advantage that avoids spurious “advantages” that may
disappear by just slightly modifying some of the param-
eters in the model.

In the following, we develop a general method for con-
structing these equivalent machines in situations where
the coherence in the system arises either from Hamilto-
nian dynamics (Hamiltonian-induced coherence) or from
dissipative processes (noise-induced coherence).

A. Hamiltonian-induced coherence

Since we want the classical equivalent to produce the
same average energy currents than the quantum counter-
part, our starting point will be the generic expression for
the heat currents given in Eq. (13). This expression, valid
for any given (bare) Hamiltonian H0, can be rewritten as
(see App. A):

⟨Q̇r⟩ =
∈Br∑
i<j

(ϵj − ϵi) (γijπii − γjiπjj), (22)

where we remind the reader that transitions in the sum
above are restricted to the ones induced in the set Br,
i.e. induced by reservoir r. The above expression only de-
pends on the level populations (diagonal elements of the
density matrix), energy gaps of the machine and jump
rates. As a consequence, the useful output current of the
machine can only depend on these quantities as follows
from the first law, e.g. in heat engines ⟨Ẇ ⟩ =

∑
r⟨Q̇r⟩.

Given that the energy gaps and temperatures of the reser-
voirs are fixed, we conclude that to ensure identical input
and output currents, the quantum machine and its clas-
sical equivalent must have matching diagonal elements in
their steady-state density matrices.

In order to mimic the same level populations in the
classical equivalent, we proceed by first solving the equa-
tions of motion for the diagonal elements and non-
vanishing coherences in the quantum machine (details
of this procedure are presented in Appendix C). Let’s
denote by indices |u⟩ and |v⟩ a couple of levels that are
connected by V (for simplicity we assume |u⟩ and |v⟩
not further connected to other levels). The equations of

motion for these two levels read:

ρ̇uu =
∑
j ̸=u

γjuρjj − ρuu
∑
i

γui − 2g Im (ρuv) ,

ρ̇vv =
∑
j ̸=v

γjvρjj − ρvv
∑
i

γvi + 2g Im (ρuv) ,

ρ̇uv = −1

2

∑
i

(γui + γvi) ρuv − ig (ρvv − ρuu) ,

(23)

while for the rest of levels n ̸= {u, v}, not connected by
V , we simply have ρ̇nn =

∑
j ̸=n γjnρjj − ρnn

∑
i γni.

Following Ref. [23], by equating all the derivatives to
zero in Eqs. (23), we can determine the relation between
the coherence of levels connected by the Hamiltonian
V and their populations (that should be verified in the
steady state):

πuv =
−2ig (πvv − πuu)∑

i (γui + γvi)
. (24)

Then we introduce the above dependence back into off-
diagonal elements in Eqs. (23), to obtain that the net
effect of coherence in the steady state is equivalent to
adding a virtual transition promoting jumps between the
interacting levels |u⟩ and |v⟩:

d

dt
ρuu =

∑
j ̸=u

γjuρjj − ρuu
∑
i

γui + γcl
vuρvv − γcl

uvρuu,

d

dt
ρvv =

∑
j ̸=v

γjvρjj − ρvv
∑
i

γvi + γcl
uvρuu − γcl

vuρvv,

(25)

with transition rate

γcl
uv = γcl

vu =
4g2∑

i (γui + γvi)
. (26)

As a consequence, if we replace the Hamiltonian term V
responsible for the coherent interaction between levels |u⟩
and |v⟩ by the above extra stochastic transition between
them, the system governed by Eqs. (25) will reach an
steady-state with exactly the same populations as the
original one governed by Eq. (23), and therefore the same
currents in Eq. (22).
We have thus achieved a classical equivalent of the

quantum model in which the dynamics is entirely clas-
sical, as given by a set of incoherent jumps between the
machine energy levels, while reproducing the same (av-
erage) currents in the steady state. We also notice that
the equivalent machine is coupled to the same set of ther-
mal baths, while the coherent interaction is replaced by
an stochastic jump process without bias in either direc-
tion. This provides a classical equivalent model that
uses the same amount of incoherent resources. In the
case of energetic coherence, i.e. non-degenerate levels
|u⟩ and |v⟩ (ϵu ̸= ϵv) this means replacing the quantum-
coherent work source (battery) by a classical stochastic
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work source (battery), like a bath at infinite tempera-
ture. On the other hand, in the case of degenerate coher-
ence (ϵu = ϵv) the extra stochastic transition is a source
of pure noise without any associated energy current and
can hence be considered as free.

B. Noise-induced coherence

In this case, we find that the heat currents of the col-
lective transitions explicitly depend on the real part of
the coherence between energy levels involved in the en-
vironmental noise-inducing mechanism (which we again
denote |u⟩ and |v⟩):

⟨Q̇r⟩ =
∑
i<j

(ϵj − ϵi)(γijπii − γjiπjj)

+ 2
∑
j

(ϵj − ϵv)(γuj + γvj)Re(πuv),
(27)

while the currents that are not involved in the noise-
inducing mechanism are given by Eq. (22) as in the pre-
vious case (see App. A). Moreover, in Appendix C we
show that reproducing the steady-state populations re-
sults again in equal average currents, despite of the ap-
pearance of the second contribution in Eq. (27).

Following the same procedure as for Hamiltonian-
induced coherence, we can observe the net effect of co-
herence in the steady state by solving the equations of
motion and replacing the dependence of coherence back
into the equations (see details in App. C):

πuv =

∑
i

[
2
√
γuiγviπii −

√
γiuγiv(πuu + πvv)

]∑
i(γiu + γiv)

. (28)

As before, we obtain a virtual jump between the coherent
levels u and v, but in this case we also find corrections to
the rates in some of the (already present) jumps involving
these levels and other levels of the machine n. Thus the
rates for the classical equivalent must be of the form:

γcl
uv = γcl

vu =

(∑
j

√
γujγvj

)2

∑
j(γuj + γvj)

,

γcl
in = γin − 2

√
γunγvn γ∗

uv,

γcl
ni = γni − 2

√
γnuγnv γ∗

uv,

(29)

where i = u, v above and we defined γ∗
uv :=∑

j

√
γujγvj/

∑
j(γuj + γvj). It can be proved that lo-

cal detailed balance relations are not modified in any
transition of the machine by the corrections to the rates
above. To show this, let us rewrite the rates of the col-
lective transitions to and from levels i = {u, v} as γin =
γi
r exp[βr(ϵi − ϵn)/2] and γni = γi

r exp[−βr(ϵi − ϵn)/2]
respectively, were γi

r :=
√
γinγni is a purely kinetic

(spontaneous-emission-like) contribution to the rates not
depending on the direction of the jumps, and βr is the

temperature of the bath to which the transition is cou-
pled. Using this notation the corrected rates read

γcl
in =

(
γi
r − 2γ∗

uv

√
γu
r γ

v
r

)
exp[βr(ϵi − ϵn)/2],

γcl
ni =

(
γi
r − 2γ∗

uv

√
γu
r γ

v
r

)
exp[−βr(ϵi − ϵn)/2].

(30)

Notice that the corrections only affect the purely ki-
netic contributions to the rates, but not their bias. As
a consequence, the classical equivalent will employ the
same thermodynamic resources (temperatures and en-
ergy gaps) as the quantum system. In other words, in
order to construct the classical equivalent machine we can
replace the collective transitions appearing in the origi-
nal quantum model by local ones (with a tuned rate)
to the same thermal baths, and add an extra stochastic
transition between the degenerated levels |u⟩ and |v⟩.

V. THERMODYNAMIC IMPACT OF
COHERENCE

We are now in a position to present our results that
unveil the impact of steady-state coherence in the per-
formance of quantum thermal machines by direct com-
parison with the corresponding classical equivalents as
introduced above. We recall that, by construction, the
classical equivalent machine reproduces the same average
currents in all the transitions, and hence it has the same
efficiency than the original machine. However, fluctua-
tions in the output current (as captured by the variance),
can differ in general between quantum and classical mod-
els, making the presence of coherence either beneficial or
detrimental for the machine output reliability. In the
following, we show that energetic coherence can lead to
reliability improvements (for same output and efficiency),
while, on the contrary, thermal machines operating with
degenerate coherence can only perform equal or worst
than their classical-equivalent counterparts.
In order to address the impact of coherence in the reli-

ability of the thermal machines, we introduce the fluctu-
ations ratio R between quantum and classical machines
as

R :=
Var[Jout]

Var[Jcl
out]

, (31)

where Jcl
out denotes the output current in the classical-

equivalent model. The above ratio measures the relative
reduction in the dispersion of the output current in the
quantum machine, as compared to the classical one. If
R > 1, then the classical equivalent provides a more
accurate output; R = 1 implies that the quantum and
classical models are indistinguishable from their disper-
sion, and R < 1 implies that the output in the quantum
machine is more accurate, hence providing a quantum-
thermodynamic advantage manifested in an enhanced re-
liability of the machine for same average outputs.
Our analysis is performed as follows: we first obtain

the classical equivalents for the three prototypical ma-
chines considered here as explained in Sec. IV. Then we
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FIG. 2. a) Histogram of sampled values of the ratio between the fluctuations of the system and its classical analog R for
different ratios of the bath temperatures (see legend). The values corresponds to an exploration of the following region in the
parameters space of the system: βc = 1, ϵ2 = 5, ωd ∈ [0.1, 4.9], γh/c ∈ [10−5, 10−2] and g ∈ [10−5, 10−2]. b) Colour maps of the
fluctuation ratio R and c) the TUR ratio Qhe as a function of the bath interaction strengths and the driving force. The other
systems parameters are: βc = 1, βh = 0.1, ϵ2 = 5, ωd = 2.5 and γc = 10−3.

obtain, using the FCS approach, the variance of the out-
put currents for both quantum and classical equivalent
models (details are provided in App. B). Finally, we nu-
merically generate a 106 number of possible system con-
figurations in the whole parameters space verifying the
basic assumptions ensuring the consistency of the Marko-
vian dynamics and conduct a direct comparative analy-
sis.

A. Thermodynamic enhancement through
energetic coherence

We provide evidence that in thermal machines that
show steady-state energetic coherence (as the one in-
duced by a weak external coherent driving) quantum-
thermodynamic improvements can be achieved in the
form of reduced fluctuations in the output current for
given (fixed) power output and efficiency. As a paradig-
matic example, we use the three-level amplifier (see
Fig. 1a) as introduced in Sec. II A, to illustrate this point.

Following the general recipe provided in Sec. IV, the
classical equivalent of the three-level amplifier can be ob-
tained by replacing the driving Hamiltonian V (t) by an
extra stochastic transition between levels |0⟩ and |1⟩. The
rates of these extra transitions, as given by Eq. (26) be-
come γcl

01 = γcl
10 = 4g2/(γhn̄h + γcn̄c).

In order to quantify the impact of (energetic) coherence
in the three-level amplifier, we compute the fluctuations
ratio R in Eq. (31) for the output power, J = Ẇ . Ex-
ploring the model parameters for fixed external tempera-
tures of the baths, we observe the appearance of a signifi-
cant amount of configurations with R < 1, that increases
as the temperature bias powering the machine increases.
This is illustrated in Fig. 2a where the distribution of R
values over 106 configurations is shown for three different
choices of (fixed) environmental temperatures. As can
be appreciated, for all configurations we obtain R ≤ 1,
that is, the three-level amplifier always match or exceed

the performance of the corresponding classical equivalent
machine for each configuration, hence unveiling a benefi-
cial role of energetic coherence. Improvements reaching
an output power variance reduction up to R ∼ 1/2 are
possible for temperature bias of the order Th = 10Tc.
We also observe a fat tail in the distribution that en-
sures the robustness of the enhancements, meaning that
many configurations can lead to significant reductions in
the output variance. The range of variance reductions
shrinks towards higher R values as the temperature bias
is reduced, and tends to disappear close to equilibrium
(similar temperatures of the baths) where quantum and
classical models perform almost equally. This effect is a
manifestation of the nonequilbrium character of the en-
hancements produced by energetic coherence.
In Fig. 2b the behaviour of the fluctuations reduction

ratio, R in Eq. (31), is plotted as a function of the spon-
taneous emission rates and the driving strength. Darker
colours denote regions where larger stability enhance-
ments with respect to the classical equivalent machine
are obtained, which are verified in the regime of very
weak driving and highly asymmetric spontaneous rates
(low coupling strength with the hot bath as compared to
the cold one). This plot can be contrasted with Fig. 2c
where the TUR ratio in Eq. (19) is shown for the same
range of parameters. In both plots the black solid line
has been introduced as a guide to the eye representing
the boundary (Qhe = 2) of the region where TUR vio-
lations are obtained. This allows the comparison of the
method using the classical equivalent machine to detect
quantum-thermodynamic enhancements, with the direct
search for violations of the (classical) TUR [28–33].
We observe that the area where violations of the TUR,

Qhe < 2, are verified, is contained within the region
R < 1 and indeed coincide with the highest improve-
ments in precision as measured by the reduction ratio R.
However, as expected, we also find that even in regimes
where the TUR is not violated, there exists an improve-
ment in accuracy of the output current due to the pres-
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FIG. 3. Histogram of sampled values of Q (inset plots) and
the ratio between the fluctuations of the system and its clas-
sical equivalent R (outset plots). The values corresponds to
an exploration of the following region in the parameters space
of the system: βc = 1, βm/βc ∈ [0, 1], βh/βm ∈ [0, 1], ϵ2 = 5,
ϵ1 ∈ [0.1, 4.9], γc/m/h ∈ [10−5, 10−2] and g ∈ [10−4, 10−2].

ence of energetic coherence. Therefore, using the classical
equivalent of the original three level amplifier, we are able
to identify regimes of thermodynamic enhancement that
cannot be revealed by violations of the TUR.

B. Thermodynamic disadvantage caused by
degenerate coherence

We now use the same methodology to carry out a sim-
ilar analysis for the cases of degenerate (non-energetic)
coherence, taking as main examples the three-qubit au-
tonomous refrigerator introduced in Sec. IIB and the NIC
machine model introduced in Sec. IIC.

Starting with the autonomous refrigerator, we find that
the classical equivalent is obtained by replacing the three-
body interaction Hamiltonian V allowing the exchange
of energy between qubits, by a classical transition pro-
ducing incoherent jumps between levels |101⟩ and |010⟩.
The rate of this transition, according to Eq. (26) be-
comes in this case γcl

uv = γcl
vu = 4g2/

∑
r (2n̄r + 1)γr,

where |u⟩ = |101⟩ and |v⟩ = |010⟩, and the sum runs
over the three baths, r = h,m, c.
For assessing the enhancements in the reliability of the

refrigerator, the fluctuations ratio R in Eq. (31) is com-
puted for the cooling power (heat current from the cold

bath), Jout = Q̇c. The distributions for the reduction ra-
tio R and TUR ratio Qabs (inset) in this case are shown
in Fig. 3 again for 106 parameter configurations. As can
be observed, in this case we obtain R ≥ 1 for all con-
figurations, meaning that a reduction of the fluctuations
ratio is not possible. As a consequence, we have to con-
clude that the three-qubit quantum refrigerator does not
perform better than its classical equivalent, despite it
has been shown to operate using entanglement [20]. In
particular, in the majority of cases, the fluctuations in
both systems are comparable, with certain cases where

the quantum system exhibits noise levels up to 5% higher
than its classical thermodynamic equivalent. Looking at
the distribution of Qabs values, we also see that the au-
tonomous refrigerator remains unable to break the clas-
sical constraint imposed by the TUR in all system con-
figurations (inset plot). Consequently, we conclude that
degenerate coherence does not have a significant impact
on the autonomous refrigerator performance, which is not
able to beat its classical equivalent counterpart in all the
parameter regions.
In the case of the NIC machine, previous studies have

shown that when the rates of the collective transitions
were equal (γna = γnb and γan = γbn for n = 0, 1)
it is possible to apply a change of variables that effec-
tively decouples coherences from populations [66] (see
also Ref. [71] for a similar case). However, such change
of variables does not produce this decoupling when the
rates are unequal, suggesting that the system enters a
purely quantum regime [69]. In the following, we show
that in both cases a classical equivalent can be defined
for large regions of the parameter space, that can be used
to evaluate the thermodynamic impact of noise-induced
coherence.
We first introduce the following basis change where the

degenerate levels |2a⟩ and |2b⟩ are transformed into levels
|α⟩ and |β⟩:

|α⟩ = 1√
γa
h + γb

h

(√
γa
h |a⟩+

√
γb
h |b⟩

)
,

|β⟩ = 1√
γa
h + γb

h

(√
γb
h |a⟩ −

√
γa
h |b⟩

)
.

(32)

Notice that in the case of symmetric rates for the hot
reservoir, γa

h = γb
h , this expression becomes the one pre-

sented in Ref. [69], but differs otherwise. By introducing
this change, we successfully decouple the state |β⟩ from
the state |0⟩, resulting in a machine with only one ex-
plicit collective transition, as illustrated in Fig. 4a. For
symmetric rates, we recover the situation where |β⟩ is
completely decoupled from the states |0⟩ and |1⟩, leading
to a classical three-level system with local jumps at same
temperatures than the original NIC machine.
In the general case, following Sec. IVB, the classi-

cal equivalent includes an extra stochastic transition be-
tween the degenerate levels reading:

γcl
αβ = γcl

βα =
(n̄h + 1)γα

h γ
β
h

(n̄c + 1)γα
c + (n̄h + 1)(γα

h + γβ
h )

, (33)

and corrections to the rates of the collective transitions
between the degenerate levels and the other ones as

γcl
k1 = (γk

h − 2γcl
αβ)(n̄h + 1),

γcl
1k = (γk

h − 2γcl
αβ)n̄h,

(34)

for k = α, β. By examining the above equations, we
find that the corrections to the spontaneous emission
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rates can make these rates eventually negative, which
would correspond to a nonphysical situation. Conse-
quently, the construction of the classical equivalent for
noise-induced coherence is limited to scenarios that en-
sure positive rates. For the NIC machine analyzed here,
this happens when

γα
h + γβ

h ≥ 2max[γα
h , γ

β
h ]−

n̄c + 1

n̄h + 1
γα
c , (35)

as illustrated in Fig. 4b.
We compute the fluctuation ratio R in Eq. (31) for

the NIC machine and its classical equivalent by taking
again Jout = Ẇ for 106 different parameter configura-
tions within the region where the classical equivalent
machine can be defined. In Fig. 5 we show the distri-
bution of R together with the corresponding distribution
of the TUR ratio Qhe values (see inset). Our results show
that R ≥ 1 for all cases, similarly to the case of the au-
tonomous refrigerator. In particular, we find that the
quantum-coherent machine is at least as noisy (or more)
than its classical equivalent. Indeed for some configu-
rations the NIC machine reaches noise levels up to 30%
higher than its classical counterpart. By looking at the
inset we observe that, as expected, the TUR is also not
violated for all choices of parameters (Qhe ≥ 2 always)
in accordance to previous studies about TUR violations
in similar models [68].

Therefore it becomes clear that the NIC machine is not
able to overcome the classical equivalent machine in any
of the relevant configurations. Our results hence imply
that noise-induced coherence has not any beneficial im-
pact in the thermodynamic performance of the NIC ma-
chine, whose operation in terms of power, efficiency and
reliability can be mimicked (or surpassed) by a purely
classical equivalent machine using the same set of re-
sources. These conclusions are in contrast with previous
claims in the literature regarding quantum enhancements
in NIC models, see e.g. Refs. [16–19], which either lacked
a systematic comparison to classical equivalent models,
or were judged on the basis of more limiting notions of

FIG. 4. (a.) Schematic representation of the level transitions
in the Noise-induced machine after the variable change. (b.)
Graphical representation of the inequality (35) separating the
regimes where we can define the classical equivalent for noise-
induced coherence (blue zone) and where we cannot (grey
zone).

FIG. 5. Histogram of sampled values of Q (inset plots) and
the ratio between the fluctuations of the system and its classi-
cal equivalent R (outset plots). The values corresponds to an
exploration of the following region in the parameters space
of the system: βw → ∞, βc = 1, βh/βc ∈ [0, 1], ϵ2 = 5,

ϵ1 ∈ [0.1, 4.9], γ
(a/b)
h ∈ [10−5, 10−2] and γ

(a/b)
c = 10−3.

classical equivalent (e.g. requiring all model parameters
to be maintained equal).

VI. PARETO OPTIMIZATION AND
PRACTICAL ADVANTAGES

In the previous section we have seen that only for the
case of energetic coherence, corresponding to the case
of the three-level amplifier introduced in Sec. II A, a
quantum-thermodynamic advantage can be identified for
different set of parameters in the model. The reduction
of the output current fluctuations as compared to classi-
cal equivalent machines operating at same (average) out-
put power and efficiency, provide indeed necessary con-
ditions for a quantum-thermodynamic advantage. Still
in order to proof a practical (and hence useful) advan-
tage, an analysis of the regimes where such an improved
reliability is obtained is needed. Here we show that the
advantages identified before occur indeed along optimal
performance, e.g. for maximum power and for maximum
efficiency regimes.
Since optimizing the machine performance involves

more than one desired objective (maximize power, max-
imize efficiency, minimize fluctuations), multi-objective
optimization techniques, also called Pareto optimization,
are required. These techniques are well known in en-
gineering [80] and have been applied to a wide range
of problems, from network theory [34] to betting strate-
gies [35] and phenotypic response [36]. They have also
attracted some attention recently in the field of stochas-
tic and quantum thermodynamics, where they have been
applied to the optimisation of heat engine cycles in the
slow-driving regime [37–39].
In order to solve a multi-objective optimisation prob-

lem (let’s take for example a two-dimensional problem)
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FIG. 6. Two dimensional multi-objective optimization of the different thermodynamic quantities (normalized by its maximum)
for the Three-level amplifier. The value of the fixed parameters are: βc = 1, βh = 0.1, ϵ2 = 5, ωd ∈ [0.1, 4.9], γh/c ∈ [10−5, 10−2]

and g ∈ [10−5, 10−3].

we first define a utility function that depends on the
quantities to be optimized (e.g. maximisation of power
and minimisation of fluctuations) with the form

Ω := λ⟨Ẇ ⟩ − (1− λ)Var[Ẇ ], (36)

where the parameter λ takes values in the range [0, 1].
The role of the parameter λ is to give weights to the two
objectives, thus defining a single optimization problem
for the whole function Ω. By maximizing Ω we obtain
solutions that are both optimal in terms of maximizing
power and minimizing fluctuations according to a fixed
weight λ. For λ = 0 we recover the problem of only
minimizing fluctuations (whose solution is the zero fluc-
tuations point), while in the case λ = 1 we recover the
problem of only maximizing power (leading to the maxi-
mum power point). Indeed varying λ we obtain a family
of standard optimization problems for a single variable,
Ω. The solution to the multi-objective optimization prob-
lem —the so-called Pareto front— is hence constructed
by combining the solutions for every single-objective op-
timization problems, i.e. for all λ ∈ [0, 1].
We applied the above optimization technique to the

three-level amplifier for numerically obtaining Pareto
fronts to three different multi-objective optimization
problems, each of which optimizing two of the three
performance indicators of the machine, namely average
power ⟨Ẇ ⟩, efficiency η and power fluctuations Var[Ẇ ].
In Fig. 6 we can see the shape of the Pareto front (red
curves) for the three different optimisation problems with
fixed environmental temperatures and varying ωd, γh, γc
and g. There, each circle (independently of its color)
is generated from a possible configuration (choice of pa-
rameters) of the machine. For the optimization problems

involving maximizing power ⟨Ẇ ⟩ and minimizing fluctu-

ations Var[Ẇ ] (Fig. 6a) or maximizing power ⟨Ẇ ⟩ and
minimizing efficiency η (Fig. 6b), the Pareto fronts in-
clude a whole branch of solutions indicating a tradeoff

between the optimization objectives. These go from the
zero fluctuations point to the maximum power one in the
first case, and from the Carnot point to maximum power
point in the second one. On the other hand, for the prob-
lem of minimizing fluctuations Var[Ẇ ] and maximizing
efficiency η(Fig. 6c) the Pareto front collapses to a sin-
gle point, or optimal solution, achieving zero fluctuations
and Carnot efficiency (but at zero output power).

The role of energetic coherence in the performance of
the engine can be unveiled by coloring the circles repre-
senting each parameter configuration according to their
value of the TUR ratio Qhe (orange for Qhe ≥ 2 and
blue for TUR violations, Qhe < 2). As can be appre-
ciated in Fig. 6, in all cases the configurations that vi-
olate the TUR span the domain classically achievable.
More importantly, in Figs. 6a and b, we observe TUR
violations within the Pareto fronts for large power out-
puts, and including the maximum power point. This re-
sult implies that three level amplifier shows a quantum-
thermodynamic advantage (as spotted by the violation
of the TUR) in relevant regimes of operation, where the
machine performs in an optimal way.

Similarly, we can define and numerically solve the
multi-objective optimization problems for the three-qubit
refrigerator and NIC machines to obtain their respective
Pareto fronts (see Appendix Y). Once all multi-objective
optimization problems have been solved for the three
quantum thermal machine models, we can compare their
optimal solutions with the optimal solutions of their re-
spective classical equivalents. A quantitative compari-
son of the optimal solutions (Pareto front) in each case,
can be performed by computing the difference between
the maximum values of their utility functions, Ω − Ωcl,
for a given λ. We focus on the optimisation of ⟨Jout⟩
and Var[Jout], since by construction, the difference be-
tween the quantum machine and its classical equivalent
lies in the variance of the currents. In Fig. 7 we show
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FIG. 7. Difference between the quantum and classical max-
imums of the utility function Ω in the multi-objective opti-
mization of ⟨Ẇ ⟩ − Var[Ẇ ] as function of λ for fixed envi-
ronment temperatures (outset plot) and as a function of the
environment temperatures for a fixed λ = 0.8. The value of
the fixed parameters are: βc = 1, ϵ2 = 5, ωd ∈ [0.1, 4.9],
γh/c ∈ [10−5, 10−2] and g ∈ [10−5, 10−3].

the behaviour of Ω−Ωcl as a function of λ for the three
thermal machine models (and fixed bath temperatures).
In all three cases, for small values of λ i.e. close to the
zero fluctuations point, we find no difference between the
quantum and classical Pareto fronts. However, as soon
as λ increases, we find three quite different behaviours:
(1) for the three-level amplifier the optimal solution is
always better i.e. it reaches greater values of the utility
function (that are indeed not achievable in the classical
equivalent); (2) for the quantum absorption refrigerator
it turns out that there is no difference at all between clas-
sical and quantum optimal solutions, hence being these
machines exactly equivalent at the level of power, effi-
ciency and stability; (3) the NIC machine is always less
optimal than its classical counterpart, specially for high
values of λ (high powers) where the NIC machine be-
comes much noisier than its classical equivalent. In any
case, we observe that in the limit λ = 1 (maximum power
point), for which fluctuations are not taken into account,
the optimal solutions of quantum and classical models
become equivalent, as expected by construction of the
classical equivalent.

Finally, also explore the mismatch in the utility func-
tions, Ω − Ωcl, when varying the temperature bias (see
the inset plot in Fig. 7). Fixing the value of λ we observe
that the advantages of the three-level amplifier quantum
Pareto front are higher for high temperature biases and
as we make βh/βc smaller and smaller they tend to disap-
pear, spotting again a (quantum) non-equilibrium effect.
On the other hand, the disadvantages in the NIC ma-
chine front do not display a monotonic behavior with the
temperature bias and tend to disappear for a high tem-
perature bias, where the quantum and classical models
become equally optimal.

VII. CONCLUSIONS

We have characterized the thermodynamic impact of
energetic and degenerate coherence in the performance
of quantum thermal machines operating in nonequilib-
rium steady states. While machines displaying energetic
coherence in their steady states can lead to quantum-
thermodynamic advantages in terms of their tradeoff be-
tween power, efficiency and stability, this is not the case
for machines only displaying coherence between degen-
erate levels, no matter its origin being Hamiltonian or
noise-induced. These results, obtained through direct
comparison of prototypical quantum thermal machines
with axiomatically-constructed classical equivalent mod-
els, imply that many previous claims regarding quantum-
enhancements in these machines are spurious. Indeed,
we showed that even if the dynamics of these machines
exhibit purely quantum features (such as e.g. entangle-
ment), a classical Markovian machine using the same set
of resources (energy gaps and bath temperatures) can be
systematically constructed that performs just as well or
better than the original machine. Our results provide,
at the same time, an explanation of why violations of
the TUR cannot be found in devices showing degenerate
coherence.

The classical equivalent model employed here allowed
us a comparison of the current fluctuations between a
quantum device and a classical (incoherent) counterpart
that outputs the same average currents while employ-
ing identical thermodynamic resources. This notion of
classical equivalent machine constructs on the idea of
emulability discussed in Ref. [23], and is accompanied
by a general methodology for its derivation in generic
cases. The classical equivalent can be constructed for
virtually any quantum steady-state machine working in
the weak-coupling regime, and under weak-driving con-
ditions, namely, when the driving can be considered a
perturbation of the (bare) machine Hamiltonian. Ex-
tensions of this method to the case of strong couplings
or strong periodic driving (e.g. using Floquet formalism)
are an interesting direction for future research which may
allow addressing quantum-thermodynamic advantages in
a larger class of quantum devices.

Using the three-level amplifier as a main example of
a quantum thermal machine displaying energetic coher-
ence, we have shown that it always match or exceeds
the performance of its classical equivalent counterpart
in all possible configurations, with improvements in the
machine stability that become greater for larger temper-
ature bias, i.e. far from equilibrium. The parameter
regions where these improvements are maximal coincide
indeed with regimes where the thermal machine breaks
the TUR bound. Moreover, we also observe wide regions
showing (smaller) thermodynamic improvements that are
not witnessed by TUR violations. Importantly, our re-
sults reveal that in order to observe a truly quantum-
thermodynamic advantage in this model, it is necessary
(and sufficient) to consider the fluctuations in the cur-
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rents (at least at the level of the variance), in contrast
to previous assessments based on more limited notions of
classical equivalents (leading to a less stringent compar-
ison) [9].

Beyond the direct comparison between quantum ma-
chines and their respective equivalents for given param-
eters, we also provided an all-to-all comparison comput-
ing the optimal configurations (Pareto front) of quantum
and classical machines maximizing power and efficiency
while minimizing fluctuations. Our analysis reveals that
quantum-thermodynamic advantages in the three-level
amplifier occur indeed within the optimal front, allow-
ing thus for a practical quantum-thermodynamic advan-
tage. Since implementations of this or similar thermal
machine models have been proposed in a number of plat-
forms [13, 81], and it has been actually experimentally re-
alized with NV-centers in diamond [12], it would be inter-
esting to test our results for the quantum-thermodynamic
advantages reported here in relevant regimes by suitably
measuring the variance of the currents [82, 83].

ACKNOWLEDGMENTS

We thank Roberta Zambrini for comments and
interesting discussions. We wish to acknowledge sup-
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Appendix A: General expression of current first
moments with local dissipation

In this appendix we derive a general expression for the
average heat currents including the cases in which coher-
ence may be generated either by Hamiltonian or noise-
induced sources. We start by expanding the expression
for th standard definition for the heat currents as given
in Eq. (13), that is:

⟨Q̇r⟩ =
∑
k

Tr[H0D(r)
k [π(t)]] =

∑
k

Tr[D†(r)
k [H0]π(t)]

=
∑
k

∑
m,l

⟨m|L(r)†
k H0L

(r)
k − 1

2
{L(r)†

k L
(r)
k , H0} |l⟩πlm

(A1)

where we have applied the cyclic property of the trace

to obtain the adjoint dissipator D†(r)
k [·] := L

(r)†
k · L(r)

k −
1

2
{L(r)†

k L
(r)
k , ·}. Now, using the explicit form of the Lind-

blad operators in Eq. (4) and the bare Hamiltonian,
H0 =

∑
i ϵi |i⟩ ⟨i|, we can obtain each term in the sum

of the last expression:

L
(r)†
k H0L

(r)
k =

∑
i,j,n

√
γijγnjϵj |i⟩ ⟨n| δ(∆ϵji −∆ϵk)δ(∆ϵni),

L
(r)†
k L

(r)
k H0 =

∑
i,j,n

√
γijγnjϵn |i⟩ ⟨n| δ(∆ϵji −∆ϵk)δ(∆ϵni),

H0L
(r)†
k L

(r)
k =

∑
i,j,n

√
γijγnjϵn |n⟩ ⟨i| δ(∆ϵji −∆ϵk)δ(∆ϵni),

(A2)

where the δ functions arise from the fact that the Lind-
blad operators produce jumps only between levels with
a fixed energy gap ∆ϵk = ±∆ϵr, determined by the
reservoirs and we used δ(∆ϵji − ∆ϵk)δ(∆ϵjn − ∆ϵk) =
δ(∆ϵji − ∆ϵk)δ(∆ϵji − ∆ϵij) = δ(∆ϵji − ∆ϵk)δ(∆ϵni).
By introducing the expressions in (A2) into (A1) we ar-
rive at a general expression for the heat currents valid
for both degenerate and non-degenerate level structures
in the machine:

⟨Q̇r⟩ =
∑

k,n,i,j

√
γijγnjδ(∆ϵji −∆ϵk)δ(∆ϵni)

×[ϵjπni − ϵnRe(πni)].

(A3)

If we now particularize the above expression for the
case where we don’t have degenerate energy levels, the
term δ(ϵni) leads to select indices with n = i and we
arrive to:

⟨Q̇r⟩ =
∑
k,i,j

δ(∆ϵji −∆ϵk)(ϵj − ϵi)γijπii

=
∑
i<j

(ϵj − ϵi)(γijπii − γjiπjj),
(A4)

as given in Eq. (22). On the other hand, for the cases
with degenerate energy levels, δ(ϵni) can be zero even for
n ̸= i, and extra terms are obtained. In the case of a
single pair of degenerate levels |u⟩ and |v⟩ we obtain:

⟨Q̇r⟩ =
∑
i<j

(ϵj − ϵi)(γijπii − γjiπjj)

+ 2
∑
j

(ϵj − ϵv)(γuj + γvj)Re(πuv)
(A5)

as we reported in Eq. (27). Notice above that the extra
term in the heat current, which is associated to transi-
tions to or from the degenerate levels, is indeed non-zero
only in the presence of coherence between the degener-
ate pair πuv ̸= 0. Moreover, the coherence needs to have
a real component, as it is the case of the noise-induce-
coherence machine, c.f. (28). On the other hand, in the
case of autonomous refrigerators showing Hamiltonian-
induced coherence, the coherence between degenerate
levels in the steady state is a pure imaginary number
[c.f. Eq. (24)], and the heat current hence reduces to
the standard expression for non-degenerate levels, as in
Eq. (A4).
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Appendix B: Full Counting Statistics

The Full Counting Statistics (FCS) formalism is used
to compute the variances of the different input and out-
put currents of the quantum thermal machines presented
and their classical equivalent models. In this formalism a
set of counting fields {χr} are introduced that keep track
of the exchanges of energy quanta between the machine
and the thermal reservoirs r. These lead to the deriva-
tion of a generalized master equation for an extended
density operator ρG(t, {χr

k} ) depending on the fields. It
reads [78]:

d

dt
ρG(t, {χr}) = −i [H(t), ρG(t, {χr})]

+

R∑
r=1

∑
k

D̄(r)
k [ρG(t, {χr})], (B1)

with a new set of dissipators with a modified form:

D̄(r)
k [ρG] :=

(
e−ν

(r)
k χr L

(r)
k ρGL

(r) †
k − 1

2

{
L
(r)†
k L

(r)
k , ρG

})
.

(B2)

where the numbers ν
(r)
k are chosen to be 1 for operators

L
(r)
k associated with the emission of a quanta into the

reservoir r (∆ϵk = −∆ϵr) and −1 for operators associ-
ated with the absorption of a quanta (∆ϵk = ∆ϵr). In
this way, the counting fields χr are associated to the net
flux of quanta Ṅr transferred from the reservoir into the
machine.

In any case, in the limit {χr} → 0, we recover ρG(t) =
ρ(t) and (B1) reduces to the standard master equation
(2) for the machine evolution. Moreover, as in the case of
the original master equation, Eq. (B1) can be linearised
and written in the form

dp⃗G(t)/dt = WG({χr})p⃗G(t), (B3)

where p⃗G(t) contains all the density operator elements
and WG is a matrix capturing the dependence between
elements ρij within the set of equations of motion. We
are interested in the eigenvalue λ({χr}) of the matrix
WG with the largest real part, which is related to the
machine cumulant generating function K(χr, t). Indeed
for systems with a single steady state we have that in the
long time limit [84]:

K({χr}, t) → λ({χr})t. (B4)

Then the cumulants C(r)
n associated to the exchange of

quanta with the different reservoirs corresponding to the
counting fields χr, can be obtained as derivatives with re-
spect to that counting fields of this eigenvalue, evaluated
for all fields equal to zero:

C(r)
n = (−i∂χr

)nλ({χl})|{χl}=0, (B5)

for n = 1, 2, 3, .... Here the first (n = 1) and second
(n = 2) cumulants correspond, respectively, to the aver-

age (C(r)
1 = ⟨Ṅr⟩) and variance (C(r)

2 = Var[Ṅr]) of the
currents of quanta on that reservoirs. The average and
variances of the heat currents in which we are mainly
interested in this work are then given by:

⟨Q̇r⟩ = ∆ϵrC(r)
1 , Var[Q̇r] = ∆ϵ2rC

(r)
2 . (B6)

Analogously, the average and variance of the power for
the case of the three-level amplifier are given, respec-
tively, by the first law, ⟨Ẇ ⟩ =

∑
r⟨Q̇r⟩ and in the

long-time limit, Var[Ẇ ] =
∑

r Var[Q̇r] + 2cov[Q̇cQ̇h] =

ω2
dVar[Ṅ ] for r = c,h where the last equality follows from

Var[Q̇r] = ∆ϵ2rVar[Ṅ ] and cov[Q̇cQ̇h] = ∆ϵh∆ϵcVar[Ṅ ].
Unfortunately the size and complexity of the matrix

WG makes in many cases impossible to obtain analyti-
cally the eigenvalue λ({χr}) by direct diagonalization of
WG, and other methods are required. In order to obtain
the first and second cumulants analytically, we follow the
method known as “inverse full counting” originally intro-
duced in Ref. [79] and used in Refs. [30, 33] for similar
purposes. In the following we review this method for the
case of a single field χ, but the expressions can be nat-
urally extended to multiple fields {χr} as it is our case
here (see e.g. appendix C in Ref. [33]).
In this method, the characteristic polynomial of WG,

namely, Pol(λ) := −det[WG(χ) − λ1], is expanded in
series in terms of the powers of its eigenvalues:

Pol(λ) =

M∑
n=0

an(χ)λ
n(χ) = 0, (B7)

where M is the range of the matrix WG. Now we define
the coefficients:

a′n = i∂χan|χ=0, (B8)

a′′n = (i∂χ)
2an|χ=0 = −∂2

χan|χ=0, (B9)

and similarly denote λ′ = i∂χλ|χ=0 and λ′′ = −∂2
χ|χ=0.

The first derivative of the entire characteristic polynomial
is then given by:[

i∂χ

M∑
n

anλ
n

]
χ=0

=

M∑
n

[a′n + (n+ 1)an+1λ
′]λn(0),

(B10)
and the second derivative reads:[

(−i∂χ)
2

M∑
n=0

anλ
n

]
χ=0

=

M∑
n=0

[a′′n + 2(n+ 1)a′n+1λ
′

+ (n+ 1)an+1λ
′′ + (n+ 1)(n+ 2)an+2λ

′2]λn(0).

(B11)

Since Pol(λ)= 0, both equations above should be equal
to zero. Therefore, if the system has a unique steady
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state, such that λ(0) = 0, as it is our case, then the zero
order term in λ vanish, and we obtain from (B10):

a′0 + a1λ
′ = 0, (B12)

so that the first cumulant (average current) is given by:

C1 = λ′ = −a′0
a1

, (B13)

and in the same way from (B11) we obtain the second
cumulant (variance):

C2 =
2(a′0a1a

′
1 − a′20 a

′
1)− a′′0a

2
1

a31
. (B14)

In the following we provide the form of the matrix WG

for the three quantum thermal machines used as main
illustrative examples in this paper and their correspond-
ing classical equivalents. The corresponding expressions
for the cumulants are, however, not included here for size
reasons.

1. Three-level coherent amplifier

To obtain the form of WG for this case, we write the
system of equations for all elements of ρG given by (B1),
using the Hamiltonian and Lindblad operators given in

Sec. II A. We consider only the relevant elements of the
matrix leading to non-zero values of the density operator
π in the steady state. That is, we include terms connect-
ing the level populations and the imaginary part of the
coherence between states |0⟩ and |1⟩ (see Appendix C).
On the other hand, both the real part of π12 and the real
and imaginary part of the other coherences π13 and π23

become zero at the steady state and we don’t need to
describe their evolution. The matrix reads:

WG =


−γ02 0 γ20 e−iχh 2g
0 −γ12 γ21 e−iχc −2g

γ02 eiχh γ12 eiχc −(γ20 + γ21) 0

g −g 0 −1

2
(γ02 + γ01)

 ,

associated to vector p⃗G(t) = (ρ00, ρ11, ρ22, Im[ρ01]). In
the case of the classical equivalent, we no longer consider
the contribution of coherence to the dynamics, but intro-
duce the classical stochastic transition rate between the
interacting levels, leading to a matrix W cl

G that reads:

W cl
G =

 −(γ02 − γcl
10) γcl

10 γ20 e−iχh

γcl
10 −(γ12 + γcl

10) γ21 e−iχc

γ02 eiχh γ12 eiχc −(γ20 + γ21)

 ,

with the corresponding associated vector p⃗ cl
G (t) =

(ρ00, ρ11, ρ22).

2. Three-qubit autonomous refrigerator

Using the Hamiltonian and the Lindblad operators given in Sec. II B, we can derive in an analogous way the
WG matrices for the autonomous absorption refrigerator and its classical equivalent. Here again, we consider only
relevant elements of the density matrix, which now consist of the populations of the 8 energy levels (in the three-qubit
composed ladder) and a pure imaginary coherence between the states |101⟩ and |010⟩. The WG matrix now have the
form:

WG =



Γ1 γh
10e

−iχh γc
10e

−iχc 0 0 0 0 γm
10e

−iχm 0
γh
01e

iχh Γ2 0 γm
10e

−iχm 0 0 γc
10e

−iχc 0 0
γc
01e

iχc 0 Γ3 0 γm
10e

−iχm 0 γh
10e

−iχh 0 0
0 γm

01e
iχm 0 Γ4 0 γc

10e
−iχc 0 γh

01e
iχh 0

0 0 γm
01e

iχm 0 Γ5 γh
10e

−iχh 0 γc
01e

iχc 0
0 0 0 γc

01e
iχc γh

01e
iχh Γ6 γm

01e
iχm 0 0

0 γc
01e

iχc γh
01e

iχh 0 0 γm
10e

−iχm Γ7 0 g
γm
01e

iχm 0 0 γh
10e

−iχh γc
10e

−iχc 0 0 Γ8 −g
0 0 0 0 0 0 −g g Γ9
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associated to vector p⃗G(t) = (ρ000, ρ001, ρ100, ρ011, ρ111, ρ101, ρ010, Im[ρ010−101]). For the classical equivalent we instead
loose the coherence contribution, while adding the extra rate γcl between degenerated levels:

W cl
G =



Γ1 γh
10e

−iχh γc
10e

−iχc 0 0 0 0 γm
10e

−iχm

γh
01e

iχh Γ2 0 γm
10e

−iχm 0 0 γc
10e

−iχc 0
γc
01e

iχc 0 Γ3 0 γm
10e

−iχm 0 γh
10e

−iχh 0
0 γm

01e
iχm 0 Γ4 0 γc

10e
−iχc 0 γh

01e
iχh

0 0 γm
01e

iχm 0 Γ5 γh
10e

−iχh 0 γc
01e

iχc

0 0 0 γc
01e

iχc γh
01e

iχh Γ6 γm
01e

iχm 0
0 γc

01e
iχc γh

01e
iχh 0 0 γm

10e
−iχm Γ7 − γcl γcl

γm
01e

iχm 0 0 γh
10e

−iχh γc
10e

−iχc 0 γcl Γ8 − γcl


for vector p⃗ cl

G (t) = (ρ000, ρ001, ρ100, ρ011, ρ111, ρ101, ρ010). In the above equations, we defined Γ1 = −(γc
01 + γm

01 + γh
01),

Γ2 = −(γc
01+γm

01+γh
10), Γ3 = −(γc

10+γm
01+γh

01), Γ4 = −(γc
01+γm

10+γh
10), Γ5 = −(γc

10+γm
10+γh

01), Γ6 = −(γc
10+γm

10+γh
10),

Γ7 = −(γc
10 + γm

01 + γh
10), Γ8 = −(γc

01 + γm
10 + γh

01) and Γ9 = − 1
2 (γd + γ2d + γ3d + γu + γ2u + γ3u).

3. Noise-induced-coherent machine

Finally, using the Hamiltonian and Lindblad operators from Sec. II C, we obtain the generic form of WG for the
noise-induced-coherence machine. In contrast with the previous cases, now we obtain non-zero real coherence in the
steady state between states |α⟩ and |β⟩(see Appendix C). The relevant elements of the WG matrix then connect the
populations of the four levels and the real part of the coherence between states |α⟩ and |β⟩:

WG =


−(γ0α + γ01) γ10 e−iχw γα0 e−iχc 0 0

γ01 eiχw −(γ1α + γ1β + γ10) γα1 e−iχh γβ1 e−iχh 2
√
γα1γβ1

γ0α eiχc γ1α eiχh −(γα1 + γα0) 0 −√
γα1γβ1

0 γ1β eiχh 0 −γβ1 −√
γα1γβ1

0 2
√
γ1αγ1β −√

γα1γβ1 −√
γα1γβ1 γα0 + γα1 + γβ1

 ,

with p⃗G(t) = (ρ00, ρ11, ραα, ρββ ,Re[ραβ ]). The matrix for the classical equivalent of the NIC machine does not contain
the coherence anymore, but the modified rates {γcl

1α, γ
cl
α1, γ

cl
1β , γ

cl
β1, γ

cl
αβ}. It reads:

W cl
G =


−(γ0α + γ01) γ10 e−iχw γα0 e−iχc 0

γ01 eiχw −(γcl
1α + γcl

1β + γ10) γcl
α1 e−iχh γcl

β1 e−iχh

γ0α eiχc γcl
1α eiχh −(γcl

α1 + γα0 + γcl
αβ) γcl

αβ

0 γcl
1β eiχh γcl

αβ −(γcl
β1 + γcl

αβ)

 ,

with associated vector p⃗ cl
G (t) = (ρ00, ρ11, ραα, ρββ).

Appendix C: Classical thermodynamic-equivalent
models details

In this appendix we provide details on the procedure
followed to obtain a classical thermodynamically equiv-
alent model, in both cases of Hamiltonian-induced and
noise-induced coherences. Moreover, we show that, even
in the case of noise-induced coherence, it is sufficient that
the classical analogue reproduces the steady-state popu-
lations in order to produce exactly the same steady state
average currents.

We start by obtaining the equations of motion for the
density operator elements from the master equation in
Lindblad form (2), from which we can obtain the expres-

sion for a generic element of the density operator:

ρ̇ij = −i ⟨i| [H(t), ρ] |j⟩+
∑
r

∑
k

⟨i| D(r)
k [ρ] |j⟩ . (C1)

After expanding the form of the dissipators D(r)
k [ρ] =

L
(r)
k ρL

(r)†
k − 1

2{L
(r)†
k L

(r)
k , ρ}, we obtain the following
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terms contributing to the above expression:

⟨i| [H(t), ρ] |j⟩ =(ϵj − ϵi)ρij + g(δiuρvj + δivρuj

− δvjρiu − δujρiv),

⟨i|L(r)
k ρL

(r)†
k |j⟩ =

∑
n,m

αk
niα

k
mj

√
γniγmjρnm,

⟨i|L(r)†
k L

(r)
k ρ |j⟩ =

∑
n,m

αk
imαk

nm

√
γimγnmρnj ,

⟨i| ρL(r)†
k L

(r)
k |j⟩ =

∑
n,m

αk
nmαk

jm
√
γnmγjmρin,

(C2)

where we can again use the fact that the Lindblad op-
erators produce jumps only between levels with a fixed
energy gap ∆ϵk = ±∆ϵr, determined by the reservoirs
and rewrite the α-terms as delta functions:

αk
niα

k
mj = δ(∆ϵin −∆ϵk)δ(∆ϵjm −∆ϵk),

αk
imαk

nm = δ(∆ϵmi −∆ϵk)δ(∆ϵni),

αk
nmαk

jm = δ(∆ϵmn −∆ϵk)δ(∆ϵnj).

(C3)

To specialize this result for the case of Hamiltonian-
induced coherence we can use the fact that in (C2) first
expression the only non-zero part is the second term,
since the first will vanish, because we can always go to
the interaction picture and consider only the interaction
term of the total Hamiltonian (or in the non-energetic
case both interacting levels have the same energy). On
the other hand, the δ functions in (C3) can be simplified
by taking into account the fact that in this case differ-
ent transitions cannot have the same ∆ϵk associated with
them. Then (C3) becomes:

αk
niα

k
mj = δ(∆ϵin −∆ϵk)δijδnm,

αk
imαk

nm = δ(∆ϵmi −∆ϵk)δni,

αk
nmαk

jm = δ(∆ϵmn −∆ϵk)δnj .

(C4)

which results in the set of equations (23).

In the case of noise-induced coherence, we don’t have
an interaction Hamiltonian, so the first expression on
(C2) doesn’t need to be considered. The δ functions in
(C3), on the other hand, have more terms, since there are
now different transitions associated with the same ∆ϵk.

Now (C3) reads:

αk
niα

k
mj =δ(∆ϵin −∆ϵk)(δijδnm + δiuδjvδnm + δivδjuδnm

+ δnuδmvδij + δnvδmuδij),

αk
imαk

nm =δ(∆ϵmi −∆ϵk)(δni + δivδnu + δiuδnv),

αk
nmαk

jm =δ(∆ϵmn −∆ϵk)(δnj + δjvδnu + δjuδnv).

(C5)

In view of (C5) the equations of motion are:

ρ̇nn =
∑
i

(γinρii − γniρnn) + 2
√
γunγvnRe(ρuv), (C6)

for the levels n ̸= {u, v}, and:

ρ̇nn =
∑
i

[γinρii − (γniρnn +
√
γuiγviRe(ρuv))] ,

ρ̇uv =
∑
i

[2
√
γiuγivρii −

√
γuiγvi(ρuu + ρvv)

− (γui + γvi)ρuv].

(C7)

for n = {u, v}. They result in a steady-state coherence
term given by (28) where the introduction of (28) into
(C7) leads to corrections for rates and a new transition
between levels u and v as shown in (29).
Finally, we show that all energy currents in the quan-

tum machine and the classical equivalent are equal, also
in the case of noise-induced coherence. Taking into ac-
count the fact that the transition in contact with the
“work” reservoir is not involved in the noise inducing
mechanism (involving only transitions from or to the de-
generate levels), we observe that the classical equivalent

can mimic the current ⟨Q̇w⟩ in the original machine if
it has the same populations in the steady state (since
Eq. (22) depends only on the populations of the density
matrix). Then, using Eq. (16), we also have that

⟨Q̇w⟩ = ⟨Q̇cl
w⟩ =⇒ ⟨Ṅ⟩ = ⟨Ṅ cl⟩, (C8)

⟨Ṅ cl⟩ being the corresponding probability current in the
classical equivalent machine. The above relation stating
the equivalence of the steady-state probability currents
in quantum and classical engines implies, at the same
time, that all the other energy currents in the original and
classical equivalent machines are equal to their classical
counterparts.
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