
CoderUJB: An Executable and Unified Java Benchmark for
Practical Programming Scenarios

Zhengran Zeng
Peking University
Beijing, China

zhengranzeng@stu.pku.edu.cn

Yidong Wang
Peking University
Beijing, China

yidongwang37@gmail.com

Rui Xie∗
Peking University
Beijing, China

ruixie@pku.edu.cn

Wei Ye∗
Peking University
Beijing, China

wye@pku.edu.cn

Shikun Zhang∗
Peking University
Beijing, China

zhangsk@pku.edu.cn

ABSTRACT
In the evolving landscape of large language models (LLMs) tailored
for software engineering, the need for benchmarks that accurately
reflect real-world development scenarios is paramount. Current
benchmarks are either too simplistic or fail to capture the multi-
tasking nature of software development. To address this, we in-
troduce CoderUJB, a new benchmark designed to evaluate LLMs
across diverse Java programming tasks that are executable and
reflective of actual development scenarios, acknowledging Java’s
prevalence in real-world software production. CoderUJB comprises
2,239 programming questions derived from 17 real open-source
Java projects and spans five practical programming tasks. Our em-
pirical study on this benchmark investigates the coding abilities of
various open-source and closed-source LLMs, examining the effects
of continued pre-training in specific programming languages code
and instruction fine-tuning on their performance. The findings in-
dicate that while LLMs exhibit strong potential, challenges remain,
particularly in non-functional code generation (e.g., test generation
and defect detection). Importantly, our results advise caution in
the specific programming languages continued pre-training and
instruction fine-tuning, as these techniques could hinder model
performance on certain tasks, suggesting the need for more nu-
anced strategies. CoderUJB thus marks a significant step towards
more realistic evaluations of programming capabilities in LLMs,
and our study provides valuable insights for the future development
of these models in software engineering.

CCS CONCEPTS
• Software and its engineering→ Automatic programming.
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1 INTRODUCTION
Researchers have found that advanced AI technologies, exemplified
by large language models (LLMs), are proficient in addressing a
broad spectrum of challenges, spanning from everyday tasks to
complex software engineering issues [1, 10, 40, 52–54, 56, 60, 64].
In addition to these general-purpose LLMs, there are code-centric
large language models (code LLMs), such as CodeX [10], CodeL-
lama [44], and StarCoder [27], which are specifically designed to
excel at software engineering tasks. Many of these code LLMs
are open-source and can be privately deployed to avoid data secu-
rity issues. As a result, they have gained significant attention for
their strong coding skills. Because of this interest, different bench-
marks [10, 13, 16, 23, 30, 59] have been designed to measure the pro-
gramming capabilities of these LLMs. Specifically, Table 1 presents
a selection of notable benchmarks within software engineering
alongside our CoderUJB, illustrating their distinct characteristics.
The HumanEval [10] benchmark stands out in this field, which
is used to evaluate the ability of Python function generation and
consists of 164 manually designed Python programming questions,
and evaluates the quality of the generated solutions by checking
whether the solution can be successfully executed by unit tests.
We denote those execution-based evaluations as "Executable (✓)".
Then, CoderEval [59] noticed that the questions in HumanEval are
simple single-function generation tasks that do not match the ac-
tual development scenarios (i.e., writing code in a software project).
So, they introduced a new benchmark with 460 questions that
better aligned with the actual development scenarios. We denote
those actual development questions as "Project-Runnable (✓)",
indicating that the generated code requires a project context de-
pendency for execution. However, those benchmarks focus on a
single programming scenario and cannot provide a comprehensive
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Table 1: Comparison of existing code benchmark and
CoderUJB.

Benchmark Questions Executable Project-Runnable Multi-Tasks
HumanEval [10] 164 ✓ × ×
MultiPL-E [9] 2,952 ✓ × ×
MBPP [7] 974 ✓ × ×

CoderEval [59] 460 ✓ ✓ ×
Defects4j [21] 835 ✓ ✓ ×
ChatTester [62] 1,000 ✓ ✓ ×

Libro [22] 750 ✓ ✓ ×
CodeXGLUE [30] 759,000 × × ✓
XCodeEval [23] 159,464 ✓ × ✓

CoderUJB 2,239 ✓ ✓ ✓

evaluation of the programming capability of LLMs. Previous multi-
task benchmarks, like CodeXGLUE [30], have been critiqued [10]
because they rely on similarity-based metrics like BLEU and Code-
BLEU [43], which do not involve running the code. The recently
proposed multi-programming task dataset XCodeEval [23] focuses
on questions from programming competitions, which do not ac-
curately reflect typical real-world development scenarios. Conse-
quently, the absence of a benchmark that comprehensively covers
multi-programming tasks, executability, and matches real-world
development scenarios prevents us from assessing the effectiveness
of current LLMs on a broader range of real-world programming
tasks.

To this end, we introduce CoderUJB, a comprehensive bench-
mark designed for evaluating LLMs that supports multiple tasks,
adheres to real-world software development scenarios, and allows
for executionwithin a complete program context(i.e., all source code
and execution environments). Specifically, CoderUJB is built on 17
real open-source Java projects, acknowledging Java’s prevalence
in real-world software production [6]. We extracted 238 functional
code generation questions and 140 code-based test generation [62]
questions from these projects by analyzing the abstract syntax trees
and test coverage relationships of the project source code. Then, we
extracted and collected 451 issue-based test generation [22] ques-
tions, 470 automatic program repair [56] questions, and 940 defect
detection [66] questions from the projects by combining the de-
tailed defect information and related issue reports from the projects.
Altogether, CoderUJB comprises 2,239 programming questions cov-
ering five trending and practical programming tasks, which is the
largest benchmark that is "Project-Runnable" and each question
comeswith a complete program context to facilitate the researcher’s
detailed analysis of the questions and the generated solutions. Ulti-
mately, the solutions generated by the LLMs will be placed in real
projects for execution, and the programming ability of the LLMs
will be evaluated using the execution success rate as the primary
metric.

Next, to illustrate the value of CoderUJB to the field, we con-
ducted a comprehensive empirical study on CoderUJB to explore
the programming abilities of a representative set of open-source
code LLMs and general-purpose closed-source LLMs. The aim was
to answer a couple of crucial questions: How good are these LLMs
at coding? And how do continued pre-training [44] and instruction
fine-tuning [31] affect their programming performance? After run-
ning a slew of experiments on CoderUJB, we find that current LLMs
still perform poorly in solving non-functional code generation tasks,
especially defect detection tasks. Secondly, superior open-source

LLMs can already approach or even surpass GPT-3.5-Turbo on the
functional code generation task and the two test generation tasks.
Thirdly, continued pre-training in a specific programming language
can reduce an LLM’s performance in other languages, and this
negative impact diminishes as the task becomes less related to the
original pre-training task. Such varied outcomes across different
tasks emphasize CoderUJB’s value as a unified evaluation bench-
mark that incorporates multiple programming tasks. Lastly, our
findings indicate that instruction fine-tuning diminishes the perfor-
mance of code LLMs in functional code generation and the two test
generation tasks—a contrast to the results from the less practical
benchmark, HumanEval. This highlights the value of CoderUJB as
a practical programming evaluation benchmark.

We summarize the main contributions of this study as follows:

• Benchmark. We have introduced CoderUJB, a universal
Java benchmark for assessing LLM performance across mul-
tiple real-world programming tasks. The benchmark includes
executable test cases and the complete program context (i.e.,
all source code and execution environments), comprising
2,239 programming questions.

• Study.We ran a comprehensive empirical analysis of both
open-source and proprietary LLMs using CoderUJB, study-
ing (1) their performance across diverse coding tasks, (2)
the effect of continued pre-training in a specific language
code, and (3) the impact of instruction fine-tuning on these
models.

• Implications. This work revealed multiple significant find-
ings: (1) Program context is useful in code generation tasks.
(2) Caution is advised when continuing pre-training in a
specific programming language, as its effects tend to be un-
predictable, especially if the downstream task is substan-
tially different from the pre-training task. (3) Instruction
fine-tuning should be approached carefully, as it can dimin-
ish the performance of LLMs on tasks that align closely with
the pre-trained task. (4) Comprehensive evaluations are es-
sential, given that different programming tasks may yield
disparate results when the same training strategy is applied.

The CoderUJB are publicly available in https://github.com/
WisdomShell/ujb.

2 BACKGROUND AND RELATEDWORK
2.1 Large Language Models for Software

Engineering
Recently, many code LLMs [10, 27, 37, 44] have been proposed to
solve software engineering tasks. These models typically leverage
the Transformer Decoder [50] architecture and undergo extensive
training on large-scale code databases [10, 27, 37], expecting excel-
lence in executing code-intensive tasks.

A prominent example within this realm is CodeX [10]. For the
first time, they increased the model parameter size to 12 billion (B)
and used 159 gigabytes (GB) of Python code data for pre-training.
They also proposed the widely adopted benchmark HumanEval
and the 𝑝𝑎𝑠𝑠@𝑘 metric for evaluating the quality of generated code,
in which CodeX achieved a 𝑝𝑎𝑠𝑠@𝑘=1 of 28.81 on HumanEval.
Subsequently, StarCoderBase [27] further scaled both the parameter

https://github.com/WisdomShell/ujb
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size to 15B and the training dataset to 799.37 GB code corpus, which
contained various programming languages. We designate those
LLMs that have not undergone specialized training for particular
tasks (e.g., Python programming challenges or question-and-answer
activities) as "Base LLM".

As mentioned, to enhance Python-specific performance on tasks
like HumanEval, researchers continued pre-training the base model
StarCoderBase on an additional 35B tokens of Python code, yielding
a Python-enhanced version of the model StarCoder-Python. Ulti-
mately, StarCoderBase and StarCoder-Python achieved a 𝑝𝑎𝑠𝑠@𝑘=1
of 30.4 and 33.6 on HumanEval, respectively. We designate those
LLMs that have continued pre-training in specific programming lan-
guage corpus as "Specific Programming Language (PL) Base".

Moreover, the team behind WizardCoder [31] found that fine-
tuning base LLMs with high-quality instruction samples (i.e., more
diverse and more challenging coding problems) further boosted
the LLMs programming performance. They used an evolutionary
instruction-based data collection strategy to collect 80k instruction
fine-tuning samples from ChatGPT. Utilizing these novel datasets,
they fine-tuned a "Instruction Tuned" LLM WizardCoder, signifi-
cantly enhancing the HumanEval 𝑝𝑎𝑠𝑠@𝑘=1 rate from 33.57 to an
impressive 58.12.

Despite the progress, the prevailing methods of evaluating these
code LLMs tend to focus on simple Python-based programming
puzzles like HumanEval and lack a comprehensive assessment of
other programming tasks in software engineering. This limited
evaluation does not fully capture the advancements made in code
LLMs, nor does it comprehensively evaluate the impact of special-
ized training processes such as continued pre-training in a specific
language code (mostly in Python) and instructional fine-tuning
on various practical software engineering scenarios. In response
to these limitations, our study introduces a multi-programming
task, executable and real-world programming scenario-compliant
evaluation benchmark, and provides an in-depth study to address
the questions mentioned above.

2.2 Coder Benchmark
Recent scholarly efforts have proposed many benchmarks [7, 9, 10,
23, 59] to evaluate the programmatic skill of LLMs as presents in
Table 1. The HumanEval [10] benchmark stands out in this field,
consisting of 164 manually designed Python programming ques-
tions. Each question provides function signatures, comments, func-
tion bodies, and multiple unit tests. LLMs are tasked with crafting
function bodies informed by the given signatures and comments.
Subsequently, the generated functions are executed and evaluated
regarding their success in passing the unit tests tied to each ques-
tion. We refer to such non-test-case code generation questions as
functional code generation tasks. Later, CoderEval noticed that the
questions in HumanEval are simple "self-contained" [59] function
generation tasks that each function only has language built-in de-
pendency and do not match the actual development scenarios that
rely on multiple public libraries and project files. Therefore, they
introduced 460 Java and Python code generation questions derived
from real projects on GitHub that are more aligned with actual
development settings.

In addition to mainstream functional code generation tasks, there
are other types of datasets designed to evaluate LLMs. For example,
Defects4j [21], a seminal benchmark in automated program repair,
catalogs 835 defects across 17 authentic Java projects from Github.
It offers both the defective and fixed versions of the code alongside
related test cases. In this evaluative phase, the fix code generated
by LLMs is executed, and the accompanying test cases verify the
correctness of the fix. Based on Defects4j, Libro [22] has developed a
benchmark for generating issue-specific tests. This requires LLMs to
generate test cases that trigger the corresponding defects based on
a given issue report. Additionally, the ChatTester [62] benchmark,
designated for code-based test generation tasks, collects 1,000 test
generation questions from open-source Java projects on GitHub.
Each test question contains the code needed for testing, a natural
language description of the task, and a test case. LLMs need to
generate test cases based on the code under test and the natural
language description.

Besides the single-task benchmark mentioned above, previous
researchers have proposed two multi-programming task bench-
marks, CodeXGLUE [30] and XCodeEval [23], that incorporate a
broad range of questions and tasks, establishing a more substan-
tial framework for evaluating LLMs. However, CodeXGLUE still
uses textual similarity metrics, such as BLEU and CodeBLEU [43],
thereby falling short of actual code execution. XCodeEval focuses
on programming competition questions, which, like HumanEval,
are not "Project-Runnable" and do not match the actual develop-
ment scenarios. Therefore, CoderUJB fills the current gap in the field
as a benchmark that simultaneously includes multiple program-
ming tasks that are executable and match real-world development
scenarios, thus broadening the scope of evaluation for LLMs across
various practical programming tasks.

3 CODERUJB BENCHMARK
This section outlines the programming tasks included in the Coder
-UJB and provides an overview of the dataset construction process
and evaluation metrics.

3.1 Tasks in CoderUJB
CoderUJB has chosen four representative program generation tasks
and one crucial program classification task to create a comprehen-
sive and uniform dataset for evaluating programming skills.
Functional Code Generation (FCG): Code generation is a crucial
topic for LLMs in software development [10, 30], often consuming
much of the developer’s time. In this task, we need to generate the
corresponding function code based on the given function annota-
tions. We refer to previous work [10, 59] to define the input of the
task as function-related context, function annotations, and function
signatures, while the output of the task is a function that meets the
task requirements, and test cases are used to evaluate the quality of
the generated function. Note that this task is limited to generating
operational code that executes the service’s logic (i.e., not test case
function or configuration file).
Code-based Test Generation (CTG): Test generation is another
part of the code generation task, but it requires programming skills
different from functional code generation. For example, writing
test cases usually requires more cross-functional understanding,
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whereas generating functional functions tends to focus only on
the content of the current function following decoupled design
principles [51]. Therefore, we refer to previous work [62] on test
generation as a separate task. This task involves reading and un-
derstanding the program logic of the code under test and then
generating test cases that verify the code’s core functionality based
on the test cases’ function annotations. Consequently, we define
the input of the task as task-related context, test case annotations
and test case signatures, and the output of the task as test cases
that meet the task requirements, and evaluate the quality of the
generated test cases based on metrics such as whether they meet
the task requirements and test coverage, which will be detailed in
Section 3.5.
Issue-based Test Generation (ITG): Issue report-based test gen-
eration is a process where LLMs analyze and comprehend bugs
reported in issue reports. Following the comprehension, they devise
test cases to reproduce those issues. We follow the task definition
developed in previous works [22] for this kind of task. The task
input consists of two elements: an issue report detailing a particular
bug and the corresponding function signature linked to that bug,
while the output of the task is defined as the test case that meets
the task requirements.
Defect Detection (DD): Defect detection is a critical activity in
software engineering, significantly influencing the overall software
development process [28, 66]. The primary purpose of this task is
to detect possible bugs in the software’s code, including, but not
limited to, syntax errors and potential runtime errors. Following
the previous work’s task definition [66], our task input for defect
detection would include the specific function under scrutiny, and
the output is a statement that indicates whether or not a bug exists.
Automated Program Repair (APR): After successfully identify-
ing issues within a program, the next step is to make corrections.
In the task of automated program repair, LLMs are given samples
of functions containing defects, and they are expected to fix these
errors, returning functions that are free of defects. This task is
crucial in software engineering, so we align our definition with
previous task definitions [56]. In this case, the task input includes
task-related contexts and defective functions; the output should
be fixed functions. Eventually, test cases are used to evaluate the
correctness of the fixed functions.

3.2 Datasets in CoderUJB
This section introduces the process of collecting and processing
CoderUJB questions. Figure 1 illustrates the overview of the data
processing procedurewithin CoderUJB. Asmentioned in Section 2.2,
Defects4j [21] provided 17 qualitative and practical open source
Java projects as well as their defects data and issue reports, due
to its completeness and quality, it has become the infrastructure
in the field of automated program repair [19, 32, 56]. Recognizing
the value of Defects4j, we build a comprehensive benchmark on
it. Consequently, each of the five programming tasks of CoderUJB
gleaned its source data from 17 projects under Defects4j. Addition-
ally, while it could incorporate other sources to build CodeUJB. we
chose to collecting our coding problems across different tasks from
the same reliable source (i.e., Defects4j), providing similar quality

and difficulty levels across tasks and minimizing data quality im-
pacts on our findings. Such selection offers substantial benefits over
using varied datasets from disparate sources.

3.3 Dataset Construction
Functional Code Generation (FCG): In the processing flow for
the functional code generation benchmark, we first select the lat-
est defect-free versions of the 17 open-source projects within De-
fects4j [21] as the original project repository. We opt for the latest
versions because they undergo continuous evolution and devel-
opment, thus likely possessing the fewest potential defects and
demonstrating superior code quality. Subsequently, we extract all
functions and test cases found in the project through an abstract
syntax tree (AST) investigation. Then, as depicted in the "Analysis
and Filtering Process" in Figure 1, we first analyze the coverage
relationship between test cases and functions via a test coverage
analysis tool [3] to determine the test cases calling each function.
Following this, we gather question-related data about each func-
tion, which includes the function body, comments, source code of
the associated class, and related test cases. Later, we eliminated
low-quality data by referring to CoderEval’s guidelines [59]. More
specifically, we ensure that: 1) The function is not a test, interface,
or deprecated. 2) The function has function-level comment in Eng-
lish. 3) The test coverage ratio larger than 50%. Then, the question
units are ranked in descending order based on the associated test
coverage ratio, and a manual quality assessment is performed to
further omit low-quality functions, such as oversimplified getter
and setter functions. Ultimately, 238 functional code generation
questions were filtered out, and each function had about 161.66 test
cases on average. The question prompt is then formulated, and the
exact structure will be discussed in detail in Section 3.4.
Code-based Test Generation (CTG): For the code-based test gen-
eration benchmark, we also select the latest defect-free project
version in Defects4j as the initial project repository. We then fol-
low the same process for the functional code generation dataset to
extract functions and test cases, while also examining their cover-
age relationship. We subsequently filter out low-quality data using
standards similar to those applied by CoderEval [59] and Chat-
Tester [62]. More specifically, we ensure that the test case 1) has
name includes a test-associated keyword such as "Test", 2) is not
deprecated, 3) has function-level comments in English, 4) is in a
class that corresponds to a related functional class, such as "Ex-
ample.java" and "ExampleTest.java". Finally, we manually evaluate
their quality to eliminate any low-quality instances, such as those
with low test coverage, which are usually the bug reproduced test
cases, and the ability to generate such test-cases we would like
to examine in the following issue-based test generation task. We
finally filtered out 140 code-based test cases to generate the test
questions.
Automated Program Repair (APR): As previously noted in Sec-
tion 2.2, the Defects4j [21] dataset is a prevalent source for au-
tomated program repair (APR). In designing our benchmark for
APR, we directly adopt the defect dataset provided by Defects4j
and refer to the previous work [56] to focus only on the single-
function defects in Defects4j. This specific focus makes it easier for
us to create a uniform question prompt, which ultimately enhances
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Figure 1: Overview of CoderUJB construction process.

the quality of our benchmark questions. In the end, we extracted
470 single-function defects from the dataset to serve as our APR
benchmark.
Defect Detection (DD): For the defect detection benchmark, we
have also developed a benchmark based on the Defects4j. Specifi-
cally, we focused on single-function defects as well, selecting 470
such bugs in Defects4j and using their defective functions along
with their corresponding fixed versions as positive and negative
samples. In the end, we have compiled a balanced dataset containing
940 detection samples for defect detection.
Issue-based Test Generation (ITG): As mentioned in Section 2.2,
LIBRO [22] has proved a comprehensive benchmark for issue-based
test generation based on Defects4j. Therefore, from the 750 test
generation questions provided by LIBRO, we kept those related
to issues that match the bugs in our automated program repair
benchmark. Consequently, we obtained a benchmark consisting of
451 issue-based test generation questions.

3.4 Base Prompt Design
Functional Code Generation (FCG): Figure 2 shows an exam-
ple prompt for a functional code generation task consisting of six
parts. Among them, "Import Context", "Filed Context", and
"Signature Context" serve as task-related contexts, extracted
from the corresponding Java files of the task functions through AST
analysis. We will show the effectiveness of those contexts in Sec-
tion 4.3.1. The other three components, namely "Task Description",
"Function Comment", and "Function Signature", define the spe-
cific requirements of the task, instructing the LLMs on the desired
code content to be generated.

It is important to note that the prevalent usage of current LLMs
falls into two ways: chat invocation (e.g., ChatGPT [1] with chat
alignment) and complement invocation (e.g., StarCoderBase [27]
without chat alignment). However, most users prefer the chat invo-
cation method. Additionally, most open-source LLMs are typically
offered only in the base version (i.e., without fine-tuning) [27, 37,
49], limiting us to using the model in a complement invocation
way. For a fair comparison of these two types of LLMs, we have
proposed two invocation prompts for each task: one in the style
of a chat (i.e., Figure 2a) and the other in a complementary format
(i.e., Figure 2b). While the content of the two prompts remains the
same, they differ in how the information is formatted. Hence, we

```java
package org.apache.commons.math3.stat.regression;
import org.apache.commons.math3.linear.LUDecomposition;
public class GLSMultipleLinearRegression extends AbstractMultipleLinearRegression {
    private RealMatrix Omega;
    private RealMatrix OmegaInverse;

    protected RealVector calculateBeta();
    protected RealMatrix calculateBetaVariance();
}
```
You are a professional Java programmer, please create a function named `calculateBeta` 
based on the provided abstract Java class context information and the following 
natural language annotations.
```java
/**
 * Calculates beta by GLS.
 *  b=(X' Omega^-1 X)^-1X'Omega^-1 y
 * @return beta
 */
@Override
protected RealVector calculateBeta() {
```

Import Context

Field Context

Signature Context

Task Description

Function Comment

Function Signature

(a) Prompt of chat invocation.
// package org.apache.commons.math3.stat.regression;
// import org.apache.commons.math3.linear.LUDecomposition;
// public class GLSMultipleLinearRegression extends AbstractMultipleLinearRegression {
//     private RealMatrix Omega;
//     private RealMatrix OmegaInverse;
// 
//     protected RealVector calculateBeta();
//     protected RealMatrix calculateBetaVariance();
// }
// You are a professional Java programmer, please create a function named 
`calculateBeta` based on the provided abstract Java class context information and the 
following natural language annotations.

/**
 * Calculates beta by GLS.
 *  b=(X' Omega^-1 X)^-1X'Omega^-1 y
 * @return beta
 */
@Override
protected RealVector calculateBeta() {

Import Context

Field Context

Signature Context

Task Description

Function Comment

Function Signature

(b) Prompt of complement invocation.

Figure 2: Prompt of Functional Code Generation.

consider these two prompts equivalent, enabling a fair comparison
between the two invocation ways.
Code-based Test Generation (CTG): Figure 3a illustrates a chat
invocation prompt for code-based test generation. In the task-
related context, we provide both the under-test class context (i.e.,
the "Abstract Tested Class Context" in Figure 3a) and the test
class context (i.e., the "Abstract Test Class Context" in Fig-
ure 3a). The term "Abstract Class Context" here indicates the
aggregate of "Import Context", "Field Context", and "Signature
Context" in Figure 2. Additionally, the task prompt also has a "Task
Description", "Function Comment", and "Function Signature"
to outline the unique requirements of the task. Meanwhile, the
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```java
// Abstract Java Tested Class

// Abstract Java Test Class

```

```java
    

```

Abstract Tested Class Context

Task Description

Function Comment

Function Signature

Abstract Test Class Context

(a) Chat prompt of Code-based
Test Generation.

```markdown
## Issue-ID: Codec-CODEC-77
## Issue-Title: 
Base64 bug with empty input (new byte[0])
## Issue-Description: 
Base64.encode(new byte[0]) doesn't return an 
empty byte array back! It returns CRLF.
```

```java
    

```

Issue Context

Task Description

Function Signature

(b) Chat prompt of Issue-based
Test Generation.

```java

```

```java
/**
 * Tests the list for equality with another 
object (typically also a list).
 */
public boolean equals(Object obj) {
    if (obj == this) {
        return true;
    }
    if (!(obj instanceof ShapeList)) {
        return false;
    }
    return super.equals(obj);
}
```

Abstract Class Context

Task Description

Function Comment

Buggy Function

(c) Chat prompt of Automated
Program Repair.

/** Compute the maximum of two values
 * @return b if a is lesser or equal to b, a 
otherwise
 */
public static float max(final float a, final 
float b) {
    return (a <= b) ? b : (Float.isNaN(a + b) ? 
Float.NaN : b);
}
Question: Please determine whether the above-
mentioned Java function has any defects?
A. Yes, it has defects
B. No, it doesn't have defects
Answer:

Few Shot Example 1

Task Description

Function Comment

Target Function

Few Shot Example 2

Abstract Class Context

(d) Complement prompt of Defect
Detection.

Figure 3: Prompt of CoderUJB.

complement invocation prompt for this task is similar to Figure 2a,
with the prompt components reformatted and organized.
Issue-based Test Generation (ITG): Figure 3b presents an exam-
ple chat invocation prompt for issue-based test generation. This
prompt format is guided by the LIBRO [22]. More specifically, this
task’s prompt is composed of three key elements. The first ele-
ment is the "Issue Context"; it includes the issue report featuring
the issue ID, title, and a detailed description specific to that is-
sue. The other two elements, "Task Description" and "Function
Signature" lay out the exact requirements of the task. The com-
pletion prompt for this task is also with the prompt components
reformatted and organized. It is noteworthy that we do not pro-
vide "Abstract Class Context" and "Function Comment" in the
prompt because we want to evaluate the capacity of LLMs in deriv-
ing those task information directly from issue reports [22].
Automated Program Repair (APR): Figure 3c shows an example
chat invocation prompt for an automated program repair task. The
design of this prompt references from prior APR work [56]. More
specifically, this prompt has four key components and is similar to
the design for functional code generation in Figure 2a. The main
difference is that the prompt for the APR task includes the "Buggy
Function", which is the defective function that needs to be fixed
by the LLMs.
Defect Detection (DD): Figure 3d presents a complement invoca-
tion prompt for defect detection. Considering that this task is cate-
gorical, our prompt structure borrows from the design paradigms
of classification benchmarks in the natural language processing
(NLP) domain, such as MMLU [17] and C-Eval [18], which utilize
few-shot examples to guide base LLMs (i.e., not fine-tuned with
instructions) in generate valid output (i.e., the option of a multiple-
choice question). We have implemented a two-shot format [34],
following with relevant code context and a binary multiple-choice
question.

3.5 Metrics in CoderUJB
3.5.1 𝑝𝑎𝑠𝑠@𝑘 . We apply the 𝑝𝑎𝑠𝑠@𝑘 metric to evaluate the gener-
ated solutions of the code generation task as it has been widely used
in previous researches [10, 14, 59]. Specifically, given an unordered
set of 𝑛 candidate solutions, 𝑝𝑎𝑠𝑠@𝑘 indicates the probability of
selecting at least one correct solution in 𝑘 solutions sample from
all 𝑛 candidate solutions. We use the following formula to compute
𝑝𝑎𝑠𝑠@𝑘 defined by previous work [10]:

𝑝𝑎𝑠𝑠@𝑘 := E
𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠

[
1 −

(𝑛−𝑐
𝑘

)(𝑛
𝑘

) ]
(1)

Given that the number of generated solutions is 𝑛, the number
of solutions used to estimate 𝑝𝑎𝑠𝑠@𝑘 is 𝑘 , and 𝑐 is the number of
correct solutions out of 𝑛 samples. Moreover, the 𝑝𝑎𝑠𝑠@𝑘 result for
the entire dataset is the expected value (mean) of the 𝑝𝑎𝑠𝑠@𝑘 for
individual problems. It is important to note that we have set 𝑛 to
20 in our study (doubling the size used in prior research [59]) to
improve the stability of our findings.

In functional code generation and automated program repair
scenarios, a solution is correct if it passes all relevant tests. In
the test generation scenario, we refer to the definition of previous
work [62] and define a solution to be correct if and only if the
test case can be run successfully and covers the tested code. In
addition, in the issue-based test generation scenario, the test case
must reproduce the issue bug by reporting the error in the defective
project version but running successfully in the fixed version [22].
Beyond executing correct metrics, we recorded the outcomes at
various executing stages to better examine the solution. Specifi-
cally, we employ a 𝑝𝑎𝑠𝑠@𝑘 metric for syntax checking, defined
as 𝑝𝑎𝑠𝑠-𝑠𝑦𝑛𝑡𝑎𝑥@𝑘 , where correctness equates to successful syn-
tax checking, and another metric used for compilation checking,
referred to as 𝑝𝑎𝑠𝑠-𝑐𝑜𝑚𝑝𝑖𝑙𝑒@𝑘 , where we consider the solution
to be correct if it compiles successfully. Lastly, we use a metric,
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 , for situations where all test cases and checklists are
passed.

3.5.2 𝑐𝑜𝑢𝑛𝑡@𝑛. To demonstrate the ability of LLMs to solve code-
generation problems more intuitively, we introduce a metric 𝑐𝑜𝑢𝑛𝑡
-@𝑛, which is similar to the standard metric 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒𝑝𝑎𝑡𝑐ℎ𝑒𝑠 in
the field of APR [14, 19, 32, 56]. Specifically, this metric measures
the number of coding problems an LLM can successfully solve by
generating 𝑛 solutions for each problem. Therefore, the 𝑐𝑜𝑢𝑛𝑡@𝑛

value assigned to each problem is defined as:

𝑐𝑜𝑢𝑛𝑡@𝑛 :=
𝑛∨
𝑖=1

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 ) (2)

If any of the 𝑛 solutions generated by the LLMs for a given problem
is correct, the 𝑐𝑜𝑢𝑛𝑡@𝑛 value for that problem is assigned as 1, and
for all other situations, it would be 0. The 𝑐𝑜𝑢𝑛𝑡@𝑛 score across an
entire benchmark is the sum of 𝑐𝑜𝑢𝑛𝑡@𝑛 values for each problem
within the benchmark.

3.5.3 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛. Test coverage is a crucial metric for measuring
the effectiveness of test cases [51]. Therefore, we also counted the
combined test coverage for the code under test for the test gen-
eration task. Specifically, for each set of 𝑛 solutions generated for
a particular programming problem, we first identify and record
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the lines of code that each solution can cover. Subsequently, we
accumulate the code lines covered from all 𝑛 solutions into a com-
prehensive set. The final step is to compute the percentage of this
comprehensive set’s lines of code against the total lines of code
under test. The 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛 of the entire benchmark is then de-
rived as the mean of the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛 for each problem within the
benchmark. Consequently, we define the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛 metric as
follow:

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛 :=
𝑐𝑜𝑢𝑛𝑡 (

𝑁⋃
𝑖=1

𝑐𝑜𝑣𝑒𝑟_𝑙𝑖𝑛𝑒 (𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 ))

𝑎𝑙𝑙_𝑡𝑒𝑠𝑡𝑒𝑑_𝑙𝑖𝑛𝑒_𝑐𝑜𝑢𝑛𝑡
(3)

The 𝑐𝑜𝑣𝑒𝑟_𝑙𝑖𝑛𝑒 function can get the lines of code that a specific solu-
tion 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 can cover, and 𝑎𝑙𝑙_𝑡𝑒𝑠𝑡𝑒𝑑_𝑙𝑖𝑛𝑒 indicates the number
of lines of all tested code in the programming problem.

3.5.4 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. For the classification task of defect detection, we
simply adopt the widely used 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metrics [17, 18, 30].

4 THE EXTENSIVE STUDY
In this section, we further evaluate existing leading LLMs with
CoderUJB to delve into issues that are pertinent to researchers and
to showcase CoderUJB’s contribution to advancing the field.

4.1 Research Questions
This study investigates the following research questions:
• RQ1: Does the basic program context prompt improve the perfor-
mance of LLMs on CoderUJB? To this research question, we aim
to explore how various prompts influence the performance of
LLMs to confirm whether the basic program context given by
CoderUJB is beneficial.

• RQ2: How do open-source and closed-source LLMs perform un-
der CoderUJB? We are looking to better understand the current
progress of two types of LLMs and provide a thorough evaluation
of their effectiveness in handling real programming tasks.

• RQ3: How does continued pre-training of specific programming
language (PL) data affect the performance of code LLMs under
CoderUJB? This part of our study will explore how continued
pre-training of specific programming language data might impact
the performance of code LLMs when handling real programming
tasks in other coding languages.

• RQ4: How does instruction fine-tuning influence the performance
of code LLMs in CoderUJB? This research question will investigate
the potential benefits of instruction fine-tuning strategies on the
performance of code LLMs under CoderUJB to provide feasible
guidelines for the practical application of code LLMs.

4.2 Code LLMs Subjects
For the study subject, we focus on the widely used code LLMs
and three closed-source commercial LLMs. Table 2 provides an
overview of these selected models. Specifically, take CodeLlama-7B
as an example, "Trained From" and "Training Dataset" represent
CodeLlama-7B is trained from Llama2-7B with 500B tokens code
corpus and 20B tokens long context corpus. We have classified these
LLMs into four primary categories:
Base LLMs: This type of LLM consists of the widely adopted
CodeLlama-7B, 13B, 34B [44], and StarCoderBase-15B [27]. We

Table 2: Statistical information of the studied LLMs.
Type Model Name Size (B) Trained From Training Dataset

Base CodeLlama 7;13;34 Llama2 520B code tokens
StarCoder-Base 15 From Scratch 1T code tokens

CodeShell 7 From Scratch 500B code tokens

Specific PL
Base

CodeLlama-Python 7;13;34 CodeLlama 120B Python tokens
StarCoder-Python 15 StarCoder-Base 35B Python tokens
StarCoder-Java 15 StarCoder-Base 35B Java tokens

Instruction
Tuned

CodeLlama-Instruct 7;13;34 CodeLlama 5B instruction tokens
WizardCoder-Python 7;13;34 CodeLlama-Python 80k instructions

WizardCoder 15 StarCoder-Python 80k instructions
CodeShell-Chat 7 CodeShell 40k instructions

Closed
Source

Claude-1 / / /
GPT-3.5-Turbo / / /

GPT-4 / / /

chose these models because they each come with their own Specific-
PL-Base and Instruction-Tuned versions, aiding our future com-
parison studies and experiments. Meanwhile, previous studies [31,
45, 58, 61] have thoroughly researched these models, making them
noteworthy representatives of code LLMs. Additionally, we add
another CodeShell [57] as a baseline for LLM with lower training
resources, as it is trained from scratch using only 500B code tokens.
We apply complement prompt for interacting with those LLMs.
Specific-PL-Base LLMs: In addition to the Base LLMs, many exist-
ing code LLMs [27, 37, 44] have an additional version that undergoes
further pre-training on Python data to improve the performance of
the base LLM under Python programming tasks. However, this can
raise concerns for researchers about how these models would per-
form with tasks in other programming languages [9, 65]. Therefore,
we collected four specific Python base LLMs, namely CodeLlama-
Python-7B, 13B, 34B [44], and StarCoder-15B [27]. Moreover, to
investigate how continued pre-training on specific programming
languages data would affect LLMs on programming tasks in other
languages, we follow the setting of StarCoder-Python to further
continue pre-training StarCoder-Base on another 35B Java tokens
(random sampling fromThe Stack [24]) and get a specific Javamodel
StarCoder-Java. We apply complement prompt for interacting with
those LLMs.
Instruction-Tuned LLMs: Along with the Base LLMs, instruction
fine-tuned LLMs are another crucial category of interest [31, 39].
Unlike traditional fine-tuning, which focuses on single-task train-
ing, instruction fine-tuning employs diverse task data to train the
model. Previous studies [31, 39, 45, 61] have shown that instruc-
tion fine-tuning enhances performance across various NLP and
programming tasks, showing more promise than traditional fine-
tuning strategy. With this in mind, we selected eight open-source,
instruction fine-tuned LLMs named CodeLlama-Instruct-7B, 13B,
34B [44],WizardCoder-Python-7B, 13B, 34B,WizardCoder-15B [31],
and CodeShell-Chat [57] for our exploration of how instruction
fine-tuning influences LLMs in distinct programming tasks. We
apply chat prompt for interacting with those LLMs.
Closed-Source LLMs: We also select three closed-source com-
mercial LLMs (i.e., Claude-1 [2], GPT-3.5-Turbo-0301 [1], and GPT-
4-0314 [5]) to evaluate the gap between open-source and closed-
source LLMs. We apply chat prompt for interacting with those
LLMs.

4.3 Results and Analysis
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Table 3: Evaluation results of prompt design for CoderUJB.

Task Metric StarCoderBase-15B CodeLlama-13B
𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑜𝑛𝑒

𝑠ℎ𝑜𝑡

𝑓 𝑜𝑢𝑟

𝑠ℎ𝑜𝑡

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑜𝑛𝑒

𝑠ℎ𝑜𝑡

𝑓 𝑜𝑢𝑟

𝑠ℎ𝑜𝑡

FCG
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1 15.32 12.18 11.66 21.91 12.84 14.50
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=10 26.82 19.33 19.66 34.85 20.92 22.37
𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛=20 75 51 53 90 55 57

CTG

𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1 12.14 3.93 5.57 12.61 7.04 7.57
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=10 31.80 12.24 11.26 38.17 17.50 17.69
𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛=20 52 24 20 67 30 29
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛=20 11.91 6.20 5.39 15.66 8.65 8.52

APR
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1 6.56 4.14 4.64 4.50 4.07 4.10
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=10 12.54 7.69 8.11 8.39 8.20 7.47
𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛=20 66 41 44 44 45 39

DD 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 50.32 51.19 48.70 48.60 49.68 51.51
𝑒𝑟𝑟𝑜𝑟 -𝑐𝑜𝑢𝑛𝑡 0 0 0 32 2 4

4.3.1 RQ1: Does the Basic Program Context Prompt Improve the Per-
formance of LLMs on CoderUJB. To explore whether including pro-
gram context is beneficial for code LLMs in solving programming
tasks, we conducted experiments comparing basic prompts aug-
mentedwith program context against standard few-shot prompts [34].
These experiments were applied across four different tasks within
the CoderUJB. Specifically, the program context prompts for the
functional code generation task, the code-based test generation
task, and the automatic program repair task are the same as those
presented in Section 3.4. For defect detection tasks, the program
context prompts were designed based on the prompt of functional
code generation. The few-shot prompt examples were chosen from
filter-out samples when creating CoderUJB or from other bench-
marks [29] of the same task. It is important to note that we did not
include an issue-based test generation task as prior research [22]
suggests that specific program contexts are not applicable in such
scenarios. Due to the page limit, we conducted experiments on
two representative open-source code LLMs, CodeLlama-13B and
StarCoder-Base-15B, while placing experiments evaluating more
LLMs in subsequent sections.

Table 3 shows the results of the prompt comparison experiments.
We can find that program context is helpful for most programming
tasks. Specifically, in functional code generation and code-based test
generation, the program context prompt outperformed the few-shot
prompt. For example, StarCoderBase-15B scored 15.32 and 75 in
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1 and 𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛=20, outperforming the results from
other few-shot prompts. Moreover, in code-based test generation,
tests generated with program context demonstrated significantly
better coverage than those from few-shot prompts. In the auto-
mated program repair task, we observed notable improvements
in StarCoderBase-15B when using the program context prompt.
Therefore, such comparison results clearly show the good quality
of the basic prompts from CoderUJB and highlight the value of
supplying full program contexts (i.e., all source code and execution
environment) in CoderUJB.

However, in the defect detection task, we found that the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
of prompt with program context is slightly lower than the few-shot
prompt. For example, the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of CodeLlama-13B with the
program context prompt was 48.60%, lower than the 49.68% and
51.51% achieved with the few-shot prompt. We then further show
the 𝑒𝑟𝑟𝑜𝑟 -𝑐𝑜𝑢𝑛𝑡 metric of the number of answers that could not
be parsed correctly (i.e., not a valid answer), which reveals that
the code LLMs may fail to generate valid answers when using

FCG

CTG

ITG APR

DD

30.52

24
.1
8

7.3
4 18.76

52.16

GPT-4
GPT-3.5-Turbo
Claude-1
WizardCoder-Python-34B
CodeLlama-34B

Figure 4: Evaluation results (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 forDDand 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1
for others) of open-source LLMs and closed-source LLMs
under CoderUJB.

program context prompt, ultimately leading to lower 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. To
capture the impact of invalid answer, we will report both 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
and 𝑒𝑟𝑟𝑜𝑟 -𝑐𝑜𝑢𝑛𝑡 for subsequent experiments. Nevertheless, we are
still choosing the program context prompt as the basic prompt for
the defect detection task because it achieves similar accuracy to
the few-shot prompt, as it also contains two few-shot examples.
Additionally, we believe it may perform even better in subsequent
experiments since it contains additional program context.

Note that CoderUJB provides a base prompt design that is as
reliable as possible. We recognize that these base prompt designs
are not best practices. However, this is exactly why we introduced
CoderUJB as a comprehensive context (i.e., all source code and exe-
cution environment) benchmark. We encourage other researchers
to use this benchmark to explore and create even better prompt de-
signs, as there is already a lot of interesting work [36, 40, 63] in this
field, and CoderUJB can offer a comprehensive and fair framework
for such research.

Conclusion 1: The program context is useful for functional
code generation, code-based test generation, and automated
program repair.

4.3.2 RQ2: How Do Open-Source and Closed-Source LLMs Perform
Under CoderUJB. Table 4 shows the evaluation results of the se-
lected LLMs in five programming scenarios on key performance
metrics (i.e., 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 , 𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦). To better demon-
strate the performance differences between open-source and closed-
source LLMs, we have exhibited the comparison using 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘

and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 radar plots in Figure 4, featuring three leading open-
source code LLMs and three closed-source LLMs under CoderUJB.

After combining detailed experimental results from Table 4 with
Figure 4, it can be found that current LLMs fail to achieve the same
impressive results as HumanEval [44] and CoderEval [59] under
CoderUJB. Specifically, the most powerful open-source coder LLMs
CodeLlama-34B and closed-source LLM GPT-4 can only achieve
𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘=1 metrics of 22.82 and 30.52 under the functional code
generation task, much lower than their results of 45.11 [44] and
67.00 [38] on HumanEval. Their performance under other program-
ming tasks is even worse than that under the functional function
generation task, e.g., pass-all@k=1 of GPT-4 under the other 3 code
generation tasks are only 24.18, 15.76, and 18.76. Moreover, the
CodeShell-7B model, which utilizes limited training resources, falls
short in delivering satisfactory results compared to its performance



CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 4: Evaluation results for CoderUJB, HumanEval and CoderEval. 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 denoted as 𝑝-𝑎=𝑘 , 𝑐𝑜𝑢𝑛𝑡-𝑎𝑙𝑙@𝑛 denoted as 𝑐-𝑎=𝑛,
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 denoted as 𝑎𝑐𝑐, 𝑒𝑟𝑟𝑜𝑟 -𝑐𝑜𝑢𝑛𝑡 denoted as 𝑒𝑟𝑟 . The values in Red indicate underperform, Green values indicate outperform
corresponding "Trained From" LLMs as presents in Table 2.

CoderUJB HumanEval1 CoderEval2

FCG CTG ITG APR DD Java Py Java Py
𝑝-𝑎@𝑘 𝑐-𝑎@𝑛 𝑝-𝑎@𝑘 𝑐-𝑎@𝑛 𝑝-𝑎@𝑘 𝑐-𝑎@𝑛 𝑝-𝑎@𝑘 𝑐-𝑎@𝑛 𝑎𝑐𝑐 𝑒𝑟𝑟 𝑝-𝑎@𝑘 𝑝-𝑎@𝑘

Type Model-ID

𝑘=1 𝑘=10 𝑛=20 𝑘=1 𝑘=10 𝑛=20 𝑘=1 𝑘=10 𝑛=20 𝑘=1 𝑘=10 𝑛=20 𝑛=1 𝑛=1 𝑘=1 𝑘=1 𝑘=1 𝑘=1
CodeShell-7B 9.68 16.83 45 6.82 20.11 33 4.12 7.29 49 3.59 8.58 46 47.62 43 30.43 34.30 24.63 19.78
CodeLlama-7B 15.06 25.00 65 10.79 29.72 48 4.32 10.96 61 3.66 7.63 40 46.54 25 29.20 29.98 31.26 24.08
CodeLlama-13B 21.91 34.85 90 12.61 38.17 67 6.14 13.83 71 4.50 8.39 44 48.60 32 32.23 35.07 35.02 23.73
CodeLlama-34B 22.82 36.54 96 14.57 32.07 52 7.34 14.16 73 5.01 8.34 44 48.16 27 40.19 45.11 33.00 27.23Base

StarCoderBase-15B 15.32 26.82 75 12.14 31.80 52 6.32 12.58 64 6.56 12.54 66 50.32 0 28.53 30.35 30.58 21.34
CodeLlama-Python-7B 10.69 21.70 59 12.00 29.06 48 4.08 8.73 46 3.23 6.96 40 49.46 12 29.15 40.48 26.41 24.56
CodeLlama-Python-13B 14.43 26.93 72 13.00 31.68 54 3.08 7.50 41 3.72 7.07 39 47.41 37 33.56 42.89 28.11 26.23
CodeLlama-Python-34B 14.31 26.23 72 11.71 28.24 48 5.32 11.61 63 5.54 9.27 46 49.24 15 39.46 53.29 29.17 24.73
StarCoder-Python-15B 14.39 25.97 69 7.75 26.02 44 6.82 13.34 68 8.37 14.42 74 50.54 1 30.22 33.57 29.26 21.46

Specific
Language

Base
StarCoder-Java-15B 18.82 30.28 77 10.43 32.05 56 5.75 11.11 59 6.27 10.82 57 49.14 3 30.62 27.07 31.84 14.89
CodeShell-Chat-7B 7.79 15.66 43 2.82 10.97 18 3.26 7.42 38 3.79 13.99 94 50.00 0 23.57 29.66 21.22 9.93

CodeLlama-Instruct-7B 13.38 24.91 65 3.79 15.73 29 4.84 9.60 47 3.29 14.81 93 48.92 20 28.77 45.65 21.13 10.17
CodeLlama-instruct-13B 13.28 24.03 62 6.14 15.16 24 5.16 11.20 57 4.09 15.72 100 44.38 140 33.99 50.60 21.47 10.08
CodeLlama-Instruct-34B 1.89 3.77 11 1.11 4.77 10 4.29 10.06 54 4.74 14.86 88 49.68 2 41.53 50.79 23.08 10.80
WizardCoder-Python-7B 8.00 20.12 57 4.86 14.51 24 3.25 8.20 45 4.61 15.60 94 50.54 0 / 55.50 17.23 13.63
WizardCoder-Python-13B 12.44 24.66 65 5.21 18.25 33 4.98 11.22 61 4.69 16.51 100 47.62 6 41.77 62.19 20.23 14.91
WizardCoder-Python-34B 15.88 27.22 72 6.18 17.12 27 4.79 11.18 58 6.54 18.23 105 50.76 0 44.94 70.73 22.02 13.69

Instruction
Tuned

WizardCoder-15B 14.41 23.70 64 5.00 18.84 35 3.10 11.62 67 3.89 15.94 101 33.15 308 35.77 58.12 20.67 8.36
Claude-1 21.55 29.11 74 9.71 17.77 28 1.20 6.13 34 5.70 16.56 95 47.95 0 / / / /

GPT-3.5-Turbo 23.37 39.67 102 12.18 35.65 59 6.52 13.39 71 9.31 28.76 166 46.00 78 / 48.10 / /Close
Source GPT-4 30.52 42.94 110 24.18 45.72 72 6.66 15.76 83 18.76 38.29 203 52.16 0 / 67.00 / /

in Humaneval. This discrepancy stems from its training corpus,
which is biased towards simplistic code samples and relies on sig-
nificantly fewer resources. Such results underscore the value of
challenging benchmarks such as CoderUJB. Therefore, we conclude
that CoderUJB provides much more challenging programming ques-
tions than HumanEval and CoderEval. Also, the other programming
tasks are more complicated than the functional code generation
task that previous studies [7, 10, 37, 59] mainly focused on because
the requirements of the other tasks are more abstract, requiring a
deeper understanding and the ability to address more complex and
varied programming situations [21, 22, 56, 62].

In addition, It is also important to note that none of the current
LLMs could achieve acceptable results in defect detection tasks,
highlighting the formidable challenge of this task. Specifically, even
GPT-4 achieves only a 52.16% accuracy rate, which is marginally bet-
ter than random guessing. Previous studies [11, 15] have also found
that models like ChatGPT perform inadequately when detecting
commonweaknesses enumerated (CWE) vulnerabilities. We believe
one critical issue is that most of the code defects within CoderUJB
are complex logic errors (i.e., errors producing unintended behav-
iors) [46] rather than syntax or API misused errors. To pinpoint
such logic errors in code, a model would need an extensive grasp
of the entire project, which is also challenging for experienced de-
velopers. Further complicating matters is that defect detection is
a classification task [30]. This substantially differs from the main-
stream pre-training tasks, i.e., autoregressive generation [26, 41].
Thus, the currently employed decoder-only autoregressive LLM
suffers from inherent disadvantages when dealing with classifica-
tion tasks, and such a conclusion can also be found in other natural
language classification tasks [12, 48]. Given the significant chal-
lenge that defect detection poses to current LLMs, this study will
not analyze the results of this task in depth. Instead, we calls for
researchers to concentrate their efforts on improving the defect
detection capabilities of LLMs.

Conclusion 2: In basic question-and-answer or completing sce-
narios, current LLMs have not achieved satisfactory results
in CoderUJB representing real programming challenges, espe-
cially in the defect detection task, where all LLMs are almost
randomly guessing.

Next, we compare the results of open-source LLMs and closed-
source commercial LLMs to quantify the gap between the two types
of models. It can be observed that the performance comparison
results of the two types of LLMs differ under different program-
ming tasks. In the area of functional code generation, the top-tier
open-source LLMs (i.e., CodeLlama-34B) manage to match the per-
formance of the well-performing closed-source model (i.e., GPT-
3.5-Turbo [1]). On the two test generation tasks, top open-source
LLMs (i.e., CodeLlama-34B) even surpass the GPT-3.5-Turbo. We
believe that GPT-3.5-Turbo’s performance may have been affected
by instruction fine-tuning, which we will investigate further in Sec-
tion 4.3.4. When it comes to automated program repair tasks, there’s
still a noticeable performance gap between the best open-source
LLMs and excellent closed-source generic LLMs. The pass-all@k
metrics for GPT-3.5-Turbo are 9.31 and 28.76, outperforming the
corresponding metrics (6.54 and 18.32) for the top open-source LLM,
WizardCoder-Python-34B.

Conclusion 3: Advance open-source LLMs have made signif-
icant progress, achieving similar or even better performance
than the excellent closed-source model GPT-3.5-Turbo on the
functional code generation task and the two test generation
tasks, but perform poorly on the automated program repair.
Meanwhile, GPT-4 surpasses all other LLMs substantially, sug-
gesting that scaling remains a powerful tool for enhancing
model performance.
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4.3.3 RQ3: How Does Continued Pre-Training of Specific Program-
ming Language (PL) Data Affect the Performance of Code LLMs Under
CoderUJB. To address this research question, we look at how the
Base LLMs listed in Table 4 perform compared to Specific-PL-Base
LLMs under CoderUJB. In order to show the comparison results of
the two classes of LLMs more intuitively, we have highlighted the
results where Specific-PL-Base LLMs fall short of their Base coun-
terparts in red and vice versa in green. We can find that the effects
of specific programming language (PL) continued pre-training can
vary greatly depending on the specific task.

For CoderUJB-FCG, HumanEval, and CoderEval, all of which are
functional code generation tasks. Specific PL training can boost the
performance of corresponding PL tasks and hinder other PL tasks.
For example, CodeLlama-Python and StarCoder-Python generally
perform better in HumanEval-Py and CoderEval-Py but worse
in CoderEval-Java and CoderUJB-FCG (Java tasks). On the other
hand, StarCoder-Java performs better in Java tasks but worse in
Python tasks. This phenomenon is consistent with the consensus of
researchers, i.e., in-domain training enhances the performance of in-
domain tasks while potentially hindering the performance of tasks
outside the domain [33, 35, 67]. However, things get different when
it comes to more challenging tasks, i.e., CoderUJB-ITG and APR.
The performance influence due to Specific PL training is random
and less substantial in the case of those tasks when compared with
functional code generation tasks. For example, we can observe two
counter-instances from CoderUJB-ITG (Java tasks), i.e., StarCoder-
Python getting better results in ITG after Python training while
StarCoder-Java getting worse in ITG after Java training. And we
can find more counter-instances in CoderUJB-APR.

We attribute this to the fact that test generation and automatic
program repair tasks are more different from the pre-training task
compared with functional code generation. In other words, When
the downstream task is more similar to the pre-training task, such
as in the case of functional code generation, the performance boost
or decline is more predictable and substantial. On the other hand,
when the downstream task is substantially different from the pre-
training task, such as in the case of automated program repair, the
effect of specific PL training tends to be unpredictable.

Furthermore, the varied outcomes across different tasks empha-
size CoderUJB’s value as a comprehensive evaluation benchmark
that incorporates a range of programming challenges.

Conclusion 4: The impact of specific PL training might relate to
how much the downstream task differs from the pre-training
task. The more similar the task (e.g., functional code genera-
tion), the more predictable and substantial the performance
impact (i.e., boost the performance of corresponding PL tasks
and hinder other PL tasks). Conversely, if the task differs more
substantially (e.g., automated program repair), the effect due
to specific PL training tends to be unpredictable.

4.3.4 RQ4: How Does Instruction Fine-Tuning Influence the Perfor-
mance of Code LLMs in CoderUJB. Finally, we assessed the per-
formance of Instruction-Tuned LLMs compared to their original
counterparts, as shown in Table 4. For a more intuitive comparison,
we have highlighted the results where Instruction-Tuned LLMs fall

Table 5: 𝑝𝑎𝑠𝑠-𝑠𝑦𝑛𝑡𝑎𝑥@𝑘=1 and 𝑝𝑎𝑠𝑠-𝑐𝑜𝑚𝑝𝑖𝑙𝑒@𝑘=1 (denoted as
𝑝-𝑠@1 and 𝑝-𝑐@1) results for CoderUJB.
Model-Type Model-ID FCG CTG ITG

𝑝-𝑠@1 𝑝-𝑐@1 𝑝-𝑠@1 𝑝-𝑐@1 𝑝-𝑠@1 𝑝-𝑐@1

Base
CodeLlama-7B 92.63 69.58 70.64 36.71 70.14 42.36
CodeLlama-13B 94.14 63.49 70.54 37.89 82.29 55.43
CodeLlama-34B 96.16 61.58 77.11 39.32 87.86 51.87

Instruction
Tuned

CodeLlama-Instruct-7B 90.53 40.65 88.64 18.04 89.39 33.34
CodeLlama-instruct-13B 95.99 40.76 80.61 21.57 89.29 32.06
CodeLlama-Instruct-34B 11.30 6.43 11.54 3.89 90.51 34.28

short of their counterparts base models in red and vice versa in
green. The results indicated that instruction tuning can yield vastly
different performance impacts across diverse programming tasks.

Specifically, most Instruction-Tuned LLMs struggled to outper-
form their base models when it came to functional code generation
and test generation tasks. For instance, CodeLlama-Instruct-13B
scored lower in the 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 metrics during the function code
generation task, with a 39.39% (𝑘=1) and 31.05% (𝑘=10) drop respec-
tively compared to its base model (CodeLlama-13B). This perfor-
mance drop was consistent among most open-source Instruction-
Tuned LLMs. Such a result was different with HumanEval where
instruction fine-tuning largely increased its performance. We be-
lieve that the simplicity of HumanEval’s single-function generation
tasks does not reflect the complexity of real-world development
scenarios, a gap that CoderUJB addresses with its features. This
distinction is why instruction fine-tuning has varying impacts be-
tween the two, and underscores the value of CoderUJB as a practical
programming evaluation benchmark.

To investigate the cause of performance degradation, we further
show the 𝑝𝑎𝑠𝑠-𝑠𝑦𝑛𝑡𝑎𝑥@𝑘=1 and 𝑝𝑎𝑠𝑠-𝑐𝑜𝑚𝑝𝑖𝑙𝑒@𝑘=1metrics for the
three code generation tasks in Table 5. Interestingly, we found that
the syntactical correctness in the code generated by the Instruction-
Tuned LLMs, e.g., CodeLlama-Instruct-7B and 13B, was similar to
their corresponding base models. Therefore, the decline in their per-
formance is likely due to the lower quality of the code solutions they
generate (e.g., lower 𝑝𝑎𝑠𝑠-𝑐𝑜𝑚𝑝𝑖𝑙𝑒@𝑘 and 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 scores) and
not because of rejected answers or answers that cannot be parsed.
Meanwhile, CodeLlama-Instruct-34B exhibited a noteworthy drop
in 𝑝𝑎𝑠𝑠-𝑠𝑦𝑛𝑡𝑎𝑥@𝑘=1 and 𝑝𝑎𝑠𝑠-𝑎𝑙𝑙@𝑘 during FCG and CTG. This
decline is attributed to mode collapse [25], characterized by the
generation of identical solutions for all prompts, and it occurs only
in one model, leading us to disregard these results as invalid in
our analysis. Thus, we believe that a possible reason is the high
similarities between pre-training tasks, functional code, and test
generation tasks, so that base LLMs can accomplish these tasks
without aligning with upstream and downstream tasks [20, 42, 47].
Therefore, they are able to leverage the full capabilities of the base
models. On the contrary, instruction tuning, with its varied form,
might result in disturbances when using such diverse LLMs for
direct code generation tasks.

Conversely, for the automated program repair task, instruction
fine-tuning actually enhanced model performance. This trend ap-
plied to most instruction fine-tuned LLMs. We believe this is due to
the significantly different format of the automated program repair
task compared to the pre-training task. The differences in upstream
and downstream tasks lead to poor performance when directly

1The results adopt from self-report value and Humaneval leader-board [8]
2The results were obtained through our own execution of the official evaluation scripts.



CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios ISSTA ’24, September 16–20, 2024, Vienna, Austria

applying Base LLMs. However, instruction tuning enhances the
model’s adaptability and applicability to diverse tasks through data
in diverse task formats [55], ultimately improving the performance
of LLMs for automated program repair tasks.

Conclusion 5: Instruction tuning reduces the performance of
LLMs under tasks highly consistent with the pre-trained task
(e.g., functional code generation and test generation tasks),
while boosting the performance of tasks that starkly differ
from the pre-training tasks’ format (e.g., automated program
repair). Lastly, we encourage further exploration and studies
to uncover more effective fine-tuning strategies for LLMs.

5 IMPLICATIONS AND DISCUSSIONS
Our study reveals the following important practical guidelines for
future research on LLMs of software engineering.
Program context is important. The findings from RQ1 imply
that incorporating basic program context can enhance performance
across various programming tasks. Consequently, we encourage
researchers to investigate and devise advanced prompt designs and
methods to fully harness the potential of program context.
Caution with specific programming language continued pre-
training. The results of RQ3 reveal that for tasks similar to those
used in pre-training, specific PL focused training generally enhances
performance in the corresponding language while potentially im-
peding performance in others. Conversely, if the task differs more
substantially from the pre-training task, the effect due to specific PL
training tends to be unpredictable. Therefore, researchers should
carefully balance the training between language-specific tasks and
those in other PL to determine the extent and volume of data ap-
propriate for further pre-training.
Caution with instruction fine-tuning. The results of RQ4 indi-
cate that instruction fine-tuning reduces the performance of LLMs
under tasks highly consistent with the pre-trained task. For such
tasks, we suggest researchers use the original base LLMs as the
foundation for their application. Conversely, for tasks that starkly
differ from the pre-training tasks, instruction-tuned LLMs tend
to perform better and should be considered. Lastly, we encourage
further studies to uncover more effective fine-tuning strategies.
More extensive evaluations are needed. The conclusions drawn
from RQ3 and RQ4 suggest that varying programming tasks can
lead to disparate results when employing the same training strategy.
Consequently, we advocate that researchers should assess their
LLMs and techniques using a more comprehensive benchmark
such as CoderUJB to obtain more reliable evaluation outcomes.

6 THREATS TO VALIDITY
Threats to Internal Validity. The threats to internal validity
mainly lie in the potential bugs in our implementation. To mitigate
these risks, the authors have meticulously reviewed the code and
scripts. Furthermore, we have released the code, scripts, and all
generated results for public scrutiny at [4].
Threats to External Validity. This threats mainly lie in the LLMs
adopted in this study. To address these concerns, we have conducted
an extensive literature review and believe that the selected LLMs
are sufficiently representative and influential within this field.

Threats to Construct Validity. The threats to construct validity in
our study primarily arise from the metrics used in our evaluations.
To mitigate these threats, we initially adopted the widely accepted
𝑝𝑎𝑠𝑠@𝑘 metric and verified that each coding problem was accom-
panied by adequate test coverage. Additionally, we utilized a range
of widely-recognized metrics, specifically 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑐𝑜𝑢𝑛𝑡@𝑛, and
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒@𝑛, to provide a comprehensive evaluation of the models.

7 CONCLUSIONS
CoderUJB is introduced as a benchmark that advances the evalu-
ation of large language models (LLMs) by simulating real-world
software engineering tasks with executable code extracted from 17
open-source Java projects. Our study delved into the performance
of LLMs, highlighting difficulties in non-functional code genera-
tion and defect detection tasks. The research revealed the delicate
balance required when continuing pre-training and instruction fine-
tuning, as they can inadvertently decrease performance in certain
scenarios. These observations suggest that a nuanced approach
to training LLMs is essential to ensure versatility and robustness
across various coding tasks. In essence, CoderUJB contributes to
setting more exacting benchmarks for assessing LLMs in software
engineering and provides insights into the complexities of model
training, guiding future research toward developing more refined
and adaptable LLMs for practical coding applications.
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