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Abstract

In this paper, we consider the existence of solutions of the following Kirchhoff-type problem

{

−
(

a + b
∫

R3 |∇u|2dx
)

∆u + V(x)u = f (x, u), in R
3,

u ∈ H1(R3),

where a, b are postive constants, and the potential V(x) is continuous and indefinite in sign. Under

some suitable assumptions on V(x) and f , we obtain the existence of solutions by the Symmetric

Mountain Pass Theorem.
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1. Introduction and main result

In this paper, we consider the existence of solutions of the following Kirchhoff-type problem

{

−
(

a + b
∫

R3 |∇u|2dx
)

∆u + V(x)u = f (x, u), in R
3,

u ∈ H1(R3),
(1.1)

where a, b are postive constants, and the potential V(x) is continuous and indefinite in sign. The

nonlinear term
∫

R3 |∇u|2dx appears in (1.1), which means that (1.1) is not a pointwise identity. This

leads to some mathematical difficulties that make the research particularly interesting. (1.1) has

an interesting physics background. When V(x) = 0, and a bounded domain Ω ⊂ R
N is substituted

R
3, then we obtain the following nonlocal Kirchhoff-type problem

{

−
(

a + b
∫

Ω
|∇u|2dx

)

∆u = f (x, u), in Ω,

u = 0, on Ω.
(1.2)

The problem (1.2) is regard to the stationary analogue of the equation

utt −

(

a + b

∫

Ω

|∇u|2dx

)

∆u = f (x, u), (1.3)
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which was presented by Kirchhoff in [1], and (1.3) is a generalization of the classical D’Alembert’s

wave equation for free vibrations of elastic strings. Problem (1.3) has been increasingly more

attention after Lions in [2] introduced an abstract framework to the problem. We can refer to

[3,4,5] for the physical and mathematical background of this problem.

In recent years, Schrödinger Kirchhoff equations have been extensively researched , there are

massive works adopting various assumptions on V(x) and f see [6-23]. The potential V(x) is

assumed to be positive definite has been considered in [6-15]. In [6], Wu used a Symmetric

Montain Theorem obtained nontrivial solutions and high energy solutions for equations similar to

(1.1) in R
N . In [12], by Ekeland’s variational principle and the Montain Pass Theorem, Cheng

obtained multiplicity of nontrivial solutions for the nonhomogeneous Schrödinger Kirchhoff type

problem in R
N . The potential V(x) is indefinite has been considered in [16-23]. In [18], Chen and

Wu got a nontrivial solution and an unbounded sequence of solutions for the problem (1.1) in R
N

via the Morse Theory and the Fountain Theorem. In [22], using the Local Linking Theorem and

Clark’s Theorem, Jiang and Liu obtained the existence of multiple solutions for problem (1.1).

In this paper, we will consider V(x) is indefinite in sign and do not assume any compactness

condition on V(x) which is different from most of the articles mentioned above. Motived by

Chen [24] and Sun [25], we overcome two difficulties, namely, verifying the link geometry and

the boundedness of Cerami sequence for the corresponding functional of (1.1). We obtain the

existence of solutions for (1.1) by the Symmetric Montain Pass Theorem.

Set F(x, u) =
∫ u

0
f (x, s)ds. V+(x) = max {V(x), 0}, V−(x) = max {−V(x), 0}. Before stating our

main result, we make the following assumptions:

(V1) V(x) ∈ C(R3,R) with V(x) = V+(x) − V−(x) and V(x) is bounded from below, and there is

M > 0 such that the set
{

x ∈ R3|V+(x) < M
}

is nonempty and has finite measure.

(V2) There exists a constant η0 > 1 such that

η1 := inf
u∈H1(R3)\{0}

∫

R3

(

a |∇u|2 + V+u2
)

dx
∫

R3 V−u2dx
≥ η0.

( f1) f ∈ C1(R3,R), and there exist constants p ∈ (2, 6) and c > 0 such that

| f (x, u)| ≤ c(1 + |u|p−1), ∀(x, u) ∈ R3 × R.

( f2) f (x, u) = o(u) as u→ 0 uniformly in x ∈ R3, and is 4-superlinear at infinity,

lim
|u|→∞

F(x, u)

u4
= +∞.

( f3) There exist a0, b0 > 0 and α ∈ (0, α∗) such that

0 < (4 +
1

a0 |u|
α
+ b0

)F(x, u) ≤ u f (x, u), for x ∈ R3 and u , 0,

where α∗ := min {p′, 5p′ − 6}, 1
p
+ 1

p′
= 1.

( f4) lim
|x|→∞

sup
|u|≤l

| f (x,u)|

|u|
= 0 for every l > 0.
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Now, we are ready to state the main result of this paper:

Theorem 1.1. Under assuptions (V1), (V2) and ( f1)− ( f4), if f (x, u) is odd in u, then problem (1.1)

possesses infinitely many solutions.

2. Preliminaries

We work in the Hilbert space

E :=

{

u ∈ H1(R3) :

∫

R3

(

a |∇u|2 + V+(x) |u|2
)

dx < +∞

}

,

with the inner product

〈u, v〉 =

∫

R3

(

a∇u∇v + V+(x)uv
)

dx, ∀u, v ∈ E,

and the norm

‖u‖ =

(∫

R3

(

a |∇u|2 + V+(x) |u|2
)

dx

)1/2

, ∀u ∈ E.

The problem (1.1) has a variational structure, then a weak solution of problem (1.1) is a critical

point of the following functional Φ : E → R

Φ(u) =
1

2

∫

R3

(

a|∇u|2 + V(x)u2
)

dx +
b

4

(∫

R3

|∇u|2dx

)2

−

∫

R3

F(x, u)dx. (2.1)

Then under the assumptions (V1), ( f1) and ( f2), the functional Φ ∈ C1(E,R) and for all u, v ∈ E,

〈Φ′(u), v〉 =

∫

R3

(a∇u∇v + V(x)uv) dx + b

∫

R3

|∇u|2dx

∫

R3

∇u∇vdx −

∫

R3

f (x, u)vdx. (2.2)

For any s ∈ [2, 6], since the embedding E ֒→ Ls(R3) is continuous, there exists a constant

ds > 0 such that

|u|s ≤ ds‖u‖, ∀u ∈ E. (2.3)

Forthermore, it follows from (V2) that

∫

R3

(

a |∇u|2 + V+ |u|2
)

dx ≥

∫

R3

(

a |∇u|2 + V |u|2
)

dx

≥
η0 − 1

η0

∫

R3

(

a |∇u|2 + V+ |u|2
)

dx.

(2.4)

To complete the proof of theorem 1.1, we need the following Symmetric Mountain Pass The-

orem:

Theorem 2.1. ([26]) Let X be an infinite demensional Banach space, X = Y ⊕ Z, where Y is finite

dimensional. If I ∈ C1(X,R) satisfies (C)c-condition for all c > 0, and

3



(I1) I(0) = 0, I(−u) = I(u), ∀u ∈ X;

(I2) there exist constants α, ρ > 0, such that I|∂Bρ∩Z ≥ α;

(I3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0, such that I(u) ≤ 0 on

X̃ \ BR;

then I possesses an unbounded sequence of critical values.

Definition 2.2. Assume E be a Banach space, and Φ ∈ C1(E,R3). For given c ∈ R, a sequence

{un} ⊂ E is called a Cerami sequence of Φ at a level c (shortly, (C)c sequence) if

Φ(un)→ c, (1 + ‖un‖) ‖Φ
′(un)‖ → 0. (2.5)

We say that Φ satisfies the Cerami condition at level c (shortly, (C)c-condition) if every (C)c

sequence of Φ contains a convergent subsequence. If Φ satisfies (C)c-condition for every c ∈ R,

then we say that Φ satisfies the Cerami condition (shortly, (C)-condition ).

3. Proof of main results

Lemma 3.1. Suppose that (V1), ( f1), ( f2) and ( f3) are satisfied and c ∈ R. Then any (C)c sequence

of Φ is bounded.

Proof. It is follows from ( f3) that, for all u , 0 and x ∈ R3,

u f (x, u) − 4F(x, u) ≥
1

4a0 |u|
α + 4b0 + 1

u f (x, u) > 0.

Let {un} be a (C)c sequence ofΦ, that is, a sequence satisfying (2.5). SetΩn :=
{

x ∈ R3 : |un(x)| < 1
}

and Ωc
n := R

3 \Ωn. Then there are constants c1, c2 > 0 such that

4a0 |un|
α + 4b0 + 1 ≤ 1/c1, ∀x ∈ Ωn,

and

4a0 |un|
α + 4b0 + 1 ≤ |un|

α /c2, ∀x ∈ Ωc
n.

For n sufficient large, there exists M1 > 0, such that

M1 ≥ 4Φ(un) − 〈Φ′(un), un〉

=

∫

R3

(

a|∇un|
2 + V(x)u2

n

)

dx +

∫

R3

(un f (x, un) − 4F (x, un)) dx

≥
η0 − 1

η0

‖un‖
2
+

∫

R3

(un f (x, un) − 4F (x, un)) dx

≥

∫

R3

(un f (x, un) − 4F(x, un)) dx

≥

∫

R3

un f (x, un)

4a0 |un|
α + 4b0 + 1

dx

≥ c1

∫

Ωn

un f (x, un)dx + c2

∫

Ωc
n

|un|
−α un f (x, un)dx.

(3.1)
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Note that α < 5p′ − 6 by ( f3). We have

1

p′
<

6

5p′
<

6

6 + α
and

2

2 + α
<

6

6 + α
.

Then we can chose a constant r ∈ (0, 1) such that

max

{

6

5p′
,

2

2 + α

}

≤ r ≤
6

6 + α
. (3.2)

Let s := r/(1 − r) > 0. Then 1
r
+ 1
−s
= 1. By (3.1) and the inverse Hölder inequality we have

M1 ≥ c1

∫

Ωn

un f (x, un)dx + c2

∫

Ωc
n

|un|
−α un f (x, un)dx

≥ c1

∫

Ωn

un f (x, un)dx + c2

(∫

Ωc
n

(un f (x, un))r dx

)1/r (∫

Ωc
n

|un|
αs dx

)1/(−s)

≥ c1

∫

Ωn

un f (x, un)dx + c2

(∫

Ωc
n

(un f (x, un))r dx
)1/r

|un|
α
αs

.

(3.3)

By ( f1) and ( f2) we have

| f (x, u)|p
′r ≤

(

c3 |u|
(p−1)(p′−1) | f (x, u)|

)r
= c4 (u f (x, u))r , ∀ |u| ≥ 1,

| f (x, u)|2 ≤ c5 |u| | f (x, u)| = c5u f (x, u), ∀ |u| < 1.

Therefore by (3.3) we have

(∫

Ωc
n

| f (x, un)|p
′r dx

)1/p′r

≤ c6 |un|
α/p′

αs , (3.4)

(∫

Ωn

| f (x, un)|2 dx

)1/2

≤ c7. (3.5)

In view of (3.2), we easily check that p′r > 1 , αs ∈ [2, 6] and (p′r)′ ∈ (2, 6], where (p′r)′ =

p′r/ (p′r − 1). Consequently, by (3.4), (3.5) and the Hölder inequality, the Sobolev inequality, for

n large enough,

∫

R3

(

a|∇un|
2 + V(x)u2

n

)

dx = 〈Φ′(un), un〉 − b

(∫

R3

|∇un|
2dx

)2

+

∫

R3

f (x, un)undx

≤ ‖un‖ +

∫

R3

f (x, un)undx

≤ ‖un‖ +

(∫

Πn

| f (x, un)|2 dx

)1/2

|un|2

+

(∫

Πc
n

| f (x, un)|p
′r dx

)1/p′r

|un|(p′r)′

5



≤ ‖un‖ + c7 |un|2 + c6 |un|
α/p′

αs |un|(p′r)′

≤c8 ‖un‖ + c9 ‖un‖ ‖un‖
α/p′ .

where c8, c9,c10, c11 > 0 are some constants.

Therefore by (2.4) we have

‖un‖ ≤ c10 + c11 ‖un‖
α/p′ .

Note that α < p′. Then we easily verify that {un} is bounded.

Lemma 3.2. Suppose that (V1) and ( f1) − ( f4) are satisfied. Then Φ satisfies (C)c-condition.

Proof. From Lemma 3.1 we know that any (C)c sequence {un} is bounded in E. Then, passing to

a subsequence, we may assume that un ⇀ u in E and un → u in Ls
loc

(R3), s ∈ [2, 6).

Note that, by (2.2)

〈Φ′(un), un − u〉 =

∫

R3

(a∇un∇(un − u) + V(x)un(un − u)) dx

+ b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(un − u)dx −

∫

R3

f (x, un)(un − u)dx.

=

∫

R3

(

a |∇un|
2
+ V(x)u2

n

)

dx −

∫

R3

(a∇un∇u + V(x)unu) dx

+ b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(un − u)dx −

∫

R3

f (x, un)(un − u)dx.

=

∫

R3

(

a |∇un|
2 + V+u2

n

)

dx −

∫

R3

(

a∇un∇u + V+unu
)

dx

−

∫

R3

V−u2
ndx +

∫

R3

V−unudx −

∫

R3

f (x, un)(un − u)dx.

+ b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(un − u)dx

= 〈un, un − u〉 − b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(u − un)dx

−

∫

R3

V−
(

u2
n − unu

)

dx −

∫

R3

f (x, un)(un − u)dx,

we have

0 ≤ lim sup
n→∞

(

‖un‖
2 − ‖u‖2

)

= lim sup
n→∞

〈un, un − u〉

= lim sup
n→∞

[〈Φ′(un), un − u〉 + b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(u − un)dx

+

∫

R3

V−un (un − u) dx +

∫

R3

f (x, un)(un − u)dx].

(3.6)

From (2.5)

〈Φ′(un), un − u〉 → 0, as n→ ∞. (3.7)
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Since un ⇀ u in E, we know that
∫

R3 ∇u∇(un − u)dx → 0 as n → ∞. Consequently, by the

boundedness of {un} in E, we have

b

∫

R3

|∇un|
2dx

∫

R3

∇un∇(u − un)dx→ 0, as n→ ∞. (3.8)

Noting that V−(x) ≥ 0 for all x ∈ R3 and (V1) implies that V− ∈ L∞(R3). Moreover, it follows from

(V1) that {V+ = 0} has finite measure, which implies that {V−(x) > 0} has finite measure. Since

un ⇀ u in E and un → u in Ls
loc

(R3), s ∈ [2, 6), we have

∫

R3

V−un(un − u)dx =

∣

∣

∣

∣

∣

∣

∫

suppV−
V−un(un − u)dx

∣

∣

∣

∣

∣

∣

≤
∥

∥

∥V−
∥

∥

∥

∞

∫

suppV−
|un| |un − u| dx

≤
∥

∥

∥V−
∥

∥

∥

∞

(∫

suppV−
|un|

2 dx

)1/2 (∫

suppV−
|un − u|2 dx

)1/2

→ 0, as n→∞.

(3.9)

Next, let ε > 0, for l ≥ 1, it follows from ( f1) and Hölder inequality that

∫

|un |≥l

f (x, un)(un − u)dx ≤ 2c

∫

|un |≥l

|un|
p−1 |un − u| dx

≤ 2clp−6

∫

|un |≥l

|un|
5 |un − u| dx

≤ 2clp−6 |un|
5
6 |un − u|6 ,

since p < 6, we may fix l large enough such that

∫

|un |≥l

f (x, un)(un − u)dx ≤
ε

3
, (3.10)

for all n. Moreover, by ( f4) there exists L > 0 such that

∫

|un |≤l,|x|≥L

f (x, un)(un − u)dx ≤ |un|2 |un − u|2 sup
|un |≤l,|x|≥L

| f (x, un)|

|un|
≤
ε

3
, (3.11)

for all n. For any ε > 0, by ( f1) and ( f2), there exists Cε > 0 such that

| f (x, u)| ≤ ε |u| +Cε |u|
p−1 , ∀(x, u) ∈ R3 × R, (3.12)

and

|F (x, u)| ≤
ε

2
|u|2 +

Cε

p
|u|p , ∀(x, u) ∈ R3 × R, (3.13)

7



where 2 < p < 6. Since un → u in Ls(BL(0)) for s ∈ [2, 6), from (3.12) we have

∫

|un |≤l,|x|≤L

f (x, un)(un − u)dx ≤ (ε + Cε)

∫

|un |≤l,|x|≤L

(

|un| + |un|
p−1

)

|un − u| dx

≤ (ε + Cε) |un|2 |un − u|L2(BL(0))

+ (ε + Cε) |un|
p−1
p |un − u|Lp(BL(0))

≤
ε

3
,

(3.14)

for n large enough. Combining (3.10), (3.11) (3.14), we conclude that

∫

R3

f (x, un)(un − u)dx ≤ ε, (3.15)

for n large enough. Since ε is arbitrary, (3.15), together with (3.6)-(3.9), we get ‖un‖ → ‖u‖. Thus,

un → u in E.

Proof of Theorem 1.1

Let
{

e j

}

is a total orthonormal basis of E and define X j = Re j,

Yk =
⊕k

j=1
X j, Zk =

⊕∞

j=k+1
X j, k ∈ Z.

Proof. Obviously, Φ(0) = 0 and Φ is even due to f is odd, we will verify that Φ satisfies the

remain conditions of Theorem 2.1.

Firstly, we can verify that Φ satisfies (I2). By (2.4) and (3.13) with 0 < ε <
η0−1

2η0d2
2

, we have

Φ(u) =
1

2

∫

R3

(

a|∇u|2 + V(x)u2
)

dx +
b

4

(∫

R3

|∇u|2dx

)2

−

∫

R3

F(x, u)dx

≥
η0 − 1

2η0

‖u‖2 −

∫

R3

F(x, u)dx

≥
η0 − 1

2η0

‖u‖2 −
ε

2
|u|22 −

Cε

p
|u|pp

≥
1

2

(

η0 − 1

η0

− εd2
2

)

‖u‖2 −
Cε

p
dp

p ‖u‖
p

≥
1

4

η0 − 1

η0

‖u‖2 −
Cε

p
dp

p ‖u‖
p ,

for all u ∈ ∂Bρ, where Bρ = {u ∈ E : ‖u‖ < ρ}. Therefore,

Φ|∂Bρ∩Zk
≥

1

4

η0 − 1

η0

ρ2 −
Cε

p
dp

pρ
p := α > 0,

for ρ small enough.

8



Secondly, we verify that Φ satisfies (I3), for any finite dimensional subspace Ẽ ⊂ E, there

exists a positive intergral number m such that Ẽ ⊂ Em. Since all norms are equivalent in a finite

dimensional space, there is a constant b1 > 0 such that

|u|4 ≥ b1 ‖u‖ , ∀u ∈ Em.

By ( f1) and ( f2) we know that for any M2 >
b

4b4
1

, there is a constant C(M2) > 0 such that

F(x, u) ≥ M2 |u|
4 −C(M2) |u|2 , ∀(x, u) ∈ R3 × R.

Hence

Φ(u) ≤
1

2
‖u‖2 +

b

4
‖u‖4 − M2 |u|

4
4 +C(M2) |u|22

≤
1

2
‖u‖2 +

b

4
‖u‖4 − M2b4

1 ‖u‖
4 +C(M2)d2

2 ‖u‖
2

= (
1

2
+C(M2)d2

2) ‖u‖2 − (M2b4
1 −

b

4
) ‖u‖4 , ∀u ∈ Em.

Consequently, there is a large R = R(Ẽ) > 0 such that Φ(u) ≤ 0 on Ẽ \ BR.

From Lemmas 3.1 and 3.2, Φ satisfies (C)c-condition, by Theorem 2.1 problem (1.1) possesses

infinitely many solutions.
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