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Abstract. We characterize the unique minimizer of the three-dimensional double-bubble prob-
lem with respect to the ℓ1-norm for volume ratios between 1/2 and 2.

1. Introduction

The double-bubble problem consists in determining the optimal pair of sets of given volumes
minimizing the total surface. In the classical Euclidean setting, optimal configurations are pairs
of regions enclosed by three spherical caps, meeting at a 2π/3 angle. This was first proved in the
planar case in [11], then extended in [15] to three dimensions, and finally to all dimensions in [22].
Besides the Euclidean case, double-bubble problems have been considered in a variety of different
settings, including hyperbolic spaces [4, 6, 7, 18], hyperbolic surfaces [2] and cones [16, 20], the
three-dimensional torus [3, 5], the Gauß space [4, 19], and the anisotropic Grushin plane [12].

This note is concerned with the three-dimensional double-bubble problem for the ℓ1-norm. Given
v ∈ R3, we denote by |v|1 its ℓ1-norm

|v|1 = |v1|+ |v2|+ |v3|
(we will later use the same notation for the ℓ1-norm of vectors in R2). For any H2-rectifiable subset
F ⊂ R3, we denote the corresponding ℓ1-surface by

ℓ1(F ) =

∫
F

|νF |1 dH2,

where νF denotes the measure-theoretical normal to F and Hn stands for the n-dimensional Haus-
dorff measure. We consider sets of finite perimeter G ⊂ R3 [1] and use the fact that their so-called
reduced boundary ∂∗G is a H2-rectifiable set. To each configuration (A,B) consisting of two three-
dimensional sets of finite perimeter, we associate the energy

E(A,B) := ℓ1(∂
∗A) + ℓ1(∂

∗B)− ℓ1(∂
∗A ∩ ∂∗B).

This corresponds to the ℓ1-surface of the set A∪B together with the ℓ1-interface between the sets
A and B. In the following, we let the volumes VA := L3(A) and VB := L3(A) be fixed, where
Ln denotes the n-dimensional Lebesgue measure. Our main assumption is that the ratio VB/VA

belongs to [1/2, 2].

The double-bubble problem hence corresponds to

min

{
E(A,B) : A, B ⊂ R3 of finite perimeter, A ∩B = ∅, L3(A) = VA, L3(B) = VB

}
. (1.1)

Our main result reads as follows.

Theorem 1.1 (Characterization of the minimizer). Letting VB/VA ∈ [1/2, 2], the unique minimizer
of the double-bubble problem (1.1) are two cuboids sharing a square face. Up to translation and
axis-preserving isometries, the minimizer can be specified as

A =
[
− VA

(2(VA + VB)/3)2/3
, 0
]
×
[
0, (2(VA + VB)/3)

1/3
]2
,

B =
[
0,

VB

(2(VA + VB)/3)2/3

]
×
[
0, (2(VA + VB)/3)

1/3
]2
.
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The minimal energy is given by

E(A,B) =

(
3

(
2

3

)2/3

+ 4

(
3

2

)1/3)
(VA + VB)

2/3.

AB

z

x

y

Figure 1. The unique minimizer of the double-bubble problem (1.1).

The minimality of the configuration in Theorem 1.1 for this specific volume-ratio range has
already been conjectured by Wecht, Barber, & Tice [23]. In fact, by reducing the problem to
cuboids, the optimality of (A,B) from Theorem 1.1 easily follows. Our aim here is to provide a
proof of this conjecture, starting from the most general setting of disjoint sets of finite perimeter.
Note that, for volume ratios r smaller than 1/2 or bigger than 2, the configuration in Figure 1
can be easily proved to be not optimal and the occurrence of different optimal configurations is
conjectured [23].

In the planar case, the characterization of optimal double-bubble configurations with respect to
the ℓ1-norm in R2 is already well-known. The emergence of three different minimizers, depending
on the volume ratio, has been discussed by Morgan, French, & Greenleaf [21]. A new proof
of these results, based on different tools, has been recently presented by Duncan, O’Dwyer,
& Procaccia [8]. The reach of the theory has been extended to the general setting of finite
perimeter sets and to arbitrary interaction intensity in [14]. The continuous problem in R2 is
naturally connected with its discrete analogue on the Z2-lattice, which has also been studied
[9, 13]. We further refer to [10] for an analogous problem in the hexagonal norm.

To our knowledge, our result is the first rigorous one for the ℓ1 double-bubble problem in three
dimensions. In fact, our arguments build on the available understanding of the planar case by
means of a slicing argument. We slice the minimizing configuration with respect to a specific axis
direction and we bound the 3D energy E in terms of an integral of the planar energies of the slices.
Moving from the knowledge of the exact value of the 2D minimal energy, see Proposition 2.2, this
slicing approach allows us to obtain an estimate of the minimal 3D energy E, see Proposition 2.3.
This eventually turns out to completely characterize optimal configurations.

The remainder of the paper is devoted to proving Theorem 1.1. In particular, the proof of
Theorem 1.1 is given in Section 2, based on a few technical lemmas. These lemmas are then
proved in Section 3.

2. Proof of the main result

As mentioned in the Introduction, the core step of the proof of Theorem 1.1 is that of estimating
from below the minimal value of the energy E by taking advantage of the characterization of
minimizers in the planar case. We hence start by recalling the 2D result in Subsection 2.1. We
then collect some notation and present a crucial optimal bound in Subsection 2.2. After stating
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some technical lemmas in Subsection 2.3, the actual proof of Theorem 1.1 is given in Subsection 2.4.
Eventually, the technical lemmas from Subsection 2.3 are proved in Section 3.

2.1. The planar case. Let us start by recalling the 2D result. Given a planar finite perimeter
set F2D ⊂ R2, we denote by ∂∗

2DF2D ⊂ R2 its planar reduced boundary, and by ν = (ν1, ν2)
the corresponding (measure-theoretic) planar outer unit normal. For all H1-rectifiable subsets
φ ⊂ ∂∗

2DF2D, we denote by

ℓ1,2D(φ) =

∫
φ

(|ν1|+ |ν2|) dH1

its length with respect to the ℓ1-norm in the plane.

We indicate the minimal energy of a planar double bubble with regions of fixed areas a, b > 0
as

E2D(a, b) := min
{
ℓ1,2D(∂∗

2DA2D) + ℓ1,2D(∂∗
2DB2D)− ℓ1,2D(∂∗

2DA2D ∩ ∂∗
2DB2D) :

A2D, B2D ⊂ R2 of finite perimeter with

A2D ∩B2D = ∅, L2(A2D) = a, L2(B2D) = b
}
. (2.1)

Define now the value

r∗ =

(
4(
√
2− 1)

1 + 2
√
2

)2

∼ 0.1872957155. (2.2)

The main result in the planar case is the following [9, 14].

Proposition 2.1 (Characterization of the planar minimizer). Up to translations and axis-preserving
isometries, the configurations (A2D, B2D) realizing the minimum in (2.1) are given by

• Case a/b ∈ [1/2, 1]

A2D = [−a/c, 0]× [0, c], B2D = [0, b/c]× [0, c] with c =

√
2(a+ b)

3
,

and corresponding energy E2D(a, b) = 2
√
6
√
a+ b;

• Case a/b ∈ [r∗, 1/2]

A2D = [−a/c, 0]× [0, c] + (0, λ), B2D = [0,
√
b]2 with c =

√
2a

for some λ ∈ [0,
√
b− c], and corresponding energy E2D(a, b) = 2

√
2a+ 4

√
b;

• Case a/b ∈ (0, r∗]

A2D = [0,
√
a]2, B2D = [0,

√
a+ b]2 \A2D,

with corresponding energy E2D(a, b) = 4
√
a+ b+ 2

√
a.

An illustration of the three types of minimizers of the planar double-bubble problem is given in
Figure 2.

Type I Type II Type III

Figure 2. Minimizers for the planar double-bubble problem (2.1).
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2.2. Notation and optimal lower bound. We start by introducing some notation used through-
out the rest of the paper.

At first, let us consider the specific geometry of Figure 1. It consists of the union of two cuboids
sharing a square face. Indicating by M the area of such a shared face, the cuboids have a square
cross section of sidelength

√
M and have heigth VA/M and VB/M , respectively. Within this specific

class of configurations, one can identify the minimal value of the energy by simply computing

Emin := min
M>0

(
3M +

4(VA + VB)√
M

)
. (2.3)

Indeed, such configuration features seven faces: three squares with area M and four rectangular
faces with sidelengths

√
M and (VA + VB)/M .

Let now (A,B) be a pair of disjoint sets of finite perimeter in R3, not necessarily being cuboids,
satisfying

r :=
VB

VA
∈ [1/2, 2].

Choose a plane spanned by two coordinate directions, and denote the area of the orthogonal
projection of A ∪ B onto the plane by m, as well as the area of the projection of the two sets A
and B by mA and mB , respectively. We further set

p :=
mA +mB

m
− 1. (2.4)

The value p describes the size of the overlap of the projections of A and B onto the chosen plane.
Up to redefining the axes, in the following we assume that such plane is given by R2×{0}, so that
the projection occurs in the z direction.

We consider horizontal slices R2 × {t} and set

a(t) = L2
(
A ∩ (R2 × {t})

)
, b(t) = L2

(
B ∩ (R2 × {t})

)
.

Fubini’s Theorem ensures that

VA =

∫
R
a(t) dt, VB =

∫
R
b(t) dt. (2.5)

Let T0 = {t : ra(t) = b(t) > 0}, TA = {t : ra(t) > b(t)} and TB = {t : ra(t) < b(t)}. For
convenience, we define

UA =

∫
TA

(a(t) + b(t)) dt, UB =

∫
TB

(a(t) + b(t)) dt, U0 =

∫
T0

(a(t) + b(t)) dt.

Clearly, VA + VB = UA + UB + U0. For t ∈ TA, we set α(t) = b(t)/a(t) ∈ [0, r) and for t ∈ TB , we
set β(t) = a(t)/b(t) ∈ [0, 1/r). Since rL3(A) = rVA = VB = L3(B), we have by the definition of T0

r

∫
TA∪TB

a(t) dt =

∫
TA∪TB

b(t) dt

and therefore∫
TA

a(t)(r − α(t)) dt =

∫
TA

(ra(t)− b(t)) dt =

∫
TB

(b(t)− ra(t)) dt =

∫
TB

b(t)(1− rβ(t)) dt. (2.6)

These definitions allow us to restate the result in the planar case from Proposition 2.1 as follows.

Proposition 2.2 (Minimal planar energy). Recall the definition of r∗ in formula (2.2) and define
the function f : [0,∞) → R by

f(x) =
(
4 + 2

√
x

x+ 1

)
χ[0,r∗] +

4 + 2
√
2x√

x+ 1
χ(r∗,1/2] + 2

√
6χ(1/2,1]

for x ∈ [0, 1] and by f(x) = f(1/x) for x > 1. Then, for t ∈ TA we have

E2D(a(t), b(t)) =
√

a(t) + b(t)f(α(t)),

for t ∈ TB we have

E2D(a(t), b(t)) =
√
a(t) + b(t)f(β(t)),

and for t ∈ T0 we have

E2D(a(t), b(t)) = 2
√
6
√

a(t) + b(t).
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Along the proof of Theorem 1.1, we make use of the explicit values of the minimal energy in the
planar case in order to estimate E by considering horizontal slices with respect to a well-chosen
coordinate direction. We assume that the parameter p given by (2.4) describing the overlap between
projections of the two sets A and B in the z direction satisfies p ≤ 1/3. In fact, Lemma 2.5 shows
that this is not restrictive, up to possibly relabeling the axes. The core of the proof of Theorem
1.1 consists in the following claim.

Proposition 2.3 (Optimal lower bound). Let (A,B) be any configuration of disjoint sets with
finite perimeter, with rL3(A) = rVA = VB = L3(B) for r ∈ [1/2, 2]. Suppose that p ≤ 1/3. Then,

E(A,B) ≥ (2 + p)m+
4
√
6√

4 + 2p
√
m
(UA + UB) +

2
√
6√
m

U0. (2.7)

Moreover, the equality in (2.7) is attained if and only if L1(TA) = L1(TB) = 0 and a(t)+ b(t) = m
for t ∈ T0 \ N , where N is a set of negligible L1-measure.

Moving from the optimal lower bound (2.7), the proof of Theorem 1.1 follows by proving that
the configuration in Figure 1 is the only one (up to translations and axis-preserving isometries)
realizing the equality case. This in particular follows by checking that actually p = 0 for the
minimizer, so that the two sets A and B have disjoint projections.

Proposition 2.3 is proved in Subsection 2.4 below. As a preparation, in the next subsection we
state some auxiliary results whose proofs are postponed to Section 3.

2.3. Statements of auxiliary results. First, we will state a slicing result for the double-bubble
energy. To this end, we will assume that the vertical direction corresponds to the last coordinate.
Letting G ⊂ R3 be any set of finite perimeter, we indicate by Gt = G ∩ (R2 × {t}) the horizontal
slice at level t in the z direction and denote by π3G the orthogonal projection of G on R2 × {0}.

Lemma 2.4 (Slicing lemma). Suppose that A and B are disjoint bounded sets of finite perimeter.
Then,

E(A,B) ≥
∫
R
E2D(a(t), b(t)) dt+ 2H2(π3A ∪ π3B) +H2(π3A ∩ π3B).

Let us state a result showing that the assumption p ≤ 1/3 is not restrictive, up to relabeling
the axes. Indeed, we have the following.

Lemma 2.5 (Upper bound on p). Suppose that (A,B) is an optimal configuration. Then, we can
pick a coordinate direction such that p ≤ 1/3, with p defined in (2.4) on the basis of the projections
m, mA, and mB along that coordinate direction.

The last technical lemma concerns the properties of some auxiliary functions depending on the
function f defined in Proposition 2.2. We separated it from the proof of the main result in order
to simplify the argument, as this algebraic calculation simply follows from the very definition of f .

Lemma 2.6 (Functions grA and grB). Suppose that

mA ≥ 2 + p

3
m >

1 + 2p

3
m ≥ mB , (2.8)

where p ∈ [0, 1/3]. Define

grA(α) :=
1 + α

r − α

( f(α)

min{
√
m,
√

(1 + α)mA}
− 4

√
6√

4 + 2p
√
m

)
,

grB(β) :=
1 + β

1− rβ

( f(β)

min{
√
m,
√
(1 + β)mB}

− 4
√
6√

4 + 2p
√
m

)
. (2.9)

Then, we have

(a) min
α∈[0,r]

(grA(α)) = grA(0) ≤ 0, (b) min
β∈[0, 1r ]

grB(β) = grB(0) > 0.
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2.4. Proof of Theorem 1.1. Moving from the discussion in the beginning of Section 2, the
first step in the proof of Theorem 1.1 is to show that inequality (2.7) holds for all admissible
configurations (A,B). Therefore, we first prove Proposition 2.3. Recall that the proofs of the
auxiliary Lemmas 2.4–2.6 are postponed to Section 3.

Proof of Proposition 2.3. Step 1. By Lemma 2.4 and the definition of the projections m and p, a
first lower bound for the energy of a configuration (A,B) is given by

E(A,B) ≥ (2 + p)m+

∫
R
E2D(a(t), b(t)) dt.

We now use the expression for E2D(a(t), b(t)) from Proposition 2.2 to get

E(A,B) ≥ (2 + p)m+

∫
TA

√
a(t) + b(t)f(α(t)) dt

+

∫
TB

√
a(t) + b(t)f(β(t)) dt+

∫
T0

2
√
6
√
a(t) + b(t) dt. (2.10)

By definition, we have a(t) + b(t) ≤ m for all t ∈ R. We first estimate the last addend in (2.10) by∫
T0

2
√
6
√
a(t) + b(t) dt ≥

∫
T0

2
√
6√
m

(a(t) + b(t)) dt =
2
√
6√
m

U0, (2.11)

with strict inequality if and only if a(t) + b(t) < m on a subset of T0 with positive L1-measure.

Now, we estimate the second addend in (2.10). We again use that a(t) + b(t) ≤ m for all t ∈ R,
this time together with

a(t) + b(t) ≤ (1 + α(t))mA for t ∈ TA,
to get ∫

TA

√
a(t) + b(t)f(α(t)) dt ≥

∫
TA

(a(t) + b(t))
f(α(t))

min{
√
m,
√

((1 + α(t))mA}
dt (2.12)

with strict inequality if and only if

a(t) + b(t) < min{m, ((1 + α(t))mA}
on a subset of TA with positive L1-measure. One can verify that the function f(x)/

√
1 + x is

increasing on the interval [0, 2/
√
3− 1] and decreasing on the interval [2/

√
3− 1, 1/2]. Therefore,

the minimum is exactly attained in 0 or 1
2 , and one can check that its values at 0 and 1/2 are

equal, namely

f(0) = 4 =
f(1/2)√
1 + 1/2

.

Moreover, we have f(x) = 2
√
6 for 1/2 ≤ x ≤ 2. Therefore,∫

TA

√
a(t) + b(t)f(α(t)) dt ≥

∫
TA

(a(t) + b(t))min

{
2
√
6√
m

,
4

√
mA

}
dt, (2.13)

with strict inequality ifmA ≤ 2m/3 and a(t)+b(t) < m on a subset of TA with positive L1-measure.
In fact, ifm ≤ ((1 + α(t))mA, we have strict inequality already in (2.12), and ifm > ((1 + α(t))mA,
we have strict inequality between the right-hand sides of (2.12) and (2.13) sincemA ≤ 2m/3 implies

min{ 2
√
6√

m
, 4√

mA
} = 2

√
6√

m
.

We similarly estimate the third addend in (2.10): since a(t) + b(t) ≤ m for all t ∈ R and

a(t) + b(t) ≤ (1 + β(t))mB for t ∈ TB ,
we have∫

TB

√
a(t) + b(t)f(β(t)) dt ≥

∫
TB

(a(t) + b(t))
f(β(t))

min{
√
m,
√
((1 + β(t))mB}

dt, (2.14)

so in particular∫
TB

√
a(t) + b(t)f(β(t)) dt ≥

∫
TB

(a(t) + b(t))min

{
2
√
6√
m

,
4

√
mB

}
dt, (2.15)
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with strict inequality ifmB ≤ 2m/3 and a(t)+b(t) < m on a subset of TB with positive L1-measure.
We collect these estimates and deduce from (2.10) that

E(A,B) ≥ (2 + p)m+

∫
TA

(a(t) + b(t))min

{
2
√
6√
m

,
4

√
mA

}
dt (2.16)

+

∫
TB

(a(t) + b(t))min

{
2
√
6√
m

,
4

√
mB

}
dt+

2
√
6√
m

U0.

To simplify a later argument in Step 2 below, we rewrite the above inequality in an equivalent
form. Let us introduce the notation

p̃ =
√
6
√
1 + p/2−

√
6

and

Û =
4
√
6√

4 + 2p
√
m
(UA + UB) +

2
√
6√
m

U0,

where Û corresponds to the last two terms in the right-hand side of (2.7). By adding and sub-

tracting 4
√
6√

4+2p
√
m
(a(t) + b(t)) to both integrals, and recalling that integration of a(t) + b(t) over

TA recovers UA (and similarly for B), we can write inequality (2.16) as

E(A,B) ≥ (2 + p)m+

∫
TA

4(a(t) + b(t))√
4 + 2p

√
m
√
mA

min
{
p̃
√
mA,

√
4 + 2p

√
m−

√
6mA

}
dt (2.17)

+

∫
TB

4(a(t) + b(t))√
4 + 2p

√
m
√
mB

min
{
p̃
√
mB ,

√
4 + 2p

√
m−

√
6mB

}
dt+ Û .

Step 2. In order to proceed with the proof of (2.7), we shall check that the integrals on the
right-hand side of (2.17) are not negative. We separately consider the following mutually exclusive
alternatives:

(1) At least one of the sets TA and TB has zero measure. Then, using (2.6) we get that both
TA and TB have zero measure, and (2.7) follows. Moreover, the inequality is strict if and only if
a(t) + b(t) < m on a subset of T0 of positive L1-measure, see (2.11).

(2) Both sets TA, TB have positive measure and√
4 + 2p

√
m >

√
6mA and

√
4 + 2p

√
m >

√
6mB . (2.18)

The inequality (2.7) follows from (2.17) since the integrands are positive. Furthermore, the in-
equality is strict whenever p > 0. If p = 0, given that mA < 2m/3 and mB < 2m/3, the separate
estimates for T0, TA and TB which are given in inequalities (2.11), (2.13), and (2.15) respectively,
imply that the inequality is strict whenever a(t) + b(t) < m on a subset of T0 ∪ TA ∪ TB with
positive L1-measure. Since in this case we have m = mA +mB , equality in (2.7) shows a(t) = mA

and b(t) = mB for a.e. t. In view of (2.5), this gives r = VB/VA = mB/mA. Thus, ra(t) = b(t) for
a.e. t, which implies L1(TA) = L1(TB) = 0, and we are back in case (1).

(3) Both sets TA, TB have positive measure and condition (2.18) fails, i.e., we have√
4 + 2p

√
m ≤

√
6mA or

√
4 + 2p

√
m ≤

√
6mB ,

which we rewrite as

max{mA,mB} ≥ 2 + p

3
m. (2.19)

The rest of the proof (including Step 3) concerns this case. Recall the definition of the functions
grA and grB in Lemma 2.6. Using these definitions, we can rewrite estimate (2.12) as∫

TA

√
a(t) + b(t)f(α(t)) dt ≥

∫
TA

a(t)(r − α(t))grA(t) dt+
4
√
6√

4 + 2p
√
m
UA,
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and similarly we can rewrite (2.14) as∫
TB

√
a(t) + b(t)f(β(t)) dt ≥

∫
TB

b(t)(1− rβ(t))grB(t) dt+
4
√
6√

4 + 2p
√
m
UB .

By plugging this into (2.10), and using (2.11) for the last addend, we get

E(A,B) ≥ (2 + p)m+

∫
TA

a(t)(r − α(t))grA(t) dt+

∫
TB

b(t)(1− rβ(t))grB(t) dt+ Û .

Step 3. From now on, we assume without restriction that mA ≥ mB . Hence, mB = (1+p)m−mA,
and by (2.19) we get mB ≤ 1+2p

3 m. From Lemma 2.6 we have

(i) min
β∈[0,1/r)

grB(β) = grB(0) > 0, (ii) max
α∈[0,r)

(−grA(α)) = −grA(0) ≥ 0,

and thus

inf
t∈TB

grB(β(t))− sup
t∈TA

(−grA(α(t))) ≥ grB(0) + grA(0).

As grA(0) ≤ 0 for each r, we get by monotonicity in r that

inf
t∈TB

grB(β(t))− sup
t∈TA

(−grA(α(t))) ≥ g
1/2
B (0) + g

1/2
A (0) =

4
√
mB

+
8

√
mA

− 12
√
6√

4 + 2p
√
m
.

By the definition of p, we have mB = m(1 + p)−mA, and thus

inf
t∈TB

grB(β(t))− sup
t∈TA

(−grA(α(t))) ≥
1√
m

( 4√
1 + p− mA

m

+
8√
mA

m

− 12
√
6√

4 + 2p

)
. (2.20)

We minimize the sum of the first two addends in terms of mA/m ∈ [0, 1] and get

inf
t∈TB

grB(β(t))− sup
t∈TA

(−grA(α(t))) ≥
1√
m

(4(1 + 22/3)3/2√
1 + p

− 12
√
6√

4 + 2p

)
. (2.21)

Optimizing with respect to p ∈ [0, 1/3] we conclude

c2 := inf
t∈TB

grB(β(t)) > sup
t∈TA

(−grA(α(t))) =: c1.

Then, denoting the value of the integrals in (2.6) by U∗, using that r−α ≥ 0 on TA and 1− rβ ≥ 0
on TB we get from Step 2 that

E(A,B) ≥ (2 + p)m+

∫
TA

a(t)(r − α(t))grA(t) dt+

∫
TB

b(t)(1− rβ(t))grB(t) dt+ Û

= (2 + p)m−
∫
TA

a(t)(r − α(t))(−grA(t)) dt+

∫
TB

b(t)(1− rβ(t))grB(t) dt+ Û

≥ (2 + p)m+ c2

∫
TB

b(t)(1− rβ(t)) dt− c1

∫
TA

a(t)(r − α(t)) dt+ Û

= (2 + p)m+ (c2 − c1)U∗ + Û .

Recall that the term Û is exactly the one appearing in (2.7). Therefore, whenever U∗ > 0, the
inequality in (2.7) is strict. Hence, in the case of equality, we have U∗ = 0, but by the definition of
U∗ this implies that L1(TA) = L1(TB) = 0, and we are back to case (1) from Step 2 above. This
concludes the proof. 2

Having established Proposition 2.3, we can proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. As UA + UB + U0 = VA + VB and p ≥ 0, we use (2.7) in order to estimate

E(A,B) ≥ (2 + p)m+
4
√
6√

4 + 2p
√
m
(VA + VB),

where an equality is possible only if p = 0. Then, by the change of variables M = (2+ p)m/3, and
optimizing with respect to all possible values M > 0 and p ∈ [0, 1/3], we find E(A,B) ≥ Emin (see
(2.3)) with equality only if L1(TA) = L1(TB) = 0 and a(t) + b(t) = m for t ∈ T0 \ N . Optimizing
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with respect to M in (2.3) indeed gives the minimal energy given in Theorem 1.1. Moreover, we
observe that this energy is attained by the configuration indicated in Theorem 1.1.

We can characterize ground states uniquely as follows: the above argument shows that any
minimizer necessarily has UA = UB = 0, U0 = VA+VB , and p = 0. This yields that the projection
of A and B must have empty intersection and each slice with t ∈ T0 \ N has the same geometry.
By the planar double-bubble result of Proposition 2.1, this geometry is then given by two specific
rectangles joined at one face, namely the configuration from Theorem 1.1. 2

3. Proofs of the auxiliary results

3.1. Proof of Lemma 2.4. Let us recall a classical slicing result for rectifiable sets, see for instance
[17, Section 18.3]. Suppose that F ⊂ R3 is a rectifiable set with H2(F ) < +∞. Recall that Ft is
the horizontal slice of the set F at level t in direction x3, i.e.,

Ft = F ∩ {(x1, x2, t) : (x1, x2) ∈ R2}.
In a similar fashion, we let

F (x1,x2) := F ∩ {(x1, x2, y) : y ∈ R},

and get that H0(F (x1,x2)) is finite for almost every (x1, x2). For every Borel function g : R3 →
[−∞,∞] with g ≥ 0 or g ∈ L1(R3) we have∫

F

g
√
1− (νF · e3)2 dH2 =

∫
R

∫
Ft

g dH1 dt, (3.1)

where νF denotes the unit normal to F , as well as∫
F

|νF · e3|dH2 =

∫
R2

H0
(
F (x1,x2)

)
d(x1, x2). (3.2)

We are now ready to prove the slicing Lemma 2.4.

Proof of Lemma 2.4. Let G := A ∪B and F := ∂∗A ∪ ∂∗B. We split the ℓ1-perimeter of F into a
‘vertical’ and ‘horizontal’ part. To be exact, we write

E(A,B) =

∫
F

|νF |1 dH2 =

∫
F

(|ν′F |1 + |(νF )3|) dH2,

where we denote x = (x′, x3) with x′ ∈ R2. Recall that we use the notation | · |1 to denote the
ℓ1-norm of a vector both in two and three dimensions. The ‘vertical’ part and the ‘horizontal’ part
is given by the integration of |ν′F |1 = |(νF )1| + |(νF )2| and |(νF )3| over F , respectively. To this
end, we introduce the function

ḡ =
|(νF )1|+ |(νF )2|√

1− (νF · e3)2
.

We use (3.1) with g = ḡ on F (and 0 otherwise) and get∫
F

|ν′F |1 dH2 =

∫
F

ḡ
√
1− (νF · e3)2 dH2 =

∫
R

∫
Ft

ḡ dH1dt =

∫
R
ℓ1(Ft) dt,

where in the last step we used the fact that 1√
1−(νF ·e3)2

ν′F ∈ R2 is a unit normal to Ft. Since for

a.e. t ∈ R we have Ft = (∂∗A ∪ ∂∗B)t, the value ℓ1(Ft) corresponds to the double-bubble energy
of the configuration (At, Bt), and consequently we get

ℓ1(Ft) ≥ E2D(a(t), b(t)),

because the areas of At and Bt are a(t) and b(t), respectively. Therefore,∫
F

|ν′F |1 dH2 ≥
∫
R
E2D(a(t), b(t)) dt. (3.3)

On the other hand, the ‘horizontal’ term can be estimated in terms of the area of the largest
horizontal slice. By (3.2) we get∫

F

|(νF )3|dH2 =

∫
R2

H0
(
F (x1,x2)

)
d(x1, x2).
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For H2-a.e. (x1, x2) ∈ (π3A ∪ π3B) \ (π3A ∩ π3B) we have H0((∂∗G)(x1,x2)) ≥ 2, and for H2-a.e.
(x1, x2) ∈ (π3A ∩ π3B) we have H0((∂∗G)(x1,x2)) ≥ 3. This shows∫

F

|(νF )3|dH2 =

∫
R2

H0
(
F (x1,x2)

)
d(x1, x2) ≥ 2H2(π3A ∪ π3B) +H2(π3A ∩ π3B). (3.4)

Combining (3.3) and (3.4) concludes the proof. 2

3.2. Proof of Lemma 2.5. Denote by (m1,m2,m3) the areas of projections of A ∪ B on all
coordinate directions, by (mA

1 ,m
A
2 ,m

A
3 ) the areas of projections of A, and by (mB

1 ,m
B
2 ,m

B
3 ) the

areas of projections of B. Then, for i = 1, 2, 3 let pi = (mA
i +mB

i )/mi − 1 and suppose by
contradiction that pi > 1/3 for all i.

Letting F = ∂∗A ∪ ∂∗B, by arguing as in the proof of inequality (3.4) we get

E(A,B) =

∫
F

|νF |1 dH2 =

3∑
i=1

∫
F

|(νF )i|dH2 ≥
3∑

i=1

(
2H2(πiA ∪ πiB) +H2(πiA ∩ πiB)

)
,

where πi denotes the orthogonal projection on the plane with normal vector ei. Then, we get

E(A,B) ≥
3∑

i=1

(2mi + pimi) >

3∑
i=1

(2mi +
1

3
mi) =

7

3

3∑
i=1

mi.

Now, if we let m = (m1 +m2 +m3)/3, we have

E(A,B) >
7

3

3∑
i=1

mi = 7m.

But this is the double-bubble energy of the following configuration (Â, B̂): the set Â∪ B̂ is a cube

with area of each side equal to m, both sets Â and B̂ are cuboids, and the interface between them
is a square of area m which is parallel to one of the sides of the original cube. The placement of the
interface is such that the volume ratio is preserved. By the isoperimetric inequality for the ℓ1-norm,
the volume of Â ∪ B̂ is greater or equal to the volume of A ∪B. Thus, since E(A,B) > E(Â, B̂),
the original configuration (A,B) was not optimal: a contradiction.

3.3. Proof of Lemma 2.6. We start by observing that grA(0) ≤ 0 and grB(0) > 0. In fact, using
that mA/m ≥ (2 + p)/3 (see assumption (2.8)), we get

4
√
6√

4 + 2p
− 4√

mA/m
≥ 4

√
6√

4 + 2p
− 4

√
3√

2 + p
= 0

all p ∈ [0, 1/3] which shows that grA(0) ≤ 0 since f(0) = 4. In a similar fashion, grB(0) > 0 follows
from

4√
mB/m

− 4
√
6√

4 + 2p
≥ 4

√
3√

1 + 2p
− 4

√
6√

4 + 2p
> 0

for all p ∈ [0, 1/3], where we used mB/m ≤ (1 + 2p)/3, see (2.8).

The main part of the proof consists now in checking that grA and grB attain their minima at 0.
The proof is structured as follows. In Step 1 we first show that the problem can be reduced to the
cases r = 1/2 and r = 1. In Step 2 we introduce several auxiliary functions and use their specific
properties to prove the statement. The proof of these properties is then given in Steps 3–8.

Step 1. Let us reduce the problem to specific values of r: we claim that it suffices to show

(i) minα∈[0,1] g
1
A(α) = g1A(0),

(ii) minα∈[0,1/2] g
1/2
A (α) = g

1/2
A (0),

(iii) minβ∈[0,2] g
1/2
B (β) = g

1/2
B (0).

We assume for the moment that the conditions (i)–(iii) hold, and show the statement of Lemma 2.6.
For simplicity, we use the abbreviation

v(x, y) =
f(x)

min{
√
m,
√

(1 + x)y}
− 4

√
6√

4 + 2p
√
m
.
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We start by proving (a) of Lemma 2.6. As grA(0) ≤ 0, it is not restrictive to consider only α ∈ [0, r]
with grA(α) ≤ 0. Suppose first that r ≥ 1. We write

grA(α) =
1

r

1 + α

1− α
r

v(α,mA) =
1

r

1− α

1− α
r

1 + α

1− α
v(α,mA) =

1

r

1− α

1− α
r

g1A(α).

If α ∈ [0, 1], we have 0 ≤ 1−α
1−α

r
≤ 1. This, along with the above relation and (i), implies that

0 ≥ g1A(α) ≥ g1A(0),

and consequently

grA(α) ≥
1

r
g1A(0) = grA(0).

If instead 1 ≤ α ≤ r ≤ 2, by Proposition 2.2 and assumption (2.8) we have

grA(α) =
1 + α

r − α

(2√6√
m

− 4
√
6√

4 + 2p
√
m

)
≥ 0.

Thus, the minimum of grA is attained at α = 0 with grA(0) ≤ 0.

On the other hand, if 1/2 ≤ r < 1, we first write

grA(α) =
1

r

1 + α

1− α
r

v(α,mA) =
1

r

1
2 − α

1− α
r

1 + α
1
2 − α

v(α,mA) =
1

r

1
2 − α

1− α
r

g
1/2
A (α).

If α ∈ [0, 1/2], we have 0 ≤ 1/2−α
1−α/r ≤ 1/2. This, together with the above relation and (ii), shows

0 ≥ g
1/2
A (α) ≥ g

1/2
A (0),

and then also

grA(α) ≥
1

2r
g
1/2
A (0) = grA(0).

If instead 1/2 ≤ α ≤ r ≤ 1, by Proposition 2.2 and assumption (2.8) we have

grA(α) =
1 + α

r − α

(2√6√
m

− 4
√
6√

4 + 2p
√
m

)
≥ 0,

and thus the minimum of grA is attained at α = 0 with grA(0) ≤ 0.

Let us now come to the proof of (b) of Lemma 2.6. We first write

grB(β) =
1 + β

1− rβ
v(β,mB) =

1− β
2

1− rβ

1 + β

1− β
2

v(β,mB) =
1− β

2

1− rβ
g
1/2
B (β).

Recall that g
1/2
B (0) > 0. Then, for β ∈ [0, 1/r], by 1−β/2

1−rβ ≥ 1 and g
1/2
B (β) ≥ g

1/2
B (0) > 0 (see (iii)),

we conclude
grB(β) ≥ g

1/2
B (0) = grB(0),

i.e., grB attains its minimum at β = 0.

Step 2. We now proceed with the proof of the properties (i)–(iii). To this end, we define the
auxiliary functions

hr
1(x) =

1 + x

r − x

( √
6√

1 + p
2

− f(x)

2

)
,

hr
2(x) =

1 + x

1− rx

( √
6√

1 + p
2

− f(x)

2

)
,

hr
3(x) =

1 + x

r − x

( √
6√

1 + p
2

−
√
m

√
mA

f(x)

2
√
1 + x

)
,

and

hr
4(x) =

1 + x

1− rx

( √
6√

1 + p
2

−
√
m

√
mB

f(x)

2
√
1 + x

)
.

Recalling the definition of the function grA in (2.9), we have

−grA(α) =
2√
m

min(hr
1(α), h

r
3(α)).
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In other words, it is given by hr
3(α) for α ∈ [0,m/mA − 1] and by hr

1(α) for α ∈ [m/mA − 1, r]. In
Steps 3–5 below we show for r = 1/2 or r = 1 that hr

1 is decreasing and hr
3 achieves its maximum on

the interval [0,m/mA − 1] at 0. This will show that −grA is maximized (and thus grA is minimized)
at 0 for r = 1/2 or r = 1. In a similar fashion, we have

g
1/2
B (β) =

2√
m

max(−h
1/2
2 (β),−h

1/2
4 (β)).

In other words, it is given by −h
1/2
4 (β) for β ∈ [0,m/mB − 1] and by −h

1/2
2 (β) for β ∈ [m/mB −

1, 1/r]. In Steps 6–8 below we show that h
1/2
2 is decreasing, so that −h

1/2
2 is increasing, and that

h
1/2
4 attains its maximum at 0. This is enough to conclude that g

1/2
B is minimized at 0.

Step 3. We first check that hr
1 is decreasing on [0, r]. For later purposes, we derive this property

not only for r = 1/2 and r = 1 but also for r = 2. Recall the value r∗ defined in (2.2). We will
check separately the cases x ∈ [0, r∗], x ∈ [r∗, 1/2], and x ∈ [1/2, r], where the case x ∈ [1/2, r] is

only necessary for r = 1 or r = 2. For x ∈ [0, r∗], we have f(x) = 4 + 2
√
x/(1 + x), so

hr
1(x) =

1 + x

r − x

( √
6√

1 + p
2

− 2−
√
x√

1 + x

)
.

Let C1 =
√
6√

1+p/2
− 2 ≤

√
6− 2. For r = 1/2, 1, or 2, we compute the derivative and get

(hr
1)

′(x) =
2C1(1 + r)

√
x(x+ 1)− (1 + 2r)x− r

2(x− r)2
√
x(x+ 1)

.

A direct calculation yields

2C1(1 + r)
√
x(x+ 1)− (1 + 2r)x− r < 0

for all x ∈ [0, r∗] and r = 1/2, 1, or 2, so that hr
1 is decreasing on the interval [0, r∗].

Similarly, for x ∈ [r∗, 1/2], we have f(x) = (4 + 2
√
2x)/

√
1 + x, so

hr
1(x) =

1 + x

r − x

( √
6√

1 + p
2

− 2√
1 + x

−
√
2x√

1 + x

)
.

Denote by C2 =
√
6√

1+p/2
≤

√
6. For r ∈ {1/2, 1, 2}, we directly calculate the derivative and get

(hr
1)

′(x) =
(2 + 2r)C2

√
x(x+ 1)− 2

√
x(x+ 2 + r)−

√
2((1 + 2r)x+ r)

2(x− r)2
√

x(x+ 1)

≤
(2 + 2r)

√
6
√
x(x+ 1)− 2

√
x(x+ 2 + r)−

√
2((1 + 2r)x+ r)

2(x− r)2
√
x(x+ 1)

≤ 0

with equality if and only if x = 1/2. Hence, hr
1 is also decreasing on the interval [r∗, 1/2], and

consequently we have shown that hr
1 is decreasing on the whole interval [0, 1/2].

Finally, for x ∈ [1/2, r], we just need to consider the cases r = 1 and r = 2. We have f(x) = 2
√
6,

so

h1
1(x) =

1 + x

r − x

( √
6√

1 + p
2

−
√
6
)
.

We compute the derivative and get

(h1
1)

′(x) =
( √

6√
1 + p

2

−
√
6
) 1 + r

(r − x)2
≤ 0.

Hence, hr
1 is decreasing on [0, r] for r = 1/2, 1, or 2.

Step 4. Now, we focus on hr
3. By (2.8), we have m/mA− 1 ≤ 1/2. In this step we show that hr

3 is
maximized on [0,m/mA − 1] at one of the three points 0, m/mA − 1, or r∗ (and that the latter is
only possible if r∗ ≤ m/mA − 1). The values at the three points will then be compared in Step 5.
To this end, we will analyze the monotonicity of hr

3. More precisely, we check that in the intervals
[0, r∗] and [r∗, 1/2] the function (hr

3)
′ changes sign at most once and, if it does, it changes from
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minus to plus (as x increases). This indeed shows that the maximum is attained at 0, m/mA − 1,
or r∗.

Let us come to the details. For x ∈ [0, r∗], we have f(x) = 4 + 2
√

x/(1 + x), so

hr
3(x) =

1 + x

r − x

( √
6√

1 + p
2

−
√
m

√
mA

· 2√
1 + x

−
√
m

√
mA

·
√
x

1 + x

)
.

For r = 1/2 or r = 1, we directly compute the first derivative and get

(hr
3)

′(x) =

√
6√

1 + p
2

(1 + x

r − x

)′
−

√
m

√
mA

(1 + x

r − x
· 2√

1 + x

)′
−

√
m

√
mA

(1 + x

r − x
·

√
x

1 + x

)′
=

√
6√

1 + p
2

· 1 + r

(r − x)2
−

√
m

√
mA

· r + x+ 2

(r − x)2(1 + x)1/2
−

√
m

√
mA

· r + x

2
√
x(r − x)2

= (r − x)−2
( √

6√
1 + p

2

(1 + r)−
√
m

√
mA

· r + x+ 2

(1 + x)1/2
−

√
m

√
mA

· r + x

2
√
x

)
.

Note that

x 7→ − r + x+ 2

(1 + x)1/2
− r + x

2
√
x

is increasing on [0, r∗], and thus (hr
3)

′ can change sign at most once (from negative to positive as

x increases). For x ∈ [r∗, 1/2], we have f(x) = (4 + 2
√
2x)/

√
1 + x, and thus

hr
3(x) =

1 + x

r − x

( √
6√

1 + p
2

−
√
m

√
mA

· 2

1 + x
−

√
m

√
mA

·
√
2x

1 + x

)
.

For r = 1/2 or r = 1, we calculate the first derivative and obtain

(hr
3)

′(x) =

√
6√

1 + p
2

(1 + x

r − x

)′
−

√
m

√
mA

(1 + x

r − x
· 2

1 + x

)′
−

√
m

√
mA

(1 + x

r − x
·
√
2x

1 + x

)′
=

√
6√

1 + p
2

· 1 + r

(r − x)2
−

√
m

√
mA

· 2

(r − x)2
−

√
m

√
mA

· r + x√
2(r − x)2x1/2

= (r − x)−2
( √

6√
1 + p

2

(1 + r)− 2

√
m

√
mA

−
√
m

√
mA

r + x√
2x

)
.

We note that x 7→ −2− (r + x)/
√
2x is increasing on [r∗, 1/2], i.e., (h

r
3)

′ can change sign at most
once.

Step 5. As seen in Step 4, hr
3 attains its maximum on the interval [0,m/mA − 1] at one of the

points 0, r∗, and m/mA−1, where r∗ is only possible if r∗ ≤ m/mA−1. Using f(r∗) =
20
41 (7+2

√
2),

we compute explicitly the three values and get

hr
3(0) =

√
6

r
√

1 + p
2

− 2

√
m

r
√
mA

,

hr
3(r∗) =

1 + r∗
r − r∗

( √
6√

1 + p
2

−
√
m

√
mA

10(7 + 2
√
2)

41
√
1 + r∗

)
,

and

hr
3

(
m

mA
− 1

)
=

m
mA

1 + r − m
mA

( √
6√

1 + p
2

−
√
m

√
mA

f( m
mA

− 1)

2
√

m
mA

)

=
m
mA

1 + r − m
mA

( √
6√

1 + p
2

−
f( m

mA
− 1)

2

)
.



14 M. FRIEDRICH, W. GÓRNY, AND U. STEFANELLI

To see that hr
3(0) ≥ hr

3(r∗) in the case r∗ ≤ m/mA − 1, it suffices to observe that, for r = 1/2 or
r = 1, (10(7 + 2

√
2)

41

√
1 + r∗
r − r∗

− 2

r

) √
m

√
mA

≥
(10(7 + 2

√
2)

41

√
1 + r∗
r − r∗

− 2

r

)√
r∗ + 1

≥
√
6
(1 + r∗
r − r∗

− 1

r

)
≥
(1 + r∗
r − r∗

− 1

r

) √
6√

1 + p
2

,

where in the first inequality we used that m/mA ≥ r∗+1, and the second inequality can be checked
by an elementary computation. In a second step, we now check that the number

hr
3(0)− hr

3

(
m

mA
− 1

)
=

√
6√

1 + p
2

(
1

r
−

m
mA

1 + r − m
mA

)
− 2

√
m

r
√
mA

+
m
mA

1 + r − m
mA

f( m
mA

− 1)

2

is nonnegative. Recall that by assumption (2.8) we have that m/mA ∈ [1, 3/2]. We distinguish
two cases depending on whether m/mA − 1 lies in [0, r∗] or [r∗, 1/2]. First, for m/mA − 1 ∈ [0, r∗],
using the explicit formula for the minimal two-dimensional energy given in Proposition 2.2, we
have

hr
3(0)− hr

3

(
m

mA
− 1

)
=

√
6√

1 + p
2

(
1

r
−

m
mA

1 + r − m
mA

)
− 2

√
m

r
√
mA

+
m
mA

1 + r − m
mA

(
2 +

√
m
mA

− 1√
m
mA

)
.

We can look at the above expression as a function of a single parameter m/mA, i.e., define

h∗
3(x) =

√
6√

1 + p
2

(
1

r
− x

1 + r − x

)
− 2

√
x

r
+

x

1 + r − x

(
2 +

√
x− 1√
x

)
,

so that h∗
3(m/mA) = hr

3(0)− hr
3(m/mA − 1). Since 1

r ≤ x
1+r−x for x ≥ 1, we get

h∗
3(x) ≥

√
6

(
1

r
− x

1 + r − x

)
− 2

√
x

r
+

x

1 + r − x

(
2 +

√
x− 1√
x

)
.

This function is positive on (1, 3/2] and equal to zero at 1 in both cases r = 1/2 and r = 1. Hence,

hr
3(0) ≥ hr

3

(
m

mA
− 1

)
.

In the second case, i.e., for m/mA − 1 ∈ [r∗, 1/2], again using the explicit formula given in Propo-
sition 2.2 we have that hr

3(0)− hr
3(m/mA − 1) can be written as

√
6√

1 + p
2

(
1

r
−

m
mA

1 + r − m
mA

)
− 2

√
m

r
√
mA

+
m
mA

1 + r − m
mA

(
2√
m
mA

+

√
2( m

mA
− 1)√

m
mA

)
.

Again, we can look at the above expression as a function of a single parameter m/mA, i.e., we
define

h∗∗
3 (x) =

√
6√

1 + p
2

(
1

r
− x

1 + r − x

)
− 2

√
x

r
+

x

1 + r − x

(
2√
x
+

√
2(x− 1)√

x

)
,

so that h∗∗
3 (m/mA) = hr

3(0)− hr
3(m/mA − 1). Since 1

r ≤ x
1+r−x for x ≥ 1, we find

h∗∗
3 (x) ≥

√
6

(
1

r
− x

1 + r − x

)
− 2

√
x

r
+

x

1 + r − x

(
2√
x
+

√
2(x− 1)√

x

)
.

For r = 1/2 or r = 1, this function is positive on (1, 3/2) and equal to zero at 1 and 3/2. Hence,
we have hr

3(0) ≥ hr
3(m/mA − 1), so hr

3 attains its maximum on the interval [0,m/mA − 1] at 0.

Step 6. To see that h
1/2
2 is decreasing, it suffices to note that

h
1/2
2 (x) =

1 + x

1− x
2

( √
6√

1 + p
2

− f(x)

2

)
= 2

1 + x

2− x

( √
6√

1 + p
2

− f(x)

2

)
= 2h2

1(x),

and to use that h2
1 is decreasing, see Step 3.
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Step 7. In this step we show that h
1/2
4 attains its maximum on [0,m/mB − 1] at one of the

points 0, r∗, 1/2, or 2. The values at the three points will then be compared in Step 8. Similarly
to the argument used in Step 4, here the argument relies on the fact that in the intervals [0, r∗],

[r∗, 1/2], and [1/2, 2] the function (h
1/2
4 )′ changes sign at most once (from negative to positive as

x increases). This indeed shows that the maximum is attained at 0, r∗, 1/2, or 2. As in Step 4,
we check separately the cases x ∈ [0, r∗], x ∈ [r∗, 1/2], and x ∈ [1/2, 2].

For x ∈ [0, r∗], we have f(x) = 4 + 2
√

x/(1 + x), so

h
1/2
4 (x) =

1 + x

1− x
2

( √
6√

1 + p
2

−
√
m

√
mB

· 2√
1 + x

−
√
m

√
mB

·
√
x

1 + x

)
.

We directly compute the derivative and get

(h
1/2
4 )′(x) =

√
6√

1 + p
2

( 1 + x

1− x
2

)′
−

√
m

√
mB

( 1 + x

1− x
2

2√
1 + x

)′
−

√
m

√
mB

( 1 + x

1− x
2

√
x

1 + x

)′
= (2− x)−2

( 6
√
6√

1 + p
2

−
√
m

√
mB

2x+ 8√
1 + x

−
√
m

√
mB

x+ 2√
x

)
.

We note that

x 7→ − 2x+ 8√
1 + x

− x+ 2√
x

is increasing on [0, r∗] and thus (h
1/2
4 )′ can change sign at most once. For x ∈ [r∗, 1/2], we have

f(x) = (4 + 2
√
2x)/

√
1 + x, and thus

h
1/2
4 (x) =

1 + x

1− x
2

( √
6√

1 + p
2

−
√
m

√
mB

2

1 + x
−

√
m

√
mB

√
2x

1 + x

)
.

We directly compute the derivative and get

(h
1/2
4 )′(x) =

√
6√

1 + p
2

( 1 + x

1− x
2

)′
−

√
m

√
mB

( 1 + x

1− x
2

2

1 + x

)′
−

√
m

√
mB

( 1 + x

1− x
2

√
2x

1 + x

)′
= (2− x)−2

( 6
√
6√

1 + p
2

− 4

√
m

√
mB

−
√
m

√
mB

√
2(x+ 2)√

x

)
.

We observe that

x 7→ −4−
√
2(x+ 2)√

x

is increasing on [r∗, 1/2], i.e., (h
1/2
4 )′ can change sign at most once.

Eventually, for x ∈ [1/2, 2], we have

h
1/2
4 (x) =

1 + x

1− x
2

( √
6√

1 + p
2

−
√
m

√
mB

√
6√

1 + x

)
and the derivative reads as

(h
1/2
4 )′(x) = (2− x)−2

( 6
√
6√

1 + p
2

−
√
m

√
mB

x+ 4√
1 + x

)
.

We observe that x 7→ −(x+ 4)/
√
1 + x is increasing on [1/2, 2].

Step 8. In this step, we compare the values of h
1/2
4 at 0, r∗, 1/2, and 2 in order to conclude that

the maximum in [0,m/mB − 1] is indeed at 0.

We recall that f(r∗) =
20
41 (7 + 2

√
2) and we compute explicitly

h
1/2
4 (0) =

√
6√

1 + p
2

− 2

√
m

√
mB

,

h
1/2
4 (r∗) =

1 + r∗
1− r∗/2

( √
6√

1 + p
2

−
√
m

√
mB

10(7 + 2
√
2)

41
√
1 + r∗

)
,
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and

h
1/2
4

(
1

2

)
= 2
( √

6√
1 + p

2

− 2

√
m

√
mB

)
.

As 0 ≤ p ≤ 1/3 and mB/m ≤ 1+2p
3 (see (2.8)), we note that

h
1/2
4 (0) ≤

√
6√

1 + p
2

− 2

√
3√

1 + 2p
< 0.

This directly shows h
1/2
4 (0) ≥ h

1/2
4 ( 12 ). To see that h

1/2
4 (0) ≥ h

1/2
4 (r∗), use again the assumption

p ≤ 1/3 and (2.8) to see m/mB ≥ 3
1+2p ≥ 9

5 . Therefore, it is elementary to check(10(7 + 2
√
2)

41

√
1 + r∗

1− r∗/2
− 2
) √

m
√
mB

≥
(10(7 + 2

√
2)

41

√
1 + r∗

1− r∗/2
− 2
)√9

5
≥

√
6
( 1 + r∗
1− r∗/2

− 1
)

≥
( 1 + r∗
1− r∗/2

− 1
) √

6√
1 + p

2

.

Eventually, we show that h
1/2
4 (0) ≥ lim supx→2 h

1/2
4 (x), which is a bit more delicate since h

1/2
4 is

not defined at x = 2. Recalling that for x ∈ [1/2, 2] we have f(x) = 2
√
6, it holds

h
1/2
4 (x) =

1 + x

1− x
2

( √
6√

1 + p
2

−
√
m

√
mB

√
6√

1 + x

)
. (3.5)

Since x ≤ m/mB − 1 and thus m/mB ≥ 1+ x, we get h
1/2
4 (x) ≤ 0 with strict inequality for p > 0.

In particular, for p > 0, we get limx→2 h
1/2
4 (x) = −∞. Now, suppose that p = 0, and recall by

(2.8) that mB/m ≤ 1/3. If mB/m < 1/3, the term on the right-hand side of (3.5) is again negative

for x close to 2 leading to limx→2 h
1/2
4 (x) = −∞. If p = 0 and mB/m = 1/3 we calculate

lim
x→2

h
1/2
4 (x) = lim

x→2

1 + x

1− x
2

(√
6−

√
3
√
6√

1 + x

)
= −

√
6.

In this case, we also have h
1/2
4 (0) =

√
6 − 2

√
3. This shows h

1/2
4 (0) ≥ lim supx→2 h

1/2
4 (x) and

concludes the proof.
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