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Abstract—In this study, the modulation of symbols on OFDM
subcarriers is classified for transmissions following Wi-Fi 6 and
5G downlink specifications. First, our approach estimates the
OFDM symbol duration and cyclic prefix length based on the
cyclic autocorrelation function. We propose a feature extraction
algorithm characterizing the modulation of OFDM signals, which
includes removing the effects of a synchronization error. The
obtained feature is converted into a 2D histogram of phase and
amplitude and this histogram is taken as input to a convolutional
neural network (CNN)-based classifier. The classifier does not
require prior knowledge of protocol-specific information such as
Wi-Fi preamble or resource allocation of 5G physical channels.
The classifier’s performance, evaluated using synthetic and real-
world measured over-the-air (OTA) datasets, achieves a minimum
accuracy of 97% accuracy with OTA data when SNR is above
the value required for data transmission.

Index Terms—Modulation classification, spectrum sensing,
OFDM, Wi-Fi, 5G.

I. INTRODUCTION

The growth of wireless technologies in the scarce ra-
dio spectrum has strongly prioritized spectral efficiency: A
challenge that is being addressed by, e.g., (massive) MIMO
technology, joint radar communications, and cognitive radio
[1]–[3]. Here, we focus on an essential component of cognitive
radio, namely intelligent spectrum sensing, which allows for
real-time characterization of radio spectrum usage and aids
in online decision-making for spectrum allocation. Spectrum
sensing encompasses signal detection [4], predicting available
spectrum [5], and identifying modulation schemes. In this
study, we focus on the classification of modulations of state-
of-the-art wireless orthogonal frequency division multiplexing
(OFDM) signals.

OFDM transmission has become foundational in current
wireless communication systems, such as Wi-Fi 6 and 5G.
In these systems, message bits are first encoded and subse-
quently mapped to digital symbols using quadrature amplitude
modulation (QAM) on individual subcarriers. Many QAM
symbols are modulated onto many subcarriers, so each time
sample contains only a small fraction of the information
carried by an OFDM symbol. As a result, the modulation
classifiers designed for single-carrier signals [6], [7] are not
directly applicable to OFDM signals. Therefore, an accurate
modulation classifier for Wi-Fi 6 and 5G signals requires
additional processing beyond using raw time-domain samples
as inputs.

In contrast to a dedicated receiver (RX) as a node in a
wireless network, a spectrum sensor must be able to handle
OFDM signals with diverse subcarrier configurations without
access to prior information about the transmission format. In
Wi-Fi 6 and 5G systems, information about the user data
transmission, including the modulation, is provided to the
RX through a protocol-specific procedure. However, since
a spectrum sensor does not have prior knowledge of the
type of signals it detects, it cannot deploy the procedure to
obtain user data transmission information. The parameters
shaping OFDM signals, fast Fourier transform (FFT) size
to generate inverse fast Fourier transform (IFFT) sequence,
and cyclic prefix (CP) length, might be different even among
OFDM signals with the same modulation scheme. The diverse
parameter options complicate the Wi-Fi preamble structure and
in the recent Wi-Fi 6 these become more diverse. This makes
spectrum sensing harder only with Wi-Fi preamble to identify
the modulation scheme, even though the preamble structure
is known. Moreover, the carrier frequency configurations in
5G become increasingly diverse and data transmission might
occupy only a part of channel bandwidth. As a result, esti-
mation of these carrier frequency configurations is becoming
increasingly difficult using transmission bandwidth and center
frequency alone. Thus, a modulation classifier for spectrum
sensing should estimate the modulation scheme using only
the observed user data transmission without knowledge of the
OFDM signal parameters including FFT size, CP length, and
carrier frequency.

We propose and analyze a modulation classifier for Wi-
Fi 6 [8] and 5G [9] for a spectrum sensing system. Without
knowledge of the transmitter (TX) carrier frequency, Wi-Fi
preamble, or 5G control information, the classifier exploits
only the basic OFDM structure, IFFT sequence, and CP. This
includes the estimation of OFDM parameters: CP length and
subcarrier spacing (SCS), which is directly related to the FFT
size of the IFFT sequence. We focus on identifying modulation
schemes used in the payload of Wi-Fi 6 signals and the
physical downlink shared channel (PDSCH) of 5G signals.
Signals studied in this paper are single-input single-output
(SISO). For 5G, they are in the frequency range 1 (FR1),
whose frequency band is below 7.125 GHz.

For the SCS and CP length estimation, the cyclic autocor-
relation function (CAF) is deployed. The capability of CAF to
detect intervals of repeated sequences and repetition periods
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enables the estimation of those parameters. We observe that
symbol-level synchronization is not perfect if autocorrelation
using CP is utilized only. Our preprocessing removes the effect
of the synchronization error by using phase differences be-
tween phases of two adjacent OFDM symbols. The modulation
classifier for Wi-Fi 6 and 5G signals should recognize high-
order modulations such as 256QAM and 1024QAM since
these state-of-the-art protocols include those schemes. We
change the feature format to a histogram representing the
distribution of the features so that the classifier can effectively
capture high-order modulation characteristics.

Related work on modulation classification: Many papers
address modulation classification for wireless communication
signals [6], [7], [10]–[17]. The works in [10]–[15] study modu-
lation classification of OFDM signals and achieve at least 78%
accuracy at 20 dB SNR for an AWGN channel. It is assumed
that the inputs start from the first sample of the OFDM symbol
duration [10]–[12], [15], which requires detecting the timing
of the Wi-Fi preamble or 5G synchronization signals. To apply
this approach to a spectrum sensor, the sensor needs to follow
protocol-specific procedures. Further, neither of these works
is evaluated on real-world measured data.

Previous works on OFDM modulation classification with-
out symbol-level synchronization [13], [14], [16], [17] and
the algorithms [13], [14], [17] are evaluated with hardware-
generated data. However, their algorithms [13], [14], [17] are
not evaluated with high-order modulations such as 256QAM or
1024QAM, as used in Wi-Fi 6 and 5G. Moreover, since their
classifier structures [13], [14] are designed to recognize only a
fixed set of modulations, the overall structure needs to be re-
designed to identify a new modulation scheme. The work [16]
proposes the system to estimate SCS of OFDM signals and
modulation of single-carrier signals jointly. Nonetheless, it
does not estimate the modulation of OFDM signals. The
neural network-based modulation classifiers [6], [7] study how
environmental change affects classification performance for
only the single-carrier signals, not OFDM signals.

Related work on sniffing OFDM signals: One approach
to modulation identification for spectrum sensing uses sniffing
of control information which notifies the RX about modu-
lation and coding formats. The work [18]–[21] attempts to
overhear Long Term Evolution (LTE) signals. LTEye [18]
and OWL [19] decode PHY DL control channel (PDCCH)
data for LTE network monitoring. LTESniffer [21] decodes
sniffed both user and control data using the PDCCH decoder
FALCON [20]. FALCON overcomes the limitation of LTEye
and OWL, which require more than 97% decoding accuracy.
In LTE, the starting symbol of the PDCCH is always the
first symbol in a slot. This is different from 5G, where the
PDCCH starting symbol can be any symbol in a slot and its
information is notified by radio resource control (RRC) signal-
ing. Accordingly, it is not straightforward to modify the LTE
PDCCH sniffer for 5G. Eavesdropping PDCCH data of 5G
signals [22] applies to 5G signals with diverse configurations.
Still, it is vulnerable to configuration changes since it takes a
few minutes to learn a new PDCCH configuration. The authors
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Fig. 1. (a) To capture DL Wi-Fi 6 and 5G signals and (b) Spectrum sensing
scenario using USRP N310.

of [23] study sniffing Wi-Fi probe request packets, which is for
mobile devices to broadcast the existence of themselves. They
build a hardware model for a sniffer and test with real Wi-
Fi probe request packets. However, the probe request packets
are simpler in format than those for user data communication.
Thus, it is not straightforward to deploy this approach to our
setting.

To summarize, the main contributions of the paper are:
• OFDM parameter estimation for up-to-date protocols:

We have applied the OFDM parameter estimation method
with CAF [24] to Wi-Fi 6 and 5G signals to estimate SCS
and CP length.

• Feature extraction without symbol-level synchroniza-
tion: Only with estimated values of SCS and CP length,
our system builds the features characterizing modula-
tion of OFDM signals. The proposed feature extraction
algorithm is designed to be resilient to symbol-level
synchronization errors caused by using CP only.

• Modulation classification without control information:
For spectrum sensing, control information might not be
accessible. We show that the proposed classification sys-
tem robustly works with diverse configurations with the
evaluation of hardware-generated data without knowledge
of the information.

II. SYSTEM OBJECTIVE

We aim to build a modulation classifier using IQ samples of
SISO Wi-Fi 6 and FR1 5G DL signal for spectrum sensing.
The system scenario is described in Fig. 1a. There is a Wi-Fi 6
or 5G TX transmitting its signal to an RX. SDR continuously
senses the spectrum by generating IQ samples with sampling
rate fSDR and transfers those samples to the host PC. In the
host PC, there is a signal detection algorithm and a modulation
classifier. Using IQ samples generated from SDR, the signal
detection algorithm detects the duration and frequency band
where the OFDM signal is located and extracts IQ samples
corresponding to the detected OFDM signal, described as the
blue rectangle in Fig. 1b. We assume the accurate signal
detection of Wi-Fi 6 or 5G signals and a single modulation
scheme is used for data communication in one detected OFDM
signal.

The IQ samples from SDR sampled with rate fSDR are
resampled to fRX, 20 MHz. We only consider Wi-Fi 6 signals
with 20 MHz channel bandwidth and 5G signals with a
PDSCH bandwidth from 15 to 20 MHz. Thus, a 20 MHz



TABLE I
VARIABLE DEFINITIONS

Variable Definition (unit)

fTX TX sampling rate (Hz)
fRX Sampling rate of a system input sequence (Hz)

∆fSCS Subcarrier spacing (Hz)
TIFFT IFFT sequence duration (s)
NFFT FFT size used to generate IFFT sequence
TCP CP duration (s)

NCP
Number of time samples

in CP for one OFDM symbol

y[n]
Received time-domain sequence after

resampling to 20 MHz

y′[n]
5G time-domain sequence after

resampling to 30.72 MHz

ys[n]
Received time-domain IFFT sequence

for the sth OFDM symbol

Y s[k]
Received symbol in subcarrier k

for the sth OFDM symbol
(S × S) Number of bins in a 2D histogram
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Fig. 2. 5G Resource structure: (a) Resource grid and (b) Frame structure.

sampling rate can let the resampled IQ sequence encompass
the OFDM signal in our scenario. Extending the analysis
to different transmission bandwidth ranges is straightforward.
These resampled IQ samples, denoted by y[n], are taken as
inputs of the feature extraction algorithm, as elaborated in
Sec. III in detail.

A. Wi-Fi 6 PHY layer

Wi-Fi 6 supports the high-efficiency (HE) transmission format
as well as earlier formats, which are non-high throughput (non-
HT), high throughput (HT), and very high throughput (VHT)
formats. Table II summarizes the parameters that configure
the payload of the Wi-Fi frame for each Wi-Fi format. In HE
format, given channel bandwidth, the number of subcarriers is
increased because the SCS (denoted as ∆fSCS) is one-fourth
of that of the previous transmission formats. Over time, the
Wi-Fi standard has evolved and several options for the CP
duration are available.

B. 5G DL PHY layer

The 5G downlink (DL) resource structure and its associated
terminology is illustrated in Fig. 2. A resource element (RE),
illustrated in Fig. 2a, represents the smallest unit that carries
data, encompassing a single OFDM symbol in the time domain
and a single subcarrier in the frequency domain. A resource
block (RB) is the smallest radio resource that can be allocated
and refers to one OFDM symbol in the time domain and 12
subcarriers in the frequency domain.

2. OFDM parameter estimation
• SCS, CP length

1. IQ sequence sampled 
with 𝑓!" = 20 MHz

3. Preprocessing
• Resampling to 30.72 MHz

(5G)
• Find first index of symbol 

(approx.)
• Find symbol index inside 

a slot (5G)
• CFO correction

4. Feature extraction
• Amplitude and phase difference
• Convert feature sequence into 

histogram

Fig. 3. Flow chart of proposed modulation classification algorithm.

Fig. 2b shows the 5G frame structure in the time domain.
An OFDM symbol in 5G is comprised of both a CP and
an IFFT sequence. The number of symbols within a single
slot (N slot

sym) varies following the CP length. There are normal
and extended CP options in the transmission format. When a
normal CP is used then N slot

sym = 14, otherwise N slot
sym = 12.

The SCS, the distance between two adjacent subcarriers in
OFDM systems, determines the number of slots within a
single subframe, N subfr,µ

slot . µ represents an SCS option and
corresponds to ∆fSCS = 15 × 2µ kHz. There are five SCS
options in 5G, but we consider only three cases, namely 15, 30,
and 60 kHz, which are available in FR1. The number of slots
in a subframe for each SCS is computed as N subfr,µ

slot = 2µ.
Finally, one frame of duration 10 ms consists of ten subframes.

The structural parameters that define the 5G frame are listed
in Table III. The length of an IFFT sequence, TIFFT, is:

TIFFT = NFFT/fTX = 1/∆fSCS. (1)

There is a one-to-one correspondence between TIFFT and
∆fSCS (1). Under the normal CP option, CP is longer than that
in other symbols, every 0.5 ms, or equivalently, 7 · 2µ OFDM
symbols in OFDM symbol unit, called long CP. There is no
long CP in the extended CP option, so TCP is uniform. The
transmission rate of 5G signals is a power of 2 times 15 kHz
and 30.72 MHz is an example of a 5G transmission rate. NFFT

and NCP values are arranged when fTX is 30.72 MHz, the
value used in our evaluation.

In addition to PDSCH, there exist other physical (PHY)
channels that serve specific functions although not carrying
user data. For instance, PDCCH conveys downlink control
information (DCI), which contains information required to
decode PDSCH data such as modulation and coding scheme
(MCS). Each of these channels utilizes predefined single-type
modulation, see Table IV.

Compared to Wi-Fi, which has a predefined configuration
of data, pilot, and null subcarriers, 5G resource configuration
for PHY channels is flexible. Instead, the 5G system has a
network dedicated to exchanging information on how data
packets are forwarded, called the control plane, in addition
to the network for data transmission, called the user plane.
An example of data transferred over the control plane is RRC
signals. Information on the starting OFDM symbol of PDCCH
and channel state information-reference signal (CSI-RS) is
notified to an RX with RRC signals via control plane [9].



TABLE II
PARAMETERS FOR DIFFERENT FORMATS OF WI-FI

Non-HT format HT format VHT format HE format

TIFFT 3.2µs 3.2µs 3.2µs 12.8µs
TCP 0.8µs {0.4, 0.8}µs {0.4, 0.8}µs {0.8, 1.6, 3.2}µss

Modulations BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK,
16QAM, 64QAM

BPSK, QPSK, 16QAM,
64QAM, 256QAM

BPSK, QPSK, 16QAM,
64QAM, 256QAM, 1024QAM

TABLE III
5G FRAME STRUCTURE PARAMETERS

{SCS (kHz), CP option} {60, Normal} {60, Extended} {30, Normal} {15, Normal}

TIFFT 16.17µs 16.67µs 33.33µs 66.67µs
{Short, long} TCP {1.17, 1.69}µs {4.17,−}µs {2.34, 2.86}µs {4.69, 5.21}µs

NFFT when fTX = 30.72 MHz 512 512 1024 2048
{Short, long} NCP when fTX = 30.72 MHz {36, 52} 128 {72, 88} {144, 160}

TABLE IV
MODULATIONS USED FOR 5G PHYSICAL CHANNELS

Physical channel PDSCH PSS/SSS PDCCH CSI-RS PBCH PDSCH-PTRS PDSCH-PTRS

Modulation QPSK, 16QAM, 64QAM,
256QAM, 1024QAM BPSK QPSK QPSK QPSK QPSK QPSK

III. PROPOSED ALGORITHM

High-level procedures to build features characterizing the
modulations of Wi-Fi 6 and 5G signals are illustrated in
Fig. 3 and explained in Sec. III-A and III-B with additional
processing for 5G signals in Sec. III-C. The 2D histogram is
then taken as an input to the neural network model, described
in Sec. III-D.

A. OFDM parameter estimation

Before building the features that characterize modulation,
it is necessary to estimate two essential OFDM parameters
of OFDM signals, SCS and CP length. To estimate these
parameters, we use CAF, a Fourier-series coefficient of the
autocorrelation function,

Ryy(α, τ) =

∞∑
n=−∞

Ryy(n, τ)e
−j2παn. (2)

CAF is used to extract a repeated pattern presented in wireless
signals [24]–[26]. A variant of the CAF estimator presented
in [24] is deployed here,

R̂yy(α, ℓ) =
1

L − l − ℓ+ 1

L−l−ℓ∑
n=0

{
l−1∑
i=0

y[n+ i]y∗[n+ i+ ℓ]

}
× e−j2παn,

(3)
where α is a cycle frequency and L is the length of y[n]. One
sample of our estimator is computed as the autocorrelation
with delay ℓ. It differs from the estimator in [24], which
corresponds to l = 1 in (3). The increase in the length of
a sample sequence y[n+ i] aims to make peaks more distinct.
We set l = 8 corresponding to the shortest CP length in our
scenario.

CP in OFDM symbols causes a sequence to be repeated
at both ends of each symbol. The distance between starting
indices of the two repeated sequences at both ends of an

OFDM symbol is TIFFT in time units or NFFT(fRX/fTX) =
fRX/∆fSCS in time sample units. This repetition makes
the CAF estimator at α = 0 have a peak at ℓ =
fRX/∆fSCS. TCP is also estimated with the CAF estima-
tor, R̂yy(α, fRX/∆fSCS). Since

∑l−1
i=0 y[n + i]y∗[n + i + ℓ]

in (3) has peaks at period of fRX(TCP + 1/∆fSCS), it is
expected of R̂yy (α, fRX/∆fSCS) to have a large amplitude
at α = 1/{fRX(TCP + 1/∆fSCS)}.

In our scenario, there are five candidates ℓ values, ℓC =
{64, 256, 333, 667, 1333}, each corresponding to an IFFT se-
quence length for a given SCS at fRX = 20 MHz. IFFT
sequence length is estimated as:

TIFFT = ℓ′/fRX s.t. ℓ′ = argmax
ℓ∈ℓC

∣∣∣R̂yy(0, ℓ)
∣∣∣ (4)

When the estimated TIFFT corresponds to that of Wi-Fi 6 or
60 kHz SCS NR, where multiple CP options are available, CP
length is further estimated as:

TCP =
1

fRX

(
1

α′ − ℓ′
)

s.t. α′ = argmax
α∈αℓ′

C

∣∣∣R̂yy(α, ℓ
′)
∣∣∣
(5)

where αℓ′

C denotes a set of possible values of α = 1/{ℓ′ +
(fRX · TCP)}, given ℓ′.
B. Feature extraction

The motivation behind our proposed feature extraction lies
in the observation that when a sampled time-domain sequence
is contained within a single OFDM symbol s, the FFT of that
sequence yields the original symbols with a phase drift that
scales linearly with subcarrier index k and synchronization
error ∆n, as shown in

Y s
∆n[k] ≜ F (ys[n−∆n])

=

NFFT−1∑
n=0

ys[n−∆n]e−j2πnk/NFFT

= Y s[k]e−j2π∆nk/NFFT .

(6)



To build a feature characterizing modulation based on this
property, two objectives must be achieved: first, sampling a
sequence fully contained in an OFDM symbol, and second,
removing the phase drift caused by synchronization errors.

Utilizing the knowledge of NCP and NFFT, the CP position
is determined through autocorrelation analysis,

Ryy(m,NFFT) =
1

NCP

NCP−1∑
i=0

y[m+ i]y∗[m+ i+NFFT],

(7)
where m is the first index of original sequence of auto-
correlation Ryy(m,NFFT). The position of CP is indicated
by the peaks in |Ryy(m,NFFT)| since it is expected that
|Ryy(m,NFFT)| peaks when m is the first index of CP. To
locate a peak, we search for a sample whose amplitude is larger
than both of its neighboring samples while ensuring that the
minimum distance between two adjacent peaks is 90% of the
OFDM symbol duration (i.e., (256 + 64) × 0.9 = 288-time
samples for HE format with 3.2 µs CP), to avoid selecting
undesired local peaks. The indices of peaks are denoted as
{p′0, · · · , p′S−1} for S potential OFDM symbols. Using those
peaks, the first index of the OFDM symbol is estimated:

p = Mediani{mod(p′i, NFFT +NCP)}, (8)

where i ∈ {0, · · · j − 1}. Noise and varying amplitudes of
time samples can introduce small errors in the estimated
CP position. To reliably sample the sequences contained in
a single OFDM symbol, we deploy the sequence {y[p +
NCP/2], y[p + NCP/2 + 1], · · · , y[p + NCP/2 + N − 1]}.
This sequence is entirely within a single OFDM symbol for
estimation error of p below NCP/2.

We demonstrated (6) that Y s
∆n[k] exhibits a phase drift,

e−j2π∆nk/N , while maintaining amplitude Y s[k]. We compute
the phase differences between successive potential symbols s
and s+ 1 in subcarrier k to build the feature invariant of this
phase drift due to synchronization errors as:

∆∠Y s
∆n[k] ≜ ∠Y s+1

∆n [k]− ∠Y s
∆n[k]

= ∠
{
Y s+1[k]e−j2π∆nk/N

}
− ∠

{
Y s[k]e−j2π∆nk/N

}
= ∠Y s+1[k]− ∠Y s[k].

(9)

Despite ∆n unknown, sequences with constant ∆n are ob-
tained by adjusting the interval between the starting indices of
two sampled sequences to be one OFDM symbol. The feature
used to identify the modulation type is

Y s
f [k] ≜ |Y s

∆n[k]|ej∆∠Y s
∆n[k]. (10)

For Wi-Fi 6, the null subcarrier symbols are eliminated by dis-
carding symbols with the Nnull smallest average amplitudes.

In protocol-compliant reception, the Wi-Fi preamble and 5G
PDSCH-phase tracking reference signal (PDSCH-DMRS) are
deployed for CFO estimation. However, since not accessible
to a spectrum sensor, the CP in each OFDM symbol is used
for CFO estimation ∆fc, i.e.,

∠ (y[p+NFFT + i] · y∗[p+ i]) = 2π∆fc/∆fSCS, (11)

where y[p + i] is in CP. We use i ∈
{⌊NCP/4⌋, · · · , ⌈3NCP/4⌉} so that the sequence y[p + i]

are entirely within CP unless estimation error of p exceeds
NCP/4. We determine CFO as the average of ∆fc (11)
evaluated over multiple OFDM symbols. If the absolute
value of the CFO is larger than ∆fSCS/2, the CFO cannot
be accurately estimated due to aliasing. It is discussed in
Sec. III-C.

C. Additional procedures for 5G signal

To build a modulation feature for 5G, 5G characteristics
distinct from those of Wi-Fi, including a different transmission
rate, long CP, and flexible usage of subcarriers, should be
considered. First, the transmission rate of 5G signals is not
fRX = 20MHz, but is a power of 2 times 15 kHz. Hence,
for the signal classified as 5G, we resample the sequence
to f5G = 30.72 MHz= 2048 · 15 kHz, the smallest sampling
frequency above 20 MHz. NFFT and NCP with 30.72 MHz
sampling rate for each ∆fSCS are arranged in the last two
rows in Table III.

In the case of the normal CP option, there is a long CP
every TLCP = 0.5 ms, which is slightly longer than that of other
OFDM symbols. Long CP breaks the assumption of uniform
OFDM symbol duration, which is required by the method to
find the first indices of OFDM symbols and estimate CFO.
Moreover, in building Y s

f [k], maintaining the fixed interval
does not guarantee the constant ∆n over multiple OFDM
symbols. Therefore, long CP also should be located when
finding the first index of the OFDM symbol.

Algorithm 1: Finding first index of long CP in 5G
Data: (y′[n] of length (3 ms + 3 OFDM symbols)), µ

1 M = 7 · 2µ, NFFT = 512 · 22−µ, NCP = 18 · 22−µ ;
2 for i = 0 : 5 do
3 y′

i ≜ {y′[f5GTLCP · i], · · · , y′[f5GTLCP(i+
1) + 2(NFFT +NCP) +NCP − 1]};

4 Find peaks {p′i0, · · · , p′i(m+1)} with y′
i using

|Ry′
iy

′
i
(m,NFFT)| and peak locating function in

Sec. III-B;
5 pij = mod(p′ij , NFFT +NCP);
6 end
7 ∆pj = (

∑5
k=0{pk(j+1) − pk(j−1)})/6 where

j ∈ {1, 2, · · · ,M};
8 {∆pr0 , · · · ,∆prM−1

} = sortDescending({∆pj});
9 symLongCP = argmaxrq Var({p0rq , · · · , p5rq}) where

q ∈ {0, 1};

10 qij =

{
pij if j ≤ symLongCP
pij − 16 otherwise

q = Medianj(
∑5

k=0 qkj/6);
Result: IndexLongCP= q+symLongCP(NFFT+NCP)

Algorithm 1 explains the detailed steps to estimate the first
index of OFDM symbol with long CP. y′

i in line 3 is a
sequence cropped to be as long as (0.5 ms + 2 OFDM symbols
+ TCP).

In line 4, we find M + 2 peaks from y′
i using autocor-

relation |Ry′
iy

′
i
(m,NFFT)|, where M denotes the number of

OFDM symbols in TLCP given µ and we also compute the



autocorrelation at the two symbols at each end. The M average
differences between the remainders of two peaks separated by
two OFDM symbols modulo OFDM symbol duration, ∆pj ,
are computed in line 7. We expect that ∆pj is the largest when
pj corresponds to long CP. For a more reliable estimation of
a long CP, we add a criterion.

In line 10, we choose the two candidates k0 and k1 that
give ∆pki

the two largest values. We select kq where the set
{p0kq

, · · · p5kq
} has the larger variance between two candi-

dates of kq . This is because we expect that {p0j , · · · , p5j} has
the largest variance if pij corresponds to long CP since long
CP makes |Ry′

iy
′
i
(m,NFFT)| a plateau with some width. Using

estimated IndexLongCP, we put an additional 16 samples
delay at the OFDM symbol with long CP while extracting
the feature Y s

f [k] to maintain uniform ∆n. The number of
16 samples comes from the difference between long CP and
non-long CP with a 30.72 MHz sampling rate.

In contrast to Wi-Fi 6 signals, some subcarriers might not
be used for transmission amid transmission. If no transmis-
sion is made in Y s[k] or Y s+1[k], their phases are random,
and ∆∠Y s

∆n[k] cannot be the phase difference between two
constellation points. Therefore, we set the threshold for the
amplitude, denoted as β, to check whether the RE is being
used for transmission. Only when |Y s[k]| and |Y s+1[k]| are
higher than β, Y s[k] is used.

The discrepancy between the center frequency of TX and
that of received IQ samples of 5G signals might be much
larger than for Wi-Fi. In contrast to Wi-Fi, which covers the
entire channel bandwidth unless OFDMA is used, PDSCH
in 5G might use only the part of channel bandwidth so the
center frequency of PDSCH might be different from that
used for transmission. Thus, the discrepancy is solely from
hardware imperfection in Wi-Fi. For a Wi-Fi link operating
at fc = 5GHz and a frequency tolerance of 1 ppm for
commercial-off-the-shelf temperature-compensated crystal os-
cillators [27] on both sides of the Wi-Fi link, the worst-case
CFO is ∆fc = 2fc · 10−6 = 10 kHz. However, in 5G, the
CFO can escalate to an MHz scale if we consider the center
frequency of transmission bandwidth to be carrier frequency.
If the method presented earlier in this section is employed, the
difference could result in an inaccurate estimation of CFO due
to aliasing. Even in the absence of noise, it is only possible to
measure ∆fc accurately up to ∆fSCS/2, since ∆fc+z∆fSCS

cannot be distinguished from each other, where z ∈ Z. The
algorithm makes the corrected CFO a multiple of ∆fSCS, not
a zero.

However, the CFO correction is still deployed for feature
extraction. This is because even though this method cannot
find the exact CFO, it can recover the orthogonality among
subcarriers. The CFO effect in our feature is represented as:

Wi-Fi 6 feature

BPSK/QPSK/QAM 
classifier

2D histogram with
Δ∠𝑌!"# [𝑘], 𝑆 = 𝑆$

16/64/256/1024 
QAM classifier

2D histogram with 
Δ∠𝑌!"# 𝑘 	mod	𝜋/2, 

𝑆 = 𝑆%

: if QAM

(a)

5G feature

QPSK, 16/64/256/1024
QAM classifier

2D histogram with
Δ∠𝑌!"# 𝑘 	mod	𝜋/2, 

𝑆 = 𝑆$

(b)

Fig. 4. Flow chart of proposed classifier system: (a) Wi-Fi 6 and (b) 5G.
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Fig. 5. CNN-based modulation classifier structure. Nc is the number of
modulations a classifier aims to recognize.

Y s
∆n[k] =

NFFT−1∑
n=0

y[n−∆n]e−j2πn(∆fc/fTX+k/NFFT)

= Y s [k +NFFT∆fc/fTX]×
e−j2π∆n(k/NFFT+∆fc/fTX)

Y s+1
∆n [k] = Y s+1 [k +NFFT∆fc/fTX]×

e−j2π(∆nk/NFFT+(∆n+(NFFT+NCP)∆fc/fTX)

⇒ ∆∠Y s
∆n[k] = ∠Y s+1 [k +∆fc/∆fSCS]

− ∠Y s [k +∆fc/∆fSCS]

− 2π∆fc(1/∆fSCS + TCP).

(12)

To maintain orthogonality of ∠Y s
∆n[k] across k, ∆fc/∆fSCS

should be an integer. We have demonstrated that after the
CFO correction using CP, the CFO is expressed as z ·∆fSCS,
which renders ∆fc/∆fSCS to be an integer. Consequently, the
phase of our feature becomes the sum of a phase difference
of originally transmitted symbols and a phase caused by the
CFO. Since ∆∠Y s

∆n[k] in (12) contains TCP term, the CFO
effect on ∆∠Y s

∆n[k] is different when OFDM symbol s + 1
is an OFDM symbol with long CP. To make the CFO effect
uniform in the feature, ∆∠Y s

∆n[k] where OFDM symbol s+1
is an OFDM symbol with long CP is not used for building the
feature.

The features may contain the effect of other PHY channels
that use modulations other than those used by PDSCH. It is
impossible to perfectly filter out the effect because information
about which REs were used for which PHY channels is not
accessible for spectrum sensors. However, since the modu-
lations of other PHY channels are either BPSK or QPSK,
the constellation diagram of the features is only affected
by changes in PDSCH modulation. Thus, the distribution of
phase differences is still an intrinsic characteristic of PDSCH
modulation.
D. Neural network classifier

The obtained feature Y s
f [k] goes through two preprocessing

steps to become input to the classifier:
1) instead of ∆∠Y s

∆n[k], ∆∠Y s
∆n[k] modulo π/2 is used

as a phase of Y s
f [k]. A constellation diagram of every target



TABLE V
DL MODEL PARAMETERS

Batch size 32 Learning rate 5 · 10−5

Epochs 200 Loss Cross-entropy

(a) (b)

Fig. 6. Measured 16QAM features at SNR= 25 dB with 5G OTA data: (a)
Scatterplot of Y s

f [k] and (b) Corresponding histogram of |Y s
f [k]|/|Y s

f [k]|p99
and (∆∠Y s

∆n[k] mod π/2)/(π/2).

modulation and corresponding features Y s
f [k] without noise

are rotationally symmetric with π/2. Thus, ∆∠Y s
∆n[k] modulo

π/2 is used as a phase of our feature to characterize a mod-
ulation. For Wi-Fi 6 signals, BPSK cannot be distinguished
from QPSK if ∆∠Y s

∆n[k] modulo π/2 is used. Thus, an
additional classifier with the original phase as an input is used
to distinguish BPSK and QPSK from the high-order QAM
modulations, see Fig. 4.

2) A 2D histogram of the normalized amplitude of the fea-
tures |Y s

f [k]|/|Y s
f [k]|p99, where |Y s

f [k]|p99 denotes 99th per-
centile of |Y s

f [k]| in a single data, and the phases ∠Y s
f [k]/2π,

as an input for the classifier. The histogram value of each bin
is computed as:

Z(u, v) = The number of Y s
f [k] s.t.

u/S ≤ |Y s
f [k]|/|Y s

f [k]|p99 ≤ (u+ 1)/S and

v/S ≤ ∆∠Y s
∆n[k]/ϕ ≤ (v + 1)/S.

(13)

If ∆∠Y s
∆n[k] modulo π/2 is used, ϕ is π/2, otherwise 2π.

We normalize histogram value to be classifier input:

Z ′(u, v) = Z(u, v)/Z, (14)
where Z denotes the number of valid Y s

f [k] in one data.
To remove outliers, Y s

f [k] whose amplitude is larger than
|Y s

f [k]|p99 was not included in the histogram.
The overall structure and the parameter of the classifier with

the histogram input are summarized in Fig. 4 and Table V. The
neural network structure used for each classifier is described
in Fig. 5. Cin and Cout in Conv2D layers correspond to the
number of input and output depth. A 2× 2 size kernel is used
in every Conv2D and Maxpool2D layer. Nc is the number
of modulations that a classifier aims to recognize. For the
classifier to identify BPSK and QPSK, the third Maxpool layer
is not used, S = SP , and Nc = 3. The classifier for 5G and
for identifying the QAM types for Wi-Fi 6 use Nc = 5, 4,
respectively.

For 5G 16QAM real-world measured over-the-air (OTA)
data, Fig. 6a shows a scatterplot of the IQ data of Y s

f [k]
and Fig. 6b the corresponding 2D histogram with ∆∠Y s

∆n[k]

TX

RX

3.2 m

3.2 m

(a) (b) (c)

Fig. 7. OTA data propagation environment: (a) map with TX/RX locations,
(b) vertically polarized antennas for TX (left) and RX (right), attached to the
wall, and (c) Example spectrogram from data observed by USRP N310.

TABLE VI
DATA GENERATION PARAMETERS

SNR AWGN data: [5, 40] dB in steps of 5 dB
OTA data: [4, 32] dB in steps of 4 dB

Carrier frequency 2.4 GHz (Wi-Fi 6), 2.6 GHz (5G)
The number of

{train, test} data
{800, 200} per each

(TIFFT, TCP,modulation) case
{SP ,SQ} {15, 50}

Time duration
of each data 400µs (Wi-Fi 6), 5 ms (5G)

modulo π/2. ∠Y s
f [k] on the red and black dashed lines are the

sum of the noise-free phase differences between two 16QAM
constellation points and the phase shift caused by CFO. Blue
dashed lines are from the phase differences between BPSK or
QPSK symbols of the PHY channel other than PDSCH and
the shift by CFO. The red, blue, and black dashed lines in
Fig. 6a correspond to the red, blue, and black dashed lines in
Fig. 6b, respectively. Fig. 6a and Fig. 6b show that symbols
are densely located at the points in the dashed lines, which is
consistent with our expectations.

An advantage of using a histogram is that they are invariant
to the length of Y s

f [k]. This enables a neural network with a
fixed structure to handle signals of any duration. This property
is useful when dealing with 5G features where the number
of samples of Y s

f [k] is unknown due to unused resources.
Moreover, in a histogram input, the effect of CFO estimation
error caused by aliasing (12) is a movement along the y-axis
of the histogram as far as orthogonality of ∠Y s

∆n[k] across k
holds. The neural network can be trained to identify histogram
movements along the y-axis as a single class.

IV. EVALUATION
A. Data collection

The proposed classifier is evaluated with synthetic data
generated from AWGN channel simulations and real-world
measured OTA data with the details in Table VI. MATLAB
R2023a WLAN and 5G toolbox [28] are deployed to generate
the synthetic AWGN dataset. Wi-Fi HT [29] and HE format [8]
are used to generate data with TIFFT = 3.2µs and 12.8µs in
Wi-Fi 6. For 5G data, every SCS option in FR1, µ ∈ {0, 1, 2},
is tested. All PHY channels listed in Table IV are included in
every 5G data item.

To evaluate whether the performance of the proposed system
remains invariant across varying 5G PHY channel configura-
tions, the parameters for allocating REs to PHY channels are
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Fig. 8. Results with synthetic AWGN channel data: (a) Accuracy for estimating TIFFT and TCP, (b) Accuracy for choosing the first index of CP with
acceptable error ϵ, and (c) Accuracy for finding an OFDM symbol with long CP of 5G signals.

set for each data. For example in PDCCH, symbol duration,
aggregation level, and starting symbol number are randomly
selected. PHY broadcast channel (PBCH), primary synchro-
nization signal (PSS), and secondary synchronization signal
(SSS) are included only when µ ∈ {0, 1} since they are not
available for µ = 2. The other 5G PHY channel parameters
are from FR1 test models in [30], [31].

Figure 7 documents the propagation environment where
OTA data are measured. We deploy two networked software-
defined radios, USRP N310 [32], for transmitting and receiv-
ing signals OTA. Both TX and RX are in the same room and
the distance between TX and RX is 4.52m, see Fig. 7a. TX
and RX antenna are attached to the wall, see Fig. 7b. Fig. 7c
shows a spectrogram with a 5G signal detected. Utilizing the
assumed accurate signal detection, an IQ sequence correspond-
ing to a detected signal (red box in Fig. 7c) is extracted. After
resampling to 20 MHz (y[n]), the sequence is taken as an input
of the OFDM parameter estimator.

B. Building classifier input

First, to avoid using the Wi-Fi preamble, we remove the
first 2000 samples from each data. If the estimated TIFFT

corresponds to those of Wi-Fi 6, an IQ sequence whose length
corresponds to 40+2 or 10+2 OFDM symbols is deployed
to build Y s

f [k], starting with a random sample. We need an
additional OFDM symbol due to the unknown starting index
of an OFDM symbol sequence, p ∈ [0, NFFT+NCP−1]. One
more symbol is required since phase differences between those
of every OFDM symbol and the next one should be computed.
Nnull is set to 8 and 32 for Wi-Fi HT and HE, respectively.
If the estimated TIFFT refers to 5G, y′[n] of length (3 ms +
3 OFDM symbols) is used to estimate p and IndexLongCP.

For 5G, the sequence of 14 OFDM symbols is utilized for
a classifier input. β is set to |Y s

f [k]|p99/10 in each input. We
also evaluate Y s

f [k] values as an input to assess how much
the histogram input contributes to the performance. In this
case, one data input consists of 2240 samples for Wi-Fi 6
or 7900 samples for 5G, which is the average number of
feature elements in a single 5G histogram data. We use fixed-
duration data for a fair comparison, but the classifier can take
the variable length data as input as the obtained feature is
processed to a histogram using the algorithms in Sec. III-D.
For both input formats, an input with both phases of ∠Y s

∆n[k]
modulo π/2 and ∠Y s

∆n[k] are evaluated.

C. Evaluation results

TABLE VII
SNR REQUIRED FOR DATA COMMUNICATION WITH EACH MODULATION

Modulation BPSK QPSK 16QAM
SNR for Wi-Fi 6 (dB) 5 10 16

SNR for 5G (dB) - 15 18

Modulation 64QAM 256QAM 1024QAM
SNR for Wi-Fi 6 (dB) 22 30 35

SNR for 5G (dB) 21 27 30

1) AWGN channel data: Results in Fig. 8 are obtained
with synthetic AWGN channel data. Fig. 8a shows estima-
tion accuracy of the OFDM parameters {TCP, TIFFT} over
different l, the length of y[n+ i] in CAF estimator (3). Using
l = 2, 4 achieves 99% accuracy for both Wi-Fi 6 formats
and 5G and outperforms l = 1 as used in [24]. In Fig. 8b,
the estimation accuracy of correctly finding the starting index
of an OFDM symbol is shown for the method in Sec. III-B.
Correctly finding means that the starting index time is within
ϵ samples tolerance of the true time. In Fig. 8b, we note that
the estimation accuracy for identifying the starting index of an
OFDM symbol falls below 60% for both Wi-Fi 6 formats and
5G. When the tolerance is relaxed to NCP/4 time samples,
the reported estimation accuracy increases to 99%.

The accuracy of estimating an OFDM symbol with long
CP is shown in Fig. 8c. Aside from ∆fSCS = 60 kHz,
the performance is over 90% even at low SNR of 5 dB.
Accuracy at ∆fSCS = 60 kHz is low because the period
of an OFDM symbol with long CP is larger than the others.
The degraded peak detection performance due to the large
number of symbols that the peak detection function needs to
detect also negatively affects the estimation performance. At
∆fSCS = 60 kHz, 30 peaks should be identified in line 4 of
Algorithm 1, which is considerably larger than the 9 or 16
peaks at ∆fSCS = 15 kHz and ∆fSCS = 30 kHz.

Figure 9 shows modulation classification accuracy with
synthetic AWGN channel data. The proposed algorithm with
a histogram input with the phases ∆∠Y s

∆n[k] modulo π/2
outperforms in all considered cases, except for Wi-Fi 6 at
5 dB SNR. The performance gap between using the histogram
as classifier input as opposed to using the feature value input
increases in Wi-Fi HE and even more so in 5G. This is because
the histogram input helps the classifier to discriminate the
detailed symbol constellation of high-order modulations.

2) OTA data: The modulation classification accuracy with
measured OTA data is in Fig. 10. The achieved OTA accuracy
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Fig. 9. Classification accuracy for modulations vs. SNR with synthetic AWGN channel data: (a) Wi-Fi HT, (b) Wi-Fi HE, (c) 5G.
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Fig. 10. Classification accuracy for modulations vs. SNR with OTA data. (a) Wi-Fi HT, (b) Wi-Fi HE, (c) 5G signals.
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Fig. 11. Classification accuracy for modulation with OTA data for each
modulation format separately.
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Fig. 12. Classifier accuracy with OTA data when SNR exceeds the minimum
requirements required for standard-compliant data communication.

is similar to the synthetic AWGN channel data: a histogram
input with the phases ∆∠Y s

∆n[k] modulo π/2 achieves the
highest classification accuracy, except for Wi-Fi 6 at 5 dB SNR
and a larger performance gap for Wi-Fi HE and 5G.

The classification accuracy of all considered modulation for-

mats with OTA data is in Fig. 11. For a chosen accuracy, higher
modulation orders require higher received SNR. E.g., Wi-Fi
HE 16QAM signals have 90% accuracy if the SNR exceeds
16 dB, whereas Wi-Fi HE 256QAM requires 24 dB SNR. In
Fig. 12, the accuracy of each modulation format is shown
when the SNR satisfies the minimum requirement for standard-
compliant data communication. We deploy error vector mag-
nitude (EVM) levels required for data communication with
each modulation for Wi-Fi 6 and 5G documentations [8], [31].
Required SNR values are calculated using the relation between
EVM and SNR [33]. SNR required for the smallest coding rate
are chosen for each modulation and chosen values are arranged
in Table VII. For every modulation with both Wi-Fi 6 formats
and 5G, accuracy is at least 97%.

V. CONCLUSION

Modulation classification of Wi-Fi 6 and 5G signals for
spectrum sensing is studied. Simulations show that our classi-
fier which uses SCS and CP length estimates based on the CAF
achieves 99% accuracy. The classifier includes a preprocessing
stage that is agnostic to control information, and extracts
signal features characterizing modulation schemes insensitive
to synchronization errors. For 5G signals, the preprocessing
also estimates the symbol positions with a long CP. The
features are converted to a more suitable form as inputs for the
CNN-based classifier. This improves the classification of high-
order modulation constellations. The modulation classifier
identifies OFDM modulations with 97% accuracy when the
SNR satisfies the requirements for standard-compliant data
transmission for each modulation format with both synthetic
AWGN channel data and measured OTA data.
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