
Adaptive optimization of isogeometric multi-patch discretizations using
artificial neural networks

Dany Riosa,b, Felix Scholza, Thomas Takacsb

aJohannes Kepler University Linz, Austria
bRICAM, Austrian Academy of Sciences

Abstract

In isogeometric analysis, isogeometric function spaces are employed for accurately representing the solution
to a partial differential equation (PDE) on a parameterized domain. They are generated from a tensor-
product spline space by composing the basis functions with the inverse of the parameterization. Depending
on the geometry of the domain and on the data of the PDE, the solution might not have maximum Sobolev
regularity, leading to a reduced convergence rate. In this case it is necessary to reduce the local mesh
size close to the singularities. The classical approach is to perform adaptive h-refinement, which either
leads to an unnecessarily large number of degrees of freedom or to a spline space that does not possess
a tensor-product structure. Based on the concept of r-adaptivity we present a novel approach for finding
a suitable isogeometric function space for a given PDE without sacrificing the tensor-product structure
of the underlying spline space. In particular, we use the fact that different reparameterizations of the
same computational domain lead to different isogeometric function spaces while preserving the geometry.
Starting from a multi-patch domain consisting of bilinearly parameterized patches, we aim to find the
biquadratic multi-patch parameterization that leads to the isogeometric function space with the smallest
best approximation error of the solution. In order to estimate the location of the optimal control points,
we employ a trained residual neural network that is applied to the graph surfaces of the approximated
solution and its derivatives. In our experimental results, we observe that our new method results in a vast
improvement of the approximation error for different PDE problems on multi-patch domains.

Keywords: isogeometric analysis, parameterization, adaptive refinement, r-adaptivity, neural networks

1. Introduction

In this paper we propose a new approach to adaptively optimize an isogeometric discretization. Isogeo-
metric Analysis (IGA), see Hughes et al. (2005); Beirão da Veiga et al. (2014), is a numerical method that
uses NURBS or B-spline representations both for the geometry and for the discretization space. We focus
on planar domains that are segmented into quadrilateral Bézier patches. The basic idea is to adapt the
parameterization of the domain in order to reduce the approximation order of the isogeometric discretiza-
tion. As a model problem we consider the Poisson equation with Dirichlet boundary conditions, however,
the approach may be applied directly to more general problems, since it does not rely on the underlying
PDE. In the following we summarize existing methods of adaptivity in IGA and then give an overview of
our approach and motivate its set-up.

For problems that have singular solutions or solutions of low Sobolev regularity, the solution cannot
be resolved well near the singularity and the discretization error is large there. Thus it is better to adap-
tively refine near the singularity instead of performing global refinement. In IGA, many approaches for
h-refinement exist, which are based on locally refinable splines, such as T-splines, LR B-splines or THB-
splines (see Bazilevs et al. (2010); Dörfel et al. (2010), Johannessen et al. (2014) and Giannelli et al. (2016),

Email addresses: felix.scholz@jku.at (Felix Scholz), thomas.takacs@ricam.oeaw.ac.at (Thomas Takacs)

Preprint submitted to Elsevier March 25, 2024

ar
X

iv
:2

40
3.

19
28

6v
1

 [
m

at
h.

N
A

]
 2

8
M

ar
 2

02
4

respectively). See also the comparison paper Hennig et al. (2017). A neural-network based approach for
finding a locally refined mesh was proposed in Chan et al. (2022). To reduce the error, one may also increase
the degree locally, which is called p-refinement, or k-refinement, if the spline regularity is raised simultane-
ously, cf. Cottrell et al. (2007). It is also possible to combine p- and h-refinement, as e.g. in Schillinger and
Rank (2011); Liu et al. (2016); Kamber et al. (2022). When using NURBS-based parameterizations, one
can also update the NURBS-weights of the discretization space to improve the discretization, as in Taheri
and Suresh (2020).

Alternatively, one may also reduce discretization errors by adapting the parameterization of the domain.
This approach was termed r-refinement in Xu et al. (2011) and investigated further in several studies Xu et al.
(2019); Ji et al. (2023). A similar approach based on optimal transport was developed in Bahari et al. (2024).
One key advantage of this type of refinement is that the spaces remain tensor-product, which implies a much
simpler data structure in contrast to locally refined splines and allows for very efficient numerical quadrature
and assembly, cf. Scholz et al. (2018); Bressan and Takacs (2019). However, existing r-refinement approaches
are costly, since they require solving an optimization problem to obtain a suitable parameterization. Instead,
we want to find a good update of the parameterization using a neural network. Such an approach is cheap
and can, in principle, yield near-optimal results for many applications. We moreover explore the possibility of
combining such an r-refinement approach with standard, global h-refinement. A similar study was performed
in Basappa et al. (2016).

The basic set-up of our approach is as follows. We assume that the domain is split into quadrilaterals.
First we solve the PDE problem that we are interested in on the initial geometry. We then apply an artificial
neural network to find a biquadratic reparameterization of each patch, using as input the initial solution of
the PDE (evaluated at sampled points). This reparameterization should then yield a smaller discretization
error than the initial parameterization.

The paper is organized as follows. In Section 2 we introduce the isogeometric discretization spaces that
we consider throughout the paper. In Section 3 we present the two model problems that are considered
in this work. In Section 4 we give an overview of the proposed method, which is then tested on several
examples in Section 5. Possible extensions and conclusions are discussed in Section 6.

2. Isogeometric discretization spaces

We consider planar domains Ω ⊂ R2, which are segmented into quadrilateral patches Ωk, i.e.,

Ω =

K⋃
k=1

Ωk,

where ∂Ωk ∩ ∂Ωk′
, for k ̸= k′, is empty, a vertex or an entire edge of both quadrilaterals. Each subdomain

is parameterized by
Gk : Ω̂ → Ωk,

where Ω̂ =]0, 1[
2
and Gk is a regular mapping (det∇Gk ≥ c > 0). For simplicity we use the notation

G = (G1, G2, . . . , GK).
Let P1

p be the space of univariate polynomials of degree p and let P2
p and Q2

p be the spaces of bivariate

polynomials of total degree p and maximum degree p, respectively. Let moreover Sd
p,h be the d-variate B-

spline space of degree p, regularity p−1 and uniform mesh size h in each direction. We have S2
p,h = S1

p,h⊗S1
p,h.

For simplicity, we assume that the initial patch parameterizations Gk
init are bilinear, i.e., G

k
init ∈ Q2

1×Q2
1.

We are interested in biquadratic reparameterizations Gk ∈ Q2
2×Q2

2, which minimize the approximation error
as explained later.

The isogeometric function spaces are defined as

Vh,G = {φ ∈ C0(Ω) : φ ◦Gk ∈ S2
p,h,∀k}.

We observe that different parameterizations G of the same domain lead to different isogeometric function
spaces. See Figure 1 for a comparison of different isogeometric discretizations. The different convergence
rates are shown in Figure 17.

2

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

(a) Uniform refinement of the isogeometric function space

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

0.0e+00

1.3e+00

0.2

0.4

0.6

0.8

1

e
x
a

c
t

s
o

lu
ti
o

n

(b) Optimized refinement of the isogeometric function space

Figure 1: Stationary solution to the heat equation on an L-shaped domain

3. Model problems

In this paper we consider the Poisson equation as a model problem. It is formulated as finding u such
that

−∆u = f in Ω
u = gD on ΓD

n · ∇u = gN on ΓN ,

with ∂Ω = ΓD∪ΓN , n being the outward pointing normal vector to ΓN and f , gD and gN are suitably regular
data of the PDE. This problem has the variational form: Find u ∈ H1

gD (Ω) = {u ∈ H1(Ω) : u = gD on ΓD}
with

a(u, v) = F (v) for all v ∈ H1
0 (Ω), (1)

where

a(u, v) :=

∫
Ω

∇u∇vdx

and

F (v) :=

∫
Ω

fvdx+

∫
ΓN

gNvdx.

The discrete problem that we solve is then given by finding uh ∈ Vh,G,gD = Vh,G ∩H1
gD (Ω) with

a(uh, vh) = F (vh) for all vh ∈ Vh,G,0. (2)

Moreover, when initially testing our approach we solve an L2-fitting problem

min
uh∈Vh,G

∥uh − u∥2L2(Ω),

which is given in variational form as∫
Ω

uhvhdx =

∫
Ω

uvhdx for all vh ∈ Vh,G.

3

For both the Poisson problem and the L2-fitting problem we assume that the exact solution u does not
possess a high order of Sobolev regularity, i.e., that u ∈ H1(Ω) or u ∈ L2(Ω), respectively, but u /∈ Hp+1(Ω).
Depending on the Sobolev regularity of the exact solution, a suitable mesh grading is needed.

We are now interested in the discretization error

|u− uh|H1(Ω) = ∥∇u−∇uh∥L2(Ω)

or
∥u− uh∥L2(Ω).

We intend to minimize the error by changing the parameterization G of the domain and thus changing the
discretization space Vh,G, which depends non-linearly on G.

4. Description of our method

As described in the previous section, we assume to have given a domain Ω and a model problem (2) over
the domain, which has the solution uh ∈ Vh,G,gd = Vh,G ∩H1

gD (Ω). It is our goal to minimize the error with
respect to the parameterization G, i.e.,

∥u− uh∥V → min
G

,

where u ∈ V is the solution of (1).
This minimization problem is difficult as the discretization spaces Vh,G and discrete solutions uh depend

non-linearly on G. Thus we propose an approach based on machine learning to optimize for G.

4.1. General overview of the method

To be able to apply a neural network to general domain compositions, we need to segment the problem.
We consider the following workflow: We first split the domain into quadrilaterals and find a biquadratic
reparameterization for each quadrilateral. Then we use an existing, already trained, artificial neural network,
which was developed by Rios et al. (2023), to reparameterize each quadrilateral, making sure that the
reparameterizations match at patch interfaces.

The network is defined on triangular patches. It takes as input (unsorted) point data and finds parameter
values to the given data points. It was trained in such a way that it optimizes the parameter values such that
the error of the ℓ2-projection to the data points is minimized. For most configurations, the network predicts a
good approximation to the original parameter values if the point data was sampled from a quadratic surface,
cf. Rios et al. (2023). The way the network is set up, it can be used to determine the best approximating
ℓ2-fit of a quadratic surface to the given point data.

The use of such a neural network has several advantages. Considering only point data, the network can
be applied to a number of different discretizations and is not restricted to a specific set-up. The network
yields parameter values with respect to a triangular patch, since the corresponding parameterization problem
on a triangle is well-defined. A best approximating triangular surface can be used as a good initial guess
for optimizing a tensor-product polynomial or spline parameterization. This is based upon two assumptions
that we verify in our experiments.

Assumption 1. When splitting a quadrilateral into triangles, the averaged reparameterizations of the best
approximating quadratic surfaces yield a biquadratic surface which is close to the best approximating bi-
quadratic surface.

Our numerical evidence suggests that we can use properly averaged updates for triangular patches derived
from the network. To optimize the results, we tested and compared several different averaging strategies.

4

Assumption 2. Taking the best approximating surface to sampled point data and projecting this surface
onto the (x, y)-plane, i.e., onto the domain Ω, we obtain a reparameterization that is close to the optimal
reparameterization, which yields the smallest discretization error.

In a general notation, we want to minimize the projection error in the energy norm:

∥(I−ΠG
h)(u)∥V → min

G
,

where u is the unknown solution, ΠG
h is a projector into Vh,G, and we minimize with respect to the parame-

terization G, such that G(Ω̂) = Ω and G(∂Ω̂) = ∂Ω. In case of the L2-fitting problem, ∥.∥V is the L2-norm
and ΠG

h is the L2-orthogonal projector. In case of the Poisson problem, ∥.∥V is the H1-seminorm and ΠG
h

is the H1-orthogonal projector.
Since the network is based on an L2-approximation, we always approximate the L2-projection and we

optimize the L2-error, i.e., we consider the problem

∥(I−ΠG
h)(u)∥L2(Ω) → min

G
. (3)

However, in case of the Poisson problem, this can be replaced by an approximation of the partial derivatives
of the unknown solution u, which should mimic an H1-projection. This corresponds to solving the problem∥∥∥∥(I−ΠG

h)

(
∂u

∂x

)∥∥∥∥2
L2(Ω)

+

∥∥∥∥(I−ΠG
h)

(
∂u

∂y

)∥∥∥∥2
L2(Ω)

→ min
G

. (4)

Moreover, instead of minimizing a norm directly, which would require complete knowledge of the func-
tion u, we sample points of an approximation of u, which are then fed to the network. In the numerical
experiments we compare different ways to sample points, depending on the underlying model problem. This
is discussed in more detail in Section 4.4.

4.2. Description of the employed neural network

We use the point cloud parameterization network from Rios et al. (2023). It is a residual neural network
with fixed input and output dimensions equal to 36. The input consists of twelve standardized points in
R3 and its output is interpreted as barycentric coordinates for each of the input points, with respect to the

standard triangle with vertices (0, 0)T , (1, 0)T and (12 ,
√
3
2)T .

The architecture consists of a linear input layer, four residual blocks and a linear output layer. The
activation function of all hidden layers is ReLU and only the output activation function is the sigmoid
function in order to ensure that the output values lie between zero and one. Finally, the output barycentric
coordinates for each input point are enforced to sum up to 1.

As described in Rios et al. (2023), the network was trained on a dataset consisting of 500,000 point
clouds, sampled from quadratic Bézier surfaces in an unsupervised way, with the loss function representing
the ℓ2-error when fitting the point cloud with a quadratic surface using the the barycentric coordinates
that were predicted by the network. Before applying the network to a point cloud of twelve points that
is to be parameterized with respect to an arbitrary triangle, the point cloud is standardized by an affine
transformation that maps the triangle’s vertices to the standard triangle.

In Rios et al. (2023), the output of the neural network is used as an initialization for different non-linear
optimization methods, of which the Levenberg–Marquardt algorithm performs the best. However, in the
context of our present problem, we observed that using the network’s predictions directly without further
optimization leads to a much more robust method. The reason is that the Levenberg–Marquardt algorithm
often converges to parameterizations with parameters that lie outside of the triangular parameter domain,
i.e., barycentric coordinates with negative components. While these parameterizations are minima of the
fitting problem, they are not suitable for optimizing isogeometric function spaces using our method since
our solution is only defined inside the parameter domain. Because of the network architecture, the network
consistently outputs non-negative barycentric coordinates.

5

4.3. Processing the network output

While the employed network was originally designed to parameterize data over triangular domains,
we apply it in this work to our problem of finding optimal reparameterizations of quadrilateral multi-
patch domains. We do this by splitting the problem into triangles, finding optimized triangular Bézier
reparameterizations and performing a suitable averaging procedure, based on the two assumptions made in
Section 4.1.

4.3.1. Optimizing quadratic parameterizations of triangular domains

We first describe how to apply the parameterization network to optimize the parameterization of a
triangle. Let ∆ be an arbitrary triangle and let u : ∆ → R be the function to be approximated in an
isogeometric (isoparametric) function space over ∆.

As an initial parameterization, we choose the linear parameterization represented as a quadratic Bézier
patch

Tinit(α, β, γ) =
∑

i+j+k=2
i,j,k≥0

T init
ijk B2

ijk(α, β, γ),

where α, β, γ ≥ 0 are barycentric coordinates with α + β + γ = 1, B2
ijk are the quadratic Bernstein

polynomials, the control points T init
200 , T init

020 , T init
002 ∈ R2 are the vertices of ∆ and the edge control points

T init
110 , T init

101 , T init
011 correspond to the midpoints of the edges of ∆.

In order to optimize the control points of T , the neural network is applied to sets of 12 points sampled
from the graph surface. More precisely, we create a number of M sets Qr, each consisting of 12 points

P r
i = (Tinit(α

r
i , β

r
i , γ

r
i), u ◦ Tinit(α

r
i , β

r
i , γ

r
i)) .

generated from randomly sampled barycentric coordinates αr
i , β

r
i , γ

r
i ≥ 0 with αr

i + βr
i + γr

i = 1.
After standardizing each set Qr as described in Section 4.2, the neural network is applied in order to

predict optimal barycentric coordinates α̃r
i , β̃

r
i , γ̃

r
i .

In order to realize each parameterization of ∆ that was predicted by the neural network, we compute a
reparameterization T r by solving the linear least squares problem

min
δ011,δ101,δ110∈[0,1]

12∑
i=1

∥T r(α̃r
i , β̃

r
i , γ̃

r
i)− T (αr

i , β
r
i , γ

r
i)∥2,

where T r is the quadratic Bézier parameterization with vertex control points

T r
002 = T init

002 , T r
020 = T init

020 , T r
200 = T init

200

and with edge control points

T r
011 = (1− δ011)T

r
002 + δ011T

r
020, T r

101 = (1− δ101)T
r
002 + δ101T

r
200, T r

110 = (1− δ110)T
r
020 + δ110T

r
200.

This enforces that T r is the quadratic parameterization of ∆ that best approximates the parameterization
α̃r
i , β̃

r
i , γ̃

r
i predicted by the neural network. From the reparameterizations T r for r = 1, . . . ,M we obtain a

single reparameterization T by averaging the control points.
We iterate this process by sampling from the graph surface of u using the deformed parameterization T

until a suitable stopping criterion is satisfied. Using batches of size M > 1 in the optimization process leads
to an improved stability compared to applying the method to a single sampled point cloud.

4.3.2. Optimizing biquadratic parameterizations of quadrilateral domains

We now extend this method to quadrilateral domains. To this end, we assume to have given a bilinear
quadrilateral Q, represented by a biquadratic Bézier patch

Ginit(s, t) =

2∑
i=0

2∑
j=0

Ginit
ij B̂

(2,2)
ij (s, t),

6

where B̂
(2,2)
ij are the biquadratic tensor-product Bernstein polynomials and the control points Ginit

ij are
computed from the corners G00, G02, G20, G22 of the quadrilateral by degree elevation. We want to find
a biquadratic parameterization G of the same quadrilateral Q that minimizes the approximation error to
the target function u : Q → R. Thus the corner control points of G are equal to the corners of Q and the
boundary segments remain straight line segments, parameterized non-uniformly, e.g., G10 ∈ G00G20.

To find such a reparameterization, we use the method for triangular domains described in the previous
section. We split the quadrilateral Q into four triangles ∆1 = G00G20G02, ∆2 = G20G22G00, ∆3 =
G02G00G22 and ∆4 = G22G02G20. To each of these triangles we apply the previously described algorithm
to obtain optimized quadratic reparameterizations Tw of ∆w, with control points Tw

110, T
w
101 and Tw

011, for
w = 1, 2, 3, 4, see Fig. 2.

G00 G20

G02 G22

G10

G01

G12

G21

G11

T 2
110

T 2
101 T 2

011

T 3
110T 3

101

T 3
011

∆2

∆3

T 1
110

T 1
101 T 1

011

T 4
110T 4

101

T 4
011

∆1

∆4

Split 1 Split 2

Figure 2: Splitting a quadrilateral domain into four triangles.

In order to compute the biquadratic parameterization G for the quadrilateral Q from the optimized
reparameterizations Tw of the triangles ∆w, we compare three different averaging procedures.

Best-approximating inverse. If we assume to have given a quadrilateral mappingG, one can directly compute
the best approximating triangular parameterizations Tw. In the first approach we compute the unknown
biquadratic deformation by looking at the pseudo-inverse of this approximation procedure.

Assuming to have given G, we approximate it with quadratic mappings on all four triangles, i.e., we find
the approximations Tw,appr by L2-fitting

∥G|∆w
− Tw,appr∥L2(∆w) → min .

This yields a linear mapping A on the control points

A
(
(Gij)

2
ij=0

)
=
(
((Tw,appr

ijk)i+j+k=2)
4
w=1

)
.

Of this linear operator we compute the Moore–Penrose pseudoinverse (ATA)−1AT . This pseudo-inverse
can then be used to compute the unknown control points G01, G10, G11, G12, G21 of the quadrilateral from
the control points of the triangle parameterizations Tw. However, while this approach has a strong theoret-
ical foundation, we will see in our numerical examples that the method tends to result in self-intersecting
quadrilateral parameterizations, even for simple geometries. For this reason, we propose alternative averag-
ing methods that are more application-oriented.

Parameterization averaging. In this approach, wee compute the biquadratic mapping G ∈ Q2
2 × Q2

2 by
averaging the triangle parameterizations Tw ∈ P2

2 × P2
2, for 2 ∈ {1, 2, 3, 4}.

Let us denote by J2[F](s0, t0) the 2-jet, that is, the collection of C2-data of the function F , evaluated at
the point (s0, t0). We then compute a biquadratic mapping that yields the best approximation to the 2-jets
of the four triangle parameterizations at the respective corner points, i.e.,

∥J2[G−G1](0, 0)∥2 + ∥J2[G−G2](1, 0)∥2 + ∥J2[G−G3](0, 1)∥2 + ∥J2[G−G4](1, 1)∥2 → min .

7

This can be computed in terms of control points the following way: Let G be represented in the bi-
quadratic tensor-product Bernstein basis with control points Gij and let the mappings Tw be represented
in the same basis, with control points Tw

ij , for i, j ∈ {0, 1, 2}. The approximation of 2-jets then results in G02 G12 G22

G01 G11 G21

G00 G10 G20

 =

 1
3 (T

1
02 + T 3

02 + T 4
02)

1
2 (T

3
12 + T 4

12)
1
3 (T

2
22 + T 3

22 + T 4
22)

1
2 (T

1
01 + T 3

01)
1
4 (T

1
11 + T 2

11 + T 3
11 + T 4

11)
1
2 (T

2
21 + T 4

21)
1
3 (T

1
00 + T 2

00 + T 3
00)

1
2 (T

1
10 + T 2

10)
1
3 (T

1
20 + T 2

20 + T 4
20)

 .

In terms of the coefficients Tw
ijk of the triangle parameterizations, this results in

G12 =
1

2
(T 3

011 + T 4
011), G01 =

1

2
(T 1

101 + T 3
101), G21 =

1

2
(T 2

011 + T 4
110), G10 =

1

2
(T 1

110 + T 2
110),

G11 =
1

8

(
4∑

w=1

(Tw
110 + Tw

101 + Tw
011)−G00 −G02 −G20 −G22

)
.

Control point averaging. As a very simple alternative to the previous approaches, we compute the control
points of G by directly averaging the control points of the triangles as follows G02 G12 G22

G01 G11 G21

G00 G10 G20

 =

 G02
1
2 (T

3
011 + T 4

011) G22
1
2 (T

1
101 + T 3

101)
1
4 (T

1
011 + T 2

101 + T 3
110 + T 4

101)
1
2 (T

2
011 + T 4

110)
G00

1
2 (T

1
110 + T 2

110) G20

 .

This is a more heuristic approach compared to Variants 1 and 2, but the obtained results are nonetheless
useful and, in some cases, even better than the ones obtained using the other methods.

4.3.3. Multi-patch domain

For multi-patch domains, we assume that the computational domain is segmented into quadrilateral
patches in a C0-conforming way, without hanging vertices. We then perform the procedure presented in the
previous section to compute biquadratic reparameterizations for all subdomains independently. To obtain
a C0-conforming discretization we then average the corresponding control points on all interfaces.

4.4. Sampling strategies

Depending on the modeling problem, we aim to minimize the best approximation error in the isogeometric
space either with respect to the unknown solution (3) or the derivatives of the unknown solution (4).

Our method minimizes the distance between the sampled points and the (unknown) graph surface:∑
i

∣∣(xi, yi, zi)
T − (Gx(si, ti), Gy(si, ti), ûh(si, ti))

T
∣∣2 → min

G,ûh,si,ti
. (5)

In order to optimize the approximation error with respect to the correct norm, we sample the input data
for our method problem-dependent either from the graph surface of an initial approximation to the solution
or from the graph surface of the derivatives of the initial approximation.

To this end, we first compute the initial solution uinit := Πinit
θ (u) using the initial parameterization Ginit

of the computational domain Ω and an initial mesh size θ.
In order to achieve scaling invariance of the result of the standardization of the neural network input,

see Section 4.2, with respect to the function as well as the size of the computational domain we replace uinit

by the normalized function
maxk

(
diamΩk

)
maxΩ(uinit)−minΩ(uinit)

uinit .

8

4.4.1. L2-projection

In the case of L2-projection (3), we then sample values directly from the graph surface of uinit , i.e.,
zi := uinit(xi, yi) = ûinit(si, ti), where (si, ti) = G−1

init(xi, yi). This yields a similar result to minimizing the
L2-error, which can be approximated by sampling points:

∥(I−ΠL2,h)(u)∥L2(Ω) ∼
∑
i

|u(xi, yi)− uh(xi, yi)|2 .

4.4.2. H1-projection

In the case of H1-projection (4), we additionally sample values from different directional derivatives of
ûinit , i.e., of the spline function defined on the parameter domain Ω̂. More precisely, we sample values
zi :=

∂
∂v⃗ ûinit(si, ti) =

∂
∂v⃗ (uinit ◦Ginit) (si, ti), where v⃗ ∈ R2. Since uinit is in an isogeometric function space

Vθ,Ginit
, uinit ◦Ginit is a tensor-product B-spline function and therefore the directional derivatives are simple

to evaluate.
In particular, if we choose v⃗ to be (1√

2
, 1√

2
) or (1√

2
,− 1√

2
), we obtain the derivatives in direction of the

corners of the quadrilateral patches. If we choose v⃗ to be either (1, 0) or (0, 1), we obtain the derivatives in
the direction of the edges of the quadrilateral patch. In our numerical experiments, we analyze the influence
of choosing different directions v⃗.

Applying the method to sets of points sampled from the initial solution as well as different directional
derivatives leads to several different reparameterizations Gr of the computational domain. In order to
obtain the final reparameterization, we choose for each control point Gij the control point Gr

ij with the
largest distance to the corresponding control point Ginit,ij of the initial parameterization. This ensures that
we capture the deformation of the parameterization in all regions where an increased mesh density is needed.

5. Numerical experiments

In this section, we present the results of our numerical experiments. On the one hand, we aim to demon-
strate the suitability of our approach for optimizing parameterizations for solving PDEs using isogeometric
analysis. On the other hand, we want to motivate the choice of the averaging strategy, see Section 4.3.2, and
sampling strategy, see Section 4.4. We start by comparing the different averaging approaches on a number
of single patch domains. Afterwards we focus on multi-patch domains, comparing the different sampling
strategies when solving the Poisson equation. Finally, we apply our method to some examples inspired by
real-world problems.

The isogeometric methods for solving the PDE and L2-projection was implemented in C++ using the open
source library G+Smo, cf. Mantzaflaris et al. (2023). Our method for optimizing the isogeometric function
spaces was implemented using Python, with the neural network being defined using PyTorch, cf. Paszke
(2019). As batch size when optimizing the triangular Bézier parameterizations we set M = 20 and we
stopped the optimization of each triangle after the L2-error stops improving for two steps in a row.

5.1. Comparison of the different averaging approaches

We apply our method to different computational domains both for the L2-projection and the Poisson
problem and compare the three averaging approaches described in Section 4.3.2: Best-approximating inverse
(BAI), control point averaging (CPA) and parameterization averaging (PA).

As an illustration of the overall process, we start by considering the L2-projection problem with exact
solution u(x, y) = ((x− 1)2 + (y− 1)2)

1
16 over the physical domain Ω = [0, 1]2. First of all, Ω is divided into

four triangles as described in Figure 2.
Then we apply the method described in Section 4.3.1 to each triangular domain individually. Figure 3

shows the resulting deformed Bézier nets for each triangle. One can observe that the control points of the
reparameterization of ∆2,∆3 and ∆4 move closer to the singularity (top-right corner). On the other hand,
one observe only a slight deformation in the reparameterization of ∆1 since the singularity was not present
in that part of the domain. Figure 4 shows the three quadrilateral control nets resulting from applying the

9

(a) ∆1 (b) ∆2 (c) ∆3 (d) ∆4

Figure 3: Triangle deformations. The deformed triangular Bézier control nets are shown in black. The green lines visualize the
point-wise change of the parameterization from undeformed (red) to deformed (black).

(a) Best-approximating inverse (b) Parameterization averaging (c) Control point averaging

Figure 4: Comparison of the averaging approaches presented in Section 4.3.2. The deformed tensor-product Bézier control nets
are shown in black. The green lines visualize the point-wise change of the parameterization from undeformed (red) to deformed
(black).

three averaging approaches to these triangular Bézier nets.
In the next examples, we consider different domains and we analyze the behavior of the L2-error and the

H1-error when solving the L2-projection problem and the Poisson problem.

Square domain with a corner singularity. We consider the L2-projection problem with exact solution u(x, y) =

((x− 1)2+(y− 1)2+0.0001)−
1
4 defined over the unit square [0, 1]2, Figure 5a. While this function is in C∞

(and in Hk for any k ∈ N), the gradient becomes very steep close to (1, 1). The unperturbed function is in
L2, but not in H1.

In Figure 6 we present the deformed control nets and the parameter lines of the physical domain for
each averaging approach. We observe that for all three approaches, the control points move closer to (1, 1).
Figure 5b presents the L2-errors corresponding to the original and deformed control nets, for each averaging
approach, after applying several iterations of h-refinement. One can observe an improvement of the L2-errors
of more than two orders of magnitude when using the deformed control nets of the control point averaging
and the parameterization averaging approaches, while the best-approximating inverse approach improves
the error by more than one order of magnitude.

On the same domain, we now consider the Poisson problem with Dirichlet boundary conditions, as
described in Section 3. We choose the right-hand side f as well as the boundary function gD according to
the exact solution u(x, y) = ((x− 1)2 + (y − 1)2)

1
4 , see Figure 7a.

Figure 8 shows the control meshes and parameter lines of the reparameterizations resulting from the three
averaging approaches after applying our method. While the control point averaging and the parameterization
averaging result in regular parameterizations of the domain, the best-approximating inverse approach leads
to a non-regular map since the central control point moves too far outside of the domain.

Figure 7b show the error convergence for the three approaches. For the control point averaging and
the parameterization averaging we observe an improvement of more than one order of magnitude for the
H1-error and of more than three orders of magnitude for the L2-error. Moreover, the error as well as the
control nets for these two approaches are very similar. The best-approximating inverse initially improves

10

(a) Exact solution

101 102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

Numbers of degrees of freedom

E
rr
or
s

Initial L2

CPA L2

PA L2

BAI L2

(b) L2-errors

Figure 5: L2-projection on a square domain with a corner singularity: Exact solution and convergence of L2-errors.

(a) Best-approximating inverse (b) Parameterization averaging (c) Control point averaging

Figure 6: L2-projection on a square domain with a corner singularity: Deformed control nets for the three averaging approaches.

the L2-error, but after some steps of refinement, the error deteriorates due to the non-regularity of the
parameterization.

Square domain with side singularity. In this example we solve the Poisson problem with Dirichlet boundary
conditions and exact solution u(x, y) = sin(πy)+ (1−x2)

3
5 . This function has a side singularity on the right

boundary of the physical domain [0, 1]2, see Figure 9a.
The control nets and the corresponding parameter lines are presented in Figure 10 and Figure 9b shows

the L2- and H1-errors for the original and the deformed control nets after several steps of h-refinement. As
in the previous example, the best-approximating inverse approach leads to a non-regular map that maps
to points outside the computational domain. Since this is not a valid parameterization of the domain,
we cannot solve the Poisson problem using this map, thus no errors are reported in Figure 9b. For the

(a) Exact solution

101 102 103 104

10−8

10−6

10−4

10−2

100

Numbers of degrees of freedom

E
rr
or
s

Initial H1

CPA H1

PA H1

BAI H1

Initial L2

CPA L2

PA L2

BAI L2

(b) L2- and H1-errors

Figure 7: Poisson problem on a square domain with a corner singularity: Exact solution and convergence of the errors.

11

(a) Best-approximating inverse (b) Parameterization averaging (c) Control point averaging

Figure 8: Poisson problem on a square domain with a corner singularity: Deformed control nets for the three averaging
approaches.

(a) Exact solution

101 102 103 104

10−4

10−3

10−2

10−1

100

Numbers of degrees of freedom

E
rr
or
s

Initial H1

CPA H1

PA H1

Initial L2

CPA L2

PA L2

(b) L2- and H1-errors

Figure 9: Poisson problem on a square domain with side singularity: Exact solution and convergence.

remaining two averaging approaches, we observe an improvement of one order of magnitude in the L2-error.
The H1-error after two steps of refinement of the optimized parameterization is smaller than the H1-error
after seven refinement steps of the original parameterization. We conclude that the best-approximating
inverse approach is not suitable for our applications and will therefore not be considered in the following
examples. Since the results for the parameterization averaging and the control point averaging are very
similar in all examples, we from now on only perform parameterization averaging.

5.2. Non-square quadrilateral domain with a corner singularity

In the coming examples we consider a non-square quadrilateral domain Ω. We consider the L2-projection
problem as well the Poisson problem.

For the L2-projection we consider the exact solution u(x, y) = ((x−0.7)2+y2+0.0001)−
1
4 , see Figure 11a.

Similar to the example in Figure 5a we perturb an otherwise singular function to obtain a function that is
C∞, but with very high H1-norm. The point (0.7, 0), where the gradient attains its maximum norm is at the
lower right corner of the domain. The deformed control net resulting from the parameterization averaging
is shown in Figure 11b. We present the L2-error after several iterations of h-refinement in Figure 11c. An
improvement of more than two orders of magnitude in the L2-error is observed.

For the Poisson problem, we use the exact solution u(x, y) = ((x−1)2+(y−1)2)
1
4 with a singularity at the

upper right corner of the domain, see Figure 12a, and Dirichlet boundary conditions. The deformed control
net and the parameter lines are presented in Figure 12b. We report the H1- and L2-errors in Figure 12c.
An improvement of almost four orders of magnitude is observed in the L2-error while the H1-error improves
in more than one order of magnitude.

In all examples up to now, we observed that the L2-errors on the single triangles did not improve
significantly after 10 iterations. Thus in the following we always perform 10 iterations without computing
any L2-errors on the individual triangles.

12

(a) Best-approximating inverse

(b) Parameterization averaging (c) Control point averaging

Figure 10: Poisson problem on square domain with side singularity: Deformed control nets for the three averaging approaches.

(a) Exact solution (b) Resulting control net and parameter lines

101 102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

Numbers of degrees of freedom

E
rr
o
rs

Initial L2

Optimized L2

(c) L2-error

Figure 11: L2-projection on a non-square quadrilateral domain with a corner singularity.

(a) Exact solution (b) Resulting control net and parameter lines

101 102 103 104

10−8

10−6

10−4

10−2

Numbers of degrees of freedom

E
rr
or
s

Initial H1

Optimized H1

Initial L2

Optimized L2

(c) L2- and H1-errors

Figure 12: Poisson problem on a non-square quadrilateral domain with a corner singularity.

13

(a) Exact solution

102 103 104 105

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Numbers of degrees of freedom

E
rr
or
s

Initial H1

Optimized H1: ûinit

Optimized H1: ∇ûinit

Optimized H1: ûinit ,∇ûinit

Optimized H1: ûinit ,∇ûinit , R∇ûinit

Initial L2

Optimized L2: ûinit

Optimized L2: ∇ûinit

Optimized L2: ûinit ,∇ûinit

Optimized L2: ûinit ,∇ûinit , R∇ûinit

(b) L2- and H1-errors

Figure 13: Comparison of the different sampling strategies: Exact solution and convergence.

5.3. Comparison of different sampling strategies

In Section 4.4.2, we discussed different options for sampling input points for our method when optimizing
for solving the Poisson problem. These correspond to sampling from the graph surface

(x, y, uinit(x, y)) = (Ginit(s, t), ûinit(s, t))

as well as from different directional derivatives ∂
∂v⃗ ûinit .

In this example we investigate the influence of this choice. In particular, we sample from ûinit , from the
partial derivatives ∇ûinit · ei as well as from the directional derivatives ∇ûinit ·Rei for i = 1, 2. Here, ei are
the canonical basis vectors and R is the counter-clockwise rotation by 45◦.

To test the different choices, we solve the Poisson equation with Dirichlet boundary conditions on a
multi-patch domain consisting of three patches with common vertex (0, 0). The exact solution is chosen to

be u(x, y) = (x2+y2+0.00001)
1
8 , see Figure 13a. Again, we perturb a singular function to obtain a function

that is C∞ with very large H1-norm.
In Figure 14 we show control nets and parameter lines for different sets containing these functions, always

using the parameterization averaging. For each set of functions we choose the control points with maximum
deformation, see Section 4.4.2. In Figure 13b we report the corresponding H1- and L2-error. One can
observe that using the whole set of input functions leads to the largest improvement in the approximation
error, both in the L2-norm (more than two orders of magnitude) and in the H1-seminorm (almost two orders
of magnitude). The improvement for the smaller sets of functions is smaller, but still significant.

We conclude that it is beneficial to use all five functions for sampling and therefore report only the result
of this strategy for all other examples where the Poisson equation is solved, including the previous examples.
Note that for L2-projection only the graph surface of ûinit is used for sampling.

5.4. Solutions with multiple singularities

In this section we consider two Poisson problems with Dirichlet boundary conditions with exact solutions
having multiple point singularities and two sides singularity. In each example we use the parameterization
averaging to obtain the deformed control net.

Multiple point singularities on a pentagon. We start with the exact solution u(x, y) = ((x + 0.5)2 + (y +

1)2)
1
8 +(x2+y2+0.00001)

1
4 +((x−1)2+y2)

1
8 on a pentagon that is represented by five bilinear quadrilateral

patches with a common vertex at (0, 0), see Figure 15a. At (0, 0), this function is close to singular, the two
singularities at (− 1

2 ,−1) and (1, 0) are at corners of two patches of the domain.
The deformed control net and the parameter lines after optimizing the parameterization using our method

are shown in Figure 15b. We observe that the control points move towards all three singularities. We report
the L2- and H1-errors in Figure 15c. An improvement of more than two orders of magnitude is observed in
the L2-error. The improvement of the H1-error is smaller but after only two steps of refinement we achieve
a smaller H1-error than after seven refinement steps of the original parameterization.

14

(a) Result for sampling from ûinit (b) Result for sampling from ∇ûinit

(c) Result for sampling from ûinit and ∇ûinit (d) Result for sampling from ûinit , ∇ûinit and R∇ûinit

Figure 14: Comparison of the different sampling strategies: Control nets and parameter lines for the different sampling strategies

(a) Exact solution (b) Resulting control net and parameter lines

102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

Numbers of degrees of freedom

E
rr
or
s

Initial H1

Optimized H1

Initial L2

Optimized L2

(c) L2- and H1-errors

Figure 15: Poisson problem with a solution with multiple singularities: Exact solution, deformed control net and parameter
lines, convergence plot.

15

(a) Exact solution (b) Resulting control net and parameter lines

101 102 103 104

10−4

10−3

10−2

10−1

100

Numbers of degrees of freedom

E
rr
or
s

Initial H1

Optimized H1

Initial L2

Optimized L2

(c) L2- and H1-errors

Figure 16: Poisson problem with a solution with multiple side singularities: Exact solution, deformed control net and parameter
lines, convergence plot.

Multiple side singularities. Now we consider an exact solution with two side singularities, u(x, y) = (1 −
x2)

3
5 + (1− y2)

3
5 , on the unit square, see Figure 16a. Such an example is in the spirit of flow problems with

boundary layers, which can appear on several edges simultaneously, cf. Hughes et al. (2005). This function is
singular along the top and the right edge of the square. Using classical methods, adapting the discretization
correctly near the corner between these edges poses a significant difficulty. The deformed control net with
the corresponding parameter lines obtained from the parameterization averaging are presented in Figure 16b
and we report the L2- and H1-errors after several steps of h-refinement in Figure 16c. One can observe an
improvement of almost one order of magnitude of the L2-error as well as an improvement of the H1-error,
especially for coarse meshes.

5.5. Multi-patch isogeometric analysis on domains with a reentrant corner

When considering a Poisson problem on a domain with a single reentrant corner, the solution u is in
general of low regularity. We have that u ∈ H1(Ω) is the sum of a regular part ur ∈ Hℓ(Ω), with ℓ ≥ 2,
and a singular part us ∈ H1+ϵ(Ω), for some ϵ > 0. In case of a reentrant corner with angle ω ∈]π, 2π[, we
actually know that the singular part satisfies us = ξ(r)rλ sin(λθ), when parameterized in polar coordinates,
with 0 < r < R, 0 < θ < ω, λ = π/ω and ξ(r) being a C∞-function that has support only in the region

0 < r < R. We thus have us ∈ W 2, 2
2−λ (Ω) ⊆ H1+λ(Ω). In case of an L-shape, with ω = 3π/2, we thus have

us ∈ H5/3.
While away from the singular point a local error estimate of the form

|u−Πhu|H1(Q) ≲ h2
Q∥u∥H3(Q̃)

holds for p = 2, where Q is an element in physical space, hQ its size and Q̃ its support extension, cf. Bazilevs
et al. (2006), no such estimate can be shown for elements near the singularity. Thus, the mesh must be
graded, such that the local error from the singular function is balanced with the local errors away from the
singularity.

Stationary heat conduction on an L-shape domain. In an example taken from Dörfel et al. (2010), we
compute the stationary solution to the heat equation on the L-shape domain [−1, 1]2 \ [0, 1]2 with exact
solution

u(r, ϕ) = r
2
3 sin(

2ϕ− π

3
)

in polar coordinates. This functions satisfies ∆u = 0 in Cartesian coordinates. We impose zero Dirichlet
boundary conditions on the two boundary segments emerging from the reentrant corner, see Figure 17a. On
the remaining boundary we impose Neumann boundary conditions obtained from the exact solution.

16

(a) Exact solution (b) Resulting control net and parameter lines

102 103 104 105

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Numbers of degrees of freedom

E
rr
or
s

Initial H1: p = 2
Initial H1: p = 3

Optimized H1: p = 2

Optimized H1: p = 3

Initial L2: p = 2

Initial L2: p = 3

Optimized L2: p = 2

Optimized L2: p = 3

(c) L2- and H1-errors

Figure 17: Stationary solution of the heat equation on an L-shape domain: Exact solution, deformed control net and parameter
lines, convergence plot.

In Figure 17b, we show the resulting control points and parameter lines. We solved the equation both in
the isogeometric function space generated by biquadratic tensor-product splines and in the space generated
by bicubic tensor-product splines. For both degrees, our method results in a large improvement of the errors,
both in the L2- and the H1-norms, see Figure 17c. As expected, the bicubic splines perform only slightly
better than the biquadratic splines, due to the reduced Sobolev regularity of the solution. Comparing our
results for degree 3 with the results reported in Dörfel et al. (2010), where the authors solved the same
problem by adaptive refinement using cubic T-splines, we note that we achieve slightly smaller errors in
the L2-norm using similar numbers of degrees of freedom. The errors in the H1-norm seem to be close for
similar numbers of degrees of freedom. Note that our method maintains the tensor-product structure, which
is beneficial in terms of efficiency and enables us to compute many steps of refinement.

Crack singularity. Finally, we consider a Poisson problem without known exact solution, inspired by a
crack simulation. To this end, we construct a multi-patch domain consisting of five patches meeting at a
common vertex with an reentrant corner with angle ω = 350◦. We impose zero Dirichlet conditions on
the edges emerging from the reentrant corner and Neumann boundary conditions gN = 1 everywhere else.
Figure 18a shows a numerical approximation to the solution. In Figure 18b we show the control points and
parameter lines resulting from our method. As we see, the control points moved towards the singularity.
Since we do not have a reference solution and the approximate solution generated by uniform refinement of
the initial parameterization corresponds to a different spline space than the one resulting from the deformed
parameterization, we do not estimate the errors. Instead, we plot the maximum of the norm of the gradient
of the approximate solution, obtained by sampling at the quadrature nodes. As expected, the approximate
solutions diverge towards infinity, with our method diverging significantly faster.

6. Possible extensions and conclusion

In this paper we propose a strategy for r-adaptivity of isogeometric discretization spaces, where a domain
reparameterization is found with the help of a neural network. The strategy requires that the domain is first
segmented into (bilinear) patches, which are then reparameterized independently. Standard h-refinement
over the reparameterized patches then results in suitably graded meshes. This approach has several advan-
tages compared to standard, mesh refinement based, adaptivity. The resulting spaces are still patch-wise
tensor-products, which allows for the use of very efficient quadrature and assembly routines. The application
of a neural network is very efficient, saving time and computational effort that would otherwise be needed
for error estimation and local refinement. The neural network requires only data from the discrete solution
on a coarse mesh and no other information of the PDE problem.

17

(a) Discrete solution (b) Resulting control net and parameter lines

102 103 104 105

101

102

Numbers of degrees of freedom

m
ax

Ω
(‖
∇
u
h
‖)

Initial
Optimized

(c) maxΩ(∥∇uh∥)

Figure 18: Poisson problem on a cracked disk: Discrete solution uh after 7 refinement steps, deformed control net and parameter
lines, plot of the maximum of ∥∇uh∥ depending on h.

The proposed approach is flexible and was tested on a large variety of model configurations. The obtained
results show that the approach can be used as is, but improvements can be done nonetheless. In the future
we plan on expanding the method in several directions. The initial parameterization should be allowed to be
a general multi-patch spline mapping. This can be achieved e.g. by composing the patch parameterization
with a reparameterization of the parameter domain onto itself. Currently, we restrict ourselves to biquadratic
reparameterizations. There is no inherent difficulty to extend the approach to general degrees. However,
this requires training a new network. Moreover, the reparameterization should allow for changes of the patch
interfaces, while keeping only the global domain boundary fixed. Such a change would require a different
interpretation of the patch segmentation and a different setup for computing the reparameterization. As
a next step, we intend to improve upon the strategy by alternating between local reparameterizations and
global h-refinement. Such a strategy would generate a (possibly low rank) reparameterization that maintains
the tensor-product structure and improves the approximation even further.

Acknowledgments

The authors were supported by the Linz Institute of Technology (LIT) and the government of Upper
Austria through the project LIT-2019-8-SEE-116 entitled “PARTITION – PDE-aware isogeometric dis-
cretization based on neural networks”. This support is gratefully acknowledged.

References

Bahari, M., Habbal, A., Ratnani, A., Sonnendrücker, E., 2024. Adaptive isogeometric analysis using optimal transport and
their fast solvers. Computer Methods in Applied Mechanics and Engineering 418, 116570.

Basappa, U., Rajagopal, A., Reddy, J., 2016. Adaptive isogeometric analysis based on a combined r-h strategy. International
Journal for Computational Methods in Engineering Science and Mechanics 17, 73–92.

Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W., 2010. Isogeo-
metric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering 199, 229–263.

Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G., 2006. Isogeometric analysis: approximation,
stability and error estimates for h-refined meshes. Mathematical Models and Methods in Applied Sciences 16, 1031–1090.

Bressan, A., Takacs, S., 2019. Sum factorization techniques in isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering 352, 437–460.

Chan, C.L., Scholz, F., Takacs, T., 2022. Locally refined quad meshing for linear elasticity problems based on convolutional
neural networks. Engineering with Computers 38, 4631–4652.

Cottrell, J.A., Hughes, T.J.R., Reali, A., 2007. Studies of refinement and continuity in isogeometric structural analysis.
Computer Methods in Applied Mechanics and Engineering 196, 4160–4183.

Dörfel, M.R., Jüttler, B., Simeon, B., 2010. Adaptive isogeometric analysis by local h-refinement with T-splines. Computer
Methods in Applied Mechanics and Engineering 199, 264–275.

18

Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J., 2016. THB-splines: An effective mathematical
technology for adaptive refinement in geometric design and isogeometric analysis. Computer Methods in Applied Mechanics
and Engineering 299, 337–365.

Hennig, P., Kästner, M., Morgenstern, P., Peterseim, D., 2017. Adaptive mesh refinement strategies in isogeometric analysis –
A computational comparison. Computer Methods in Applied Mechanics and Engineering 316, 424–448.

Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y., 2005. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. Computer Methods in Applied Mechanics and Engineering 194, 4135–4195.

Ji, Y., Wang, M., Yu, Y., Zhu, C., 2023. Curvature-based r-adaptive isogeometric analysis with injectivity-preserving multi-
sided domain parameterization. Journal of Systems Science and Complexity 36, 53–76.

Johannessen, K.A., Kvamsdal, T., Dokken, T., 2014. Isogeometric analysis using LR B-splines. Computer Methods in Applied
Mechanics and Engineering 269, 471–514.

Kamber, G., Gotovac, H., Kozulić, V., Gotovac, B., 2022. 2-D local hp adaptive isogeometric analysis based on hierarchical
Fup basis functions. Computer Methods in Applied Mechanics and Engineering 398, 115272.

Liu, L., Casquero, H., Gomez, H., Zhang, Y.J., 2016. Hybrid-degree weighted T-splines and their application in isogeometric
analysis. Computers & Fluids 141, 42–53.

Mantzaflaris, A., Scholz, F., others (see website), 2023. G+smo (geometry plus simulation modules) v23.09. URL: http:
//github.com/gismo.

Paszke, A.e., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library, in: Advances in Neural Informa-
tion Processing Systems 32, Curran Associates, Inc.. pp. 8024–8035.

Rios, D., Scholz, F., Jüttler, B., 2023. Quadratic surface preserving parameterization of unorganized point data. AG Technical
Report 102. URL: http://www.ag.jku.at/pubs/No102AGreport.pdf.

Schillinger, D., Rank, E., 2011. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface
problems of complex geometry. Computer Methods in Applied Mechanics and Engineering 200, 3358–3380.

Scholz, F., Mantzaflaris, A., Jüttler, B., 2018. Partial tensor decomposition for decoupling isogeometric galerkin discretizations.
Computer Methods in Applied Mechanics and Engineering 336, 485–506.

Taheri, A.H., Suresh, K., 2020. Adaptive w-refinement: A new paradigm in isogeometric analysis. Computer Methods in
Applied Mechanics and Engineering 368, 113180.

Beirão da Veiga, L., Buffa, A., Sangalli, G., Vázquez, R., 2014. Mathematical analysis of variational isogeometric methods.
Acta Numerica 23, 157–287.

Xu, G., Li, B., Shu, L., Chen, L., Xu, J., Khajah, T., 2019. Efficient r-adaptive isogeometric analysis with Winslow’s mapping
and monitor function approach. Journal of Computational and Applied Mathematics 351, 186–197.

Xu, G., Mourrain, B., Duvigneau, R., Galligo, A., 2011. Parameterization of computational domain in isogeometric analysis:
Methods and comparison. Computer Methods in Applied Mechanics and Engineering 200, 2021–2031.

19

http://github.com/gismo
http://github.com/gismo
http://www.ag.jku.at/pubs/No102AGreport.pdf

	Introduction
	Isogeometric discretization spaces
	Model problems
	Description of our method
	General overview of the method
	Description of the employed neural network
	Processing the network output
	Optimizing quadratic parameterizations of triangular domains
	Optimizing biquadratic parameterizations of quadrilateral domains
	Multi-patch domain

	Sampling strategies
	L2-projection
	H1-projection

	Numerical experiments
	Comparison of the different averaging approaches
	Non-square quadrilateral domain with a corner singularity
	Comparison of different sampling strategies
	Solutions with multiple singularities
	Multi-patch isogeometric analysis on domains with a reentrant corner

	Possible extensions and conclusion

