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Abstract

In-context learning (ICL) is the trending
prompting strategy in the era of large language
models (LLMs), where a few examples are
demonstrated to evoke LLMs’ power for a
given task. How to select informative exam-
ples remains an open issue. Previous works on
in-context example selection for machine trans-
lation (MT) focus on superficial word-level fea-
tures while ignoring deep syntax-level knowl-
edge. In this paper, we propose a syntax-based
in-context example selection method for MT,
by computing the syntactic similarity between
dependency trees using Polynomial Distance.
In addition, we propose an ensemble strategy
combining examples selected by both word-
level and syntax-level criteria. Experimental re-
sults between English and 6 common languages
indicate that syntax can effectively enhancing
ICL for MT, obtaining the highest COMET
scores on 11 out of 12 translation directions.

1 Introduction

In the era of LLMs, ICL has become a popular
prompting strategy to elicit the power of LLMs on
a wide range of tasks. In ICL, a few demonstra-
tions are given in the input context during inference
while not involving parameter tuning (Dong et al.,
2022; Min et al., 2022).

As a major natural language processing (NLP)
task, there have been several works exploring
in-context example selection strategy for MT.
Agrawal et al. (2023) propose R-BM25 on the basis
of BM25 (Robertson et al., 1994) to enhance word
overlap. M et al. (2023) propose CTQScorer com-
bining multiple features. Zhang et al. (2023) con-
duct a comprehensive study on prompting LLMs
for MT and claim that templates, number of exam-
ples, features and the quality of example databases
all matter for ICL on MT.

* Corresponding author.

In previous studies, for both statistical MT and
neural MT, syntax plays an important role to im-
prove model performance (Williams and Koehn,
2014; Wu et al., 2017). However, in case of
in-context example selection for MT, previous
works focus on superficial word-level matching
(like BM25 and R-BM25) or combining multiple
straightforward features (like CTQScorer). To the
best of our knowledge, no research dig out syntax-
level features for ICL demonstrations. To this end,
we propose a syntax-based in-context example se-
lection strategy for MT, which selects examples
most similar to the test source in syntax based
on similarity of dependency trees. In addition,
word-level and syntax-level features complement
each other and combining both would further elicit
LLMs’ power on MT. Therefore, we propose an en-
semble strategy, concatenating examples selected
by BM25 and our syntax-based strategy.

Experimental results between English and 6 com-
mon languages indicate that syntax helps find bet-
ter in-context examples and thus improves LLMs’
ability in MT. Comparing with various baselines,
our proposed methods obtain the highest COMET
scores on 11 out of 12 translation directions.

Our contributions can be summarized as follows:

• For the first time, we propose a novel syntax-
based in-context example selection strategy
for MT.

• We present a simple but effective ensemble
strategy to combine in-context examples se-
lected from different criteria, taking advantage
of both superficial word overlapping and deep
syntactic similarity.

• We prove that syntax is effective in finding
informative in-context examples for MT. We
call on the NLP community not to ignore the
significance of syntax when embracing LLMs.
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2 Preliminary: Syntactic Similarity

Generally, the syntactic structures of sentences are
represented by syntax trees, and thus it is natural
to measure the syntactic similarity based on simi-
larity or distance between syntax trees. Tree sim-
ilarity can be measured by Edit Distance (de Cas-
tro Reis et al., 2004), Polynomial Distance (Liu
et al., 2022), Tree Kernel (Collins and Duffy, 2002;
Vishwanathan et al., 2004; Moschitti, 2006), etc.

Compared to other algorithms mentioned above,
Polynomial Distance (Liu et al., 2022) is conve-
nient to implement and relatively time-saving to
run. So, in this work, we adopt Polynomial Dis-
tance between dependency trees to measure the
syntactic similarity.

Concretely, given d as the number of dependency
labels, which indicate the grammatical relations be-
tween dependents and their heads, we transform de-
pendency trees into polynomials recursively based
on two variable sets: X = {x1, x2...xd} and
Y = {y1, y2, ...yd}. Considering a node with La-
bel l as nl, its corresponding polynomial is repre-
sented as:

P (nl) =

{
xl, nl is leaf,
yl +

∏k
i=1 P (ni), nl is non-leaf,

(1)
where n1, ..., nk are all child nodes of nl if it is
non-leaf. Then, given a root node r, we obtain the
polynomial representing the whole tree by comput-
ing P (r). A detailed demonstration from Liu et al.
(2022) can be found in Appendix A.

Next, we compute the distance between poly-
nomials. Note that the polynomial representing a
dependency tree can be described term by term.
For each term cx

ex1
1 x

ex2
2 ...x

exd
d y

ey1
1 y

ey2
2 ...y

eyd
d in

the polynomial, where exi , eyi and c are the expo-
nent of variable xi, yi and the coefficient of the
term respectively, we denote it as a term vector:

t = [ex1 , ex2 , ..., exd
, ey1 , ey2 , ..., eyd , c].

In this way, a polynomial P can be written as a set
of term vectors VP . Then, we compute the distance
between two polynomials (P and Q) as:

d(P,Q) =

∑
s∈VP

min
t∈VQ

∥ s− t ∥1 +
∑

t∈VQ

min
s∈VP

∥ s− t ∥1

| VP | + | VQ | ,

(2)

where ∥ s− t ∥1 is the Manhattan distance (Craw,
2017) between term vector s and t.

3 Method

3.1 ICL for MT

In recent years, ICL has been proved effective for
improving LLMs’ performance on various tasks
without training or finetuning (Brown et al., 2020;
Von Oswald et al., 2023).

To design instructions for MT, we first inform
the language pair and the template of presenting the
result. Then, we provide several in-context exam-
ples selected using our proposed strategy. Last, the
source sentence of the test sample is concatenated
at the end. An example of our prompt is shown in
Figure 1, and we draw inspiration from the work
of Agrawal et al. (2023).

Figure 1: A 2-shot example of our prompt template.

3.2 Syntax-based Example Selection

We parse all our datasets with spaCy (Honnibal
et al., 2020) to get dependency trees. Appendix B
lists spaCy models we use for different languages.

For each test sample, we compute its Polyno-
mial Distance from each instance of the example
database on the source side, and then select the
top-k most similar examples. The selected exam-
ples serve as demonstrations for ICL, as shown in
Figure 1.

3.3 Ensemble of Example Selection

We hypothesize that a combination of word-level
closeness and syntax-level similarity would make
the LLM generate results good on both counts. So
we propose an ensemble strategy, where examples
selected by different selection strategies are con-
catenated. In this work, we explore the ensemble
of BM25 and Polynomial Distance, where half of
the final examples are from BM25 and the other
half are from Polynomial Distance.

4 Experimental Settings

4.1 Large Language Model

Following Agrawal et al. (2023), we adopt
XGLM7.5B (Lin et al., 2022) for all our experi-



ments, which is a decoder-only multilingual gen-
erative language model supporting 30 languages.
XGLM7.5B has 32 layers, a hidden dimension of
4096 and 7.5B parameters in total.

4.2 Datasets and Evaluation Metrics
Test Set We perform our evaluation on the de-
vtest set of FLORES+ 1 (Costa-jussà et al., 2022),
which has 1012 sentences for around 200 lan-
guages. We experiment between English and 6
common languages including German, Spanish,
French, Japanese, Russian and Chinese.

Example Database We adopt WikiMatrix v1
(Schwenk et al., 2021) as our example database,
which has 135M parallel sentences for 1620 lan-
guage pairs. Detailed statistics of WikiMatrix for
each language can be found in Appendix C.

Evaluation Metrics We report COMET (Rei
et al., 2020) from wmt20-comet-da, which is con-
sidered a superior metric for MT nowadays (Kocmi
et al., 2021). As a complement, we report BLEU
from sacreBLEU (Post, 2018) in Appendix D.

4.3 Pre-processing
Tokenization We tokenize Chinese with Jieba 2,
Japanese with Mecab 3 and other languages with
Sacremoses 4.

Cleaning We remove sentences longer than 100
or shorter than 4 tokens and those cannot be
identified as their corresponding languages by
Langid.py 5. Sentence pairs with a source/target
length ratio exceeding 1.5 are also removed. We
have around 85% sentences remaining after pre-
processing for all languages except Japanese, of
which the percentage is 67%. See Appendix C for
detailed statistics.

4.4 Baselines and Comparisons
Random: We report the average result of 3 dif-
ferent random seeds. BM25: The BM25 scores
are computed using Rank-BM25 (Brown, 2020).
R-BM25: We evaluate R-BM25 6 (Agrawal et al.,
2023) on our datasets.

Polynomial: Our syntax-based selection method
with Polynomial Distance. BM25 + Polynomial:

1https://github.com/openlanguagedata/flores
2https://github.com/fxsjy/jieba
3https://github.com/SamuraiT/mecab-python3
4https://github.com/hplt-project/sacremoses
5https://github.com/saffsd/langid.py
6https://github.com/sweta20/inContextMT

The first 4 examples are the top-4 from BM25 and
the rest 4 are the top-4 from Polynomial. Polyno-
mial + BM25: The first 4 are from Polynomial and
the rest 4 are from BM25.

5 Results and Analysis

5.1 Main Results

Experimental results on all 6 languages (into and
out of English) are shown in Table 1, where the
number of in-context examples is set to 8.

Without the help of word-level closeness, Poly-
nomial itself cannot reach perfection in many cases.
However, it performs competitively on DE-EN
translation, outperforming Random by 1.58 points
and BM25 by 3.53 points.

With a combination of word-level closeness and
syntax-level similarity, our ensemble strategies take
the lead in most cases, outperforming Random by
around 1 point on average.

To sum up, the highest scores of 11 out of 12
translation directions are achieved by our proposed
methods, which indicates the effectiveness of syn-
tax in in-context example selection for MT.

Surprisingly, the performance of R-BM25 is
poor under our experimental settings. This might
be due to differences in example database, data pre-
processing and the design of prompt templates. We
leave exploration of the cause to future work.

We also compare with CTQScorer (M et al.,
2023) in Table 2, where the number of examples
is set to 4 and we focus on only 3 language pairs ,
to be in line with their work. Our proposed meth-
ods secure all the highest scores on all 6 trans-
lation directions. Note that M et al. (2023) use
Europarl (Koehn, 2005) and ParaCrawl (Bañón
et al., 2020) as example database, and experiment
on FLORES-101, which is an earlier version of
FLORES+. These factors may lead to an unequal
comparison.

5.2 Different Numbers of Examples

We carry out experiments under different num-
bers of in-context examples. The average COMET
scores of our ensemble strategy and other baselines
on all 12 translation directions under different num-
bers of examples are shown in Figure 2. Please
refer to Appendix E for our full results. Our pro-
posed ensemble strategy constantly outperforms
baselines under different numbers of examples.



Direction Selection DE ES FR JA RU ZH Avg.

Into EN

Random 63.57 63.84 71.96 38.03 54.39 45.74 56.26
BM25 61.62 63.96 70.75 40.83 53.45 48.15 56.46
R-BM25 56.92 62.39 71.40 39.15 50.81 44.02 54.12

Polynomial 65.15 64.38 72.64 39.51 54.75 42.39 56.47
BM25 + Polynomial 63.24 65.27 73.00 41.51 54.20 47.07 57.38
Polynomial + BM25 62.78 64.12 71.65 41.03 53.93 48.20 56.95

Out of EN

Random 44.42 51.92 55.10 22.92 48.75 12.46 39.26
BM25 44.60 53.41 56.10 19.97 51.96 12.17 39.70
R-BM25 42.09 52.14 51.39 12.24 49.46 3.84 35.19

Polynomial 44.18 52.70 55.52 18.94 47.51 9.09 37.99
BM25 + Polynomial 44.45 54.13 55.35 20.46 52.87 12.68 39.99
Polynomial + BM25 44.86 54.79 56.43 22.19 51.60 12.10 40.33

Table 1: COMET scores for translation into (the top half) and out of (the bottom half) English with 8 examples. The
highest scores are in bold text.

Direction Selection DE FR RU Avg.

Into EN

CTQ (M et al., 2023) 64.77 71.28 50.85 62.30

Random 63.08 71.84 54.09 63.00
BM25 61.12 72.64 54.19 62.65
R-BM25 58.24 70.96 50.79 60.00

Polynomial 65.23 72.42 54.36 64.00
BM25 + Polynomial 64.30 73.16 53.76 63.74
Polynomial + BM25 63.92 72.34 53.32 63.19

Out of EN

CTQ (M et al., 2023) 38.05 41.41 44.26 41.24

Random 41.92 54.01 47.08 47.67
BM25 40.11 52.12 49.75 47.33
R-BM25 34.30 43.27 43.59 40.39

Polynomial 42.16 52.44 47.07 47.22
BM25 + Polynomial 42.73 54.74 47.93 48.47
Polynomial + BM25 42.59 52.73 49.82 48.38

Table 2: COMET scores for translation between DE,
FR, RU and EN with 4 examples. The highest scores
are in bold text.

Figure 2: Average COMET scores on all 12 translation
directions under different numbers of in-context exam-
ples (2, 4, 8, and 16). The score of R-BM25 under 2
examples is 34.56, which we do not show in the chart
to save space. Note that when there are 16 in-context
examples, the context sometimes exceeds the LLM’s
maximum length, which may hurt the precision of the
result.

Input
International sanctions have meant that
new aircraft cannot be purchased.

BM25 They cannot be purchased on board buses.

Polynomial
The CJLS has stated that this particular
ceremony should not be performed.

Table 3: Top-1 examples of EN-DE translation selected
by BM25 and Polynomial.

5.3 Case Analysis

We give an instance to compare the examples se-
lected by different strategies, as shown in Table
3. BM25 selects sentences with more word over-
lapping ("cannot be purchased") while Polynomial
selects sentences with the similar syntactic struc-
ture (perfect tense, "that" clause, negative sentence,
passive voice). For closely related language pairs
like EN-DE, when the source sentences share sim-
ilar syntax or patterns, it is likely that the target
sentences also share these features. See Appendix
F for an instance of model outputs.

6 Conclusion

In this work, we investigate whether syntactic in-
formation can help find better in-context examples
for MT. We propose selecting examples based on
similarity of dependency trees, and present a sim-
ple but effective ensemble method by selecting ex-
amples from both word-overlap-based and syntax-
similarity-based selection. Our proposed methods
obtain the highest COMET scores on 11 out of 12
translation directions, indicating that injecting syn-
tax information during in-context example selec-
tion is helpful for MT. We call on the NLP commu-
nity to pay more attention to syntactic knowledge
for syntax-rich tasks like MT.



Limitations

First, due to limited time and computational re-
sources, we have not evaluated our methods on low-
resource languages and other LLMs. Second, in our
ensemble strategy, we have only explored combin-
ing word-level selection and syntax-level selection.
Other types of selection strategies (e.g., selection
based on semantics) are not explored in the ensem-
ble. Third, we have not explored methods based
on constituent trees and other algorithms of tree
similarity besides Polynomial distance. Last, our
selection is based on the similarity on the source
side. However, similarity on the target side or be-
tween two sides is also worth trying.

Ethics Statement

Task Average Time

Pre-processing ∼ 2 hrs
Dependency Parsing ∼ 1.5 hrs

BM25 Selection ∼ 5 hrs
Polynomial ∼ 8 hrs

LLM Inference ∼ 1hr

Table 4: Average computation time on all languages.

Computational Budget We run pre-processing
and in-context example selection on Intel® Xeon®

Gold 5218 CPU and the LLM’s inference on
NVIDIA A40. Table 4 shows the average com-
putation time.

Reproducibility All the experiments are com-
pletely reproducible since our selection methods
are deterministic and sampling is disabled during
LLM generation.

Artifact License

spaCy MIT
Jieba MIT
Mecab GPL, LGPL, BSD
Sacremoses MIT
Rank_BM25 Apache-2.0
XGLM MIT
COMET Apache-2.0
sacreBLEU Apache-2.0
FLORES+ CC-BY-SA-4.0
WikiMatrix BSD

Table 5: Licenses of scientific artifacts we use.

Scientific Artifacts We cite all the creators of
scientific artifacts we use in this paper. Licenses of
these scientific artifacts are shown in Table 5.
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Figure 3: Original demonstration of converting dependency trees to polynomials taken from Liu et al. (2022).

Language spaCy Model

DE de_core_news_sm
EN en_core_web_sm
ES es_core_news_sm
FR fr_core_news_sm
JA ja_core_news_sm
RU ru_core_news_sm
ZH zh_core_web_sm

Table 6: The spaCy models used for different languages.

E Full Results under Different Numbers
of Examples

COMET scores of translation with 2, 4, annd 16
in-context examples are shown in Table 9, 10 and
11, respectively. Note that when there are 16 in-
context examples, the context sometimes exceeds
the LLM’s maximum length, which may hurt the
precision of the result.

F Case Analysis on Model Output

In addition to Section 5.3, we display an example
output with different selection strategies. In the

case shown in Table 12, BM25 omits a constituent
("de plus" in the source sentence) while Polyno-
mial translates not accurately enough. With the
help of both word-level and syntax-level demon-
strations, our ensemble strategy "BM25 + Polyno-
mial" produces a relatively high-quality translation.
This indicates that both word-level closeness and
syntax-level similarity matters in in-context exam-
ple selection for MT.



Language ISO Code #Pairs (M) after Pre-processing #Pairs (M) before Pre-processing Percentage

German DE 1.33 1.57 85%
Spanish ES 2.84 3.38 84%
French FR 2.44 2.76 88%

Japanese JA 0.57 0.85 67%
Russian RU 1.39 1.66 84%
Chinese ZH 0.68 0.79 86%

Table 7: Size of WikiMatrix before and after pre-processing and the percentage of reserved sentences after pre-
processing for 6 languages. Each entry refers to the data between English and the corresponding language.

Direction Selection DE ES FR JA RU ZH Avg.

Into EN

Random 38.60 29.60 40.35 18.26 31.21 21.71 29.96
BM25 38.50 31.15 41.20 19.05 32.16 22.32 30.73
R-BM25 36.93 29.88 40.33 18.61 30.82 21.65 29.70

Polynomial 39.20 29.62 40.88 18.40 31.34 21.10 30.09
BM25 + Polynomial 39.37 30.57 41.70 19.21 32.34 22.68 30.98
Polynomial + BM25 39.40 30.76 41.54 19.11 31.90 22.03 30.79

Out of EN

Random 28.02 24.16 35.87 12.21 27.18 13.21 23.44
BM25 28.75 24.78 37.89 13.23 28.37 13.35 24.40
R-BM25 27.38 24.26 35.88 10.98 27.32 11.33 22.86

Polynomial 28.15 24.03 36.41 12.12 27.06 12.06 23.31
BM25 + Polynomial 28.76 24.65 37.40 13.13 28.49 13.64 24.35
Polynomial + BM25 28.86 25.13 37.32 13.28 28.25 13.47 24.39

Table 8: BLEU scores for translation into and out of English. The highest scores are in bold text.

Selection
Into EN Out of EN

Avg.DE ES FR JA RU ZH DE ES FR JA RU ZH

Random 62.06 63.43 71.66 22.68 53.29 20.00 33.63 50.86 50.31 13.62 43.86 7.98 41.12
BM25 60.66 64.68 71.44 38.50 52.93 36.54 31.25 50.92 49.20 3.73 45.94 4.17 42.50
R-BM25 53.59 62.89 68.28 31.75 49.61 33.13 18.78 41.72 39.45 -12.95 38.97 -10.52 34.56

Polynomial 63.97 63.69 72.04 27.55 53.81 23.53 27.05 49.46 48.84 6.20 42.96 -1.36 39.81
BM25 + Polynomial 63.71 64.51 72.24 32.79 53.83 25.46 34.89 50.49 48.86 0.60 46.81 4.98 41.60
Polynomial + BM25 62.40 64.30 72.49 33.24 52.55 33.09 34.53 51.93 49.79 7.46 44.30 6.52 42.72

Table 9: COMET scores for translation with 2 in-context examples.

Selection
Into EN Out of EN

Avg.DE ES FR JA RU ZH DE ES FR JA RU ZH

Random 63.08 64.29 71.84 30.94 54.09 35.04 41.92 51.06 54.01 19.85 47.08 10.17 45.28
BM25 61.12 64.67 72.64 40.49 54.19 45.34 40.11 53.63 52.12 14.33 49.75 8.22 46.38
R-BM25 58.24 62.37 70.96 34.52 50.79 38.05 34.30 47.95 43.27 -2.57 43.59 -5.82 39.64

Polynomial 65.23 64.53 72.42 33.88 54.36 36.71 42.16 51.53 52.44 15.55 47.07 5.97 45.15
BM25 + Polynomial 64.30 65.23 73.16 39.93 53.76 37.67 42.73 53.69 54.74 13.90 47.93 8.31 46.28
Polynomial + BM25 63.92 64.96 72.34 39.45 53.32 44.62 42.59 53.04 52.73 18.02 49.82 7.28 46.84

Table 10: COMET scores for translation with 4 in-context examples.

Selection
Into EN Out of EN

Avg.DE ES FR JA RU ZH DE ES FR JA RU ZH

Random 64.25 63.83 71.47 38.80 54.26 46.84 45.33 51.38 55.65 24.39 49.04 13.00 48.19
BM25 60.72 62.70 70.14 40.42 52.05 47.90 46.31 53.87 56.15 21.01 52.69 14.21 48.18
R-BM25 55.36 59.05 68.97 34.97 47.21 42.51 37.48 47.53 48.52 0.89 47.93 0.82 40.94

Polynomial 64.42 63.76 72.09 40.86 54.35 45.48 44.85 52.20 55.57 21.09 49.21 7.52 47.62
BM25 + Polynomial 63.26 64.07 70.82 41.58 53.99 47.43 46.39 54.23 57.43 22.61 52.90 14.61 49.11
Polynomial + BM25 61.20 63.82 69.73 38.49 52.38 46.93 46.09 54.55 58.52 21.26 51.89 15.08 48.33

Table 11: COMET scores for translation with 16 in-context examples.



Source (FR) De plus, le Centre d’alerte des tsunamis dans le Pacifique a déclaré qu’il n’y avait aucun signe de tsunami.
Reference (EN) Also the Pacific Tsunami Warning Center said that there was no Tsunami indication.

BM25 The Pacific Tsunami Warning Center said there was no sign of a tsunami.
Polynoimal In addition, the Pacific Tsunami Warning Center has declared there is no sign of a tsunami.

BM25 + Polynomial In addition, the Pacific Tsunami Warning Center said there was no sign of a tsunami.

Table 12: Outputs of FR-EN translation under different selection strategies.
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