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Heterogeneity is a ubiquitous feature in many biological and synthetic active matter systems
that are inherently out of equilibrium. In addition to conservative interactions between active con-
stituents, a non-equilibrium environment often induces effective non-reciprocal (NR) couplings. The
full consequences, especially for systems with order parameters of different symmetries, still remain
elusive. Here, we study a minimal active NR mixture exhibiting both, polar ordering and clustering
using a combination of hydrodynamic theory, linear stability analysis, particle-based simulations
and fluctuation analysis. We show that NR alignment interactions have profound influence on the
density dynamics already far below the threshold related to spontaneous time dependency of po-
larization dynamics. In particular, NR alignment alone induces asymmetrical clustering, and thus,
partial demixing with single-species clusters chasing more dilute accumulations of the other species.
Extremely large NR alignment eventually leads to a disappearance of clustered states.

The phase behavior of fluid mixtures and, in partic-
ular, their spontaneous demixing, is a topic fascinating
researchers for decades [1]. In thermal equilibrium, the
basic mechanisms are well understood in terms of (ef-
fective) interactions and entropy: demixing occurs, e.g.,
when particles differ in shape [2] or size [3, 4], or if
interactions between different species are weak against
the attraction within species [5]. The situation becomes
more complex in living and active systems that are in-
herently out of equilibrium and, at the same time, often
heterogeneous: examples range from bacterial colonies
and heterogeneous bacterial swarms [6–8] to synthetic
active-passive mixtures [9, 10] and multicomponent bio-
logical membranes [11, 12]. Therefore, and since already
one-component active systems exhibit intriguing self-
organization such as flocking [13–15], motility-induced
phase separation (MIPS) [16, 17] and clustering [18], the
dynamical phases of active mixtures (with, e.g., differ-
ing motilities [19–21], diffusivities [22], or shapes [8, 23])
are currently receiving strong interest. However, we are
still far away from a comprehensive understandig of self-
organization in active mixtures. Here we address, in par-
ticular, the role of nonreciprocal (NR) couplings.

On the microscale, effective NR couplings are typically
induced by a non-equilibrium environment [24, 25], that
occurs, e.g., for phoretic colloids [26–29], hydrodynami-
cally interacting colloids [23, 25, 30], or in quorum sensing
[14, 31, 32]. More generally, NR plays an important role
in macroscopic predator-prey systems [33–35], systems
with vision cones [36–39], odd solids [24, 40], and quan-
tum optics [41–43]. Recent field-theoretical studies [44–
49] and particle-based simulations [31, 50] have shown
that NR couplings alone have indeed drastic effects, in-
cluding the spontaneous formation of time-dependent
(traveling or chiral) states [44–46]. So far, the density dy-
namics of scalar NR mixtures, on the one hand, and ori-
entational dynamics of polar NR mixtures, on the other
hand, have been discussed quite separately. Therefore,
the dynamics of NR mixtures involving several types of
order parameters with different symmetries (and poten-

tially different conservation rules) remains, so far, elusive,
although such order-parameter coupling is indeed quite
common [51]. Recent experiments [23] have already indi-
cated unexpected phase separation in mixtures of hydro-
dynamically interacting Quincke rollers [52] where align-
ing torques couple to positions. In this Letter we ask,
on a theoretical basis, the question: How do NR polar
couplings alone affect systems featuring clustering and
MIPS? Can such NR alignment even induce demixing?

To this end we consider a minimal model of a bi-
nary mixture of spherical ABPs with fully symmet-
ric repulsive interactions (favoring MIPS) and recipro-
cal intraspecies alignment interactions (favoring flocking
within each species). The NR character enters only via
the interspecies alignment which may be asymmetric and
even antagonistic (i.e., of opposite sign). Importantly,
the orientational interactions are unrelated to the spatial
configuration (different to, e.g., hydrodynamic or dipolar
interactions). Without repulsion, our model reduces to a
polar NR mixture of point-like particles exhibiting spon-
taneous chiral motion of the polar director at large cou-
pling strengths [45]. Here, in order to focus on the den-
sity dynamics, we operate in a “weak-coupling” regime,
in which flocking interferes with MIPS and becomes sup-
pressed for strong enough non-reciprocity. Based on a
mean-field (MF) hydrodynamic theory and linear sta-
bility analysis we present a full non-equilibrium phase
diagram. In addition, we perform particle-based simula-
tions and a corresponding fluctuation analysis to unravel
effects beyond MF theory. Intriguingly, we find that NR
orientational interactions, that are not coupled to posi-
tional configuration, can suppress MIPS. Moreover, for a
broad range of parameters, we observe asymmetric den-
sity dynamics manifested by the formation of clusters of
only one species, akin to partial demixing. While this ef-
fect is predicted already by the linear stability analysis,
only particle-level calculations reveal the single-species
cluster dynamics characterized by chase-and-run behav-
ior and strong polarization.

Model.—We consider a two-component mixture of
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spherical ABPs with equal densities ρa0 = ρ/2 (a =
A,B), equal self-propulsion velocities, equal transla-
tional and rotational noises, and fully symmetric re-
pulsive interactions [SM]. The direction of the head-
ing vectors pa = (cos θa, sin θa)

T is subject to random
noise and a torque given by T a ∝ ∑

b gab sin (θa − θb).
We set the intraspecies alignment couplings equal, i.e.,
gAA = gBB = g, whereas the interspecies values gAB ,
gBA can be non-symmetric, yielding NR. For the de-
tailed equations of motion and corresponding Brow-
nian Dynamics (BD) simulations, see [SM]. Coarse-
graining the microscopic dynamics in mean-field (MF)
approximation (and incorporating a density-dependent
velocity) [45, 53, 54] [SM], we then obtain a hydrody-
namic description of the spatio-temporal dynamics of the
(conserved) density fields ρa(r, t) and (non-conserved)
polarization densities wa(r, t), yielding equations of
the form ∂tρ

a = −∇ · j(wa, ρa,b,∇ρa) and ∂tw
a =

F (wa,b, ρa,b,∇2ρa,b,∇2wa,b,∇ρa,b ∇wa,b, ...).
Emergent phase behavior.—Henceforth, we choose the

density, motility, and noise strengths such that, in the
absence of polar couplings (gab = 0), the system exhibits
MIPS. The (non-dimensionalized) intraspecies alignment
coupling strengths gaa are set to gaa = g = 3. In the
resulting effective one-species system gab = g (∀ ab) a
phase-separated flocking state emerges, characterized by
the formation of a dense, mixed-species cluster with large
overall polarization. To elucidate the dynamical behav-
ior upon varying, independently, gAB and gBA, we first
perform a stability analysis of the hydrodynamic equa-
tions around the homogeneous isotropic state as func-
tions of the wavenumber, k, of perturbations. Ana-
lyzing the resulting six-dimensional stability matrix we
obtain the stability diagrams given in Fig. 1 [SM]. At
k = 0 [Fig. 1(a)], all instabilities are related to long-
wavelength fluctuations of the polarizations [53], leading
to (anti-)flocking states with global polarization order pa-

rameter Pa = |Pa| = |N−1
a

∑Na

α pα| > 0 at sufficiently
strong interspecies coupling. Unstable density dynamics
comes into play at k > 0, see full diagram in (b). A de-
tailed structural analysis and comparison with nonlinear
continuum simulations are provided in [55].

We first consider the reciprocal line defined by gAB =
gBA = κ. Starting from the effective one-component sys-
tem (g = 3), an increase of κ enhances the flocking be-
havior, comparable with an increase of the overall align-
ment coupling. In turn, a decrease of κ towards values
smaller than g first yields a disappearance of polar order,
since the relative strength of polar coupling becomes too
small. This results in pure phase separation. Orienta-
tional order is recovered for negative values of κ, where
the two species each form flocks, yet with antiparallel
direction [anti-flocking, see Fig. 1(c)]. These stability re-
sults for reciprocal systems are qualitatively consistent
with those from BD simulations, see marker points in
Fig. 1(b). Moving away from the reciprocal line changes

FIG. 1. Nonequilibrium phase behavior at weak coupling
(g = 3). (a) MF stability diagram at k = 0. (b) Full MF sta-
bility diagram (including k > 0), revealing regions of asym-
metric clustering and disorder. Color-coded marker points
denote corresponding BD simulations. The white cross in
(a,b) indicates the effective one-component system. (c-e): BD
snapshots for (c) gAB = gBA = −9, (d) gAB = −gBA = −9,
and (e) gAB = −gBA = 9. Color code indicating particle type
and orientation is provided in (c). (f) MF predictions (line)
and BD data (dots) for the angle α characterizing asymmetric
clustering.

the dynamical behavior drastically, particularly in the
antagonistic regions where the signs of gAB , gBA are op-
posite. We start from the point gAB = gBA = 0 and move
on the line gAB = δ = −gBA into the fully antisymmet-
ric regime. The symmetric phase separated state, char-
acterized by mixed clusters, then transforms into a state
characterized by asymmetric density dynamics. Here, as
signaled by the stability analysis [SM] and directly ob-
servable in BD simulations [see Fig. 1(d,e)], clusters of
only one species form whose type (A or B) depends on
the sign of δ. In other words, we observe a partial demix-
ing induced by NR orientational coupling between differ-
ent species. The clusters themselves are polarized, that
is, Pcluster ≳ 0.7. The partial demixing is unexpected in
view of the fully symmetric steric interactions (and the
symmetry of gaa). Indeed, in our model any coupling
asymmetry arises only through the interspecies torques
that, however, do not couple to the particle positions.
The observed phenomenon is robust against variation
of initial conditions. Moreover, simulation movies [SM]
in this regime reveal “chasing” behaviors familiar from
other NR off-lattice systems [26, 44, 46, 50, 56]. Even-
tually, for very strong NR (|δ| ≳ 20), clustering is fully
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(a)

(b)

(c)

time

FIG. 2. Schematic of particle motion eventually leading to
asymmetric clustering of species A (g = 3, δ = 9). Particles
of species A (B) are colored in red (blue). Starting from a
“cluster” of two coherently moving particles of same species,
(a)-(c) depict the clusters’ time evolution upon approach of
a third particle. A-clusters survive (a,b) whereas B-clusters
are destabilized (c).

suppressed, yielding a homogeneous disordered state.

Microscopic origin of asymmetric clustering.—To un-
ravel the origin of the asymmetric clustering, we con-
sider, as an example, the case δ = 9, g = 3, such that
A tends to orient along B (and A) while B wants to ori-
ent opposite to A (and along B). Particles of species
A therefore have overall a higher tendency to align with
other particles. In Fig. 2 we illustrate the evolution of
a small “cluster” involving two coherently moving A- or
B-particles upon approach of another particle. If the ap-
proaching particle is from the same species [case (a)] it
either joins the cluster; or at least, does not significantly
disturb the cluster’s motion. If a B-particle approaches
an A-cluster [case (b)], it quickly reorients into the oppo-
site direction (since gBA < 0) and thereby tends to move
away. Thus, B does not join the A-cluster, but also does
not disturb it. In contrast, if an A-particle approaches
a B-cluster (c), it tends to orient along the cluster’s di-
rection (gAB > 0). However, this disturbs the coherent
motion of theB-particles, since the latter now tend to ori-
ent opposite to A (recall that the intraspecies coupling
is relatively weak). As a consequence, the B-cluster is
destabilized.

Fluctuation analysis.—The asymmetric clustering is
also reflected by two-particle correlation functions. In
Fig. 3 we plot the functions Gab(r) [SM] measuring the
angle-averaged distribution of a-particles around a par-
ticle of species b at distance r (for corresponding orien-
tational correlations, see [55]). The data are obtained
shortly after initialization from a disordered configura-
tion. In the reciprocal case, we always find GAA = GBB ,
while GAB may be smaller or larger depending on the ra-
tio g/κ. In contrast, the asymmetrically clustered state
is characterized by GAA ̸= GBB . In particular, at the
parameters of Fig. 2, GAA > GBB , indicating the prefer-
ence of A-clustering.

FIG. 3. Pair correlation functions for (a) gAB = gBA = 9,
(b) gAB = δ = −gBA = 9 (and g = 3). Data represent time
averages between 0.5 and 1 τ after initialization.

Given the information contained in the short-time cor-
relations, we now use these for a systematic analysis of
fluctuations (similar to equilibrium stability analysis of
phase transitions in binary mixtures [57–59]). This pro-
vides an alternative way to check the system’s stabil-
ity beyond MF theory. Here we concentrate on long-
wavelength fluctuations of the total density, δρ̂(k) =
δρ̂A(k) + δρ̂B(k), the concentration δĉ(k) = δρ̂A(k) −
δρ̂B(k), and mixtures of these [57, 58]. Their magnitude
is given by the structure factors Sij(k) = ⟨δî(k) δĵ(k)⟩
(i, j = ρ, c) that can be computed as Fourier transforms
of corresponding Gab(r) [57, 58][SM]. If the homogeneous
system becomes unstable, one expects one or several el-
ements of the symmetric 2 × 2 matrix S with elements
Sij(k) to diverge. For a systematic analysis we diagonal-
ize S, focusing on the limit k → 0 (which turns out to be
most relevant). An instability is signalled by divergence
of one eigenvalue λ1/2 of S, or equivalently, a vanish-

ing of its inverse, λ−1
1/2. We assume that the direction of

the corresponding eigenvector in the δρ̂ – δĉ-plane, quan-
tified by the angle α, indicates the dominant character of
the instability. Symmetric clustering or full, symmetric
demixing correspond to α = 0 and α = ±π/2, respec-
tively. Further, 0 < α < π/2 (−π/2 < α < 0) indicate
asymmetric clustering of species A (B).

Results are shown in Fig. 4. In the reciprocal case
gAB = gBA = 0 (a), the fluctuation analysis predicts a
symmetric clustering instability with λ−1

1 ≈ 0 and α ≈ 0,
consistent with the observation of MIPS in Fig. 1. Mov-
ing into the fully antisymmetric regime (i.e., increasing
|δ| from zero), λ−1

1,2 become non-zero indicating that the
density fluctuations are strong, yet not divergent any
more. At the same time, α continuously changes, now
indicating asymmetric clustering. Setting gBA = −9 con-
stant [Fig. 4(b)], and increasing gAB from −9 to 9 im-
plies that we move along a horizontal path from recipro-
cal antiflocking towards the NR A-clustering regime [see
Fig. 1(b)]. At the beginning, the λ−1

1/2 are close to zero.

Together with α ≈ ±π/2 this means that the recipro-
cal antiflocking state is indeed associated to a demixing
instability, an observation which conforms with the vi-
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FIG. 4. (Inverse) eigenvalues λ−1
1/2 of S(k → 0) and predicted

angle α (inset) from BD simulations. (a) gAB = δ = −gBA.
(b) gBA = −9 (and g = 3). Data represent time averages
between 4.5 and 5 τ after the start of the simulation.

sual inspection [Fig. 1(c)]. At larger gAB , asymmetric A-
clustering becomes more and more dominant, consistent
with the results of the MF analysis. Indeed, the agree-
ment between the stability analysis on different level of
descriptions (BD simulations versus MF hydrodynamics)
holds not only from a qualitative point of view, but also
quantitatively. This is seen in Fig. 1(f) where we directly
compare, for a given path in the state diagram, the an-
gles α from the two types of calculations. Moreover, both
methods indicate that the transformation from reciprocal
MIPS to asymmetric clustering is gradual.

Towards larger coupling strengths.—All of the above
results have been obtained at relatively weak gaa, where
non-reciprocity can suppress flocking. Within the MF
stability analysis, the largest eigenvalues characterizing
the dominant unstable fluctuations are real-valued essen-
tially everywhere in Fig. 1 [60]. This feature changes
when we increase gaa = g to larger positive values,
thereby promoting (anti-)flocking. Fig. 5 shows the cor-
responding MF stability diagram for the antagonistic
case gAB = −gBA. Beyond the critical (flocking) line
g ≈ 6, the largest eigenvalue stays real only in the re-
ciprocal limit (white line). In all other cases the largest
eigenvalues become imaginary. Moreover, only in this
regime (g ≳ 6), we find exceptional points (eigenvalue
coalescence with parallel eigenvectors) that have been re-
lated to parity-time symmetry breaking of the dynamics
in simpler NR systems [44–46]. A more detailed analy-
sis of this phenomenon and its interplay with the density
dynamics will be given in a future paper.

Conclusion.—The present study demonstrates how NR
orientational couplings that do not directly affect the
particle positions (contrary to, e.g., hydrodynamic or
dipolar interactions), combined with active translational
motion, leads to asymmetric density dynamics, that is,
partial demixing. The behavior found here is in stark
contrast to equilibrium mixtures where demixing rather
results from (comparatively) small interspecies coupling
strengths [5] or different particle shapes [2]. In active sys-
tems, demixing has been found before, but always caused

FIG. 5. Stability diagram in the plane spanned by gAB = δ =
−gBA and gaa = g. Colors correspond to phase separation
angle α as used in Fig. 1 and 4.

by conservative interactions [26, 31] or parameters cou-
pling to the translational dynamics such as diffusion con-
stants [22] and active speed differences [19–21]. In our
system, partial demixing is truly caused by NR orienta-
tional couplings and the fact that it involves two types of
order parameters which have, so far, rather been consid-
ered separately: (conserved) density fields (as appearing
in scalar NR systems) and (non-conserved) polarization
fields (as appearing in flocking models). We note that
the here observed dynamical asymmetry is not related
to exceptional-point behavior and parity-time symmetry
breaking that has been discussed before [44–46]. Excep-
tional points do occur, however, at larger polar coupling
strength. Moreover, at very strong NR coupling, clus-
tering disappears. Suppression of MIPS due to NR has
been seen before [32], but with more complicated NR
couplings between orientations and positions.
The present phenomenology is apparent already on the

MF hydrodynamic level (with appropriately chosen par-
ticle velocity) and is supported by BD simulations, re-
vealing remarkable consistency between the different lev-
els of description (which is not clear ad hoc [61]). Still,
BD simulations give important additional insights such
as the polarization of the single-species cluster(s), struc-
tural aspects such as correlations and cluster sizes [55],
and dynamical properties (“chase and run”-like behav-
ior).
Our results could, in principle, be tested in mixtures

of Quincke rollers [52] where, in addition, nonrecipro-
cal hydrodynamic effects play a role [23]. Alternatively,
the interactions could be engineered in robotic experi-
ments [62]. The here presented dynamical behavior could
also be relevant in the broader context of non-equilibrium
liquid-liquid phase separation [1] of multicomponent bi-
ological organisms, or active self-assembling mechanisms
[27, 63]. Future work should focus on the behavior at
larger coupling strengths, as well as on thermodynamic
implications [64–66]. Furthermore, it would be intrigu-
ing to have a classification of the present, mixed order-
parameter model into wider classes of pattern-forming
models, as it has been recently been done for the NR
Cahn-Hilliard model [47].
This work was funded by the Deutsche Forschungsge-
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[15] G. Grégoire and H. Chaté, Onset of collective and cohe-
sive motion, Phys. Rev. Lett. 92, 025702 (2004).

[16] M. E. Cates and J. Tailleur, Motility-induced phase sepa-
ration, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).
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In this supplemental, we provide additional background on our models and methods of analysis. In particular, we
introduce the microscopic Langevin equations as well as the associated continuum model that is used as the starting
point of the linear stability analysis and characterization of instabilities on the mean-field level. Further, we define
the pair correlation functions based on particle trajectories. Finally, we present the connection between the pair
correlations and the structure factor matrix, which is used to quantify the degree of (a)symmetrical clustering.
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I. MICROSCOPIC MODEL

We consider a two-dimensional system of active particles comprising two species a = A,B. The binary mixture
contains N = NA + NB particles that are located at positions rα (with α = ia = 1, ..., Na) and move like active
Brownian particles (ABP). They are subject to an additional torque due to orientational couplings. They self-propel
with velocity v0 in the direction pα(t) = (cos θα, sin θα)

T, where θα is the polar angle. The overdamped Langevin
equations (LE), governing the dynamics, are given by

ṙα(t) = v0 pα(t) + µr

∑

β ̸=α

F α
rep(rα, rβ) + ξα(t) (1a)

θ̇α(t) = µθ

∑

β ̸=α

T α
al (rα, rβ , θα, θβ) + ηα(t), (1b)

where the sums over particles β = jb = 1, ..., Nb couple the dynamics of particle α to the position and orientation of
all other particles of both species b = A,B.

The translational LE (1a) contains the repulsive force F α
rep = −∑

β ̸=α ∇αU(rαβ) between hard disks, derived from

the Weeks-Chandler-Andersen (WCA) potential [1]

U(rαβ) =




4ϵ

[(
σ

rαβ

)12

−
(

σ
rαβ

)6

+ 1
4

]
, if rαβ < rc

0, else
, (2)
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FIG. 1. Snapshots of Brownian dynamics simulations for (a) gAB = −gBA = 20 (disorder). (b) gAB = gBA = −9 (antiflocking).
(c) gAB = gBA = 1 (MIPS). (d) gAB = gBA = 9 (flocking and phase separation). (e) gAB = −gBA = −9 (asymmetric clustering
of species B). Other parameters are gAA = gBB = 3, Pe = 40, Φ = 0.4.

where rαβ = |rαβ | = |rα − rβ |. The characteristic energy scale of the potential is given by ϵ. The cut-off distance is

rc = 21/6 σ. The particle diameter σ is taken as characteristic length scale, ℓ = σ.
The rotational LE (1b) involves the torque given by

T α
al (rα, rβ , θα, θβ) = kab sin(θβ − θα)Θ(Rθ − rαβ). (3)

Here, kab denotes its strength and can be positive or negative. The step function with Θ(Rθ − rαβ) = 1 if rαβ < Rθ

and zero otherwise, ensures that only particles within radius Rθ interact via the torque. Particles of species a tend
to orient parallel (align) or antiparallel (antialign) with neighboring particles (within radius Rθ) of species b when
kab > 0 or kab < 0, respectively. Reciprocal couplings are defined by the choice kab = kba. Then, particles of species
a align (or antialign) with particles of species b in the same way as particles of species b with particles of species a.
We specifically allow for non-reciprocal orientational couplings, for which kab ̸= kba.

Both the position and orientation of the particles are subject to thermal noise, modeled as Gaussian white noise
processes ξα(t) and ηα(t) of zero mean and variances ⟨ξα,k(t)ξβ,l(t′)⟩ = 2 ξ δαβ δkl δ(t − t′) and ⟨ηα(t)ηβ(t′)⟩ =
2 η δαβ δ(t − t′), respectively. The (Brownian) time a (passive) particle needs to travel over its own distance is
τ = σ2/ξ, which we take as characteristic time scale. The mobilities fulfill the Einstein relation and are connected to
thermal noise via µr = β ξ and µθ = β η, where β−1 = kB T is the thermal energy with Boltzmann’s constant kB and
temperature T .

To study the emerging dynamical structures in our system, we perform numerical Brownian Dynamics (BD) sim-
ulations of the LE (1). To this end, we introduce the following dimensionless parameters: the average area frac-
tions Φa = ρa0 π ℓ2/4 of species a with (number) density ρa0 = Na/L

2, the reduced orientational coupling parameter
gab = kab µθ τ, and the Péclet number Pe = v0 τ/ℓ, which quantifies the persistence of the motion of particles.

We perform particle simulations at a fixed combined average area fraction Φ = 0.4, where ΦA = ΦB = 0.2, and
Péclet number Pe = 40, while varying the orientational couplings strengths gab. We simulate N = 5000 particles, with
equal particle numbers NA = NB = 2500 of both species, in a L× L box subjected to periodic boundary conditions.
We use the particle diameter σ as characteristic length scale, ℓ = σ = 1, and the time unit as τ = σ2/ξ = 1. The
repulsive strength is chosen to be ϵ∗ = ϵ kB T = 100, where the thermal energy is set to be the energy unit (kB T = 1).
The diffusion constants are then given by ξ = 1 ℓ2/τ and η = 3 ·2−1/3/τ . The cut-off distance for the torque is chosen
to be Rθ = 2 ℓ. The simulations are performed by initializing the system in a random configuration, integrating
the equations of motions using an Euler-Mayurama algorithm, and letting the system evolve into its steady state
before measuring quantities for phase characterization. To this end, we employ a timestep of ∆t = 10−5 τ until the
simulations have lasted for 120 τ .

Snapshots of the Brownian dynamics simulations for different parameter combinations are shown in Fig. 1.

II. CONTINUUM MODEL

For the derivation of the continuum model associated to LE (1), we refer to [2, 3]. The final equations comprise
the continuity equation for the densities ρa(r, t),

∂tρ
a +∇ · ja = 0 (4)

with flux

ja = veff(ρ)wa −Dt ∇ ρa. (5)



3

parameter definition description
Pe v0 τ/ℓ Péclet number
z ζ ρ0 τ/ℓ particle velocity-reduction
Dt ξ τ/ℓ2 translational diffusion
Dr η τ rotational diffusion
g′ab kab µθ R

2
θ π ρb0 τ/2 orient. coupling strength

TABLE I. The five control parameters in the non-dimensionalized continuum equations (4) – (6) with characteristic time and
length scales, τ and ℓ, and average density ρ0 =

∑
a ρ

a
0 .

The flux involves the polarization densities wa(r, t) = ρa P a with P a(x, t) being the polarization field, measuring the
overall orientation of particles at a certain position. The polarization density wa evolves according to

∂tw
a

=− 1

2
∇

(
veff(ρ) ρa

)
−Dr w

a +
∑

b

g′ab ρ
a wb +Dt ∇2 wa +

veff(ρ)

16Dr
∇2

(
veff(ρ)wa

)
−

∑

b,c

g′ab g
′
ac

2Dr
wa (wb ·wc)

− z

16Dr
∇ρ ·

[
∇
(
veff(ρ)wa)−∇∗(veff(ρ)wa∗)]+

∑

b

g′ab
8Dr

[
wb · ∇

(
veff(ρ)wa)+wb∗ · ∇

(
veff(ρ)wa∗)

− 2
{
veff(ρ)wa · ∇wb +wb ∇ ·

(
veff(ρ)wa)− veff(ρ)wa∗ · ∇wb∗ −wb∗ ∇ ·

(
veff(ρ)wa∗)}].

(6)

The density flux ja given in Eq. (5) comprises that particles of species a move in space due to their self-propulsion
in the direction wa. Importantly, the self-propulsion velocity is not constant but particles slow down in high-density
regions. This is reflected in the density-dependent velocity veff(ρ) = Pe − z ρ with ρ =

∑
b ρ

b. The flux further
comprises translational diffusion. The evolution of the polarization density wa, given by Eq. (6), has various contri-
butions: Particles tend to swim (with increasing speed) towards low-density regions (first term on right-hand side),
the polarization decays due to rotational diffusion (second term), and orientations of all particles are coupled (third
term). The remaining terms are diffusional and non-linear contributions, which smooth out low- and high-polarization
regions.

In Eq. (6), we have introduced w∗ = (wy,−wx)
T and ∇∗ = (∂y,−∂x)

T. We non-dimensionalized the equations
with a characteristic time scale τ and a characteristic length scale ℓ. Further, particle and polarization densities of
species a are scaled with the average particle density ρa0 . There are five remaining dimensionless control parameters.
These are the Péclet number Pe = v0 τ/ℓ, the velocity-reduction parameter z = ζ ρ0 τ/ℓ due to the environment,
the translational diffusion coefficient Dt = ξ τ/ℓ2, the rotational diffusion coefficient Dr = η τ , and the relative
orientational coupling parameter g′ab = kab µθ R

2
θ π ρb0 τ/2. The five control parameters are summarized in Table I.

A. Parameter choice with respect to particle-based model

In our continuum model, most parameters can be directly adopted from the considered particle simulation parame-
ters. These include the Péclet number, Pe = 40, and the rotational diffusion constant, Dr = η τ = 3 · 2−1/3. The area
fraction in particle simulations, Φ = 0.4, corresponds to the number density ρ0 = 2 ρa0 = 4/πΦ, where ρa0 = 2/πΦ.
The orientational couplings in continuum simulations (g′ab) are related to those in the particle simulations (gab) via
g′ab = 1.6 gab, given Rθ = 2 ℓ. We consider a case with fixed weak intraspecies coupling strengths, gAA = gBB = 3,
while the interspecies coupling strengths gAB and gBA are chosen independently. However, there are two parameters
that require special attention: the velocity reduction parameter, ζ, and the translational diffusion constant, Dt. For
details regarding the parameter choice, see [3]. We choose Dt = 10. Further, we obtain the non-dimensionalized
velocity reduction parameter z = ζ ρ0 τ/ℓ = 57.63 = 0.37Pe/ρa0 . This velocity reduction parameter places the system
well within the MIPS instability region for a wider range of alignment strengths [2].

III. LINEAR STABILITY ANALYSIS

A. Stability matrix

We analytically determine the linear stability of the disordered, uniform state characterized by a uniform density
and zero polarization for both species a = A,B, i.e., (ρa,wa) = (ρa0 ,0). To achieve this, we consider perturbations
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of the disordered state involving all wave vectors k, expressed as plane waves with a (complex) growth rate σ(k) and
amplitudes ρ̂a(k) and ŵa(k) [3]. Since we investigate the stability of the isotropic disordered base state, the growth
rate σ depends only on the wave number k = |k|.

We are interested in perturbations in the combined field quantities ρA + ρB , ρA − ρB , wA +wB , and wA −wB .
Starting from the continuum Eqs. (4) - (6), linearization with respect to the perturbation leads to an eigenvalue
equation

σ(k)v(k) = M(k) · v(k) (7)

for each k. The eigenvector v(k) = (ρ̂A+ ρ̂B , ρ̂A− ρ̂B , ŵA
x +ŵB

x , ŵA
y +ŵB

y , ŵA
x −ŵB

x , ŵA
y −ŵB

y )T contains the possible
perturbations of the particle densities and the two components of the polarization densities. The 6× 6 matrix M(k)
is given by

M(k) =




−Dt k
2 0 −i kx v(ρ0) −i ky v(ρ0) 0 0

0 −Dt k
2 0 0 −i kx v(ρ0) −i ky v(ρ0)

− i
2 (v(ρ0)− zρ0)kx 0 C++ −Dw 0 C+− 0

− i
2 (v(ρ0)− zρ0)ky 0 0 C++ −Dw 0 C+−

0 − i
2v(ρ0)kx C−+ 0 C−− −Dw 0

0 − i
2v(ρ0)ky 0 C−+ 0 C−− −Dw




, (8)

where ρ0 = ρA0 + ρB0 , V = v(ρ0)− z ρa0 , Dw = Da k
2 +Dr, and Da = v2(ρ0)/(16Dr) +Dt. The orientation couplings

are given by

C++ =
ρa
0

2 (g′AA + g′AB + g′BA + g′BB), (9)

C+− =
ρa
0

2 (g′AA − g′AB + g′BA − g′BB), (10)

C−+ =
ρa
0

2 (g′AA + g′AB − g′BA − g′BB), (11)

C−− =
ρa
0

2 (g′AA − g′AB − g′BA + g′BB). (12)

Solving the eigenvalue Eq. (7), we can analytically determine the (complex) growth rates σ(k). The real part of the
eigenvalues, Re(σ), determines the actual growth or decay of the perturbations. Non-zero imaginary parts indicate
oscillatory behavior. The disordered state is linearly stable when Re(σ(k)) < 0 for all k. On the other hand, the
disordered state is linearly unstable if Re(σ(k)) > 0 for any k. We use the largest value of the six Re(σ) and
corresponding eigenvector to determine the type of emerging dynamics at short times [2].

B. Non-equilibrium phase characterization

We use the eigenvalues and the eigenvector corresponding to the largest eigenvalue to characterize the non-
equilibrium phases emerging in our system. Details regarding the characterization can be found in [3].

The stability of the disordered (base) state is determined by the real parts of the (six) eigenvalues, Re(σi). The
disordered state is unstable as soon as any eigenvalue has a positive real part at any wave number k. We follow our
earlier work [2] to analyze the largest real eigenvalues and corresponding eigenvector in order to determine the type
of emerging dynamics at short times.

In case real parts of the eigenvalues are positive at zero wave number (k = 0), we can deduce that the instabilities
concern the polarization dynamics, that is, (anti-)flocking. The reason is that the growth rate at k = 0 determines
the growth or decay of spatially integrated fields. While the polarization field is not a conserved quantity, the particle
density is. Hence, at k = 0 the density-associated growth rates must vanish and all instabilities must be related
to polarization dynamics. The type of flocking (parallel or anti-parallel) is indicated by the eigenvector v(k = 0)
corresponding to Re(σ(k = 0)) > 0. The largest entry of the eigenvector in ŵA + ŵB predicts (parallel) flocking,
while the largest entry in ŵA − ŵB predicts (anti-parallel) anti-flocking.

The density dynamics corresponds to instabilities at finite wavenumbers (k > 0). Here, we consider only the
two density-related entries of the (normalized) eigenvector, vρ = (ρ̂A + ρ̂B , ρ̂A − ρ̂B)T, at small k > 0. Symmetric
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non-eq. phase eigenvalues σi eigenvector v of largest real eigenvalue

disorder Re(σi(k)) ≤ 0 for all k and i = 0, ..., 6 –

flocking Re(σi(k = 0)) > 0 for any i largest entries of eigenvector in ŵA + ŵB

anti-flocking Re(σi(k = 0)) > 0 for any i largest entries of eigenvector in ŵA − ŵB

sym. clustering Re(σi(k = 0)) ≤ 0 for all i and global maxi-
mum Re(σi(kmax)) at kmax > 0 for any i

α ≈ 0

asym. cl. A Re(σi(k = 0)) ≤ 0 for all i and global maxi-
mum Re(σi(kmax)) at kmax > 0 for any i

0 < α < π/2

asym. cl. B Re(σi(k = 0)) ≤ 0 for all i and global maxi-
mum Re(σi(kmax)) at kmax > 0 for any i

−π/2 < α < 0

TABLE II. Characterization of non-equilibrium phases in the repulsive binary mixture with non-reciprocal orientational align-
ment couplings in terms of eigenvalues and eigenvector corresponding to largest eigenvalue. The angle α = arccos(vρ · xcon)
with vρ = (ρ̂A + ρ̂B , ρ̂A − ρ̂B)T and xcon = (1, 0)T indicates the type of phase separation. See also [3].

FIG. 2. Non-equilibrium phase diagram and respective growth rates. (a) Phase diagram. (b-g) Growth rate for various param-
eter combinations. The phases are determined from linear stability analyses of the disordered base state of the hydrodynamic
Eqs. (4)-(6). The white crosses in (a) indicate the parameter combinations whose growth rates are plotted in (b-g). Additional
parameters are set to gAA = gBB = 3, Pe = 40, Φ = 0.4. See also [3].

clustering corresponds to vρ = xcon = (1, 0)T. The angle α = arccos(vρ ·xcon) between vρ and xcon is approximately
0. Demixing corresponds to vρ close to (0, 1)T with α ≈ ±π/2. Asymmetrical clustering is quantified by intermediate
angles α: For asymmetrical clusters of species A (B), the angle is 0 < α < π/2 (−π/2 < α < 0).

The characterization is summarized in Table II and Fig. 2 shows exemplary real growth rates with indicated largest
entries of eigenvectors. Note that (anti-)flocking and (a)symmetric clustering can either occur independent of each
other or in combination.

In our system with relatively weak intraspecies alignment couplings of gAA = gBB = 3, the eigenvalues are real for
a majority of intraspecies coupling strengths. For eigenvalues with positive real part and non-zero imaginary part,
instabilities are oscillatory, indicating non-stationary emerging phases.

C. Relation to exceptional points

Exceptional transitions have been related to parity-time symmetry breaking transitions in non-reciprocal scalar
[4, 5] and strongly coupled polar active systems [6]. In conserved scalar systems, exceptional points mark a transition
from static patterns to traveling waves [4]. In polar systems, exceptional transitions separate regimes of (anti-)parallel
(anti-)flocking in constant direction of polarization and chiral phases, where the polarization direction rotates in time
[6]. Here, we briefly discuss the appearance of exceptional points in the present system.

By definition, exceptional points are points, where eigenvalues of the linear stability matrix coalesce and the
eigenvectors become parallel [7]. In this study, we consider the isotropic disordered state (with constant density and
vanishing polarization) as fixed point. The matrix (8) determines the linear stability of this disordered base state.
In Fig. 3, we show the corresponding six eigenvalues σ at k = 0 as a function of gAB . We choose gBA = −gAB − d
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FIG. 3. Eigenvalues of isotropic disordered base state for gAB = gBA − 4 at k = 0 and (a) gAA = gBB = 3, (b) gAA = gBB = 9.
At gAB = 0 and gAB = −4, four eigenvalues coalesce and form two complex conjugate pairs. The eigenvectors corresponding to
the complex conjugate pairs become parallel. Below the flocking transition line (“weak intra-species couplings” with gaa = 3),
the real part of the eigenvalues, Re(σ), is negative as long as Im(σ) ̸= 0. For stronger intra-species couplings (gaa = 9),
the formation of complex conjugate pairs with parallel eigenvectors indicates exceptional points since Re(σ) > 0 as long as
Im(σ) ̸= 0.

with d = 4. Further, we set gAA = gBB = gaa = 3 in Fig. 3(a) and gaa = 9 in Fig. 3(b). The two eigenvalues,
which correspond to density fluctuations, are zero at k = 0, regardless of gAB (compare Sec. III B). The other four
eigenvalues come in pairs (and overlap in Fig. 3) for the here considered cases.

Regardless of gaa, we can make the following observation. For gAB < −d = −4 and gAB > 0, the two pairs of
eigenvalues are distinct and real (with vanishing imaginary part). At gAB = 0 and gAB = −4, the four (non-zero)
eigenvalues coalesce and form two complex conjugate pairs. Hence, for −4 < gAB < 0, all non-zero eigenvalues are the
same and have a non-zero imaginary part. The points of eigenvalue coalescence are gAB = 0,−4. The eigenvectors
corresponding to the complex conjugate pairs become parallel at these points.

Depending on gaa, the points of eigenvalue coalescence have different implications. Below the flocking transition
line [“weak intra-species couplings” with gaa = 3, Fig. 3(a)], the real part of the eigenvalues, Re(σ), is negative as
long as Im(σ) ̸= 0. For stronger intra-species couplings [gaa = 9, Fig. 3(b)], the formation of complex conjugate
pairs with parallel eigenvectors indicates exceptional points since Re(σ) > 0 as long as Im(σ) ̸= 0. This means that
the exceptional transition only results in instabilities for strong intra-species couplings. In particular, for our system
and chosen parameters (see Sec. II A), the flocking transition line gaa ≈ 6 marks the strength of when exceptional
transitions play a role in the stability of the disordered base state. For gaa ≳ 6, flocking occurs for all gAB , gBA. The
difference in dynamical behavior for gaa below and above the exceptional transition line is shown in Fig. 5 in the main
text.

The exceptional points of the disordered fixed points in the (non-repulsive) polar system considered in [6] match
those found here. The transition happens for either gAB = 0 or gBA = 0, whereby the respective other inter-
species coupling strength can be chosen arbitrarily. Additionally to the disordered base state, also a homogeneous
(anti-)flocking state was considered in [6]. This makes sense in the regime of strong intra-species coupling strengths
with gaa ≳ 6. We will consider this regime in future research to gain insights into how non-reciprocal alignment effects
the density dynamics in the presence of exceptional points.

IV. PAIR CORRELATION FUNCTIONS

Information on the translational structure in our active binary mixture are captured by the pair correlation function
Gab(r), which describes the distribution of distance vectors r between pairs of particles belonging to species a and b
[8]. In homogeneous systems, we define Gab(r) as [8, 9]

Gab(r) =
1

Ω

Na∑

ai=1

Nb∑

bj=1
(bj ̸=ai)

〈
δ(r − (rai

− rbj ))
〉
, (13)

where Ω = Na Nb/V is the normalization and V = L2 represents the volume of the system. Gab(r) tends to unity for
r → ∞ and vanishes for r → 0 due to steric repulsion between particles.

Numerically, we determine Gab(r, ϕ) by counting the particles found in small area fractions of distance r + ∆r
and angle ϕ + ∆ϕ from the reference particle, such that we additionally normalize with the area fraction element
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∆A = r∆r∆ϕ, leading to

Gab(r, ϕ) =
1

Ωn

Na∑

ai=1

Nb∑

bj=1
(bj ̸=ai)

〈
δ(rabij − r) δ(ϕab

ij − ϕ)
〉

(14)

with Ωn = Na Nb ∆A/V . The relative particle position and angle are calculated as rabij = |rbj − rai
| and

ϕab
ij = ∢(rbj − rai ,pai).
Note that by construction, the pair distribution function is symmetric in the sense that GAB = GBA. The effect of

non-reciprocity is expected to manifest itself in differences between the single-species correlations, such that GAA ̸=
GBB [8]. We here focus on the radial correlations Gab(r) = ⟨Gab(r, ϕ)⟩ϕ, given as the average over all relative angles
ϕ. Details and further examples of pair correlation functions are shown in [3].

V. STRUCTURE FACTOR MATRIX

To characterize the density fluctuations close to phase transitions in our binary mixture, we took inspiration from
established procedures applied in equilibrium mixtures [10, 11]. Our approach involves the computation of density
fluctuation correlations of form ⟨δρa(r) δρb(r′)⟩, where a, b = A,B. Here, we only consider instantaneous fluctuations
and neglect all time-dependencies. The density fluctuation is given by δρa(r) = ρa(r)− ρa0 with ρa0 as the density of
the homogeneous system. In an additionally isotropic system, the density fluctuations in Fourier space (denoted by
a hat, ·̂ [12]) reads [3]

1

V
⟨δρ̂a(k) δρ̂b(−k)⟩ = ρa0 ρ

b
0 ĥab(k) + δab ρ

a
0 , (15)

where hab(|r − r′|) = Gab(|r − r′|) − 1 denotes the total correlation function [9]. We note already here that in the
present system, the assumption of homogeneity and isotropy holds only for short times (after starting from a random
configuration).

To characterize the type of phase transition within the binary mixture, we consider two different types of fluctuations:
fluctuations in the total density δρ̂(k) = δρ̂A(k)+δρ̂B(k) and fluctuations in the concentration δĉ(k) = δρ̂A(k)−δρ̂B(k).
These fluctuations can be written in terms of the structure factor matrix S(k), given by

S(k) =

(
Sρρ(k) Scρ(k)
Scρ(k) Scc(k)

)
(16)

with matrix elements

Sρρ(k) =
1

V
⟨δρ̂(k) δρ̂(−k)⟩

= (ρA0 )
2 ĥAA(k) + (ρB0 )

2 ĥBB(k) + ρA0 + ρB0 + 2 ρA0 ρB0 ĥAB(k),

(17)

Scc(k) =
1

V
⟨δĉ(k) δĉ(−k)⟩

= (ρA0 )
2 ĥAA(k) + (ρB0 )

2 ĥBB(k) + ρA0 + ρB0 − 2 ρA0 ρB0 ĥAB(k),

(18)

and

Scρ(k) = Sρc(k) =
1

V
⟨δĉ(k) δρ̂(−k)⟩

= (ρA0 )
2 ĥAA(k)− (ρB0 )

2 ĥBB(k) + ρA0 − ρB0 .

(19)

We assume that, as in equilibrium, an instability related to a phase transition is signaled by the divergence of
fluctuations, i.e., one diverging eigenvalue λ1/2(k) of S(k). In particular, symmetric clustering (condensation) is
characterized by diverging fluctuations in the total density and a demixing phase transition by diverging fluctuations
in the concentration. Consequently, the eigenvalues λ1/2(k) and corresponding (normalized) eigenvectors v1/2(k) =

(δρ̂(k), δĉ(k))T of matrix S(k) indicate whether and what type of phase transition occurs. More specifically, when
λ−1
1 (k) or λ−1

2 (k) goes to zero, the respective eigenvector vmax indicates whether the phase transition is predominantly
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symmetric clustering (vmax ≈ xcon = (1, 0)T) or de-mixing (vmax ≈ xdem = (0, 1)T). We quantify the degree of
symmetric clustering and/or demixing in terms of the angle α = arccos(vmax ·xcon) between the eigenvector vmax and
the vector xcon, representing symmetric clustering.

Besides symmetric clustering (α = 0) and demixing (α = π/2), the angle α also indicates whether rather species A
or B forms clusters. In particular, 0 < α < π/2 corresponds to asymmetric clustering of species A and −π/2 < α < 0
corresponds to asymmetric clustering of species B.

In our analysis, it turns out that the limit k → 0 is the most relevant since λ−1
1/2 are smallest there. Therefore, the

presented results refer exclusively to this limit.

VI. LIST OF SUPPLEMENTARY VIDEOS

To visualize the dynamics of non-equilibrium phases exhibited in the binary mixture, we present videos of our BD
simulations. They represent one exemplary non-equilibrium steady state for a single random initial configuration,
respectively. The videos show

• the (reciprocal) flocking state for gAB = gBA = 9,

• the (reciprocal) anti-flocking state for gAB = gBA = −9,

• the (reciprocal) symmetric clustering state for gAB = gBA = 1,

• the (non-reciprocal) asymmetric B-clustering state for gAB = −gBA = −9,

• the (non-reciprocal) asymmetric A-clustering state for gAB = 6, gBA = −9,

• the (non-reciprocal) disordered for gAB = −gBA = 25.

The intraspecies couplings are set to gAA = gBB = 3. Other parameters are chosen as described in the Sec. I.
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