
Ungrammatical-syntax-based In-context Example Selection
for Grammatical Error Correction

Chenming Tang Fanyi Qu Yunfang Wu*

National Key Laboratory for Multimedia Information Processing, Peking University
MOE Key Laboratory of Computational Linguistics, Peking University

School of Computer Science, Peking University
{tangchenming@stu, fanyiqu@, wuyf@}pku.edu.cn

Abstract

In the era of large language models (LLMs),
in-context learning (ICL) stands out as an effec-
tive prompting strategy that explores LLMs’
potency across various tasks. However, ap-
plying LLMs to grammatical error correction
(GEC) is still a challenging task. In this pa-
per, we propose a novel ungrammatical-syntax-
based in-context example selection strategy
for GEC. Specifically, we measure similarity
of sentences based on their syntactic struc-
tures with diverse algorithms, and identify op-
timal ICL examples sharing the most similar
ill-formed syntax to the test input. Addition-
ally, we carry out a two-stage process to further
improve the quality of selection results. On
benchmark English GEC datasets, empirical
results show that our proposed ungrammatical-
syntax-based strategies outperform commonly-
used word-matching or semantics-based meth-
ods with multiple LLMs. This indicates that
for a syntax-oriented task like GEC, paying
more attention to syntactic information can ef-
fectively boost LLMs’ performance. Our code
will be publicly available after the publication
of this paper.

1 Introduction

Recently, large language models (LLMs) have
shown awesome power in many areas and ended
the contest on many tasks (Chowdhery et al., 2023;
Bubeck et al., 2023; Touvron et al., 2023). Un-
fortunately for LLMs, grammatical error correc-
tion (GEC), which aims at automatically correcting
grammatical errors in erroneous text (Bryant et al.,
2022), is still a challenging task where they cannot
beat conventional models yet. Fang et al. (2023b)
and Loem et al. (2023) explore the performance of
LLMs on GEC, demonstrating mainstream LLMs
lag over 10 points behind the state-of-the-art result.
Therefore, it is significant to explore new strategies
to further improve the power of LLMs on GEC.

* Corresponding author.

As a helpful prompting strategy, in-context learn-
ing (ICL) has achieved impressive results on many
tasks (Dong et al., 2022; Min et al., 2022). In
ICL, several in-context examples are presented to
LLMs as demonstrations before the input test sam-
ple in order to make LLMs aware of the require-
ment and output format of the specific task, thereby
enhancing LLMs’ performance during the subse-
quent generation process. Since the quality of in-
context examples plays a crucial role under the
few-shot setting, some strategies of example selec-
tion have been proposed (Agrawal et al., 2023; Li
et al., 2023a; Ye et al., 2023; Gupta et al., 2023).

To the best of our knowledge, no existing work
on ICL example selection has taken syntactic infor-
mation into consideration. However, GEC aims to
correct grammatical errors and is a typical syntax-
oriented task. In GEC, common errors can be clas-
sified into four types: misuse, missing, redundancy
and word order (Bryant et al., 2017; Zhang et al.,
2022a), and the last three of which are closely re-
lated to syntactic structure. That is, the missing,
redundancy or disorder of text constituents may
lead to ill-formed syntax (Zhang et al., 2022b), sug-
gesting the important role syntax plays in GEC.
Hence, selecting in-context examples based on syn-
tactic structure is likely to benefit LLMs more than
conventional word-matching-based or semantics-
based approaches.

Comparing with semantic similarity, syntactic
similarity of text is less-studied. Previous works
have leveraged the similarity of dependency trees to
help multi-document summarization (Özateş et al.,
2016) and semantic textual similarity (Le et al.,
2018). To compute syntactic similarity, several
effective algorithms computing similarity between
syntactic trees have been proposed. Tree Kernel is a
typical one, which counts the shared sub-structures
of two trees to measure their similarity (Collins and
Duffy, 2002; Vishwanathan et al., 2004; Moschitti,
2006). Polynomial Distance is another handy one,

ar
X

iv
:2

40
3.

19
28

3v
1

 [
cs

.C
L

]
 2

8
M

ar
 2

02
4

Source (Erroneous Sentence) Target (Corrected Sentence)

Input No smoking in the public places. No smoking in public places.

BM25 I am writing to complain about the suggested I am writing to complain about the suggested
bar on smoking in public areas. ban on smoking in public areas.

Poly. No future for the public transport? No future for public transport?

Table 1: An example comparing the selection results of BM25 and Polynomial Distance ("Poly." in the table).

which converts syntactic trees into polynomials and
then computes the distances (Liu et al., 2022).

In this paper, we propose a novel ICL example
selection strategy for GEC, by computing simi-
larities of syntactic trees on ungrammatical sen-
tences. Specially, we apply the syntactic similarity
algorithms (Tree Kernel and Polynomial Distance)
to dependency trees generated by a GEC-oriented
parser (GOPar) proposed by Zhang et al. (2022b),
which is more reliable and provides error informa-
tion when parsing ungrammatical sentences. More-
over, we carry out a two-stage process. In the first
stage, namely selection, a fast and general method
like BM25 is applied to filter out most of the irrel-
evant instances from the training data and obtain
a much smaller candidate set. In the second stage,
namely ranking, the more powerful syntax-based
method is implemented to find out the best k in-
stances as the final in-context examples.

To give a quick view of the superiority of our
method, Table 1 shows an example illustrating
the difference between BM25 selection and our
ungrammatical-syntax-based method with Poly-
noimal Distance selection. BM25 only selects ex-
amples with similar words while Polynomial Dis-
tance is able to select those with similar grammati-
cal errors, which will benefit the GEC task more.

We conduct experiments on two mainstream
English GEC datasets, BEA-2019 (Bryant et al.,
2019) and CoNLL-2014 (Ng et al., 2014). Accord-
ing to experimental results, Polynomial Distance
and its weighted version achieve competitive re-
sults even under the single-stage setting, improving
the performance by around 3 points and 2 points
on BEA-19 and CoNLL-14 respectively. With the
help of our two-stage selection, Tree Kernel gets
its power unlocked and Polynomial Distance also
benefits, leading to a further 1-point and 0.4-point
improvement on BEA-19 and CoNLL-14 respec-
tively. Overall, our ungrammatical-syntax-based
in-context example selection methods secure the
best results under all settings, outperforming con-
ventional baselines by a margin of nearly 3 F0.5

points on average.
Our contributions can be summarized as follows:

• We propose a novel ICL example selection
method based on ungrammatical syntactic
similarity to improve LLMs’ performance on
GEC. To the best of our knowledge, this is the
first time that knowledge of syntactic struc-
ture is introduced to ICL example selection
for GEC.

• We explore a two-stage selection strategy on
GEC, where superficial word-similarity-based
or semantics-based methods are used in the
first stage and deep syntax-similarity-based
ones are used in the second stage. It further
improves LLMs’ performance and achieves
competitive results.

• We want to re-draw the natural language pro-
cessing (NLP) community’s attention to the
significance of syntactic information. In this
work, we show that syntax-related knowledge
helps LLMs correct grammatical errors bet-
ter. We believe our methods can be smoothly
transferred to many other syntax-related tasks,
like machine translation (MT) and informa-
tion extraction (IE).

2 Related Work

2.1 Grammatical Error Correction
In the past few years, the GEC task has been dom-
inated by sequence-to-sequence machine transla-
tion models (Junczys-Dowmunt et al., 2018; Rothe
et al., 2021) and sequence-to-edit tagging models
(Omelianchuk et al., 2020; Tarnavskyi et al., 2022),
both based on Transformer (Vaswani et al., 2017).

Nowadays, with the finalization of mainstream
models, further explorations on GEC mainly fo-
cus on two aspects. For one thing, injecting all
kinds of additional knowledge into GEC models
has proved helpful. The additional knowledge can
be part-of-speech (POS) (Wu and Wu, 2022), syn-
tax tree (Zhang et al., 2022b), speech representation

Figure 1: Our two-stage selection and ICL workflow. For each input test sample, Stage I computes word similarities
with BM25 or BERT representation between the input and all training data and select the top-1000 as candidates.
Then, Stage II computes ungrammatical syntactic similarities with tree kernel or polynomial distance between
the input and candidates to select the most similar k example(s). After that, we concatenate the input after the k
examples to construct the prompt for LLM inference. In the end, the LLM outputs the final result.

(Fang et al., 2023a), abstract meaning representa-
tion (AMR) (Cao and Zhao, 2023), error type (Yang
et al., 2023), etc. For another, multi-stage strate-
gies help refine models’ predictions. The multi-
stage workflow can be permutation & decoding
(Yakovlev et al., 2023), detection & correction (Li
et al., 2023b), re-ranking (Zhang et al., 2023), etc.

With the rising of powerful large language mod-
els (LLMs), some works have begun exploring their
performance on GEC (Loem et al., 2023; Fang
et al., 2023b), showing that LLMs cannot beat con-
ventional models on GEC yet.

2.2 Syntactic Similarity

In computational linguistics (CL), previous works
compared syntax trees of different languages to
measure their similarities (Oya, 2020; Liu et al.,
2022). In NLP, most works on text similarity focus
on the semantic perspective (Gomaa et al., 2013,
Reimers and Gurevych, 2019; Chandrasekaran and
Mago, 2021), syntactic similarity of text is less-
studied. Özateş et al. (2016) used similarity of
dependency trees to help multi-document summa-
rization. Le et al. (2018) proposed ACV-tree (At-
tention Constituency Vector-tree), which combines

word weight, word representation and constituency
tree, to help the task of semantic textual similarity.

Syntactic similarity is usually represented by
similarity between syntax trees. Tree similarity can
be measured by various algorithms including Edit
Distance (de Castro Reis et al., 2004), Polynomial
Distance (Liu et al., 2022), Subset Tree Kernel
(SSTK) (Collins and Duffy, 2002), SubTree Kernel
(STK) (Vishwanathan et al., 2004), and Partial Tree
Kernel (PTK) (Moschitti, 2006).

2.3 Large Language Models and In-context
Learning

In recent years, LLMs have shown their awesome
power in many areas (Brown et al., 2020; Chowdh-
ery et al., 2023). Due to the limitation of computing
resources, the focus of research on LLMs turns to
the inference stage, trying to exploit the potency of
LLMs with inference-only strategies.

ICL is a successful inference strategy that can
make LLMs perform as well as fine-tuned models
on many tasks (Brown et al., 2020; Von Oswald
et al., 2023), where several in-context examples
are given to LLMs as demonstrations before the
actual test input. Instead of randomly sampling

But there were no buyers .

Root

cc

expl

nsubj

punct

det

(a) The correct sentence.

Bat there were no buyers .

Root

S

expl

nsubj

punct

det

(b) Substituted errors.

But there were no any buyers .

Root

cc

expl

nsubj

punct

det

R

(c) Redundant errors.

But there were no ∅ .

Root

cc

expl

M

det

(d) Missing errors.

Figure 2: Original illustration of GOPar from Zhang et al. (2022b). ∅ denotes the missing word.

examples from the training set, recent works have
boosted the performance of ICL by selecting in-
context examples using various strategies. Agrawal
et al. (2023) proposed R-BM25, a word overlap
and coverage based selection strategy for machine
translation. Li et al. (2023a) proposed training a
Unified Demonstration Retriever (UDR) for ICL
on a wide range of tasks. Ye et al. (2023) treated in-
context examples as a whole and selected examples
on a subset level with the help of Determinantal
Point Processes (DPPs). Gupta et al. (2023) also
selected examples as an entire set, with contextual-
embedding-level coverage as the goal.

Besides normal ICL, Chain-of-thought (CoT)
(Wei et al., 2022; Kojima et al., 2022) is another
effective inference strategy in current favor, where
LLMs are prompted to think step by step and an-
swer with intermediate rationales.

3 Preliminaries

3.1 Syntax Parser for Ungrammatical
Sentences

Unlike most NLP tasks, which take correct sen-
tences as input, the GEC task considers erroneous
text as input. This gives rise to an issue that main-
stream parsers may fail to obtain the expected de-
pendency tree for the erroneous text.

To solve this problem, Zhang et al. (2022b)
built a tailored GEC-Oriented dependency Parser
(GOPar) based on parallel GEC training data,
which is much more reliable when handling un-
grammatical sentences than conventional parsers.
Concretely, GOPar sets "S" (Substituted), "R" (Re-
dundant) or "M" (Missing) labels to deal with dif-
ferent kinds of grammatical errors in the sentence,
which inject additional information of errors into
the dependency tree. Figure 2 shows the original
illustration of GOPar from Zhang et al. (2022b).

Most previous works computing syntactic sim-
ilarity were based on grammatical sentences with
standard parsing trees (Özateş et al., 2016; Oya,
2020). However, in GEC, we only have the ungram-

matical source sentences, on which conventional
parsers may perform poorly. So we apply the algo-
rithms of tree similarity on the parsing results of
GOPar, to compute syntactic similarities between
test sample and training instances. We follow the
official guidance of SynGEC 1 to run GOPar. We
use biaffine-dep-electra-en-gopar provided
by SynGEC as the model for parsing.

3.2 Syntactic Similarity with Tree Kernel
We follow the unified Tree Kernel method proposed
by Moschitti (2006), which can compute kernels of
subset trees defined by Collins and Duffy (2002),
subtrees defined by Vishwanathan et al. (2004) and
partial trees defined in their own work.

For simplicity, we imitate the algorithm de-
scribed in Le et al. (2018) and design the following
algorithm (shown in Algorithm 1) to implement a
simple version of Tree Kernel.

Algorithm 1 Similarity with Tree Kernel
procedure COMPSIM(N1, N2)

K ← 0
for each node ni in N1 do

for each node nj in N2 do
if ni.label = nj .label then

if ni and nj are both leaves then
K ← K + 1

else if ni and nj are both non-leaves then
K ← K + COMPSIM(ni, nj)

end if
end if

end for
end for
K ← K/(N1.size×N2.size)
return K

end procedure

For two trees T1 and T2, we conduct COMPSIM

between their root nodes N1 and N2 to get a simi-
larity score.

3.3 Syntactic Similarity with Polynomial
Distance

Liu et al. (2022) converted trees into polynomi-
als and took the distances between polynomials as

1https://github.com/HillZhang1999/SynGEC

LLaMA-2 GPT-3.5
There is an erroneous sentence between ’<erroneous sen-
tence>’ and ’</erroneous sentence>’. Then grammatical
errors in the erroneous sentence will be corrected. The cor-
rected version will be between ’<corrected sentence>’ and
’</corrected sentence>’.
<erroneous sentence> {e1} </erroneous sentence>
<corrected sentence> {c1} </corrected sentence>
<erroneous sentence> {e2} </erroneous sentence>
<corrected sentence> {c2} </corrected sentence>
<erroneous sentence> {e3} </erroneous sentence>
<corrected sentence> {c3} </corrected sentence>
<erroneous sentence> {e4} </erroneous sentence>
<corrected sentence> {c4} </corrected sentence>
<erroneous sentence> {etest} </erroneous sentence>
<corrected sentence>

"system": You are a grammar correction assistant. The user
will give you a sentence with grammatical errors (between
’<erroneous sentence>’ and ’</erroneous sentence>’). You
need to correct the sentence (between ’<corrected sentence>’
and ’</corrected sentence>’). Requirements: 1. Make as few
changes as possible. 2. Make sure the sentence has the same
meaning as the original sentence. 3. If there is no error, just
output ’No errors found’.
"user": <erroneous sentence> {e1} </erroneous sentence>
"assistant": <corrected sentence> {c1} </corrected sentence>
"user": <erroneous sentence> {e2} </erroneous sentence>
"assistant": <corrected sentence> {c2} </corrected sentence>
"user": <erroneous sentence> {e3} </erroneous sentence>
"assistant": <corrected sentence> {c3} </corrected sentence>
"user": <erroneous sentence> {e4} </erroneous sentence>
"assistant": <corrected sentence> {c4} </corrected sentence>
"user": <erroneous sentence> {etest} </erroneous sentence>

Table 2: Prompts we use. e and c denote the erroneous and corrected sentences of in-context examples or test
samples respectively.

tree distances to measure syntactic similarities of
dependency trees.

Given the number of dependency labels d, the
dependency trees will be represented into poly-
nomials recursively on two variable set: X =
{x1, x2...xd} and Y = {y1, y2, ...yd}. In the de-
pendency tree, for each leaf nl with label l, the
corresponding polynomial is P (nl, X, Y) = xl.
Then, for each non-leaf ml with label l, the cor-
responding polynomial is P (ml, X, Y) = yl +∏k

i=1 P (ni, X, Y), where n1, ..., nk are all child
nodes of ml. In this way, the polynomial of the
root node is regarded as the polynomial representa-
tion of a tree.

To compute similarity more conveniently, for
each term cx

ex1
1 x

ex2
2 ...x

exd
d y

ey1
1 y

ey2
2 ...y

eyd
d in the

dependency polynomial, we write it as a term vec-
tor with 2d+ 1 entries:

t = [ex1 , ex2 , ..., exd
, ey1 , ey2 , ..., eyd , c],

where each entry represents the exponent of the
corresponding variable. In this way, a polynomial
P can be written as a set of term vectors VP . Then,
we compute the distance between two polynomials
as:

d(P,Q) =

∑
s∈VP

min
t∈VQ

∥ s− t ∥1 +
∑

t∈VQ

min
s∈VP

∥ s− t ∥1

| VP | + | VQ |
,

(1)

where ∥ s− t ∥1 denotes the Manhattan distance
(Craw, 2017) between term vector s and t.

4 Methodology

4.1 In-context Learning Workflow for GEC
Based on LLMs, our ungrammatical-syntax-based
example selection and few-shot ICL workflow is

illustrated in Figure 1. Specially, when faced with
a test input, we search through the training data
to find the best example(s) for in-context learning.
Then, both the source (erroneous) and the target
(corrected) sentences of the example(s) are inserted
into the prompt as demonstrations, with the test
sample concatenated at the end. In this way, LLMs
can learn the GEC task from the demonstrations
and perform better correction on the test input. In
this framework, a set of high-quality in-context
examples are crucial to lead LLMs to a better per-
formance. Prompts used in this work are shown in
Table 2.

4.2 Ungrammatical-syntax-based Selection

We parse all source sentences in both training and
test data with GOPar introduced in Section 3.1.
Then, for each test input, we search the training
data to find most syntactically similar examples
with the help of Tree Kernel or Polynomial Dis-
tance. These examples will serve as in-context
demonstrations in the prompts shown in Table 2.

Weighting Ungrammatical Nodes with Polyno-
mial Distance We hypothesize that LLMs benefit
more from similar grammatical errors, and error
nodes with similar neighboring syntactic structure
lead to similar error patterns. Therefore, assigning
higher weights to ungrammatical nodes can select
examples with error patterns closer to the test sam-
ple. Hence, besides the original Polynomial Dis-
tance algorithm, we also explore a weighted ver-
sion. When computing the Manhattan distance be-
tween two term vectors, we assign a higher weight
to entries corresponding to labels with error infor-
mation ("S", "R" and "M"). In our experiment, as a
preliminary attempt, we set the weight to 2.

4.3 Two-stage Selection
In previous works, a two-stage select-then-rank
strategy performs well in in-context learning (Wu
et al., 2023; Agrawal et al., 2023). To be specific, a
fast and general method is used to filter out most of
the not-so-relevant instances from training data and
get a much smaller candidate set with high quality,
which is called selection. After that, a specific and
powerful method is used to rank the instances in
the candidate set and obtain the top-k best training
instances, which is called ranking. Motivated by
this, we also design a two-stage sample selection
mechanism for GEC.

Stage 1: BM25/BERT Selection First, we ex-
plore selection with BM25 or BERT representation
to obtain candidate examples, and the size of can-
didate set is 1000 in our experiment.

BM25 (Robertson et al., 1994) is a widely-used
retrieval algorithm based on term frequency, in-
verse document frequency and length normaliza-
tion. Many recent works regard BM25 as a strong
baseline for in-context example selection (Agrawal
et al., 2023; Li et al., 2023a). In our work, we
take the input test sample as the query and source
sentences of all training data as the document.

BERT Representation Li et al. (2023a) make
use of SentenceBERT (Reimers and Gurevych,
2019) to get sentence representations and then
compared similarities of sentences. For simplic-
ity, we adopt the more frequently-used BERT (De-
vlin et al., 2019) instead. In our work, we take
the BERT representation of the [CLS] token as the
representation of the sentence. Then we compute
the cosine similarities between the representations
of the input test sentence and all source sentences
in the training data.

For comparison, we also experiment on single-
stage BM25 and BERT representation selection,
which serve as baselines in Section 5.

Stage 2: Ungrammatical-syntax-based Ranking
Further, we employ ranking via syntactic similarity
computing with Tree Kernel or Polynomial Dis-
tance, to obtain the best k matching examples from
the candidate set.

5 Experimental Results

5.1 Datasets and Evaluation Metrics
We carry out experiments on English GEC datasets.
Since no model training is involved, most large-
scale GEC data is unnecessary, while the data qual-

ity matters for example selection. Thus in this work,
we only use the relatively small but high-quality
Write&Improve+LOCNESS (W&I+LOCNESS)
(Bryant et al., 2019) as the training data.

For evaluation, we report P (Precision), R (Re-
call) and F0.5 results on BEA-19 test set (Bryant
et al., 2019) evaluated by ERRANT (Bryant et al.,
2017) and on CoNLL-14 test set (Ng et al., 2014)
evaluated by M2Scorer (Dahlmeier and Ng, 2012).
We primarily compare the F0.5 among different
methods, which shows the comprehensive perfor-
mance of models on GEC.

Statistics of datasets mentioned above are shown
in Table 3.

Dataset #Sentences %Error Usage

W&I+LOCNESS 34,308 66 Demonstration

BEA-19-Test 4,477 - Testing
CoNLL-14-Test 1,312 72 Testing

Table 3: Statistics of GEC datasets used in this work.
#Sentences refers to the number of sentences.%Error
refers to the percentage of erroneous sentences.

5.2 Large Language Models
We use two mainstream LLM series: LLaMA-2
(Touvron et al., 2023) and GPT-3.5 (OpenAI, 2023)
for experiment.

For LLaMA-2, we use llama-2-7b-chat and
llama-2-13b-chat with 7B and 13B parameters
respectively. For GPT-3.5, we use the official
gpt-3.5-turbo API for inference.

For the sake of reproductivity, we turn off the
sampling and set the temperature to zero for all
these models we use.

5.3 Results
Experimental results are shown in Table 4.
With different LLMs and on both datasets, our
ungrammatical-syntax-based selection strategy ob-
viously outperforms conventional methods. On
BEA-2019 data, the method with first BM25 se-
lection and then Tree Kernel ranking improves
the performance by 3.7, 4.6 and 2.4 F0.5 points,
using llama-2-7b-chat, llama-2-13b-chat and
gpt-3.5-turbo respectively.

Performance of Tree Kernel When applied as a
single-stage method, the Tree Kernel similarity per-
forms poorly and even achieves a lower F0.5 score
than conventional baselines. However, with the
help of a preliminary selection stage, it improves
by a margin of about 2 to 3 percentage points, and

I II

BEA-2019 CoNLL-2014

LLaMA-2-7B LLaMA-2-13B GPT-3.5-turbo LLaMA-2-7B LLaMA-2-13B GPT-3.5-turbo

P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 50.1 57.7 51.5 49.0 61.2 51.0 47.0 70.4 50.3 59.4 48.8 56.9 58.6 51.3 57.0 56.5 59.9 57.1
BM25 50.9 58.2 52.2 51.6 61.1 53.3 46.8 69.6 50.1 59.7 47.7 56.8 59.3 50.1 57.2 56.6 60.8 57.4
BERT 50.7 56.8 51.8 51.0 61.2 52.8 47.6 70.0 50.9 58.6 45.4 55.4 60.1 52.0 58.3 56.0 60.8 56.9
T. K. 50.0 57.0 51.2 52.5 59.0 53.6 47.2 69.8 50.5 57.9 47.5 55.5 61.8 48.0 58.5 57.3 60.3 57.9
Poly. 53.1 57.9 54.0 52.9 60.2 54.3 49.5 70.0 52.6 59.5 49.5 57.2 61.7 51.8 59.4 58.2 59.9 58.6

W. Poly. 53.2 58.2 54.2 53.4 60.5 54.7 50.3 69.6 53.2 60.1 49.2 57.5 61.6 52.3 59.5 58.4 60.5 58.8

BM25

T. K. 55.1 55.9 55.2 54.9 58.7 55.6 49.7 69.3 52.7 62.2 45.7 58.0 61.9 47.3 58.3 58.3 59.7 58.6
Poly. 51.2 57.1 52.3 50.9 59.8 52.5 48.8 69.5 51.9 62.1 47.7 58.6 60.9 49.8 58.3 57.2 59.7 57.7

W. Poly. 54.4 57.4 55.0 54.0 59.7 55.0 49.3 69.8 52.4 61.4 47.7 58.1 60.8 50.4 58.4 57.6 60.4 58.1

BERT

T. K. 53.6 56.0 54.1 53.7 59.3 54.7 50.0 69.7 53.0 60.7 46.3 57.1 60.8 49.9 58.3 57.6 59.2 57.9
Poly. 53.3 57.2 54.0 53.8 60.4 55.0 49.0 69.5 52.1 60.5 47.6 57.4 59.8 50.8 57.8 57.6 60.7 58.2

W. Poly. 53.8 57.4 54.5 54.2 60.7 55.4 49.9 69.7 52.9 61.0 48.3 57.9 59.8 51.5 57.9 57.3 60.5 57.9

Table 4: Experimental results under the in-context few-shot setting with 4 examples. I and II denote the first
(selection) and second (ranking) stage of the two-stage selection respectively. "-" means the Stage I is absent
and these are single-stage models. "Rand.", "T. K.", "Poly." and "W. Poly." refer to "Random", "Tree Kernel"
"Polynomial Distance" and "Weighted Polynomial Distance", respectively. The dashed line separates results of
conventional baselines and our proposed methods: the former on the upper side and the latter on the lower side.
The best F0.5 scores of each group are displayed in bold, and the best F0.5 scores of all settings are displayed in
underlined bold.

even achieves the highest F0.5 score on BEA-2019
data with LLaMA-2.

Performance of Polynomial Distance Differ-
ent from Tree Kernel, Polynomial Distance per-
forms fairly well even without a preliminary selec-
tion. Among those single-stage approaches, both
polynomial-based methods outperform traditional
baselines by an average margin of 2 to 3 percentage
points in all cases, which indicates the superior-
ity of syntactic similarity on GEC. The weighted
version, with a higher weight on labels with error
tags, brings a slight improvement in most cases,
which shows the effectiveness of error information
in GOPar-based dependency trees.

Performance of Two-stage Selection As for
Tree Kernel, the two-stage selection strategy con-
sistently boosts performance, whether using BM25
or BERT representation as the preliminary selec-
tion approach. But for Polynomial Distance, the
two-stage selection brings less improvement and
even fails to improve performance in some cases.
We leave it for future research.

Comparison with State-of-the-art We compare
our method with previous supervised approaches,
as shown in Table 5. Even with the help of
ungrammatical-syntax-based selection, the GEC
performance of LLMs is still far from state-of-the-
art. We look forward to more advanced foundation

System CoNLL-14 BEA-19
GECToR (Omelianchuk et al., 2020) 65.3 72.4
SynGEC (Zhang et al., 2022b) 66.7 72.0
T5 xxl (Rothe et al., 2021) 68.9 75.9

ChatGPT zero-shot CoT (Fang et al., 2023b) 51.7 36.1

LLaMA-2-7B with BM25 + Tree Kernel (ours) 55.2 58.0
LLaMA-2-13B with Weighed Polynomial (ours) 54.7 59.5

Table 5: Results of state-of-the-art GEC systems and
our proposed methods on two datasets. The evaluation
metric is F0.5.

models in the future.

6 Model Analysis

6.1 Experiments with Different Numbers of
In-context Examples

To explore the consistency and robustness of our
methods, we conduct 1-shot, 2-shot, 4-shot and
8-shot experiments on llama-2-7b-chat. The re-
sults on BEA-2019 test set and CoNLL-2014 test
set are shown in Table 6 and 7 respectively.

When there is only one example, the model per-
forms relatively poor. When the number of ex-
amples comes to two, the performance improves
significantly. Then, further increasing the number
of examples brings a slight but consistent perfor-
mance gain.

When the number of examples is small, the su-
periority of syntax-based methods compared with

I II
1-shot 2-shot 4-shot 8-shot

P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 47.3 29.8 42.3 49.6 50.9 49.8 50.1 57.7 51.5 52.2 58.8 53.4
BM25 48.4 35.8 45.2 50.4 53.1 50.9 50.9 58.2 52.2 52.5 59.0 53.7
BERT 47.3 33.8 43.8 50.0 51.4 50.2 50.7 56.8 51.8 53.6 59.3 54.6
T. K. 47.1 27.4 41.2 49.0 53.2 49.8 50.0 57.0 51.2 53.6 55.9 54.0
Poly. 50.1 31.5 44.8 53.9 51.9 53.5 53.1 57.9 54.0 54.3 58.3 55.1

W. Poly. 50.4 31.5 45.0 52.7 51.5 52.4 53.2 58.2 54.2 53.3 58.0 54.2

BM25

T. K. 51.7 37.5 48.1 53.3 53.8 53.4 55.1 55.9 55.2 57.2 55.6 56.9
Poly. 51.3 36.6 47.5 52.9 54.5 53.2 51.2 57.1 52.3 55.5 56.9 55.8

W. Poly. 51.1 36.6 47.4 52.8 54.7 53.2 54.4 57.4 55.0 56.3 57.0 56.4

BERT

T. K. 50.7 35.6 46.8 53.3 52.4 53.1 53.6 56.0 54.1 57.1 57.0 57.1
Poly. 50.9 35.5 46.9 52.1 53.4 52.4 53.3 57.2 54.0 55.5 58.2 56.1

W. Poly. 50.6 35.7 46.7 52.1 53.8 52.4 53.8 57.4 54.5 56.5 57.8 56.7

Table 6: Results of llama-2-7b-chat with different numbers of shots on BEA-19 test set.

I II
1-shot 2-shot 4-shot 8-shot

P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 54.7 21.2 41.6 58.0 42.3 54.0 59.1 48.2 56.6 60.9 49.3 58.2
BM25 55.7 25.2 44.9 57.5 42.5 53.7 59.7 47.7 56.8 60.4 47.8 57.4
BERT 55.9 22.5 43.1 58.0 39.0 52.8 58.6 45.4 55.4 60.7 48.0 57.6
T. K. 51.5 17.7 37.3 57.9 44.1 54.5 57.9 47.5 55.5 61.7 47.0 58.1
Poly. 54.7 21.3 41.6 58.6 41.4 54.1 59.6 49.5 57.2 60.5 48.5 57.6

W. Poly. 52.3 20.6 40.0 58.6 42.9 54.6 60.1 49.2 57.5 61.0 49.8 58.4

BM25

T. K. 57.9 27.3 47.3 60.5 44.7 56.5 62.2 45.7 58.0 62.5 45.3 58.1
Poly. 57.2 25.1 45.5 60.5 43.5 56.2 62.1 47.7 58.6 61.6 46.7 57.9

W. Poly. 57.1 24.6 45.1 60.7 43.7 56.3 61.4 47.7 58.1 62.7 47.7 59.0

BERT

T. K. 58.3 25.1 46.1 59.9 42.7 55.4 60.7 46.3 57.1 63.1 46.2 58.8
Poly. 56.0 24.7 44.7 59.3 43.8 55.4 60.5 47.6 57.4 61.9 47.7 58.4

W. Poly. 57.1 24.9 45.4 59.5 44.6 55.8 61.0 48.3 57.9 62.8 47.8 59.1

Table 7: Results of llama-2-7b-chat with different numbers of shots on CoNLL-14 test set.

those conventional is evident. When the number
of examples increases, conventional baselines im-
prove a lot while syntax-based methods gain rel-
atively less, which shows a marginal benefit. But
syntax-based methods always secure the highest
score, indicating the consistency of their advan-
tages, especially under settings of fewer shots.

6.2 Ungrammatical Parser or Standard
Parser?

To explore the affect of different parsers on
model performance, we also experiment with
Stanford Parser (Dozat and Manning, 2017),
which is a widely-used conventional parser.
We use stanford-corenlp-4.5.5 as the model
for parsing and run Stanford Parser with
stanfordcorenlp 2, which is a Python wrapper
for Stanford CoreNLP. For a clear demonstration,
an example is illustrated in Figure 3 to show the

2https://pypi.org/project/stanfordcorenlp

I go swimming a public pool .

Root

nsubj xcomp
pobj

punct

M amod

(a) GOPar.

I go swimming a public pool .

Root

nsubj xcomp

obj

punct

det
amod

(b) Stanford Parser.

Figure 3: An example of parsing tree by GOPar and
Stanford Parser.

Source (Erroneous Sentence) Target (Corrected Sentence)
Input So, they have to also prepare mentally. So, they also have to prepare mentally.
BM25 Also you can see how they prepare your food in front of you. Also, you can see how they prepare your food in front of you.
T. K. Nowadays people get around constantly. Nowadays, people are constantly on the move.

BM25 + T. K. that have limitation also there. There are also limitations there.

Table 8: A one-shot example showing the tree kernel method benefiting from the two-stage selection.

I II
GOPar Stanford Parser

P R F0.5 P R F0.5

-

T. K.

50.0 57.0 51.2 49.6 56.4 50.8
BM25 55.1 55.9 55.2 51.8 56.2 52.7
BERT 53.6 56.0 54.1 50.6 57.2 51.8

Table 9: Results on BEA-2019 test set with 4 examples,
using GOPar and Stanford Parser respectively.

different parsing results of GOPar and Stanford
Parser.

The experimental results comparing GOPar and
Stanford Parser on BEA-2019 test set are shown in
Table 9. Here, we adopt llama-2-7b-chat as the
LLM and Tree Kernel as the ranking method.

Without using the two-stage selection, Stanford
Parser performs slightly worse than GOPar. With
the two-stage selection, GOPar gains more im-
provement than Stanford Parser and outperforms it
by a margin of more than 2 points. This indicates
GOPar is more suitable for GEC, and its superi-
ority lies in two aspects. First, it performs more
robust on ungrammatical sentences (e.g., it cor-
rectly recognizes the prepositional object "pool"
in the sentence shown in Figure 3 while Stanford
Parser fails to). Second, it provides extra informa-
tion about the grammatical errors (e.g., the Missing
error in Figure 3).

6.3 Effect of Two-stage Selection

In order to find out how the two-stage strategy ben-
efits the Tree Kernel method, we conduct a case
study and compare three selection settings: BM25
only ("BM25"), Tree Kernel only ("T.K.") and Tree
Kernel after the BM25 selection ("BM25+T.K.").

In the example shown in Table 8, the input sen-
tence is ungrammatical in word order. "BM25"
selects a sentence with a punctuation missing er-
ror that is similar to the input sample in words
("also", "they" and "prepare"). "T. K." selects a
sentence with an improper expression "get around
constantly" which is similar to "prepare mentally"
in syntactic structure but has little to do with the
grammatical errors. "BM25 + T. K." selects a sen-
tence that is similar to the input sample both in

word occurrences ("also" and "have") and in error
form (improper word order).

Since similar words are more likely to form sim-
ilar errors, with the help of a preliminary selec-
tion, Tree Kernel can select from a more relative
candidate set, leading to a better example selec-
tion involving both word and syntactic similarity
in erroneous constituents. Moreover, it also shows
the disadvantage of conventional selection method
BM25 on GEC, which cannot effectively select
examples similar in syntax.

7 Conclusion

In this work, we make use of two conventional tree-
based syntactic similarity algorithms and the select-
then-rank two-stage framework to select in-context
examples for the GEC task. Empirical results show
that our syntax-based in-context example selection
method is effective for GEC. We call on the NLP
community to pay more attention to the help of
syntactic information for many other syntax-related
tasks besides GEC.

Acknowledgements

This work is supported by the National Natural Sci-
ence Foundation of China (62076008) and the Key
Project of Natural Science Foundation of China
(61936012).

Limitations

First, we only experiment on English datasets. The
performance of our method on other languages
requires further exploration. Second, besides de-
pendency tree, constituent tree is also worth trying.
However, unfortunately, we do not have access
to GEC-oriented constituent trees (Zhang and Li,
2022) at the time of writing this paper. Third, many
previous outstanding methods of both in-context
example selection and tree similarity computation
have not been explored in our work. Fourth, due
to limited time, we do not explore the effect of
the size of candidate set after the selection stage
and the choice of weight of ungrammatical nodes
in the Polynomial Distance method. There may

exist a better size than the values we use in our
experiments. Fifth, except for the Stanford Parser
(which splits sentences itself), our experiments do
not split instances with multiple sentences into
single-sentence instances. Some instances in GEC
datasets contains more than one sentence. Directly
parsing these instances without splitting them into
single sentences may hurt the parsing performance
and lead to unreliable results. Last, we do not
treat in-context examples as a whole, which might
lead to a lower level of diversity of examples and
sub-optimal performance, as addressed in Ye et al.
(2023) and Gupta et al. (2023).

Ethics Statement

Use of Scientific Artifacts. We make use of
GOPar provided by Zhang et al. (2022b), which is
publicly available based on the MIT license 3.

About Computational Budget. Computation
time is shown in Table 10.

Method Time

BM25 440
BERT 4500

Tree Kernel 3600
Polynomial Distance 3200

Table 10: Computation time of different methods on
BEA-19 test set, all in seconds. BERT runs on an
NVIDIA GeForce RTX 2080 Ti and the other three
run on an Intel® Xeon® Gold 5218 CPU.

About Reproducibility. All the experiments are
completely reproducible since we disable sampling
and set the temperature to zero for all LLMs we
use, as discussed in Section 5.2.

References
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke

Zettlemoyer, and Marjan Ghazvininejad. 2023. In-
context examples selection for machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 8857–8873, Toronto,
Canada. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

3https://github.com/HillZhang1999/SynGEC

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of the Fourteenth Workshop on Innovative Use of NLP
for Building Educational Applications, pages 52–75,
Florence, Italy. Association for Computational Lin-
guistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793–805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2022. Grammatical error correction: A survey of the
state of the art. Computational Linguistics, pages
1–59.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Hejing Cao and Dongyan Zhao. 2023. Leveraging de-
noised Abstract Meaning Representation for gram-
matical error correction. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 7180–7188, Toronto, Canada. Association for
Computational Linguistics.

Dhivya Chandrasekaran and Vijay Mago. 2021. Evolu-
tion of semantic similarity—a survey. ACM Comput-
ing Surveys (CSUR), 54(2):1–37.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 263–270,
Philadelphia, Pennsylvania, USA. Association for
Computational Linguistics.

Susan Craw. 2017. Manhattan distance. Encyclopedia
of Machine Learning and Data Mining, pages 790–
791.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572, Montréal, Canada. Association for Compu-
tational Linguistics.

https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/2023.findings-acl.564
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/2023.findings-acl.449
https://doi.org/10.18653/v1/2023.findings-acl.449
https://doi.org/10.18653/v1/2023.findings-acl.449
https://doi.org/10.3115/1073083.1073128
https://doi.org/10.3115/1073083.1073128
https://doi.org/10.3115/1073083.1073128
https://doi.org/10.1007/978-1-4899-7687-1_511
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067

Davi de Castro Reis, Paulo Braz Golgher, Alti-
gran Soares da Silva, and Alberto H. F. Laender.
2004. Automatic web news extraction using tree
edit distance. In The Web Conference.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

Tao Fang, Jinpeng Hu, Derek F. Wong, Xiang Wan,
Lidia S. Chao, and Tsung-Hui Chang. 2023a. Im-
proving grammatical error correction with multi-
modal feature integration. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 9328–9344, Toronto, Canada. Association for
Computational Linguistics.

Tao Fang, Shu Yang, Kaixin Lan, Derek F Wong, Jin-
peng Hu, Lidia S Chao, and Yue Zhang. 2023b. Is
chatgpt a highly fluent grammatical error correc-
tion system. A comprehensive evaluation. ArXiv,
abs/2304.01746.

Wael H Gomaa, Aly A Fahmy, et al. 2013. A survey of
text similarity approaches. international journal of
Computer Applications, 68(13):13–18.

Shivanshu Gupta, Matt Gardner, and Sameer Singh.
2023. Coverage-based example selection for in-
context learning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
13924–13950, Singapore. Association for Computa-
tional Linguistics.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 595–606, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Yuquan Le, Zhi-Jie Wang, Zhe Quan, Jiawei He, and
Bin Yao. 2018. Acv-tree: A new method for sentence
similarity modeling. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 4137–4143. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng
Qiu. 2023a. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4644–4668,
Toronto, Canada. Association for Computational Lin-
guistics.

Yinghao Li, Xuebo Liu, Shuo Wang, Peiyuan Gong,
Derek F. Wong, Yang Gao, Heyan Huang, and Min
Zhang. 2023b. TemplateGEC: Improving grammati-
cal error correction with detection template. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 6878–6892, Toronto, Canada. Associ-
ation for Computational Linguistics.

Pengyu Liu, Tinghao Feng, and Rui Liu. 2022. Quan-
tifying syntax similarity with a polynomial rep-
resentation of dependency trees. arXiv preprint
arXiv:2211.07005.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205–219, Toronto,
Canada. Association for Computational Linguistics.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In Machine Learning: ECML 2006, pages 318–329,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1–14,
Baltimore, Maryland. Association for Computational
Linguistics.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational

https://api.semanticscholar.org/CorpusID:3343581
https://api.semanticscholar.org/CorpusID:3343581
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-acl.594
https://doi.org/10.18653/v1/2023.findings-emnlp.930
https://doi.org/10.18653/v1/2023.findings-emnlp.930
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.18653/v1/N18-1055
https://doi.org/10.24963/ijcai.2018/575
https://doi.org/10.24963/ijcai.2018/575
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.380
https://doi.org/10.18653/v1/2023.acl-long.380
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16

Applications, pages 163–170, Seattle, WA, USA →
Online. Association for Computational Linguistics.

OpenAI. 2023. GPT-3.5 API. https://platform.
openai.com/docs/models/gpt-3-5.

Masanori Oya. 2020. Syntactic similarity of the sen-
tences in a multi-lingual parallel corpus based on
the Euclidean distance of their dependency trees. In
Proceedings of the 34th Pacific Asia Conference on
Language, Information and Computation, pages 225–
233, Hanoi, Vietnam. Association for Computational
Linguistics.

Şaziye Betül Özateş, Arzucan Özgür, and Dragomir
Radev. 2016. Sentence similarity based on depen-
dency tree kernels for multi-document summariza-
tion. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 2833–2838, Portorož, Slovenia.
European Language Resources Association (ELRA).

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at trec-3. In Text Retrieval Conference.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 702–707,
Online. Association for Computational Linguistics.

Maksym Tarnavskyi, Artem Chernodub, and Kostiantyn
Omelianchuk. 2022. Ensembling and knowledge dis-
tilling of large sequence taggers for grammatical error
correction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3842–3852, Dublin,
Ireland. Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

SVN Vishwanathan, Alexander Johannes Smola, et al.
2004. Fast kernels for string and tree matching.
Kernel methods in computational biology, 15(113-
130):1.

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-
dazzo, João Sacramento, Alexander Mordvintsev, An-
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In In-
ternational Conference on Machine Learning, pages
35151–35174. PMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Xiuyu Wu and Yunfang Wu. 2022. From spelling to
grammar: A new framework for Chinese grammati-
cal error correction. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
889–902, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1423–1436, Toronto, Canada. Association for
Computational Linguistics.

Konstantin Yakovlev, Alexander Podolskiy, Andrey
Bout, Sergey Nikolenko, and Irina Piontkovskaya.
2023. GEC-DePenD: Non-autoregressive grammati-
cal error correction with decoupled permutation and
decoding. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1546–1558, Toronto,
Canada. Association for Computational Linguistics.

Lingyu Yang, Hongjia Li, Lei Li, Chengyin Xu, Shutao
Xia, and Chun Yuan. 2023. LET: Leveraging error
type information for grammatical error correction.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 5986–5998, Toronto,
Canada. Association for Computational Linguistics.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 39818–39833. PMLR.

Ying Zhang, Hidetaka Kamigaito, and Manabu Oku-
mura. 2023. Bidirectional transformer reranker for
grammatical error correction. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 3801–3825, Toronto, Canada. Association for
Computational Linguistics.

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://aclanthology.org/2020.paclic-1.26
https://aclanthology.org/2020.paclic-1.26
https://aclanthology.org/2020.paclic-1.26
https://aclanthology.org/L16-1452
https://aclanthology.org/L16-1452
https://aclanthology.org/L16-1452
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://api.semanticscholar.org/CorpusID:3946054
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://doi.org/10.18653/v1/2022.acl-long.266
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.findings-emnlp.63
https://doi.org/10.18653/v1/2022.findings-emnlp.63
https://doi.org/10.18653/v1/2022.findings-emnlp.63
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.86
https://doi.org/10.18653/v1/2023.acl-long.86
https://doi.org/10.18653/v1/2023.acl-long.86
https://doi.org/10.18653/v1/2023.findings-acl.371
https://doi.org/10.18653/v1/2023.findings-acl.371
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html
https://doi.org/10.18653/v1/2023.findings-acl.234
https://doi.org/10.18653/v1/2023.findings-acl.234

Yue Zhang and Zhenghua Li. 2022. Csyngec: Incorpo-
rating constituent-based syntax for grammatical error
correction with a tailored gec-oriented parser. arXiv
preprint arXiv:2211.08158.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.
2022a. MuCGEC: a multi-reference multi-source
evaluation dataset for Chinese grammatical error cor-
rection. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3118–3130, Seattle, United States.
Association for Computational Linguistics.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022b. SynGEC: Syntax-enhanced
grammatical error correction with a tailored GEC-
oriented parser. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2518–2531, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.naacl-main.227
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162
https://doi.org/10.18653/v1/2022.emnlp-main.162

	Introduction
	Related Work
	Grammatical Error Correction
	Syntactic Similarity
	Large Language Models and In-context Learning

	Preliminaries
	Syntax Parser for Ungrammatical Sentences
	Syntactic Similarity with Tree Kernel
	Syntactic Similarity with Polynomial Distance

	Methodology
	In-context Learning Workflow for GEC
	Ungrammatical-syntax-based Selection
	Two-stage Selection

	Experimental Results
	Datasets and Evaluation Metrics
	Large Language Models
	Results

	Model Analysis
	Experiments with Different Numbers of In-context Examples
	Ungrammatical Parser or Standard Parser?
	Effect of Two-stage Selection

	Conclusion

