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Abstract

In this paper, we present a unified nonequilibrium model of continuum mechanics for com-
pressible multiphase flows. The model, which is formulated within the framework of Sym-
metric Hyperbolic Thermodynamically Compatible (SHTC) equations, can describe arbitrary
number of phases that can be heat conducting inviscid and viscous fluids, as well as elasto-
plastic solids. The phases are allowed to have different velocities, pressures, temperatures,
and shear stresses, while the material interfaces are treated as diffuse interfaces with the vol-
ume fraction playing the role of the interface field. To relate our model to other multiphase
approaches, we reformulate the SHTC governing equations in terms of the phase state param-
eters and put them in the form of Baer-Nunziato-type models. It is the Baer-Nunziato form
of the SHTC equations which is then solved numerically using a robust second-order path-
conservative MUSCL-Hancock finite volume method on Cartesian meshes. Due to the fact
that the obtained governing equations are very challenging we restrict our numerical examples
to a simplified version of the model, focusing on the isentropic limit for three-phase mixtures.
To address the stiffness properties of the relaxation source terms present in the model, the im-
plemented scheme incorporates a semi-analytical time integration method specifically designed
for the non-linear stiff source terms governing the strain relaxation. The validation process
involves a wide range of benchmarks and several applications to compressible multiphase prob-
lems. Notably, results are presented for multiphase flows in all the relaxation limit cases of
the model, including inviscid and viscous Newtonian fluids, as well as non-linear hyperelastic
and elastoplastic solids. In all cases, the numerical results demonstrate good agreement with
established models, including the Euler or Navier-Stokes equations for fluids and the classical
hypo-elastic model with plasticity for solids. Importantly, however, this approach achieves
these results within a unified multiphase framework of continuum mechanics.

1 Introduction

In this paper, we further develop the idea of a unified approach to continuum mechanics,
which is capable of describing the behavior of all states of matter in a single system of governing
equations. Here, we deal with multiphase problems that may include an arbitrary number of
phases, such as gases, liquids, and solids and in arbitrary combinations. The approach we chose
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to tackle this problem relies on the continuum mixture theory, which means that all the phases
are present in every material volume at all the times [125]. Despite being popular in the fluid
mechanics community for many decades now, the mixture approach imposes a big challenge if
one tries to generalize it to problems involving the interaction of solids and fluids. The main
difficulty is that these two states of matter are generally studied by two distinct communities,
using different approaches. And it remained unclear, at least until recently, how to combine
these approaches (mathematical models) into a single unified and thremodynamically compatible
continuous mixture model.

For example, the Eulerian description of the continuum is the most commonly used to de-
scribe the motion of fluids, as they usually undergo large deformations that are not suitable for
a Lagrangian description. Instead, in solid mechanics, the Lagrangian description is preferred,
which allows very accurate description of the solid body boundaries. Moreover, the fluid and solid
mechanics models have different number of degrees of freedom (state variables), e.g. the classical
fluid mechanics models do not need to evolve a deformation measure to compute the stress tensor,
while the solid mechanics models do. Such incompatibilites in mathematical description have been
a major obstacle to the development of a general unified continuum mechanics model for multi-
phase problems involving fluids and solids. Yet, in some limited cases the mixture theory has been
successfully applied to the description of the interaction between fluids and solids, e.g. see [41, 79,
82, 81] and references therein. We also remark that a conventional approach to the description of
multiphase flows involving solid-fluid interactions, such as in the Fluid-Structure-Interaction (FSI)
problems, is to use a combination of different models, one for each of the phases involved, with
additional coupling rules governing the interaction between the different media, and even possibly
different numerical schemes and computational meshes for each phase.

In recent years, we have been developing a unified Eulerian model of continuum mechanics [94,
37, 18, 21, 1] that allows to eliminate the mentioned differences between the classical descriptions
of fluids and solids. According to this model, a fluid is treated as a special case of an inelastic
solid with a severe shear stress relaxation. Therefore, it represents a very solid foundation for
building a unified multiphase continuum theory. On the other hand, the unified model belongs to
a wider class of equations that we call the Symmetric Hyperbolic Thermodynamically Compatible
(SHTC) equations [48, 49, 51, 108, 109, 53, 93]. In particular, the SHTC class includes a multi-
fluid model developed by Romenski and co-authors in [107, 106, 102] (the first idea was published
in [54, 109]). Therefore, the main motivation for this paper is to combine the two approaches
and to develop a unified model of continuum mechanics for multiphase problems with arbitrary
composition of the phases that may include inviscid and viscous fluids as well as elastic and inelastic
solids. Likewise, to demonstrate the practicality and advantages of such a unified approach for the
numerical simulation of fluid-fluid and fluid-structure interaction problems.

It should be noted that despite the long history, the continuous mixture theory still does not
have a universally accepted mathematical formulation. It is a hopeless task to try to review all
the contributions to the development of the mixture theory, however it worth mentioning the main
directions that were taken in order to obtain the balance equations for mixtures to position our
approach with respect to the others. One may roughly distinguish three main approaches: the
rational mechanics approach, averaging techniques, and first-principle-type approaches. However,
let us immediately note that in all these theories, the basic view on the mixture is the same, i.e.
the mixture is treated as a system of interpenetrating and interacting continua each of which is
described by their own state variables, equations of state, and the evolution of constituents is
governed by the phase balance equations similar to that of a single-phase continua but having
extra terms describing the interactions between the phases. The main difference between these
approaches is the way the balance equations are derived, or more precisely, the way the interaction
terms are defined.
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The rational mechanics approach is a general approach based on some principles mainly put
forward by Truesdell, Coleman, and Noll [125, 126, 26], e.g. second law of thermodynamics, ob-
jectivity, etc., e.g. see [76]. However, the generality of the approach does not provide specific
instructions on how to obtain the balance equations for mixtures in a closed form, i.e. the in-
teraction terms are in general not defined [76, 57, 68, 83, 116, 87, 80, 77]. This explains why
closed models can only be found in the literature for application-specific two-phase flows, see e.g.
deflagration-to-detonation transition (DDT) in gas-permeable, reactive granular materials [4, 39,
7, 98] and spray modeling [28].

The second approach for the derivation of balance laws for mixtures involves overcoming the
discrete nature of the phases that constitute a multiphase mixture through the use of averaging
techniques. Within averaged approaches, see e.g. [33, 80, 63], the balance equations of each
constituent are derived by applying an averaging space and time operation to the equations of
motion for different phases separated by interfaces across which the densities, velocities, etc.,
may jump. The main difficulty of this way of deriving the balance equations is that it is almost
impossible to apply in a genuinely multiphysics setting, e.g. mixtures of more than two constituents,
different rheology of phases, phase transition, electromagnetic forces (e.g. multispecies plasma),
etc.

The third class of mixture theories consists of models whose governing equations can be derived
from a first-principle-type approach, e.g. a variational principle (Hamilton’s stationary action prin-
ciple). Indeed, the success of theoretical physics in the twentieth century taught us an important
lesson that the most successful theories should admit a variational formulation. However, since we
are interested in a macroscopic description of mixtures, such a description is inevitably dissipative,
and one cannot expect to derive the full mixture model from a variational principle, but only its
non-dissipative, or reversible, part. Therefore, it is crucially important to formulate continuum
models in such a way that the reversible and irreversible parts can be clearly separated. This is
one of the main ideas behind the theory of Symmetric Hyperbolic Thermodynamically Compatible
(SHTC) equations [93] that is used in this paper to obtain the governing equations for multiphase
and multilateral flows. In such a theory, the dissipative processes can be formulated only via alge-
braic (no partial derivatives) relaxation type terms, while the reversible part of SHTC models is
presented by the differential part of the time evolution equations. And the latter can be derived
from a variational principle. We believe that it is important to have a variational formulation
for such complex systems as mixtures, because it allows to couple (define interactions) all parts
of the system in a consistent way. It is even more important to have such a formulation in the
multiphysics context, where the interactions between the phases are not only mechanical, but also
thermal, chemical, electromagnetic, gravitational, etc. It is therefore the main objective of this
paper to present a unified model of continuum mechanics for multiphase problems and to test its
practicality in numerical simulations of multiphase flows.

Despite being so fundamental in theoretical physics and other branches of continuum mechanics,
the variational principle is rarely used to derive governing equations for mixtures. To the best of
our knowledge, the few existing variational formulations for mixtures of two fluids were proposed
in [46, 55, 93].

We note that there are other first-principle type approaches such as the Hamiltonian formula-
tion of continuum mechanics and non-equilibrium thermodynamics known as GENERIC (General
Equations for Reversible-Irreversible Coupling) and put forward by Grmela and Öttinger in [56,
85], see also [88, 93]. Despite the SHTC multiphase models can be also cast into the GENERIC
formulation, the GENERIC approach also allows to derive slightly different governing equations
for mixtures. A comparison of the two approaches was the subject of [117].

From the numerical view point, compressible multiphase problems also pose a great challenge
due to the complexity of the governing equations, various time and length scales, and the presence
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of interfaces which require special treatment in many cases. One could divide mesh-based methods
into three different families for dealing with multimaterial and multiphase problems: (i) Lagrangian
and Arbitrary-Lagrangian-Eulerian (ALE) methods on moving meshes, where free surfaces of the
fluid and fluid-fluid or fluid-solid interfaces are accurately resolved by the moving computational
grid, see e.g. [69, 16, 67, 14, 10, 44]; (ii) Eulerian methods on fixed meshes with explicit interface
reconstruction, such as the volume of fluid method (VOF) originally developed by Hirt and Nichols
[60], also see the works of Popinet [97] and Menshov et. al [129, 128, 75] which is also generalized
to arbitrary number of immiscible compressible fluids; (iii) Eulerian diffuse interface methods on
fixed grids, where the presence of each material is represented by a scalar function, see e.g. [113,
34, 40, 79, 41, 45, 66] and references therein. By its construction, the diffuse interface method is
the most natural method to represent interfaces within a continuous mixture model, and it is the
method we use in this paper.

In the compressible multiphase community, the Baer-Nunziato (BN) model [4] is one of the
most popular mathematical models for describing two-phase flows, and there are many works
that solve this model numerically. However, only a very limited number of publications exist on
the mathematical and computational issues of BN models for multiphase flows describing more
than two phases, see e.g. [58, 59, 89]. It is therefore very attractive to demonstrate how the
BN-type models can be extended using the SHTC theory to describe nonequilibrium compressible
multiphase flows with more than two phases, that could be also solids, and to show how such
models can be solved numerically.

Therefore, in this paper we put the SHTC multiphase formulation into a BN-type form. The
resulting BN-type model yields a large system of nonlinear Partial Differential Equation (PDE),
which includes highly nonlinear stiff algebraic source terms as well as non-conservative products.
The different complexities presented by the PDE system are addressed numerically following a
splitting approach, when the homogeneous part of the PDE system is discretized with the aid of
a robust second-order explicit MUSCL-Hancock finite volume method on Cartesian meshes[124],
combined with a path-conservative technique of Castro and Pares [86, 96] for the treatment of non-
conservative products. Because the time scales associated with the relaxation processes are much
shorter than those given by the stability condition of the explicit scheme, two different implicit
methods are employed to properly treat the relaxation terms. Namely, for the stiff but linear
sources related to velocity relaxation, a time integrator based on backward Euler is employed,
while the semi-analytical time integration method of Chiocchetti, introduced in [118] for fracture
modeling, and further developed in [24, 23, 11], is adopted for the nonlinear stiff source terms
governing the relaxation of shear stresses in viscous fluids and plastic solids.

The paper is structured as follows: in Sec. 2 we briefly remind the main features of the SHTC
framework, in Sec. 4, we discuss the SHTC formulation for multiphase flows, while the variational
derivation is presented in B. Furthermore, in Sec. 5 a BN-form of the SHTC model is presented.
Sec. 6 is devoted to the development of a robust numerical scheme capable of addressing the various
difficulties inherent in a unified theory of compressible multiphase fluid and solids mechanics. Sec.
7 provides and discusses an extensive collection of numerical experiments, limited to three-phase
flows in this paper, with the aim of validating the numerical methods developed in this work, as
well as providing some rather unique results related to the behavior of multiphase flows for more
than two phases, described through the unified SHTC multiphase model of continuum mechanics.
Finally, in Sec. 8 the main achievements of this work are listed and we discuss future research
directions regarding numerical algorithms and modelling perspectives within the unified SHTC
multiphase model of continuum mechanics.
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2 SHTC class of equations

Perhaps, the main challenge in formulating continuum mechanics models for complex phenom-
ena in general and for multiphase flows in particular is associated with the formulation of a closed
model that satisfies a priori important physical and mathematical properties such as the princi-
ples of invariance (Galilean or Lorentz invariance), conservation principle, the principle of causality,
the laws of thermodynamics and the possibility of having a well-posed initial value problem (IVP).
Methods for constructing equations belonging to the SHTC class allow to build continuum mechan-
ics models that satisfy all these properties. Another general formulation of continuum mechanics
that is pursuing the same goals is the Rational Extended Thermodynamics by Müller and Ruggeri
[77].

The origin of the SHTC formulation of continuum mechanics can be attributed to the work of
Godunov [48], who considered “an interesting class” of nonlinear overdetermined conservation laws.
In this seminal work, Godunov demonstrated an intricate connection between the well-posedness
of the IVP for a nonlinear system of conservation laws and principles of thermodynamics. The
well-posedness was shown via putting the system into a symmetric hyperbolic quasi-linear form,
which was a generalization of Friedrichs’ linear symmetric hyperbolic systems [43] to the nonlinear
case. That is why we use the name Symmetric Hyperbolic Thermodynamically Compatible sys-
tems. However, a very limited number of continuum mechanics models admit a fully conservative
formulation (e.g. Euler equations, shallow water equations), which forced Godunov to extend his
observations to non-conservative systems such as the ideal magnetohydrodynamics equations [49].
Later, in a series of works [52, 51, 108, 109], Godunov and Romenski extended this idea further
and showed that many continuum mechanics models (nonlinear elasticity, binary mixture equa-
tions, electrodynamics equations, superfluidity equations, etc.) can be put into an SHTC form.
Later, it was also demonstrated that all the SHTC equations admit a variational formulation and
can be also viewed as a Hamiltonian formulation of continuum mechanics within the GENERIC
framework [93].

As discussed in [51, 93], the SHTC equations have a very peculiar structure, and recently,
various numerical schemes were developed to mimic the SHTC structure at the discrete level,
see e.g. for a curl-free discretization in [12, 23] and new class of thermodynamically compatible
schemes in [20, 21, 19, 1, 123].

In the context of this paper, let us also note that it is possible to formulate a compressible
multiphase flow model within the SHTC framework. The seminal ideas about an SHTC theory of
mixtures was proposed by Romenski in [108, 109] for the case of two fluids. It was then further
developed in a series of works [107, 106, 102] and it was generalized to the case of arbitrary
number of constituents in [101]. The SHTC mixture model was already discretized with various
numerical schemes, e.g. a MUSCL-Hancock scheme [102, 101], semi-implicit all-Mach number
schemes were developed in [72, 71], high-order discontinuous Galerkin and finite-volume schemes in
the ADER framework were developed in [100] and a thermodynamically compatible discretization
was proposed in [123]. An exact Riemann solver for the barotropic two-fluid SHTC equations was
introduced in [122].

An important step in demonstrating the potential of the SHTC theory was done in [94, 37],
where the unified model of continuum fluid and solid mechanics within the SHTC framework
was proposed, see also its extensions to electrodynamics of moving media [38], non-Newtonian
fluids [65, 91], poroelasticity [105, 104], relativistic continuum mechanics [103], flows with surface
tension [23, 95]. The mathematical model and its many variants have been referred to differently in
these various contexts, from Hyperbolic-Peshkov-Romenski (HPR) or Godunov-Peshkov-Romenski
(GPR) in [37, 38, 64] to unified model of continuum mechanics (UMCM) in [11]. In this work,
we adopt the generic terminology Unified Continuum Mechanics Model, or when appropriate for
brevity UMCM or GPR.
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3 Mixture characteristics

3.1 Composition characteristics

We consider a mixture of N constituents which are labeled by Latin indices a, b, . . . = 1, . . . ,N.
Denoting by M and V the total mass and volume of the infinitesimal element of the mixture,
respectively, we can write

M =

N∑
a=1

ma, V =

N∑
a=1

νa, (1)

where ma is the mass and νa is the volume of the a-th constituent in the mixture control volume
V . The mixture mass density is then defined as

ρ =
M

V
=

m1 +m2 + . . .+mN

V
=

N∑
a=1

ϱa, (2)

where
ϱa :=

ma

V
(3)

denotes the density of the a-th phase inside the control volume V .
To characterise the volume and mass content of the a-th constituent inside the mixture control

volume V , it is also convenient to introduce two non-dimensional scalars: the volume fraction

αa :=
νa
V

,

N∑
a=1

αa = 1, (4)

and the mass fraction

ca :=
ma

M
=

ϱa
ρ
,

N∑
a=1

ca = 1. (5)

Although ϱa represents the true mass density of the a-th constituent inside the control volume V ,
the equations of state of the constituents are usually given in the single-phase context, i.e. as if the
phase a would occupy the entire volume V . Therefore, to use the standard single-phase equations
of state, we shall also need the mass density of the a-th phase not of the entire mixture control
volume V , but of the partial volume νa, i.e.

ρa =
ma

νa
=

maV

νaV
=

ϱa
αa

. (6)

In other words, for phase a, its mass density ρa w.r.t. the partial volume νa and its mass density
ϱa w.r.t. the full control volume V are related by

ϱa = αaρa. (7)

The mixture entropy density η = ρS is defined as

η :=

N∑
a=1

ηa =

N∑
a=1

ϱasa (8)

where sa is the specific entropy of the a-th phase. Hence, the specific mixture entropy can be
computed as

S =
η

ρ
= c1s1 + c2s2 + . . .+ cNsN. (9)
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3.2 The kinematic quantities of mixtures

Due to the conservation principle, the total momentum of a control volume is defined as the
sum of the momenta of its parts. Thus the linear momentum U = {Uk} of the mixture control
volume V , where k denotes the component in space, is defined as the sum of the linear momenta
ua = {ua,k} := ϱava of the constituents

U := u1 + u2 + . . .+ uN = ϱ1v1 + ϱ2v2 + . . .+ ϱNvN, (10)

where va = {va,k} is the velocity of the a-th phase. The velocity V = {Vk} := U/ρ of the mixture
control volume is therefore defined as the center of mass velocity

V :=
U

ρ
=

ϱ1v1 + ϱ2v2 + . . .+ ϱNvN

ρ
= c1v1 + c2v2 + . . .+ cNvN. (11)

For the SHTC formulation of the mixture equations, in addition to the mixture momentum U ,
one also needs the relative velocity wa = {wa,k} fields

wa = va − vN, wa,k = va,k − vN,k, k = 1, . . . , 3. (12)

which are defined with respect to the N-th constituent that can be chosen arbitrarily. Whereas,
in order to derive a BN-type formulation it is useful to define the relative velocity with respect to
the mixture velocity

w̄a := va − V , w̄a,k = va,k − Vk, k = 1, . . . , 3. (13)

In the SHTC theory, the relative velocity wa is the preferred choice because it is dictated by the
variational formulation as well as by the systematization of the governing equations.

3.3 Deformation characteristics

In order to describe the elastic and inelastic deformations of a single material in the SHTC
framework, one needs to introduce the concept of the distortion field A, by means of which the
evolution of elastic and elastoplastic solids and the dynamics of Newtonian and non-Newtonian
fluids can be formulated in the SHTC formalism [53, 94, 90, 65, 91]. In the classical formulation
of ideal elastic solids the distortion matrix is interpreted as the inverse of the deformation gradient
tensor, commonly denoted in the literature as F = ∂x/∂X, or, in index notations FiK = ∂xi/∂XK ,
and hence, A = ∂X/∂x or AKi = ∂XK/∂xi, for the dynamics of pure elastic solids. Here, as usual,
we denote the coordinates of the reference configuration by X and the coordinates in the current
configuration by x. In the case of inelastic deformations (viscous flows, plastic deformations),
the distortion field can be interpreted as the inverse of the elastic part F e of the multiplicative
decomposition F = F eF i of the deformation gradient into elastic and inelastic part, e.g. see [94,
90]. Note that in the notation of the distortion matrix entries, we distinguish between the Eulerian
(lowercase) index i, j, k and the Lagrangian (uppercase) index I, J,K so that the distortion matrix
can be seen as a triad of three basis vectors A = {A1,A2,A3}, where for each K = 1, 2, 3, AK is
a 3-vector AK = (AK1, AK2, AK3).

In the general setting, a multiphase medium in the SHTC framework should have multiple
distortion fields Aa, a = 1, 2, . . . ,N. However, a rigorous derivation of such a model from the
variational principle remains beyond our reach, even for the case of a mixture of ideal elastic
solids. Therefore, following [105, 104], we present a simplified multiphase model with a single
distortion field A1 = A2 = . . . = AN = A. For example, a multiphase single-distortion model was
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successfully used in [82, 81] for transient shock-dominated problems in 1D as well in multiple space
dimensions. Yet, from our computational experience with the model, especially for the problems
with moderate Mach numbers, it has appeared that it is beneficial to evolve individual distortions
for every phase. While a rigorous theoretical derivation of the multi-distortion model is still absent,
we shall use it in the numerical experiments in Sec.7.

3.4 Heat conduction characteristics

To account for the heat conduction within the SHTC theory, it is necessary to consider another
vector field, usually referred to as the thermal impulse. Thus, for each phase, we introduce the
vector fields J1,J2, . . . ,JN that characterize the direction and intensity of the heat transfer in each
phase.

3.5 SHTC state variables for multiphase flows

Here, we list the set of SHTC state variables for mixtures which are partly different from
the conventionally used state variables, for example, in the BN-type formulations, e.g. mixture
momentum and relative velocities {U ,wa}, a = 1, . . . ,N−1 in the SHTC formulation versus phase
momenta ua, a = 1, . . . ,N in the BN-type formulations. The SHTC choice is conditioned by the
variational nature of the equations and their symmetrization procedure. Thus, the vector of sought
conservative SHTC variables is

Q = (U ,A, ρ, ϱ1, . . . , ϱN−1,w1, . . . ,wN−1, η1, . . . , ηN,J1, . . . ,JN, φ1, . . . , φN−1)
T , (14)

which is related to the vector of primitive SHTC variables

P = (V ,A, ρ, c1, . . . , cN−1,w1, . . . ,wN−1, s1, . . . , sN,J1, . . . ,JN, α1, . . . , αN−1)
T , (15)

as
φa = ραa, U = ρV , ϱa = ρca ηa = ρcasa. (16)

One should pay attention to that φN, ϱN, and wN are excluded from the set of state variables
because they can be expressed as

φN = ρ− φ1 − . . .− φN−1, ϱN = ρ− ϱ1 − . . .− ϱN−1, wN = 0, (17)

likewise their primitive counterparts

αN = 1− α1 − . . .− αN−1, cN = 1− c1 − . . .− cN−1, wN = 0. (18)

4 SHTC governing equations for multiphase flows

The SHTC equations for two-fluid mixtures were proposed by Romenski in [108, 109] (and
later developed in [106, 106, 102]) based on the special structure of the SHTC class of equations
proposed in [52, 51]. A variational formulation of the SHTC two-fluid model was discussed in
[93], and its extension to the case of arbitrary number of fluid phases was presented in [101], and
extension to the case of mixtures of solid-fluid mixtures in the context of flows in porous media
was given in [105, 104].

In this section, we recall the single-distortion two-phase model [101, 105, 104] and extend it
to the setting of an arbitrary number of fluid and solid constituents. We also give its variational
formulation in B. We then generalize the single-distortion model to a multi-distortion multiphase
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model whose rigorous theoretical derivation from a variational principle is still lacking and will be
subject of future research.

Moreover, in this work, the SHTC multiphase model is extended with the additional physical
effects such as heat conduction, viscosity of the fluid constituents, and plasticity of the solid ones.
Specifically, in this generalization of the SHTC mixture theory, the viscosity and plasticity are
incorporated via the unified hyperbolic model of continuum mechanics [53, 94, 37], and the heat
conduction is modeled via the hyperbolic heat equations [74, 12, 103], and thus retaining the
first-order hyperbolic form of the equations.

4.1 Non-dissipative multiphase single-distortion model

Ignoring for the moment all the dissipative processes, the single-distortion multiphase SHTC
model reads (summation over repeated spatial i, k, . . . = 1, 2, 3 and phase a, b = 1, 2, . . . ,N indices
is implied)

∂Ui

∂t
+

∂
(
UiVk + Pδik +AJkEAJi

+ wa,iEwa,k
+ Ja,iEJa,k

)
∂xk

= 0, (19a)

∂AJk

∂t
+

∂AJlVl

∂xk
+ Vi

(
∂AJk

∂xi
− ∂AJi

∂xk

)
= 0, (19b)

∂ϱa
∂t

+
∂
(
ϱaVk + Ewa,k

)
∂xk

= 0, a=1, . . . ,N−1, (19c)

∂wa,k

∂t
+

∂ (wa,lVl + Eϱa)

∂xk
+ Vi

(
∂wa,k

∂xi
− ∂wa,i

∂xk

)
= 0, a=1, . . . ,N−1, (19d)

∂ηa
∂t

+
∂
(
ηaVk + EJa,k

)
∂xk

= 0, a=1, . . . ,N, (19e)

∂Ja,k
∂t

+
∂ (Ja,lVl + Eηa

)

∂xk
+ Vi

(
∂Ja,k
∂xi

− ∂Ja,i
∂xk

)
= 0, a=1, . . . ,N, (19f)

∂ρ

∂t
+

∂ (ρVk)

∂xk
= 0, (19g)

∂φa

∂t
+

∂ (φaVk)

∂xk
= 0, a=1, . . . ,N−1, (19h)

where
P (Q) := UiEUi + ρEρ + ϱaEϱa + ηaEηa + φaEφa − E (20)

is the total thermodynamic mixture pressure. We note that, as usual, the thermodynamic pressure
P accounts only for contributions from the internal energies of the constituents (see (40)–(43)),
and, in general, is different from the total mechanical pressure.

As one can see, the fluxes (19a), (19c), and (19e) are defined in terms of the derivatives of the en-
ergy potential E(Q) with respect to the state vector Q. Hence, to complete the model formulation,
one needs to specify the energy and compute all the derivatives ∂E/∂Q = (EUi

, EAJi
, Eρ, Eϱa

, Ewak
, Eηa

, EJa
, Eφa

),
which we do in the following section.

9



4.2 Closure relations

In this section, we summarize all the formulas for partial derivatives of the energy potential
required in the formulation of the SHTC multiphase model.

According to the principle of energy conservation, the total energy density E of the mixture, in
the control volume V , can be defined as the sum of the energy densities Ea = εia + εea + εta + εka of
its constituents

E(Q) =

N∑
a=1

Ea, (21)

where, for each phase a = 1, 2, . . . ,N, εia(ρ, ϱa, φa, ηa) is the internal energy, ε
e
a(ϱa,A) is the elastic

energy, εta(ϱa,Ja) is the energy associated to the thermal impulse, and εka(ϱa,ua) is the kinetic
energy.

4.2.1 Internal energy, εi

The SHTC state variables (14) are dictated by the variational formulation of the governing
equations. However, these might be not the optimal choice of variables when it comes to express-
ing the fluxes in terms of the conventional fluid characteristics such as pressure, temperature, etc.
Therefore, it is useful to express the total energy density of the mixture through two parametriza-
tions. The first one is in terms of the state vector Q in (14), and the second one in terms of the
individual phase state parameters ρa and sa. The latter, only concerns the internal energies εia.
Thus, we shall use the following notations

εia(ρ, ϱa, φa, ηa) = ε̂ia(ρa, sa) = ϱaê
i
a(ρa, sa) = ϱaê

i
a

(
ϱaρ

φa
,
ηa
ϱa

)
, a = 1, 2, . . . ,N− 1 (22)

and for a = N

ε̂iN(ρN, sN) =

(
ρ−

N−1∑
a=1

ϱa

)
êiN

(
ρ
(
ρ−

∑N−1
a=1 ϱa

)
ρ−

∑N−1
a=1 φa

,
ηN

ρ−
∑N−1

a=1 ϱa

)
. (23)

With this parametrization of the internal energies, the phase pressures and temperatures are defined
as

pa := ρ2a
∂êia
∂ρa

, Ta :=
∂êia
∂sa

. (24)

In this work, several test problems for multiphase flows of interacting gases, liquids, and solids
will be presented. Each of these states of matter has its own equation of state which are described
below. We remark that it is not the goal of the paper to provide a comprehensive list of equations
of state for all possible materials, but rather to illustrate the flexibility of the SHTC model in
handling different types of materials.

• For the gas phases, the equation of state of perfect gases is used in the form

êia(ρa, sa) =
Co2a

γa(γa − 1)

(
ρa
ρoa

)γa−1

esa/Cva , (25)

where ρoa is the reference density, γa is the adiabatic exponent, Coa is the velocity of sound at
normal atmospheric conditions, Cva is the specific heat capacity at constant volume. Then,
according to (24), the pressure and temperature are computed as

pa = ρ2a
∂êa
∂ρa

=
ρoaCo

2
a

γa

(
ρa
ρoa

)γa

esa/Cva , (26)
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Ta =
∂êa
∂sa

=
Co2a

Cvaγa(γa − 1)

(
ρa
ρoa

)γa−1

esa/Cva , (27)

and the phase velocity of sound Ca can be computed as

C2
a :=

∂pa
∂ρa

= Co2a

(
ρa
ρoa

)γa−1

esa/Cva . (28)

• For the liquid and solid phases, the stiffened gas equation of state will be used in the form

êia(ρa, sa) =
Co2a

γa(γa − 1)

(
ρa
ρoa

)γa−1

esa/Cva +
ρoaCo

2
a − γapoa
γaρa

, (29)

denoting with poa the reference (atmospheric) pressure. In this case, the pressure and tem-
perature are given by

pa = ρ2a
∂êa
∂ρa

=
ρoaCo

2
a

γa

(
ρa
ρoa

)γa

esa/Cva − ρoaCo
2
a − γap0a
γa

, (30)

Ta =
∂êa
∂sa

=
Co2a

Cvaγa(γa − 1)

(
ρa
ρoa

)γa−1

esa/Cva (31)

and the phase adiabatic sound speed Ca results in

C2
a :=

∂pa
∂ρa

= Co2a

(
ρa
ρoa

)γa−1

esa/Cva . (32)

4.2.2 Elastic energy, εe

We recall that according to the unified model of continuum mechanics [94], the Navier-Stokes
equations can be considered as a the stiff relaxation limit of the SHTC viscoelastic model [37],
and thus, like in elastic solids, their response to shear deformations is characterized by the elastic
energy.

In this work, the part of the energy density associated with the elastic-shear stress, εe, is
assumed to be proportional to the second invariant of the deviator devGa,ij = Ga,ij − (Ga,kk/3)δij
of the metric tensor of elastic deformations Ga,ij = Aa,JiAa,Jj , and reads

εea(ϱa,Aa) =
1

4
ϱaCs

2
a (devGa,ikdevGa,ki) , (33)

where Csa is a parameter representing the propagation speed of small-amplitude shear waves in
a-th phase, and here it is referred to as shear sound velocity.

At the moment, an SHTC formulation for multiphase flows with different distortion fields Aa

is unknown, and in the theoretical part, we assume a single-distortion approximation A = A1 =
A2 = . . . = AN. In particular, it is unclear with which velocity the individual phase distortion
fields Aa should be transported — the mixture or phase velocity. Therefore, our initial intention
was to use the single-distortion approximation. However, in numerous numerical experiments, we
found out that the single-distortion approximation is not sufficient for obtaining good results in
low-Mach problems. Instead, the best results were obtained for the case when the phase distortions
Aa are assumed to be different and evolved according to different equations with phase velocities
being the transport velocities, see Sec.5.2.
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4.2.3 Thermal energy, εt

The energy associated to the heat conduction can be taken as

εta(ϱa,Ja) = ϱa
1

2
Ch2a Ja,kJa,k, (34)

where Ch is a parameter representing the propagation of small-amplitude thermal perturbations.
Note that one could use other forms for εta, see e.g. [31]

4.2.4 Kinetic energy, εk

The phase kinetic energy

εka =
1

2ϱa
∥ua∥2, (35)

is defined in terms of the phase momenta ua. However, to compute the partial derivatives ∂E/∂Q,
after some algebra, it can be also expressed in terms of the SHTC variables Q as

N∑
a=1

εka =
1

2ρ

3∑
k=1

U2
k +W (ρ, ϱ1, . . . , ϱN−1,w1, . . . ,wN−1) (36)

where the kinetic energy of relative motion W is defined as

W (ρ, ϱ1, . . . , ϱN−1,wa, . . . ,wN−1) :=
1

2

3∑
k=1

N−1∑
a=1

ϱaw
2
a,k − 1

2ρ

3∑
k=1

(
N−1∑
a=1

ϱawa,k

)2

. (37)

4.2.5 Thermodynamic forces

Keping in mind that

ϱN = ρ−
N−1∑
a=1

ϱa and φN = ρ−
N−1∑
a=1

φa, (38)

the partial derivatives of the energy potential E with respect to the state vector Q are given by

∂E
∂Ui

=
1

ρ
Ui = Vi, (39a)

∂E
∂AJk

=

N∑
a=1

∂εea
∂AJk

=

N∑
a=1

ϱaCs
2
aAJidevGik, (39b)

∂E
∂ρ

=

N−1∑
a=1

∂ε̂ia
∂ρa

ϱa
φa

+
∂ε̂iN
∂ρN

(
ρφN − ρϱN + ϱNφN

φ2
N

)
− ∂ε̂iN

∂sN

ηN
ϱ2N

+
εeN
ϱN

+
εtN
ϱN

+ (39c)

1

2ρ2

3∑
k=1

N∑
a=1

(ϱawa,k)
2 − 1

2ρ2

3∑
k=1

U2
k , (39d)

∂E
∂φa

= −ϱaρ

φ2
a

∂ε̂ia
∂ρa

+
ϱNρ

φ2
N

∂ε̂iN
∂N

= −1

ρ

(
ρ2a

∂êa
∂ρa

− ρ2N
∂êN
∂ρN

)
= −pa − pN

ρ
, a = 1, . . . , N − 1,

(39e)
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∂E
∂ϱa

=
ρ

φa

∂ε̂ia
∂ρa

− ηa
ϱ2a

∂ε̂ia
∂sa

− ρ

φN

∂ε̂iN
∂ρN

+
ηN
ϱ2N

∂ε̂iN
∂sN

+
εea
ϱa

− εeN
ϱN

+
εta
ϱa

− εtN
ϱN

+

1

2

3∑
k=1

w2
a,k − 1

ρ

3∑
k=1

N−1∑
b=1

ϱbwb,kwa,k, a = 1, . . . , N − 1, (39f)

∂E
∂wa,k

= ϱawa,k − ϱa
ρ

N−1∑
b=1

ϱbwb,k = ϱa(va,k − Vk) = ϱaw̄a,k, a = 1, . . . , N − 1, (39g)

∂E
∂ηa

=
1

ϱa

∂ε̂ia
∂sa

=
∂êia
∂sa

= Ta, (39h)

∂E
∂Ja,k

=
∂εt

∂Ja,k
= ϱaCh

2
aJa,k. (39i)

In particular, with formulas (39), one can show that the mixture pressure (20) can be computed
as the following sum

P =

N∑
a=1

(
ρa

∂ε̂ia
∂ρa

− ε̂ia

)
(40)

which suggests that the quantities

Pa := ρa
∂ε̂ia
∂ρa

− ε̂ia (41)

can be called the partial phase pressures. Moreover, due to the fact ρa
∂ε̂ia
∂ρa

− ε̂ia = αaρ
2
a
∂êia
∂ρa

, the

partial phase pressures Pa and the single phase pressures (24) are related by

Pa = αapa. (42)

In other words, according to the SHTC formulation for multiphase flows, the mixture pressure can
be computed as

P = P1 + . . .+ PN = α1p1 + . . .+ αNpN, (43)

which is also known as Dalton’s law of partial pressures in mixtures.

∂E
∂ϱa

= µa − µN + eea − eeN + eta − etN +

3∑
k=1

wa,k

(
w̄a,k − 1

2
wa,k

)
, (44)

where

µa := eia +
pa
ρa

− saTa =
∂εia
∂ϱa

(45)

is the chemical potential of the a-th constituent, and eea = εea/ϱa, e
t
a = εta/ϱa.

4.3 Irreversible dynamics, dissipative processes

In the SHTC theory, a dissipative process is associated with the irreversible part of the time
evolution equations that increases the entropy of the system and that is modeled via algebraic
relaxation source terms [93]. They are defined in terms of the gradients of the energy EQ, (i.e. in
terms of the conjugate state variables), thus the irreversible part of the SHTC equations can be
called the gradient dynamics [93, 88].
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The following, at the moment, arbitrary functions of the conjugate state variables

ZJk(EQ), Λa,k(EQ), χa(EQ), Γa,k(EQ), πa(EQ), Φa(EQ), (46)

can be added in the right-hand side of the system equations (19)

∂Ui

∂t
+

∂
(
UiVk + Pδik +AJiEAJk

+ wa,iEwa,k
+ Jb,iEJb,k

)
∂xk

= 0, (47a)

∂AJk

∂t
+

∂AJlVl

∂xk
+ Vi

(
∂AJk

∂xi
− ∂AJi

∂xk

)
= ZJk, (47b)

∂ϱa
∂t

+
∂
(
ϱaVk + Ewa,k

)
∂xk

= χa, a=1, . . . ,N−1, (47c)

∂wa,k

∂t
+

∂ (wa,lVl + Eϱa
)

∂xk
+ Vi

(
∂wa,k

∂xi
− ∂wa,i

∂xk

)
= Λa,k, a=1, . . . ,N−1, (47d)

∂ηa
∂t

+
∂
(
ηaVk + EJa,k

)
∂xk

= πa +Πa, a=1, . . . ,N, (47e)

∂Ja,k
∂t

+
∂ (Ja,lVl + Eηa)

∂xk
+ Vi

(
∂Ja,k
∂xi

− ∂Ja,i
∂xk

)
= Γa,k, a=1, . . . ,N, (47f)

∂ρ

∂t
+

∂ (ρVk)

∂xk
= 0, (47g)

∂φa

∂t
+

∂ (φaVk)

∂xk
= Φa, a=1, . . . ,N−1, (47h)

In what follows, we specify the form of the source terms in (46) for the SHTC mixture model,
and explain their physical meaning.

4.3.1 Strain relaxation, ZJk

The strain relaxation source term ZJk

ZJk := −1

ρ
ΥEAJk

, (48)

where Υ is a positive relaxation scaling function. For the elastic energy chosen in this paper, EAJk

takes the form

EAJk
=

N∑
a=1

∂εea
∂AJk

= AJidevGik

N∑
a=1

ϱaCs
2
a = ρAJidevGik

N∑
a=1

caCs
2
a, Υ =

3

τ e

(
N∑

a=1

caCs
2
a

)−1

det(A)5/3.

(49)
The scaling parameter Υ is chosen in such a form so that to respect Newton’s law of viscosity with
a constant shear viscosity in the limit τ e → 0 [94, 37], where τ e is the so-called strain relaxation
time, which governs the rate at which the strain, in a given control volume, is dissipated. When
τ e = 0, the thermodynamic force EAJk

vanishes instantaneously (EAJk
= 0) and hence, the shear

stress as well AJkEAJi
= 0, and therefore, inviscid flow is retrieved. On the other hand, for τ e = ∞

there is no relaxation, and the behavior of a pure elastic solid is retrieved. For intermediate values
0 < τ e < ∞, the medium is neither ideal fluid nor elastic solid, but a viscoelastic material, and with
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a proper choice of the function τ e(Q) various material responses can be recovered, e.g. Newtonian
[94, 37] for τ e = const with the kinematic viscosity (for the elastic energy in the form (33))

ν =
1

6
Cs2τ e, (50)

non-Newtonian fluids [65], viscoplastic Bingham-type fluids [91], elastoplastic solids [53, 90].

4.3.2 Interfacial friction, Λa,k, and thermal impulse dissipation, Γa,k

The second dissipative process relevant to multiphase flows is the interfacial friction. Account-
ing for this process results in relaxation of the phase velocities va towards a common value, which
in turn leads to the relaxation of the relative velocities wa towards zero.

The relaxation source terms in the thermal impulse equations are introduced to model the heat
conduction process within a given phase and between the constituents. It has appeared that to get
the heat conducting BN-type model as a relaxation limit of the SHTC multiphase equations, one
needs to couple the relaxation of the phase velocities with the relaxation of the thermal impulse.
Thus, following [106, 123], the relaxation source terms Λa,k and Γa,k are introduced in the phase
velocity and thermal impulse equations, respectively, as

Λa,k := −1

ρ

N−1∑
b=1

λab,kEwb,k
− 1

ρ

N∑
b=1

ζab,kEJb,k
, Ewb,k

=
∂E

∂wb,k
= ϱb(vb,k − Vk), (51a)

Γa,k := −1

ρ

N−1∑
b=1

ζba,kEwb,k
− 1

ρ
γa,kEJa,k

, EJbk
= ϱb

∂etb
∂Jb,k

= ϱbCh
2
bJb,k, (51b)

where the kinetic coefficients λab,k = λab,k(Q) are the entries of three (k = 1, 2, 3) symmetric
positive semi-definite matrices, and

γa,k =
1

τ ta,kCh
2
a

≥ 0 (52)

where τ ta,k are the relaxation time scales governing the heat conduction process within the a-
th constituent. Moreover, in accordance with the Onsager principle, we chose the matrices of
dissipative kinetic coefficients to be symmetric, for consistency with the first and second laws of
thermodynamics, we must require that the following three matrices (k = 1, 2, 3)

Ψk =

(
λk ζk
ζT
k γk

)
≥ 0, (53)

are positive semi-definite, where λk and ζk are the (N−1)× (N−1) and (N−1)×N matrices with
the entries λab,k and ζab,k, respectively, and γk are the diagonal matrices with the entries γa,k on
the diagonal.

4.3.3 Kinetics of phase transformation, χa

For the sake of completeness, we also mention how the kinetics of phase transformation can be
introduced into the SHTC mixture equations. In order to achieve this, it is necessary to introduce
the sources χa into the phase mass balance equations, which are defined as

χa := −ρ

N−1∑
b=1

χabEϱb
,

N∑
a=1

χa = 0, (54)
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where Eϱa
is given in (39f), or (44), and the kinetic coefficients χab = χab(Q) form a symmetric

positive semi-definite matrix.

4.3.4 Temperature relaxation, πa

The source terms πa in the phase entropy equations are defined as

πa := −ϱa

Eηa
−

N∑
b=1

ϱb

ρ Eηb

τEηa

= ϱa

Ta −
N∑

b=1

cbTb

τTa
, (55)

and they model the phase temperature relaxation towards the common temperature

T :=
N∑

a=1

caTa (56)

which can be called the temperature of the mixture control volume. Here, τ < 0 is the relaxation
parameter that characterizes the rate at which the temperature equilibrium T1 = . . . = TN = T is
approached by the system.

4.3.5 Pressure relaxation, Φa

Finally, the dissipative process related to the pressure relaxation towards a common pressure
are introduced as source terms in the volume fraction balance laws of the phases by the functions

Φa := −ρ

N−1∑
b=1

φabEφb
, Eφa

=
∂E
∂φa

= −pa − pN
ρ

, (57)

where φab = φab(Q) are the kinetic coefficients which again are the entries of a symmetric positive
semi-definite matrix.

4.3.6 Entropy production terms, Πa

The remaining undefined dissipative terms, the entropy production terms Πa, a = 1, . . . ,N,
serve the goal of making the system compatible with the two laws of thermodynamics. Therefore,
to fulfill the first and second law of thermodynamics (see (60) and (63) for details), Πa must be
defined as

Πa :=
1

Eηa

(
Π̂a + caΠ̃

)
(58a)

where

Π̂a :=

3∑
k=1

1

γa,k

(γa,kEJa,k
+

N−1∑
b=1

ζba,kEwb,k

)2

−

(
N−1∑
b=1

ζba,kEwb,k

)2

+

N−1∑
b=1

ζ2ba,kE2
wb,k

 , (58b)

Π̃ :=
1

ρ
EAJi

ΥEAJk
+

N−1∑
b=1

N−1∑
c=1

(
3∑

k=1

(
Ewc,k

λcb,kEwb,k
− 1

γc,k
E2
wb,k

ζ2bc,k

)
+ ρEϱb

χbcEϱc + ρEφb
φbcEφc

)
.

(58c)
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Remark that the positive sign of each Πa ≥ 0 is guaranteed for the case when the coupling
coefficients ζab,k in (51) vanish. In this case, (58) is the sum of quadratic forms with positive semi-
definite matrices of coefficients, λab,k, χab, φbc, and hence Πa ≥ 0. Apparently, for sufficiently small

ζab,k we also have Πa ≥ 0 (because Π̂a ≥ 0 and Π̃ ≥ 0), but such inequalities cannot be guarantied
for arbitrary ζab,k. Yet, even if the production terms Πa ≥ 0, the phase entropies may decrease due
to the presence of the temperature relaxation terms πa that makes the sign of Πa − πa, in general,
indefinite. This of course doesn’t contradict the second law because the mixture constituents are
not isolated systems. However, as discussed in the next section, this choice of Πa guarantees the
fulfillment of the second law of thermodynamics for the entire mixture.

4.3.7 Thermodynamic equilibrium

The dissipative source terms Φa, Λa,k, Γa,k and χa are defined in such a way that they diminish
the thermodynamic forces Eφa

, Ewa,k
, EJa,k

, EAJk
, and Eχa

, i.e they lead the mixture towards a
thermodynamic equilibrium state at which these forces must vanish Eφa

= 0, Ewa,k
= 0, EJa,k

= 0,
EAJk

= 0, and Eχa = 0, while the temperature relaxation terms πa tend to make the phase
temperatures equal.

4.4 Consistency with the first and second laws of thermodynamics

One may notice that the total energy conservation law (first law of thermodynamics) is not
listed within the set of equations (47). In fact, one of the main features of all the SHTC models
[52, 51, 108, 109, 93] is that the energy conservation law

∂E
∂t

+
∂

∂xk

(
VkE + Vk(Pδik + wa,iEwa,k

+AJiEAJk
) + Eϱa

Ewa,k
+ Eηa

EJa,k

)
= 0 (59)

is automatically fulfilled for smooth solutions of system (47). In other words, the energy conserva-
tion law is a consequence of the governing equations and can be obtained as a linear combination
of the governing equations (47) multiplied with the corresponding factors (the thermodynamic
conjugate variables or main-field variables [77]). Thus, Eq.(59) can be obtained as the following
linear combination of equations (47) multiplied by the corresponding factors

(59) ≡ EUi · (47a) + EAJk
· (47b) + Eϱa · (47c) + Ewa,k

· (47d) + Eηa · (47e) + EJa,k
· (47f)+

+ Eρ · (47g) + Eφa · (47h).
(60)

However, we can obtain zero in the right hand-side of (59) by these means only if we define the
phase entropy production terms Πa as in (58). Note that the temperature relaxation terms πa are
defined in such a way that they sum up to zero in (60):

N∑
a=1

Eηaπa =

N∑
a=1

Taπa = 0. (61)

As we have already mentioned, if the relaxation processes discussed in the previous section are
taken into account, our choice (58) of the phase entropy production terms Πa cannot guarantee
positive sign of Πa−πa. However, the mixture itself (in the absence of exchange with the exterior) is
an isolated system and the second law must hold. Thus, our choice of the phase entropy production
terms Πa not only guarantees the energy conservation law for the entire mixture (the first law of
thermodynamics) but also the second law. Indeed, the mixture entropy density is defined as

η = η1 + . . .+ ηN (62)
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and fulfills the entropy balance law

∂η

∂t
+

∂(ηVa)

∂xk
= Π+ π ≥ 0, (63a)

which is the sum of the phase entropy balance laws, and where the mixture entropy production Π
and π are defined as

Π :=

N∑
a=1

Πa =

N∑
a=1

Π̂a +

(
c1
T1

+ . . .+
cN
TN

)
Π̃ ≥ 0, (63b)

π = −
N∑

a=1

πa =
1

2
tr
(
MTM

)
≥ 0, (63c)

with M being a symmetric matrix with the entries

Mab =

√
ϱaϱb
ρτ

(Ta − Tb)2

TaTb
, a, b = 1, . . . ,N. (64)

The sign on the right hand side of (63b), and hence the signe of the overall mixture entropy
production in (63), is guaranteed only for sufficiently small coupling coefficients ζab,k in (51).

5 Baer-Nunziato form of the multiphase SHTC equations

As anticipated in the introduction, it is of particular interest to compare the structure of
the proposed SHTC multiphase model (47) with the other approaches. However, the SHTC state
variables dictated by its variational nature are different from those traditionally used in the popular
Baer-Nunziato (BN) model [4], or in the conventional formulation of balance laws for multiphase
flows [76, 57, 116, 87, 80]. Therefore, to make the comparison possible, we first need to put the
SHTC equations in a form that is similar to the conventional way of writing multiphase models,
i.e. in terms of the phase mass, momentum, and energy balance laws.

It is of particular interest to relate the SHTC formulation to the well-known Baer-Nunziato
(BN) model [4], which was studied and used for example in [111, 2, 3, 115, 30, 114]. However,
to the best of our knowledge, there is no extension of the original two-fluid non-equilibrium (two-
pressure, two-velocity) BN model to the case of an arbitrary number of phases, and therefore, a
direct comparison is impossible. The authors are only aware of non-equilibrium BN-type models for
three phases, see [58, 59]. An interesting alternative compressible multiphase model for a general
number of N phases was recently presented and discussed in [62], but it does not take a BN-type
form and thus is not directly comparable to the formulation considered here. Nevertheless, it is
interesting to put the SHTC model in a form that is similar to the BN model to make such a
comparison possible in the future. Moreover, the BN form of the SHTC model and not the original
SHTC equations is discretized in this paper as it was our original intention to compare the SHTC
model with the BN model in the context of numerical simulations.

Let us first remind the structure of the BN model. In its original formulation [4] it is a two-
phase model specifically designed for applications describing the deflagration-to-detonation (DDT)
transition in reactive, gas-permeable granular materials. However, nowadays this model is usually
referred to by considering only the homogeneous part of the original system, i.e., without the
algebraic phase interaction terms, see e.g. [3, 111, 115, 36, 99]. The complete two-fluid seven-
equation Baer-Nunziato model, without algebraic source terms, is a first-order system of nonlinear
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PDEs, which in our notations, see Section 3.1, reads

∂ϱa
∂t

+
∂ua,k

∂xk
= 0, (65a)

∂ua,i

∂t
+

∂

∂xk
(ua,iva,k + Paδki) =

N∑
b=1

pI,ab
∂αb

∂xi
, (65b)

∂Ea
∂t

+
∂

∂xk
(va,kEa + va,kPa) = −

N∑
b=1

pI,ab
∂αb

∂t
, (65c)

∂αa

∂t
+ vI,a,k

∂αa

∂xk
= 0 (65d)

where the subscript a = 1, 2 lables the phase. As it is well known, the BN model requires a
proper choice of the interface velocity vI,a = {vI,a,k} and the interface pressure pI,ab [112]. Such
a structure of the governing equations for multiphase flows, in the form of mass, momentum, and
energy balance laws for each phase, is referred to as the BN-type form.

5.1 A BN-type form of the SHTC multiphase model

To compare the structure of the multiphase SHTC model (47) with the BN-type structure, the
system of PDEs in (47) is rewritten in terms of the phase mass and momentum. We deliberately
keep all the dissipative source terms of the SHTC model in the BN-type form, as we believe that
this is will be useful in the future once the multiphase extension of the BN model will be obtained.
In the following, we collect the individual phase related terms on the left-hand side, while the
interphase exchange terms and the terms arising from the dissipative processes considered in 4.3
are collected on the right-hand side.

5.1.1 The phase mass balance equations

The evolution equations in (47c) can be immediately rewritten in a more traditional form using
the definition of the mixture velocity Vk and the expression of Ewa,k

, given in (39g):

∂ϱa
∂t

+
∂ (ϱava,k)

∂xk
= χa. (66)

5.1.2 The phase volume fraction equations

The phase volume fraction equations can be retrieved from the equations (47h), using the
conservation of total mass and balance laws of the phase densities (66), and read

∂αa

∂t
+ Vk

∂αa

∂xk
=

1

ρ
Φa. (67)

Thus, comparing with the BN model, one can conclude that the interface velocity vI,k of the BN
model is replaced by the mixture velocity Vk in the SHTC model, as was already noticed in [107,
106].

5.1.3 The phase momentum equations

The balance laws for the phase momenta can be obtained from the mixture momentum con-
servation and relative velocity equations in the following way. Let DU

i represents the mixture
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momentum equation (47a), Dw
a,i represents the relative velocity equations (47d), and Du

a,i repre-
sents the sought phase momentum equations. Then, the phase momentum balance equations can
be obtained as

Du
a,i =

ϱa
ρ
DU

i − ϱa
ρ

N∑
b=1

ϱbDw
b,i + ϱaDw

a,i. (68)

After lengthy but rather straightforward manipulations of the terms in (68), the individual phase
momentum balance equations can be written as

∂ua,i

∂t
+
∂(ua,iva,k + Paδki + σe

a,ki + σt
a,ki)

∂xk
=−ca

N∑
b=1

pb
∂αb

∂xi
+ pa

∂αa

∂xi
(69a)

−ca

N∑
b=1

ϱbw̄b,kωb,k,i + ϱaw̄a,kωa,k,i (69b)

− ca

N∑
b=1

ϱbsb
∂Tb

∂xi
+ ϱasa

∂Ta

∂xi
(69c)

− ca

N∑
b=1

∂
(
σe
b,ki + σt

b,ki

)
∂xk

+
∂
(
σe
a,ki + σt

a,ki

)
∂xk

(69d)

+ ca

N∑
b=1

ϱb
∂(eeb + etb)

∂xi
− ϱa

∂(eea + eta)

∂xi
(69e)

− ca

N∑
b=1

ϱbΛb,i + ϱaΛa,i (69f)

− ca

N∑
b=1

vb,iχb + va,iχa, (69g)

where

σe
a,ki := AJi

∂Ea
∂AJk

, σt
a,ki := Ja,i

∂Ea
∂Ja,k

, ωa,k,i :=
∂wa,i

∂xk
− ∂wa,k

∂xi
(70)

and eea = εea/ϱa, e
t
a = εta/ϱa, and w̄a,k was previously defined in (13). Here, the presence of the

phase transformation terms χa is due to the appearance of ∂ϱa/∂t and the need to replace them
by their expressions from (66).

The phase momentum equations (69) derived from the SHTC mixture equations can be com-
pared with those of the original BN model in order to understand some differences between the
two approaches. Of course, the main differences are related to the phase interaction terms that are
collected on the right hand side of (69). Thus, the main difference concerns the fact that in the
momentum equations (69) derived from the SHTC mixture theory, no closure problem arises for
the interface quantities pI,ab and vI,a,k as in the BN model, as already noticed in [107, 106]. The
second difference concerns the presence of the gradients of the relative velocities (lift forces) (69b)
and temperature gradients (69c) that are not present in the BN model.

Overall, one can notice that the phase interaction terms are rather complicated and take into
account all physical processes occurring in the mixture, including elastic and thermal stresses (69d),
interfacial friction (69f), and the phase transformation (69g).
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5.1.4 The phase energy equations

The phase energy balance laws can be obtained from the conservation equations of mixture
momentum, relative velocity and entropy, similarly to the phase momentum equations, after a
lengthy manipulation. However, this procedure is not illustrated in this work, since the energy
equations depend directly on the momenta PDEs, and the latter already fulfill the comparative
purpose of this section by making the interphase terms clear.

5.2 Multi-distortion extension of the BN formulation of SHTC equa-
tions

According to the unified model of continuum mechanics [94] and SHTC formulation for multi-
phase flows [106, 101], a true non-equilibrium multiphase model should have, in general, different
pressures, temperatures, velocities, distortion fields, and etc. for each phase. However, at the
moment, we only know how to derive the SHTC multiphase model for the case when the phase
distortions are equal, A1 = A2 = . . . = AN = A. Therefore, in this section we discuss a heuris-
tic extension of the SHTC multiphase model in its BN form (69) to the case of different phase
distortions Aa, and this formulation was used to obtain all the numerical results presented in
Section 7.

Let us note that the single-distortion formulation still might be a reasonable approximation
in many situations, for example, in high-energy transient problems like in [82, 81]. However,
according to our experience, the single-distortion formulation is not suitable for low-Mach long-
time fluid-structure interaction problems considered in Section 7. Note that a multiphase single-
velocity multi-distortion model was already proposed in [79] in which the distortion fields Aa were
transported by the mixture velocity, which is a natural choice for a single-velocity approximation.
In our multi-velocity model we opt for the advection of the distortion fields by the phase velocities.

Thus, to extend (69) to the multi-distortion formulation, we employ a heuristic approach and
simply introduce the phase distortion fields Aa = {Aa,Jk} for each phase a = 1, . . . ,N and assume
that each Aa is advected by the phase velocity va, i.e. we add to system (69) the following
equations for the phase distortion fields:

∂Aa,Jk

∂t
+

∂ (Aa,Jlva,l)

∂xk
+ va,i

(
∂Aa,Jk

∂xi
− ∂Aa,Ji

∂xk

)
= Za,Jk. (71)

Further modifications concern the elastic stress σe
a,ki and thermodynamically conjugate vari-

ables of the phase distortion fields, which (for the elastic energies εea used in this paper) are
computed as

σe
a,ki = Aa,JiEAa,Jk

= Aa,Ji
∂εea

∂Aa,Jk
,

∂εea
∂Aa,Jk

= ϱaCs
2
aAa,JidevGa,ik. (72)

Finally, the strain dissipation source term Za,Jk in (71) is defined as

Za,Jk := − 1

ϱa
ΥaEAa,Jk

, Υa =
3

τ ea
Cs−2

a det(Aa)
5/3, (73)

with τ ea being the strain relaxation time of phase a, and in general is assumed being different for
each phase. This timescale defines the stiff nature of the strain relaxation source term towards an
equilibrium state of material deformation, e.g.

1. for τ ea = 0, the so-called stiff relaxation limit is achieved instantaneously and therefore inviscid
flow is retrieved;
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2. for sufficiently small τ ea with respect to the flow timescale, the model reproduces the Navier-
Stokes equations of viscous fluids, for the chosen shear energy, it can be computed to fit the
kinematic viscosity νa of a fluid as τ ea = 6νa/Cs

2
a ;

3. for τ ea = ∞ the relaxation is absent and the behavior of a pure elastic solid is retrieved.

The relaxation time τ ea , in general is a function of the state variables. In the multiphase context, it
is useful to define it as a function of the volume fraction αa for each phase, by means of a smooth
logarithmic interpolation, which can be computed as follows

τ ea = (τ ea)
ξ τ1−ξ

o , (74)

where ξ can be evaluated by

δα =
αa − αm

αM − αm
, δα = max

(
0,min(1, δα)

)
, ξ = δα2(3− 2δα), (75)

which results in a smooth transition from τ ea to τo, where τo is usually assumed to be a small
constant like 10−14. Then, αM and αm represent the extrema at which this operator makes the
transition. In this way, where a phase is not present, the strain is dissipated instantaneously, as for
a prefect fluid, and no stresses are generated in the respective momentum conservation equation.
This rescaling of the relaxation time is well suited to multimaterial problems, and in the rest of
the paper is referred to as vanishing ghost solid relaxation time.

5.3 Three phase SHTC model in the BN-type form

As the BN model is one of the most popular mathematical models for describing two-phase
flows, there are many works in which BN-type equations are solved numerically. However, only
a very limited number of publications exist on the mathematical and computational issues of BN
models for flows with more than two phases [58, 59]. It is therefore very attractive to numerically
address the BN-type SHTC multiphase model presented in the previous section 5, which has been
also generalized to fluid and solid mechanics in this work.

The BN-type form of the SHTC equations (69), (71) admits an arbitrary number of phases, but
in this paper, the numerical tests are restricted to three-phase problems in one and two dimensions.
Moreover, we further simplify equations (69) by assuming isothermal conditions, absence of heat
conduction and phase transitions, and isotropic phase velocity relaxation.

Such an approximation is reasonable for low-Mach number flows, i.e. shock waves are either
totally absent, or very weak. Thus, instead of considering the phase energy balance laws, we assume
the conservation of phase entropies on shocks, and consider phase entropy balance equations, which
have a much simpler structure than the phase energy balance laws. Therefore, the phase entropy
equations can be retrieved from the SHTC equations (47e), using the conservation of total mass
(47g), and read

∂sa
∂t

+ Vk
∂sa
∂xk

= Πa − πa. (76)

Then, neglecting the phase pressure relaxation towards a common pressure for all the phases
(Φa = 0), assuming the absence of phase transformation (χa = 0), temperature relaxation (πa = 0),
and assuming the isotropy of the phase velocity relaxation process (λab,k becomes λa, a = 1, 2, 3),
the mathematical model that is solved numerically in this paper reads

∂ϱa
∂t

+
∂ua,k

∂xk
= 0 (77a)
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∂ua,i

∂t
+

∂

∂xk

(
ua,iva,k + Paδi,k − σe

a,ik

)
= −ca

N∑
b=1

pb
∂αb

∂xi
+ pa

∂αa

∂xi
(77b)

− ca

N∑
b=1

ϱbw̄b,kωb,k,i + ϱaw̄a,kωa,k,i (77c)

+ ca

N∑
b=1

λbϱb (vb,i − Vi)− λaϱa (va,i − Vi) , (77d)

∂sa
∂t

+ Vk
∂sa
∂xk

=
λa

Ta
ca (va,k − Vk)

2
, (77e)

∂αa

∂t
+ Vk

∂αa

∂xk
= 0, (77f)

∂Aa,Jk

∂t
+

∂ (Aa,Jlva,l)

∂xk
+ va,i

(
∂Aa,Jk

∂xi
− ∂Aa,Ji

∂xk

)
= Za,Jk. (77g)

In order to simplify notation for discussing the numerical method, we introduce a compact
matrix-vector notation so that system (77) can be written as

∂tQ+∇ · F(Q) +B(Q) · ∇Q = S(Q) (78)

with Q = {Q1,Q2,Q3} being the vector of conservative state variables, and Qa being the conser-
vative variables for each phase a = 1, 2, 3:

Qa = (ϱa,ua, sa, αa,Aa,1,Aa,2,Aa,3), (79)

where we use the fact that each distortion matrix Aa is in fact a triad of three basis vectors, i.e.
Aa = {Aa,1,Aa,2,Aa,3} and for each J = 1, 2, 3, Aa,J = {Aa,J1, Aa,J2, Aa,J3} is a 3-vector.

The flux tensor F(Q) in (78) is decoupled with respect to the phases, i.e. F(Q) = {F1(Q1),F2(Q2),F3(Q3)},
and can be written as the sum of several contributions as follows

Fa(Qa) = Fc
a(Qa) + Fp

a(Qa) + Fs
a(Qa) + Fd

a(Qa), (80)

where each term depends only on Qa and is defined as

Fc
a(Qa) =



ua

ua ⊗ va

03×1

03×1

03×1

03×1

03×1


, Fp

a(Qa) =



03×1

PaI
03×1

03×1

03×1

03×1

03×1


, Fs

a(Qa) =



03×1

σe
a

03×1

03×1

03×1

03×1

03×1


, Fd

a(Qa) =



03×1

03×3

03×1

03×1

Aa,1vaI
Aa,2vaI
Aa,3vaI


,

(81)

Thus, tensor Fc
a(Qa) contains the convective terms for the mass and momentum balance equations,

Fp
A(Qa) is the phase related pressure flux tensor, Fs

a(Qa) is the flux tensor containing contribution
due to shear viscous and elastic stresses, while Fd

a(Qa) contains advective terms from the distortion
PDE.

The so-called non-conservative matrix-vector product in (78) contains the phase coupling terms
and can be presented as a sum of the following contributions

B(Q) · ∇Q =
[
Bc(Q) +Bp(Q) +Bw(Q) +Bd(Q)

]
· ∇Q, (82)
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where the convective part is given by (components restricted to phase a)

(Bc(Q) · ∇Q)a = (0,0,V · ∇sa,V · ∇αa,0,0,0), (83)

while the non-conservative products related to the multiphase and multi-material nature of the
model read

(Bp(Q) · ∇Q)a =

(
0, ca

N∑
b=1

pb∇αb − pa∇αa, 0, 0,0,0,0

)
, (84)

(Bw(Q) · ∇Q)a =

(
0, ca

N∑
b=1

ϱb(∇vb−∇vT

b )(vb − V )− ϱa(∇va −∇vT

a )(va−V ), 0, 0,0,0,0

)
,

(85)(
Bd(Q) · ∇Q

)
a
=
(
0,0, 0, 0,

(
∇Aa,1 −∇AT

a,1

)
va,
(
∇Aa,2 −∇AT

a,2

)
va,
(
∇Aa,3 −∇AT

a,3

)
va

)
.

(86)
The source term vector S(Q) can be written as the sum of two different vectors that will be

discretized by two different approaches,

S(Q) = Sw(Q) + Ss(Q), (87)

where Sv(Q) is stiff but linear in Q (relative velocity relaxation), while Ss(Q) is related to the
strain relaxation source terms of the distortion matrix, which is nonlinear and can be extremely
stiff. These source term vectors read

Sw(Qa) =



0

ca
∑N

b=1 λbϱb (vb−V )−λaϱa (va−V )
0

λa

Ta
ca (va−V )

2

0
0
0


, Ss(Qa) =



0
0
0
0

Za,1

Za,2

Za,3


, (88)

where Za = {Za,1,Za,2,Za,3} is the phase strain relaxation matrix defined in (73).
Furthermore, to better address some of the specific issues usually encountered in the numerical

solution of multiphase flow models, it is convenient to introduce the so-called primitive variables.
For example, in the multiphase context and high-order FV schemes, the use of only conservative
variables, such as ϱa and ua, may result in non-physical discontinuities in the reconstructed velocity
and density fields, as well as violations of the positivity constraint in the reconstructed mass fraction
values [25]. Whereas, a reconstruction in the primitive variable space, for a second-order MUSCL-
Hancock TVD scheme, significantly mitigates these problems, see e.g. [78, 127, 25] and references
therein.

Therefore, alongside with the vector of conservative variables Q = (Qa,Q2,Q3) we consider
the vector of primitive variables V = (V1,V2,V3), where for each phase a = 1, 2, 3,

Qa = (ϱa,ua, sa, αa,Aa), Va = (ρa,va, pa, αa,Aa), (89)

The primitive-to-conservative transformation operator will be denoted by C and its comple-
mentary conservative-to-primitive by P, i.e.

Va(x, y) = P[Qa(x, y)], and Qa(x, y) = C[Va(x, y)]. (90)

In the mixture context, these operators must be defined with care to avoid division by zero when
a phase vanishes. In the following, we illustrate how these conversion operators are defined in
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our numerical method to address this issue and to satisfy the unit sum constraints on the volume
fractions.

First, a sum of the volume fractions over the phases is evaluated

αtot =

N∑
a=1

αa, (91)

from which a preliminary phase volume fraction is computed as

α∗
a = max(ϵ,min (1, αa/α

∗
tot)) , (92)

where ϵ = 10−14 is a small constant introduced to avoid division by zero in the following formula.
Then the conservative-to-primitive P operator reads

P[Qa] =


ϱa/α

∗
a

uaϱa/(ϱ
2
a + ϵ2)

P [ϱa/α
∗
a, sa]

max(ϵ,min (1, αa/α
∗
tot))

Aa

 , (93)

where P [ϱa/α
∗
a, sa] is the pressure function that can be defined according to the EOS chosen for

the phase.

6 Explicit FV scheme for compressible multiphase fluid and
solid mechanics

In this section, we describe the way we adapt the well-known Finite-Volume (FV) MUSCL-
Hancock method for addressing the challenges encountered while solving the BN form of the SHTC
multifluid model 5.3. The multiphase system is restricted to at most three phases. However, they
can be freely chosen as gaseous, viscous or inviscid liquid, or elastoplastic solid, e.g. the multi-
phase system can be a gas-liquid-solid system or gas-solid-solid system, etc. The phase interfaces
are treated in the spirit of the diffuse interface approach, thanks to the suitable mathematical
description of the interfaces through the volume fractions αa.

Due to the presence of source terms in (77), the MUSCL-Hancock scheme will be implemented in
an operator splitting manner. Moreover, to address the stiff character of the relaxation source terms,
a specially designed implicit discretization of the sources is incorporated at both the predictor and
corrector stages of the scheme. To address the presence of the non-conservative product terms in
(77), a path-conservative variant of the MUSCL-Hancock scheme is employed.

6.1 Data representation and reconstruction, slope limiting

The computational domain Ω ⊂ R2 is partitioned in Cartesian elements, denoted by

Ωij =

[
xi −

∆xi

2
, xi +

∆xi

2

]
×
[
yj −

∆yj
2

, yj +
∆yj
2

]
, (94)

where the indices i and j go from 1 to the total number of elements in each direction. From now
on, to avoid possible confusion of spatial and discretization indices, we shall use x for the direction
x1, and y for the direction x2.
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The discrete solution of the conservative and primitive state variables for a generic element Ωij

at time tn is denoted by Qn
i,j and Vn

ij , and which are defined as volume (area) averaged values, i.e.

Qn
i,j =

1

|Ωij |

∫
Ωij

Q(x, y, tn)dΩ, Vn
i,j =

1

|Ωij |

∫
Ωij

V(x, y, tn)dΩ. (95)

In order to achieve a second-order accuracy, it is necessary to perform a data reconstruction that,
for each cell, yields a first-degree polynomial representation of the state variables, namedQr

ij(x, y, t)
and Vr

ij(x, y, t).
A cell-local primitive variable polynomial reconstruction Vr

ij(x, y, t) is now reconstructed, for
each element Ωij , from the discrete primitive state vector Vn

ij at time tn. For each Cartesian cell
Ωij , a jump in primitive variables through each edge can be evaluated. These are then combined
in a non-linear fashion in order to obtain a slope in the x and y-direction respectively and to
guarantee non-oscillatory properties of the resulting scheme. For instance, in the x-direction, left
and right jumps are evaluated as

∆VL = Vn
i,j −Vn

i−1,j and ∆VR = Vn
i+1,j −Vn

i,j , (96)

respectively. These are then combined in a non-linear fashion to obtain a preliminary slope ∆̃Vi

by means of a slope limiter. In our implmentation, we use a limiter that is usually referred to as
the Generalised minmod slope limiter, and is given by

∆̃Vi =
∆VR max

[
0, min

(
β∆V2

R, ∆VR∆VL

)]
2 ∆V2

R + ϵ2
+

∆VL max
[
0, min

(
β∆V2

L, ∆VL∆VR

)]
2 ∆V2

L + ϵ2
,

(97)
where ϵ is a small constant that avoids division by zero, e.g. ϵ = 10−14, and β defines a family of
minmod limiters. For β = 1, the classic minmod slope limiter is obtained, whereas it reduces to
the MUSCL-Barth-Jespersen limiter for β = 3, and β = 2 represents a good compromise between
robustness and dissipation, and this value will be assumed for all the subsequent numerical tests.

In fact the slope ∆̃Vi is not the final slope but a preliminary one since it was found useful

to adopt a slope rescaling approach presented in [23]. Thus, after ∆̃Vi is computed it is then
corrected to impose an upper or lower limit for certain variables; in this way, the positivity of the
reconstructed density values is guaranteed and the upper and lower bounds of the volume fractions
of the phases are respected. We list below the steps to achieve this rescaling

∆Vi = ∆̃Vimin
(
1,Φ+

i ,Φ
−
i

)
, (98)

with

Φ+
i =

[(
| ∆̃Vi | +∆̃Vi

)
(VM −Vi) +

(
| ∆̃Vi | −∆̃Vi

)
(Vm −Vi)

]
∆̃Vi

2 | ∆̃V
3

i | +ϵ3
,

Φ−
i =

[(
| ∆̃Vi | −∆̃Vi

)
(Vi −VM ) +

(
| ∆̃Vi | +∆̃Vi

)
(Vi −Vm)

]
∆̃Vi

2 | ∆̃V
3

i | +ϵ3
,

(99)

where, the vectors Vm and VM represent the lower and upper bounds for each variable of the
primitive state vector, and are set, for each phase a = 1, 2, 3, as

Vm,a = (0,−h,−H, 0,−H)a, and VM,a = (H,h, H, 1,H)a, (100)

where the values of H, h and H should be set to certain bound values following from the physical
meaning of the corresponding quantity or to arbitrary large value to represent the absence of
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bounds. The analogous steps are performed in y-direction to calculate the reconstruction of the
slope ∆Vj .

After the spatial reconstruction, at a given time instant tn, the cell-local space-time primitive
variable polynomial reconstruction, in each cell Ωij , is written in terms of a space-time Taylor
series expanded about xi, yi and tn as

Vr
i,j(x, y, t) = Vn

i,j + (x− xi,j)
∆Vi

∆x
+ (y − yi,j)

∆Vj

∆y
+ (t− tn) ∂tVi,j . (101)

The time derivative, in (101), is computed in terms of primitive variables in two steps, through
the following straight-forward application of the operator splitting approach.

Thus, to determine ∂tVi,j , we consider

∂tVi,j = − (C · n̂x) ∂xV − (C · n̂y) ∂yV + S, (102)

where

C =

(
∂Q

∂V

)−1(
∂F(Q)

∂V
+B(Q)

∂Q

∂V

)
. (103)

To solve (102), we split it into the homogeneous part

∂tVi,j = − (C · n̂x) ∂xV − (C · n̂y) ∂yV, (104)

and the source part
dVi,j

dt̂
= S(Vi,j), t̂ ∈ [tn, t]. (105)

In order to approximate the spatial derivatives of the primitive state variables in (104), we use a
central finite difference with respect to the cell center by using the boundary primitive reconstructed
values from within the cell Ωi,j , as

∂tVi,j ≈
(
C(Vn

i,j) · n̂x

) ∆Vi

∆x
+
(
C(Vn

i,j) · n̂y

) ∆Vj

∆y
. (106)

Hence, using (106), one can compute an update for each cell, such that V∗
i,j is the solution of (104)

at time t with an initial value Vn
i,j , as follows

V∗
i,j = Vn

i,j + (t− tn) ∂tVi,j . (107)

In the second step, we consider the contribution of the stiff source terms via solving the initial
value problem

dVi,j

dt̂
= S(Vi,j), t̂ ∈ [tn, t], Vi,j(t

n) = V∗
i,j , (108)

whose solution at time t is denoted by V∗∗
i,j . This initial value problem is solved with two different

implicit methods discussed in detail in Sec. 6.3.
Finally, by introducing the discrete solution V∗∗

i,j of ∂tVi,j in (101), the cell-local primitive
variable polynomial reconstruction reads

Vr
i,j(t, x, y) = V∗∗

i,j(t) + (x− xi,j)
∆Vi

∆x
+ (y − yi,j)

∆Vj

∆y
, (109)

which we also refer to as the cell-local space-time predictor.
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6.2 Explicit finite volume discretization of the homogeneous system

After obtaining the local space-time predictor (109), the final solution Qn+1
i,j at tn+1 of the

MUSCL-Hancock scheme is also computed using the splitting approach, in which we first compute
the solution of the homogeneous PDE system

∂tQ+∇ · F(Q) +B(Q) · ∇Q = 0, (110)

with the initial data obtained by extrapolating the reconstructed polynomials towards the cell
boundaries and by applying the standard explicit FV update formula to (110). The latter is
obtained by integrating (110) over the space-time element and applying Gauss’s theorem for inte-
grating the divergence of fluxes in space:∫ tn+1

tn

∫
Ωij

∂tQdxdt+

∫ tn+1

tn

∫
∂Ωij

F(Q) · n̂dSdt+
∫ tn+1

tn

∫
Ωij

B(Q) · ∇Q dxdt = 0, (111)

where n̂ defines the outward unit normal vector on the element boundary, and dx = dxdy.
Then, by using the reconstructed polynomials Vr

i,j(t, x, y) and treating the non-conservative
terms using the path-conservative approach by Castro and Parés [86, 22], we get the usual path-
conservative FV discretization∫ tn+1

tn

∫
Ωij

∂tQdxdt+

∫ tn+1

tn

∫
∂Ωij

(
F(Vr,−

i,j ,Vr,+
i,j ) +D(Vr,−

i,j ,Vr,+
i,j )

)
· n̂dSdt +

+

∫ tn+1

tn

∫
Ωijn∂Ωij

B(Vr
i,j) · ∇Vr

i,j dxdt = 0, (112)

where, within the framework of path-conservative schemes, the new term D was introduced to
take into account the jumps of the primitive variables V across the space-time element boundaries
∂Ωij , while the last term is the integral over the smooth part of the non-conservative terms.

Using notations (95), the fully discrete one-step update formula for the solution Q
(1)
i,j of the

homogeneous part of the system at time tn+1 reads

Q
(1)
i,j = Qn

i,j −
∆t

∆x

(
FRS

i+1/2,j − FRS
i−1/2,j +Di+1/2,j +Di−1/2,j

)
+

− ∆t

∆y

(
FRS

i,j+1/2 − FRS
i,j−1/2 +Di,j+1/2 +Di,j−1/2

)
+

+
∆t

∆x
B1

[
Vr

i,j

(
t n+1/2, xi, yj

)]
∆Vi+

+
∆t

∆y
B2

[
Vr

i,j

(
t n+1/2, xi, yj

)]
∆Vj ,

(113)

where FRS is the generic conservative numerical flux, which can be compute with different approx-
imate Riemann solvers.

In order to describe easily each term in (113), we introduce a compact notation for the boundary-
extrapolated primitive states VR and VL, which can be evaluated from the solution of the cell-local
space-time predictor (109). In particular, the space-time midpoint values for each face, of generic
index i+ 1

2 , j in the x-direction or i, j + 1
2 in the y-direction, read

(VL)i+ 1
2 ,j

= Vr
i,j(t

n+ 1
2 , xi+ 1

2
, yj), (VR)i+ 1

2 ,j
= Vr

i+1,j(t
n+ 1

2 , xi+ 1
2
, yj),

(VL)i,j+ 1
2
= Vr

i,j(t
n+ 1

2 , xi, yj+ 1
2
), (VR)i,j+ 1

2
= Vr

i,j+1(t
n+ 1

2 , xi, yj+ 1
2
).

(114)
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Thus, using this simpler notation, we illustrate how conservative numerical FRS flows are defined.
In this paper, we employ the simple Rusanov flux:

FRS
i+1/2,j(VL,VR) =

1

2

(
F1(VL) + F1(VR)

)
− 1

2
smax
1

(
C[VR]− C[VL]

)
,

FRS
i,j+1/2(VL,VR) =

1

2

(
F2(VL) + F2(VR)

)
− 1

2
smax
2

(
C[VR]− C[VL]

)
,

(115)

where F1 and F2 are the conservative fluxes in the first and in the second space direction.
The Rusanov numerical flux requires the knowledge of an estimate for the maximum wave

velocity smax for each direction. In this paper, keeping in mind that we are interested in problems
with not high Mach numbers, the absolute value of the maximum eigenvalue of the PDE system
linearized at the states VL and VR can be a good estimate for smax. Therefore, the maximum
wave speed estimates read

smax
1 (VL,VR) = max ( λmax

1 (VL), λmax
1 (VR) ) ,

smax
2 (VL,VR) = max ( λmax

2 (VL), λmax
2 (VR) ) .

(116)

The maximum eigenvalues of (77) can be estimated as described in A.
Nonconservative products are treated within the framework of path-conservative schemes.

Thus, at each cell interface the following path integrals must be prescribed

DΨ(VL,VR) · n̂ =
1

2

∫ 1

0

B [Ψ(VL,VR, s)] · n̂
∂Ψ

∂s
ds =

1

2

(∫ 1

0

B [Ψ(VL,VR, s)] · n̂ds
)(

VR−VL

)
,

(117)
in which Ψ(VL,VR, s) = VL + s(VR −VL) is a simple segment path function connecting the left
and right states in the primitive state space. These path integrals, which are denoted by Di+1/2,j

and Di,j+1/2 in (113), are computed with a three-point quadrature rule as follows

Di+1/2,j =
1

2

3∑
k=1

wk B1

[
Ψ(VL,VR, sk)

] (
VR −VL

)
,

Di,j+1/2 =
1

2

3∑
k=1

wk B2

[
Ψ(VL,VR, sk)

] (
VR −VL

)
.

(118)

Therefore, by these means we compute the preliminary state vector Q
(1)
i,j , which is the updated

solution of the left hand side of (78). To get the final solution Qn+1
i,j , it remains to compute the

solution of the relaxation source terms, which is done in the next section.
Before describing in detail the implicit solver for the relaxation source terms, we note that in

order to guarantee stability of the explicit FV time-stepping described above, the time-step size is
restricted by

∆t ≤ kCFL

1

∆x/λM
1 +∆y/λM

2

, (119)

where λM

k is the maximum absolute value of all eigenvalues found in the domain, in the xk-direction,
which, for system (77), can be estimated as detailed in A. Also, kCFL ≤ 1 is a Courant-type number
[27], which is typically chosen as kCFL = 0.9 for all the simulations presented in this work.

6.3 Integration of relaxation sources

As previously mentioned, to account for the algebraic relaxation source terms in the numerical
solution, we adopt a splitting approach. It is a simple but robust strategy since it allows to separate
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the contribution of relaxation terms from the reversible part of the time evolution equations. Here,
we discuss the details of the implicit method that is used to solve the ordinary differential equations
(ODE)

dQi,j

dt
= S(Qi,j), t ∈ [tn, tn+1], Qi,j(t

n) = Q
(1)
i,j . (120)

In Section 5.3, the source terms were separated into Sw(Qa), which contains the velocity
relaxation terms and are stiff, but linear with respect to the relative velocity, and Ss(Qa), which
contains the strain relaxation terms of the distortion matrix Aa, and which is non-linear and can
be very stiff. The integration of these two different source terms is carried out with two different
implicit approaches.

6.3.1 Relative velocity relaxation

In the following, we describe the system of ODEs arising from the source vector Sw(Q) in (88),
related to the relative velocity relaxation. Since there are zeros in Sw(Qa) corresponding to the
conservation equations of mass, volume fraction, and distortion matrix, they are remained constant
over time in (120). Therefore, these quantities can be considered as constant parameters and can
be omitted from the state vector Qi,j of the initial value problem (120).

The integration of the remaining quantities, the phase momenta ua and entropies sa, is carried
out in terms of the primitive state variables. More precisely, instead of (120) we consider the

following reduced ODE system for the vectorṼ = (v1,v2,v3, s1, s2, s3):

dṼij

dt
= S(Ṽij), t ∈ [tn, tn+1], Ṽij(t

n) = Ṽ
(1)
ij , (121)

where Ṽ(1) is the primitive variable reduced state vector obtained in (113) as the solution to the
the homogeneous PDE system. The later ODE system can be easily integrated by means of the
backward Euler method to obtain an updated solution Ṽ(2) at time tn+1.

For instance, it can be seen that for each spatial direction xk, k = 1, 2, one can decouple the
phase velocity equations from the phase entropy ones, and this velocity subsystem reads

dv1,k
dt

= λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v1,k−Vk)

)
,

dv2,k
dt

= λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v2,k−Vk)

)
,

dv3,k
dt

= λ

(
c1(v1,k−Vk) + c2(v2,k−Vk) + c3(v3,k−Vk)− (v3,k−Vk)

)
,

(122)

where the phase kinetic coefficients λab,k, that define the time scale for friction relaxation dissipative
process in (51), are assumed to be equal throughout all phases and directions in this paper, i.e.
λab,k = λ. It is also usually assumed that this parameter is larger than 1/∆t, where ∆t is the
time-step given by the stability condition in (119), and hence, we can say that we have a stiff ODE
system, and an implicit discretization is needed. For such a system, in which all the sources are
linear, the following discretization can be written for each cell Ωijv1,k

v2,k
v3,k

(2)

i,j

= (I−∆tM)−1

v1,k
v2,k
v3,k

(1)

i,j

(123)
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where the matrix inverse can be evaluated analytically, and after defining λ∗ = ∆tλ, it reads

(I−∆tM)−1 =
1

1 + λ∗

1 + λ∗c1 λ∗c2 λ∗c3
λ∗c1 1 + λ∗c2 λ∗c3
λ∗c1 λ∗c2 1 + λ∗c3

 . (124)

After that, it remains to solve the independent ODE subsystem for the phase entropies that
reads

ds1
dt

=
λc1
T1

((
v1,1 − V1

)2
+
(
v1,2 − V1

)2
+
(
v1,3 − V1

)2)
,

ds2
dt

=
λc2
T2

((
v2,1 − V1

)2
+
(
v2,2 − V1

)2
+
(
v2,3 − V1

)2)
,

ds3
dt

=
λc3
T3

((
v3,1 − V1

)2
+
(
v3,2 − V1

)2
+
(
v3,3 − V1

)2)
,

(125)

where we can use the updated velocities evaluated in (123). Finally, to discretize the three ODEs
in (125), a generic implicit backward Euler time integrator based on Newton’s method can be
used in order to deal with the nonlinearity inherent to the definitions of the phase temperatures
Ta(ρa, sa).

6.3.2 Strain relaxation

In contrast to the relative velocity relaxation subsystem (121), an accurate integration of the
non-linear stiff source Ss(Q) governing the strain relaxation of the distortion matrix Aa is a more
challenging task, especially in the context of multiphase flows. Let us begin with some remarks on
the evolution equations of the phase distortion fields Aa, which we recall to be defined for each
phase a = 1, 2, 3.

In the multiphase context, the evolution of the three distortion fields Aa, a =, 1, 2, 3 given by

∂tAa +∇
(
Aa · va

)
+
(
∇Aa −∇AT

a

)
· va = − 3

τ ea
(detAa)

5/3
Aadev

(
AT

aAa

)
. (126)

may occur over a very wide range of time scales in a single computational cell Ωij . Namely, there
might be infinitely slow strain relaxation time scale (τ ea = 1014) in an elastic solid phase and
extremely fast relaxation of shear stresses in the inviscid (τ ea = 10−14) and viscous fluid phase
(τ ea ∼ 10−6 − 10−3). These different time scales are quantified by means of the relaxation time τ ea
in the evolution equation of the phase distortion field

The interpretation of the strain relaxation timescale τ eA and its definition in the multiphase
context were described in Section 5.2. From that description, it is clear that one of the major
difficulties in solving the unified multiphase model of continuum mechanics is conditioned by the
presence of these stiff and very non-linear strain relaxation source terms. Therefore, it is necessary
to solve the associated ODE systems with care using an appropriate implicit time integrator.

Following the ideas in [53], an efficient and robust method for a semi-analytical implicit in-
tegration of the strain relaxation ODE systems was introduced by Chiocchetti and co-authors in
[118] in the context of strain relaxation in the damaged solids, and further developed in [24, 23] for
finite-rate pressure and strain relaxation in multiphase flows. The key idea of this time integrator
is a reduction of the problem by using the polar decomposition for each phase distortion matrix
Aa:

Aa = Ra G1/2
a with G1/2

a = Ea Ĝ1/2
a E−1

a , (127)

31



where Ra is an orthogonal matrix with a positive unit determinant, while the matrix square root

G
1/2
a can be defined by means of eigen-decomposition of the symmetric positive definite matrix

Ga, where Ea is the matrix whose columns are eigenvectors and Ĝ
1/2
a is the diagonal matrix whose

diagonal elements are the roots of the eigenvalues.
Indeed, the distortion field Aa represents three local basis vectors representing the volume,

shape, and the orientation of the phase control volume. Its 9 independent components (degrees
of freedom), therefore, encodes two different types of information. Six degrees of freedom are
strictly related to the definition of the stress tensor σe

a = ϱaCs
2
a(GadevGa) via the six independent

components of the metric tensor Ga, and the three remaining degrees of freedom that define the
angular orientation of the control volume.

Numerically, the matrix G
1/2
a can be simply evaluated using the Denman-Beavers algorithm.

Thus, for any given state Aa, one can easily compute Ga, its square root G
1/2
a , and eventually the

inverse G
−1/2
a . After that, the rotation matrix can be computed as

Ra = Aa G−1/2
a . (128)

Moreover, the invariance of the rotational component of the distortion matrix under strain re-
laxation can be proven following the arguments in [53, 23], which means that during the strain
relaxation step, one can use the evolution PDE for the metric tensor

∂tGa +
(
∇Ga

)
va +Ga∇va − (∇va)

TGa = − 6

τ ea
(detGa)

5/6
GadevGa , (129)

instead of the PDE for the full distortion matrix.
We now have all the ingredients to describe the following steps in order to obtain the final

solution for the distortion matrix. First, we calculate the update A
(1)
a of the distortion matrix Aa

obtained from the left hand side of the evolution equation (126), as presented in (113). From this
solution, a rotation matrix can be calculated independently of the non-linear source terms as

R(1)
a = A(1)

a G(1) −1/2
a with G(1)

a =
(
A(1)

a

)T

A(1)
a , (130)

with G
(1) −1/2
a computed by means of the Denman-Beavers algorithm. Then, the following non-

linear ODE system should be solved

dGa

dt
= L(1)

a − 6

τ ea
( det Ga)

5/6
Ga dev Ga , (131)

where L
(1)
a is a constant convective/productive forcing term evaluated simply as

L(1)
a =

G
(1)
a −Gn

a

∆t
, with G(1)

a =
(
A(1)

a

)T

A(1)
a , Gn

a = Ga (t
n) . (132)

This term, which takes into account the left-hand side of (129), is introduced to converge to the
asymptotically correct state in the stiff limit of the equations. This alternative ODE problem
(131) is then solved by computing the analytical solution of a sequence of linearized problems that
approximate the original non-linear ODE, according to the procedure outlined in [23]. Once the

source term applied to the metric tensor is integrated, and thus obtaining G
(2)
a at time tn+1, the

information can be mapped back to get the updated distortion field as

A(2)
a = R(1)

a

(
G(2)

a

)1/2
. (133)
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6.4 Further remarks on the distortion field

Before assembling the final solution of the entire PDE system, we must make some important
remarks concerning the challenges related to the numerical computation of the distortion field Aa.

6.4.1 Algebraic determinant constraint

In the numerical solution of the evolution equation (127) for the phase distortion field Aa, par-
ticularly when describing liquid phases, one must be careful with preserve the nonlinear algebraic
constraint

ρa = ρoadetAa. (134)

This constrain stems from the fact that the phase mass balance equation (77a) is the consequence
of the time evolution (127) for the distortion matrix Aa, see e.g. [50, 92]. Yet, in an Eulerian
scheme, it is important to explicitly discretize the mass balance equation to ensure that it is fulfilled
at the discrete level (important for the Rankine–Hugoniot conditions). Thus, the phase density
can be computed by two means: from the mass balance equations and from (134). Therefore, to
ensure that the solution is consistent with (134), this constraint must be actively enforced in the
numerical scheme.

A simple but effective approach is to manually impose the constraint at each time iteration.
Specifically, the distortion field obtained after solving the homogeneous problem is enforced to
satisfy the ratio

detA(1)
a =

ρ
(1)
a

ρoa
(135)

as detailed in [23].

6.4.2 Linear combination of pure rotational fields

Numerical discretization, in all its parts from data representation to explicit discretization
with the FV update formula, is applied to the vector and tensorial quantities in a component-wise
manner. This is not a problem for the velocity field, but the distortion field requires more attention
due to its rotational component. From our experience, an improper treatment of the rotational
matrix Ra can lead to artificial stresses and other numerical artifacts.

It is clear that even in the case of a simple component-by-component linear combination of
two rotational matrices, such as that presented by an average operator for example, the resulting
matrix is a rotational matrix only in the case of infinitesimal rotations. However, the additivity
rule does not in general hold for finite rotations. For example, we have observed in our numerical
experiments, in which the solution of the distortion field is not particularly smooth, that simple
averaging of the rotational matrices results in artificial stresses. This happened in tests such as
the lid-driven cavity test, Sec. 7.5 if no special treatment is applied. In this test, the boundary
conditions produce a velocity gradient singularity at the corners of the cavity, which results in a
locally discontinuous distortion field. On the other hand, no issue arises in the double shear layer
problem, Sec. 7.4. For this reason, a different approach would be required to describe the rotational
component of the information encoded by Aa, by means of a auxiliary mathematical representation
of these quantities that allows a component-by-component treatment even for rotations of finite
amplitude.

Thus, in this paper, we propose a simple but effective approach to address this issue. It employs
the efficiency of the Chiocchetti semi-analytical solver [23] in the infinitely stiff relaxation regime,
τ ea → 0. In particular, in this limit, the strains encoded in the metric tensor Ga dissipate almost

33



instantaneously, resulting in a distortion field that is represented by a pure rotation matrix, i.e.
Aa = Ra and Ga = I.

Therefore, the idea of decoupling of the evolution of the two types of information encoded in
Aa (at least numerically) is straightforward. This can be done by adding an auxiliary evolution

equation (126) for a new auxiliary distortion field Ãa subject to a relaxation timescale τ̃ ea → 0.

This auxiliary distortion field Ãa carries only the information about the rotational component of
the original distortion Aa, i.e. Ãa = R̃a. Moreover, thanks to this almost instantaneous relaxation
(numerically we use τ̃ ea = 10−14), the artificial stresses that may arise from the combination of finite
amplitude rotations are dissipated instantaneously, both at the level of the predictor, Sec. 6.1, and
at the level of the final solution at each time-step, Sec. 6.2 and Sec. 6.3.

On the other hand, due to this decoupling, the original distortion field Aa at each time step

carries only the information about the strains, i.e. Aa = G
1/2
a and Ra = I, both at the level of

the predictor and the solution updated at time tn+1. Therefore, expression (133), in the source
term integration process for the original distortion field Aa, should be rewritten as

A(2)
a = I

(
G(2)

a

)1/2
. (136)

6.5 Final solution for the complete problem

The final solution Qn+1
i,j of the complete problem (78) can now be retrieved by considering the

solution of the homogeneous problem, the contribution of the source terms, and the remarks on
rotational matrices discussed above. Thus, including formally the auxiliary phase distortion field
Ãa to the set of state parameters, the final solution of each phase a = 1, 2, 3 reads

Qn+1
a,i,j =

(
ϱ(1)a ,u(2)

a , s(2)a , α(1)
a ,A(3)

a , Ã(2)
a

)
i,j

, (137)

where the complete phase distortion field A
(3)
a is computed as

A(3)
a = R̃(1)

a

(
G(2)

a

)1/2
. (138)

7 Numerical results

This section provides the results obtained with the numerical scheme presented in Section 6
addressing the three-phase reduced BN-type SHTC model presented in 5.3. The numerical scheme
developed in this work considers the entropy inequalities of each phase (77e), instead of the phase
energy balance laws as in the most existing finite-volume discretizations. This choice was made in
order to make the mathematical model less complex. Indeed, the phase entropy balance laws have
a much simpler structure than the energy balance laws. This, however, comes with the price that
such a numerical scheme can not be applied to problems with high Mach number. In particular,
the following numerical test problems also aim to demonstrate that considering the phase entropy
balance laws rather than phase energy ones leads to negligible errors for problems with relatively
weak shocks. Also, it should be emphasized that our future intention is to develop a numerical
scheme more suited to the original SHTC formulation (47), i.e. the thermodynamically compatible
(HTC) type schemes where the fully-discrete energy conservation is obtained as a mere consequence
of the discretized PDEs, see e.g. [1, 123, 21].

Furthermore, the presented results consist of a wide range of benchmarks and problems that
may occur in real life problems involving several phases. Some results demonstrate the solution of
the multiphase model in a single-phase limit, and in the relaxation limits of the GPR model, e.g.

34



the inviscid and viscous fluid, as well as in the limit of nonlinear elasticity and plasticity. In all
the cases, the numerical results are comparable with results obtained from established standard
models, i.e. the Euler or Navier-Stokes equations for fluids, or the classical hypo-elastic model with
plasticity, but, notably, in our case the solution is obtained within the unified multiphase model of
continuum mechanics.

In all the tests, the time step ∆t is computed according to the CFL condition expressed in
(119), in order to guarantee the stability of the explicit FV time-stepping. Furthermore, the initial
conditions for volume fractions are defined with respect to a minimum value αmin = ϵ = 10−6; i.e.
when a-th phase is not present in a given computational cell, the volume fraction of that phase is
set to αa = αmin.

7.1 Numerical convergence study

A numerical convergence study is presented by solving the isentropic vortex problem proposed
in [5, 61], considering the one-phase limit of the model: α1 = 1 − 2ϵ, α2 = ϵ, α3 = ϵ. For this
problem, there is an exact analytical solution for the compressible Euler equations, i.e. in the stiff
inviscid limit τ e1 → 0 of the SHTC BN-model considered in this work. The initial condition consists
of a linear superposition of a homogeneous background field and some δ perturbations, which in
terms of primitive variables for the first phase read

V1 = (1 + δρ1, 1 + δv1,1, 1 + δv1,2, 1 + δp1, 1− 2ϵ, I), (139)

where the phase distortion field is initially set equal to the identity, while the quantities for the
absent phases are set in the same way except for the volume fractions. The computational domain
is Ω = [0; 10] × [0; 10] and periodic boundary conditions are applied everywhere. In this domain,
the perturbations of velocities δv1,k and temperature δT1 are given by(

δv1,1
δv1,2

)
=

5

2π
e0.5(1−r2)

(
5− y
x− 5

)
, δT1 = − (γ1 − 1)52

8γ1π2
e1−r2 , (140)

where r is the distance frm the center of the vortex. Aditionally, because we are considering
an isentropic vortex, it is assumed that the perturbation of the entropy δs1 is zero, hence the
perturbations for density and pressure result in

δρ1 = (1 + δT1)
1

γ1−1 − 1, δp1 = (1 + δT1)
γ1

γ1−1 − 1. (141)

The exact analytical solution of the problem represented by these initial conditions for the com-
pressible Euler equations is represented simply by the time-shifted initial conditions (140), (141),
convected following the mean velocity v̄ = (1, 1). The equation of state parameters that remain to
be defined are assumed to be γ1 = 1.4, Cv1 = 1, Cs1 = 0.5, τ e1 = 10−14.

This test is performed up to a final time of t = 1.0 using a sequence of successively refined
equidistant meshes composed of Nx ×Ny control volumes. The L1 and L2 error norms at the final
time for the density ρ1, the velocity component v1,1 and the phase entropy s1 are shown in Tab.
1 and Tab. 2 together with the corresponding convergence rates. From the results shown in the
tables, it can be seen that second-order accuracy is achieved for this inviscid problem, i.e. in the
stiff limit of the governing PDE system.

7.2 Shear motion in solids and fluids

In the context of this work, this test has a twofold purpose of showing that the unified model
for fluid and solid mechanics and the developed numerical scheme can indeed model the behavior
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Nx ×Ny L1
ρ1

L1
v1,1

L1
s1 Oρ1

Ov1,1 Os1

32 2.5094E-1 5.1290E-1 1.3009E-2
64 5.2676E-2 1.1826E-1 5.4240E-3 2.25 2.11 1.26
128 1.0012E-2 2.7041E-2 9.9400E-4 2.39 2.12 2.44
256 1.8412E-3 6.3160E-3 1.5781E-4 2.44 2.09 2.65

Tab. 1: Mesh elements, L1-error norms and their respective numerical convergence rates for the density ρ1, the
velocity component v1,1 and the phase entropy s1, applied to the isentropic vortex problem.

Nx ×Ny L1
ρ1

L1
v1,1

L1
s1 Oρ1

Ov1,1 Os1

32 6.6187E-2 1.3959E-1 4.4700E-3
64 1.4075E-2 3.4710E-2 2.3585E-3 2.23 2.01 0.93
128 2.6702E-3 8.5657E-3 4.9292E-4 2.40 2.02 2.26
256 4.8569E-4 2.0754E-3 7.6455E-5 2.46 2.05 2.69

Tab. 2: Mesh elements, L2-error norms and their respective numerical convergence rates for the density ρ1, the
velocity component v1,1 and the phase entropy s1, applied to the isentropic vortex problem.

of viscous fluids and elastic solids at once. We consider a simple shear motion in solids and fluids
in the single-phase limit of the entire multiphase model: α1 = 1 − 2ϵ, α2 = ϵ, α3 = ϵ. Similar to
the previous section 7.1, the time evolution of an incompressible shear layer is one of the few test
problems for which the exact analytical solution of the non-stationary Navier-Stokes equations is
known, and for the velocity component v1,1 is given by the following error function

v1,1(x, y, t) = v1,1(x, y, 0) erf

(
1

2

x√
ν1t

)
. (142)

However, because we are discretizing compressible equations with an explicit scheme, the best we
can do is to simulate the problem at sufficiently low Mach number, e.g. M1 = 0.1 was sufficient to
obtain an almost incompressible behavior.

The computational domain is Ω = [−0.5; 0.5] × [−0.0625; 0.0625], with the opposite velocities
imposed on the left and right halfs of the domain in the x-direction, while we use periodic boundary
conditions in the y-direction. The initial conditions of the problem for the first phase, are given by

α1 = 1− 2ϵ, ρ1 = 1, p1 =
1

γ1
, A1 = I

v1,1 = 0, v1,2(x, y) =

{
+0.1 if x > 0,

−0.1 if x ≤ 0.

(143)

with the physical parameters set to γ1 = 1.4, Cv1 = 1, Cs1 = 1. The strain relaxation time
τ e1 = 6ν1/Cs

2
1 is chosen according to (50) for various values of the fluid kinematic viscosity ν1,

while for the elastic solid limit is set to τ e1 = 1014.
For the elastic solid limit, this initial condition leads to two shear waves travelling to the left and

right with the shear sound speed. In this case, a reference solution for the solid limit was obtained
for the single-material GPR model using a classical second-order MUSCL-Hancock scheme [124]
on a fine mesh of 32000 cells, as done in [21].

Simulations are carried out on a grid composed of 256× 32 control volumes up to a final time
of t = 0.4. The comparison between the numerical results and the previously mentioned reference
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Fig. 1: Numerical solution at time t = 0.4 obtained with the explicit FV scheme for compressible multiphase fluid
and solid mechanics applied to a simple shear flow in fluids and in an elastic solid. Results for the solid limit (top
left) and for fluids with different viscosities ν1 = 10−2 (top right), ν1 = 10−2 (bottom left) and ν1 = 10−2 (bottom
right). For fluids, the analytical solution of the first problem of Stokes is used as the reference solution.
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solutions is presented in Fig. 1, where an excellent agreement between the two solutions can be
observed for both solid and fluid behaviour.

7.3 Riemann problems

We continue the validation of our numerical scheme with a set of Riemann problems to quantify
the error encountered by considering the balance equations of phase entropies rather than of the
phase energies, and to see that the correct wave structure can still be reproduced for problems with
relatively weak shocks. In this section, we solve a series of Riemann problems with initial data
according to Tab. 3, for the Euler equations of compressible gas dynamics, which can be retrieved
in the stiff relaxation limit τ e1 → 0.

RP ρL1 vL1,1 vL1,2 PL
1 ρR1 vR1,1 vR1,2 PR

1

RP1 1.0 0.0 0.0 1.0 0.125 0.0 0.0 0.1
RP2 1.0 0.75 0.0 1.0 0.125 0.0 0.0 0.1
RP3 1.0 0.0 -0.2 1.0 0.5 0.0 0.2 0.5

Tab. 3: Left initial state (L) and right initial state (R) for the quantities related to the first phase. In particular
the density ρ1, velocity v = (v1,1, v1,2, 0) and pressure P are defined for three different Riemann problems. These
Riemann problems (RP1), (RP2) and (RP3) can be referred to the solution of the Euler equations, i.e. τe1 = 10−14.

The computational Ω = [−0.5; 0.5] × [−0.0625; 0.0625] is partitioned into two regions with
constant states, left (L) and right (R), separated by a discontinuity normal to the x-direction,
located at xd. The distortion field is initially set equal to the identity A1 = I, while the equation of
state parameters are taken as γ1 = 1.4, Cv1 = 1.0, Cs1 = 1.0 and Riemann problems. Simulations
are carried out on a grid composed of 512× 64 control volumes up to a final time of t = 0.2.

In Figure 2, the one-dimensional profiles of the density ρ1, the x-component of the velocity field
v1,1 and pressure p1 for the Riemann problems RP1 (xd = 0) and RP2 (xd = −0.2) are shown. The
results are compared with the exact solution of the compressible Euler equations. From the results
it can be observed that the correct wave structure is overall reproduced properly for the Riemann
problem RP1, while as the shock wave becomes stronger, as for RP2, the error introduced due
to the use of phase entropy balance laws increases. This is why we limit ourselves to low Mach
number flows, and RP2 clearly demonstrates the well-known fact that satisfying the conservation
of energy is essential to correctly solve problems involving shock waves. RP2 was proposed by
Toro in [124] and includes a sonic rarefaction, however this test cases is well resolved and does not
present any sonic glitches.

The numerical results obtained for the Riemann problem RP3 (xd = 0) is shown in Fig. 3. In
this case, the shock present is even weaker, the solution is very close to an isoentropic one, and
therefore the numerical solution is in very good agreement with the exact one.

7.4 Double shear layer problem

The numerical scheme is now applied to solve the double shear layer test problem, see e.g. [8,
37, 120, 21, 23]. It is another classical benchmark problem which is useful for the validation of
the model and numerical algorithm on viscous flows. Here, the model is still considered in the
single-phase limit with the volume fractions taken as α1 = 1−2ϵ, α2 = ϵ, α3 = ϵ. For this test, the
2D computational domain is Ω = [0; 1]2, with periodic boundary conditions imposed everywhere.

38



Fig. 2: Numerical results (dashed line) for density ρ1, velocity component v1,1 and pressure p1 in the inviscid limit
τ1 = 10−14, for the Riemann problem RP1 (xd = 0) (top left, bottom left and right), for the Riemann problem RP2
(xd = −0.2) (top right). The exact solution of the compressible Euler equations (black solid line).

Fig. 3: Numerical results for density ρ1 and velocity component v1,2 in the inviscid limit τ1 = 10−14, at time t = 0.2,
for the Riemann problem RP3 (xd = 0) (dashed line). The exact solution of the compressible Euler equations (black
solid line).
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The initial conditions contain a steep velocity gradient and are defined as follows

α1 = 1− 2ϵ, ρ1 = 1, p1 =
100

γ1
, A1 = I,

v1,1(x, y) =

{
tanh

(
(y − 0.25)ρ̄

)
, if x ≤ 0.5,

tanh
(
(0.75− y)ρ̄

)
, if x > 0.5,

v1,2(x, y) = δsin(2πx),

(144)

where the parameters that determine the shape of the velocity field are set to δ = 0.05 and ρ̄ = 30.
The other physical parameters are assumed to be γ1 = 1.4, Cv1 = 1, Cs1 = 8.0 while two different
viscosity coefficients were set in two separate runs of the test problem, ν1 = 2× 10−3 (Re ≃ 1000)
and ν1 = 2×10−4 (Re ≃ 10000) respectively, which result in τ e1 = 1.875·10−4 and τ e1 = 1.875·10−5,
respectively.

Simulations are carried out up to a final time of t = 1.8 on a grid consisting of 1280 × 1280
control volumes. Figure 4 shows the time evolution of the A1,12 component of the distortion field at
times t = 1.2 (top), t = 1.6 (center) and t = 1.8 (bottom), for the two different viscosity coefficients
considered (left) and (right), respectively. The dynamics of the flow, as already described in [8,
37, 120, 21, 23], is represented by the evolution of the initially perturbed shear layers into different
vortices, which exhibit particularly complex flow structures.

The results in Fig. 4, highlight the incredible capability of the distortion field to describe the
details of the flow structures, which in particular are encoded in the rotational component R1 of
the distortion field A1. The results obtained are in excellent agreement with those obtained in [21],
where a thermodynamically compatible scheme is used and with those in [23] obtained through a
semi-implicit structure-preserving scheme, despite the fact that in these works a four times finer
grid was used.

7.5 Lid-driven cavity

As a last numerical test considering a single-phase limit of the full model, we present the lid-
driven cavity problem, see [47]. It is a classical benchmark problem for numerical methods applied
to incompressible Navier-Stokes equations, see [119], however it can be used to validate compressible
flow solvers in the low Mach number regime [35, 121, 9]. Moreover, it has already been successfully
solved with the GPR model in [37, 12] with a discontinuous Galerkin and a semi-implicit scehem,
and with a thermodynamically compatible scheme in [21]. However, in these works, high-order
schemes or schemes that make use of a particular time or structure-preserving discretizations have
been used, e.g. on staggered grid or thermodynamically compatible discretization. These could
be the reasons why it would appear that the problem associated with the discretization, i.e. the
combination, of purely rotational fields presented in Sec. 6.4 does not arise in these works, whereas
it does for the classical MUSCL-Hancock discretization, specifically in this test where the boundary
conditions produce a velocity gradient singularity in the corners.

The computational domain is given by Ω = [−0.5; 0.5]× [−0.5; 0.5] and the initial condition are
simply

α1 = 1− 2ϵ, ρ1 = 1, v1 = 0, p1 =
100

γ1
, A1 = I. (145)

The fluid flow inside the cavity is driven by the lid on the upper boundary, whose velocity is set
to v1,1 = 1, resulting in the Mach number M1 = 0.1. On all the other boundaries, a no-slip wall
boundary condition with v1 = 0 has been be imposed. Furthermore, the parameters of the model
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Fig. 4: Filled contours of one component of the distortion field A1, namely of the A1,12 component, for the double
shear layer problem at times t = 1.2 (top), t = 1.6 (center) and t = 1.8 (bottom); for two values of kinematic
viscosity ν1 = 2× 10−3 (Re ≃ 1000) (left) and ν1 = 2× 10−4 (Re ≃ 10000) (right).
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are set to γ1 = 1.4, Cv1 = 1, Cs1 = 8.0 and the kinematic viscosity is chosen as ν1 = 10−2 so that
the Reynolds number of the test problem is Re = 100.

Simulations are carried out up to a final time of t = 10 on a grid consisting of 512×512 control
volumes. To correctly set the no-slip wall boundary conditions, it is necessary to compute and
prescribe a specific distortion field ABC using the values taken in the edge-adjacent cell. First, the
information encoded by the distortion field is expressed through RBC (1) and GBC (1), by means
of a polar decomposition. Subsequently, the inverse of the rotational component can be easily
evaluated as R−1

BC (1) = RT

BC (1). At this point the information can be mapped back to obtain the

boundary condition for the distortion field as

ABC = RT

BC (1) G
1/2
BC (1). (146)

Fig. 5: Lid driven cavity at Reynolds number Re = 100. Numerical results obtained at time t = 10.0. Colour
contours of the velocity module (left), and a comparison with the reference solution of Ghia et al. [47] of the
velocity components v1,1 and v1,2 for 1D cuts along the x and y axis.

Figure 5 shows the computational results obtained using the approach described in section
6.4. This approach separates the evolution of the two types of information encoded in Aa and
leverages the capabilities of a semi-analytical solver to efficiently solve the equations in the stiff
relaxation regime. Excellent agreement between the numerical solution and the Navier-Stokes
reference solution of Ghia et al. [47] was obtained. Also for this test, Fig. 6 shows the time
evolution of the A1,12 component of the distortion field. It can again be seen that the distortion
field components are excellent candidates for flow visualisation, revealing in detail the evolution of
the flow and keeping track of the rotations that the fluid element undergoes over time.

7.6 Elastic vibrations of a beryllium plate

From this section, we begin to test the multiphase property of the governing equations and the
ability of the model to describe the solid and fluid branches of continuum mechanics in a single
PDE system. In the following test problem, we simulate the vibrations of an edely elastic beryllium
plate subjected to an initial velocity perturbation. The setup follows [110, 73, 17, 13, 90], but with
the notable modification. Namely, instead of considering a solid body in a vacuum, we consider
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Fig. 6: Filled contours of one component of the distortion field A1, namely of the A1,12 component, for the lid-driven
cavity problem at Re = 100, at times t = 1.0, t = 2.0, (top), t = 4.0, t = 6.0, (center) and t = 8.0, t = 10.0 (bottom).
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a solid body in a gas, and thus we need to define two separate density fields via their respective
volume fractions.

Compared to the Lagrangian setup, used in the previously mentioned works, the computational
domain considered here is larger, as in [18], and is assumed to be Ω = [−4.0; 4.0]× [−2.0; 2.0] and
the initial conditions for the first phase (the solid) are

α1(x, y) =

{
1− 2ϵ if x ∈ Ω1,

ϵ if x /∈ Ω1,
v1(x, y) =

{
(0,v1,2) if x ∈ Ω1,

(0, 0) if x /∈ Ω1,

ρ1 = 1.845, p1 = 10−4, A1 = I,

(147)

while the second phase (the gas) is initialised as follows

α2(x, y) =

{
ϵ if x ∈ Ω1,

1− 2ϵ if x /∈ Ω1,

ρ2 = 10−3, v2 = 0 p2 = 10−4, A2 = I,

(148)

where Ω1 = [−3.0; 3.0] × [−0.5; 0.5] is the subdomain that defines the initial geometry of the
beryllium bar, and the initial vertical velocity component v1,2, according to Boscheri et al. [13], is
given as

v1,2(x) = C1ω
(
C2(sinh(C3(x+3))+sin(C3(x+3)))−C4(cosh(C3(x+3))+cos(C3(x+3)))

)
(149)

with C3 = 0.7883401241, C2 = 0.2359739922, C1 = 0.004336850425, C4 = 57.64552048 and
C2 = 56.53585154. The third phase has α3 = ϵ. The other parameters and physical quantities that
define the properties of the beryllium material and that are required to use the stiffened-gas EOS
(29) are chosen as γ1 = 1.4, Cv1 = 1000, Cs1 = 0.905, ρoa = 1.845, Co1 = 1.287 and po1 = p1.
Additinally, to have an ideal elastic material we set τ e1 = 1014. For the gas phase surrounding the
solid phase, the EOS of ideal gases is used and the physical parameters are γ2 = 1.2, Cv2 = 1000,
Cs2 = 1.0 and ν2 = 10−4.

The simulation is carried out up to the final time tf = 53.2 which corresponds approximately
to two complete periods of vibration and the computational domain is discretized with an uniform
Cartesian mesh composed of 1024 × 512 control volumes. In contrast to Lagrangian schemes,
it is not necessary to impose boundary conditions on the surface of the solid, as the solid-gas
boundary condition is directly taken into account within the governing PDE system. Hence, in
our simulation, periodic boundaries are set everywhere.

In Fig. 7, we represent the contour map of the volume fraction α1, which represents the geometry
of the bar at time t = 8 and in the same figure, we also depict the time evolution of the vertical
velocity component v1,2(0, 0, t) at x̄ = (0, 0), i.e. in the barycenter of the bar. For comparison,
we also show the results obtained with a third-order ALE ADER-WENO scheme (black line),
with which our numerical solution (blue line) is in good agreement. In Fig. 8, the first component
of the stress tensor σ1,11 and the vertical component of the velocity v1,2 are shown on the left
and right panels respectively for the intermediate times t = 8, t = 15, t = 23 and t = 30,
covering approximately one bending period. Despite the fact that in our case we use a diffuse
interface approach on a fixed Cartesian grid, our computational results compare visually well with
the reference solutions available in the literature, e.g. [110, 73, 17, 13, 90], which all have been
simulated with a pure Lagrangian or arbitrary Lagrangian-Eulerian scheme on moving meshes.

7.7 Taylor bar impact

In the previous test, we considered an ideal elastic material, which is the limit case for τ1 → ∞.
In the following test, we show how a material can also exhibit non-linear elastic-plastic behaviour.
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Fig. 7: Filled contour map of the volume fraction function α1 for the first phase, which represents the geometry
of the beryllium bar at time t = 8 (left). The time evolution of the vertical velocity component v1,2(0, 0, t) at
x̄ = (0, 0), i.e. in the barycenter of the bar (right).

Here we consider the Taylor bar impact problem, which is a classical benchmark for an elasto-
plastic target that impacts on a rigid solid wall, e.g. see [110, 73, 32, 13] for pure Lagrangian or
ALE schemes on moving meshes and [18] for an Eulerian diffuse interface approach.

As in the previous test, we define two separate density fields representing a gas and a solid phase
through their respective volume fractions. The computational domain considered here is larger than
in the Lagrangian setup in order to include the space occupied by the gas phase around the solid.
The computational domain under consideration, as in [18], is Ω = [−150,+150]× [0, 600] and the
initial conditions for the solid phase are

α1(x, y) =

{
1− 2ϵ if x ∈ Ω1,

ϵ if x /∈ Ω1,
v1(x, y) =

{
(0,v1,2) if x ∈ Ω1,

(0, 0) if x /∈ Ω1,

ρ1 = 2.785, p1 = 10−4, A1 = I,

(150)

where Ω1 = [−50,+50] × [0, 500] is the subdomain that defines the initial geometry of the solid
bar, and the initial vertical velocity component is v1,2 = −0.015; while the gas phase is initialised
as follows

α2(x, y) =

{
ϵ if x ∈ Ω1,

1− 2ϵ if x /∈ Ω1,

ρ2 = 10−3, v2 = 0 P2 = 10−4, A2 = I.

(151)

According to [110, 73, 32, 13], the solid projectile is assumed to be an aluminium bar, with following
material parameters γ1 = 1.4, Cv1 = 1000, Cs1 = 0.305, ρoa = 2.785, Co1 = 0.533 and po1 = p1.
To obtain a non-linear elasto-plastic material behaviour the relaxation time τ e1 has to be choosen
as a non-linear function of an invariant of the shear stress tensor as follows [6, 90]

τ e1 = τo

(
σo

σ̄1

)m

, (152)

where τo = 1 is the scaling constant, σo = 0.003 is the yield stress of the material under quasi
static conditions, the exponent parameter is chosen equal to m = 20 (the higher m is the less
rate-dependent the effective yield strength is [6, 90]) and the von Mises stress σ̄1 is given by

σ̄1 =

(
1

2

(
(σ1,11 − σ1,22)

2 + (σ1,22 − σ1,33)
2 + (σ1,33 − σ1,11)

2 + 6(σ2
1,21 + σ2

1,31 + σ2
1,32)

))1/2

.

(153)
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Fig. 8: Results for the elastic vibrations of a beryllium plate, at times t = 8, t = 15, t = 23 and t = 30 (from top
to bottom), for the first component of the stress tensor σ1,11 and the vertical component of the velocity v1,2.
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For the surrounding gas phase, the ideal gas EOS with the parameters γ2 = 1.2, Cv2 = 1000,
Cs2 = 1.0 and ν2 = 10−4 is used.

The simulation is carried out up to the final time tf = 5000, and the computational domain is
discretized with a uniform Cartesian mesh composed of 2048× 1024 control volumes. In contrast
to the Lagrangian schemes, it is not necessary to impose boundary conditions on the surface of
the solid; in our simulation, periodic boundaries are set in the x-direction while reflective slip wall
boundary conditions are set in the y-direction.

Fig. 9: Results for the non-linear elasto-plastic Taylor bar impact, at times t = 2500 and t = 5000 (from top to
bottom): the volume fraction (left), the density distribution (center) and the plastic rate η1 = σ̄1/σo (right).

In Fig. 9, we present the results computed at output times t = 2500 and t = 5000. The volume
fraction (left), the density distribution (center) and the plastic rate η1 = σ̄1/σo (right) are depicted.
It can be observed that the numerical solution is in good agreement with that presented in [73, 13],
although the models used are significantly different. Moreover at time t = 5000, the final length
of the aluminium bar is Lf = 455, which fits the results achieved in [73, 13] within the 2% error.
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7.8 Multiphase Rayleigh-Taylor instability

The two previous tests focused mainly on the validation of the unified model for the elastic
and elasto-plastic type behavior, and not much emphasis was placed on the dynamics of the fluid
phase. In this test, however, we will finally put to the test one of the main features of the
model and the numerical scheme, namely the ability to describe several interacting phases. To
this end, we will simulate a true two-phase low-Mach, M1 ≃ M2 ≃ 0.1, viscous Rayleigh–Taylor
instability. The approach follows [23], but with the notable modification that instead of initialising
a single fluid with a jump in the density, we define two fluids through the volume fraction and
each fluid has a constant phase density. This makes the problem more challenging because the
quasi-vacuum states of either phase are introduced almost throughout the entire computational
domain, however it introduces much more freedom in defining the material characteristics of each
phase. The computational domain under consideration, as in [23], is Ω = [0, 1/3] × [0, 1] and the
initial conditions for the hevier phase (on top) are

α1(x, y) = s̄(1− 2ϵ) + (1− s̄)ϵ, ρ1 = 2.0, v1 = 0,

p1 = s̄pt + (1− s̄)pb, A1 = I,
(154)

and for the lighter fluid (at the bottom) are

α2(x, y) = 1− α1 − ϵ, ρ2 = 1.0, v2 = 0,

p2 = s̄pt + (1− s̄)pb, A2 = I,
(155)

where s̄ is a switch function introduced to impose a smooth transition between the two states and
to avoid inaccurate representation of the initial condition on the discrete Cartesian grid. This
function s̄ is defined as

s̄ =
1

2
+

1

2
erf

(
y − yI

δ

)
, (156)

where yI = 0.5+0.01cos(6πx) is the initially perturbed interface between phases and δ = max(0.004, 6∆x)
can be seen as the thickness of this interface. The initial top and bottom phase pressures, in (154),
(155), are defined as

pt = 1 + ρ1(1− y)g,

pb = 1 + 0.5ρ1g + ρ2(0.5− y)g,
(157)

where the gravity vector is g = (0,−0.1, 0)T . The other parameters and physical quantities are
equal for the two gas phases and using the ideal-gas EOS are set as γ = 1.4, Cv = 1000, Cs = 0.3
and the dynamic viscosity µ = 6× 10−5, which translates to τ e1 = 2× 10−3 and τ e2 = 4× 10−3 so
that the Reynolds number of the test problem is Re ≃ 2000 for the both phases.

Two simulations are carried out up to the final time tf = 10 on two different uniform Cartesian
meshes in order to verify mesh convergence of the solution algorithm. In these simulations, periodic
boundaries are set in x-direction while reflective slip wall boundary conditions are set in y-direction.
Fig. 10 shows on the left the result for the mixture density ρ = α1ρ1 + α2ρ2 + α3ρ3 obtained with
a mesh consisting of 512 × 1536, while on the right the result obtained by doubling the mesh
resolution, both at time t = 7. It is possible to see that mesh convergence has already been
achieved with the coarsest mesh, since the macroscopic structure of the flow does not depend on
mesh size.

Fig. 11 shows the time evolution of both the volume fraction function α1 and the A1,12 compo-
nent of the distortion field, for the first phase. It is interesting to note that it for such a low Mach
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Fig. 10: Mixture density ρ. Mesh convergence test for the Rayleigh-Taylor instability problem, at times t = 7; on
the left the result obtained with a mesh consisting of 512× 1536 is shown, and on the right the result obtained by
doubling the mesh resolution.

number as in this test, the mixture density, depicted in Fig. 10 is macroscopically proportional to
the volume fraction structure in Fig. 11. Moreover, due to the velocity relaxation, both distortion
fields encode the same flow structure, except that they satisfy two different algebraic constraints,
so that each phase mass conservation equation is the consequence of the time evolution of each
phase distortion field, see 6.4.1.

Our computational results, in particular the temporal evolution in Fig. 11 compare visually well
with the reference solutions available in the literature, see [69], obtained in this case with ALE
schemes on moving meshes.

7.9 Three-phase triple point problem

Finally, in this section, we will test all the capabilities of the model and the numerical scheme
developed, i.e. the ability to describe several, up to three in this paper, interacting phases. The
problem that will be addressed is a typical test in the ALE community, namely the so-called triple
point problem. This test is a three state, two material, 2D Riemann problem in a rectangular
domain that generates vorticity, which is why it is very popular in the ALE community for testing
the ability of a code to handle complex fluid motion on moving mesh. It was introduced in [70] and
was used to compare ALE approaches in the case of a two-material Riemann problem in [69, 16, 67]
or the simplified one-material case in [14, 10, 44]. In the Eluerian context, this problem has been
addressed with an interface-capturing approach considering three immiscible compressible fluids
in [129]. In the context of this work, the main aim of this problem is to verify the ability of the
code and model to correctly propagate shock waves over multiphase and multi-material regions.

Specifically, we follow the setting presented in [70], but with the significant modification that
instead of initialising a two-material Riemann problem, we set up an initial problem involving
three phases, where two of them have the same material parameters. The computational domain
of the triple point problem Ω = [0; 7] × [0; 3] is divided into three subdomains filled with three
phases describing different perfect gases, thus yielding a three-phase, two-material problem. The
initial condition, in our diffuse interface framework, can be easily set by means of jumps in volume
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Fig. 11: Results for the multiphase Rayleigh-Taylor instability problem, at times t = 6, t = 7 and t = 8 (from left
to right); the volume fraction α1 (top) and the A1,12 component of the distortion field for the first phase (bottom)
are represented.
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fraction as follows. The first phase, with a state of high pressure and high density, is initialized as

α1(x, y) =

{
1− 2ϵ if x ∈ Ω1,

ϵ if x /∈ Ω1,
with Ω1 = [0; 1]× [0; 3]

ρ1 = 1.0, v1 = 0, p1 = 1.0, A1 = I,

(158)

the second phase, with a state of low pressure high density, as

α2(x, y) =

{
1− 2ϵ if x ∈ Ω2,

ϵ if x /∈ Ω2,
with Ω2 = [1; 7]× [0; 1.5]

ρ2 = 1.0, v2 = 0, p2 = 0.1, A2 = I,

(159)

and the third, with an initial low pressure and low density state, is initialized as

α3(x, y) =

{
1− 2ϵ if x ∈ Ω3,

ϵ if x /∈ Ω3,
with Ω3 = [1; 7]× [1.5; 3.0]

ρ3 = 0.125, v3 = 0, p3 = 0.1, A3 = I.

(160)

All the phases represent ideal inviscid gases, thus we are in the stiff limit of the model and the
relaxation times are τ e1 = τ e2 = τ e3 = 14−14. Furthermore, according to [70], since the first phase
and the third phase represent the same material with the material parameters γ1 = γ3 = 1.5,
Cv1 = Cv3 = 1, Cs1 = Cs3 = 1.0, while the second phase has the paramers γ2 = 1.4, Cv2 = 1,
Cs2 = 1.0.

The simulation is carried out up to the final time tf = 5 discretizing the computational domain
with a uniform Cartesian mesh composed of 3584 × 1536 control volumes; reflective slip wall
boundary conditions are set in all the directions.

In Fig. 12 and 13, we present the results obtained for the multiphase and multi-material triple
point problem at time t = 3 and t = 5, respectively. In particular, we illustrate the evolution
of the different volume fractions (top), where the first phase is shown in blue, the second in
yellow and the third in blue-green. These contour levels clearly show that the vortex shape is
well resolved and a zoom is shown on the right to better visualise the vorticity formation resulting
from the initial contact discontinuity. From these results, it is clear how suitable a modelling and
numerical description via an Eulerian diffuse interface approach is for describing these mixing areas
characterised by high vorticity.

From the representation of the density field in Fig. 12 and 13, the entire dynamics of the prob-
lem can be well understood. The fluid flow after the initial discontinuity has broken is characterised
by a rarefaction wave pointing to the left and two shock waves pointing to the right, separated
by a horizontal contact discontinuity. Moreover, these two shock waves has different velocities, as
the densities of the materials are different, and this leads to the formation of a strong vortex. Our
computational results compare visually well with reference solutions available in the literature [70,
69, 44], proving the ability of the code and model to correctly propagate shock waves over multi-
phase and multi-material regions, despite the results being obtained on a simple fixed Cartesian
grid.

Additionally, in Fig. 12 and 13, we present the evolution of the A1,12 component of the first
phase distortion field. However, as emphasised in the previous test case, the distortion fields of all
phases encode the same flow structure, except that they satisfy three different algebraic constraints
(134), thus the representation in Fig. 12 and 13 is indicative of the flow structure of all phases.
We note once again an extremely useful ability of the distortion field (encoded in its rotational
component R1) to demonstrate the details of the flow structures hidne otherwise. Thus, thanks
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to this ability of the distortion field, it is possible to identify a strong shear zone along a contact
discontinuity inside the second phase (the yellow one) that otherwise would not have been visible
using the other state variables.

7.10 Water entry of a symmetric wedge

In all the previous test cases all three phases were formally considered, but some of them had
identical material parameters. In this sense, the test addressed in this section is more general, and
all three phases will be considered having very different material parameters. Namely, we consider
one solid, one liquid and one gaseous phase. The aim of this numerical test is to reproduce, as
fully as possible, the experiment conducted by Zhao et al. [130], which consists of the impact of
a symmetrical wedge with a free surface. This test has already been considered in the validation

Fig. 12: Results for the multiphase and multi-material triple point problem at time t = 3: the contour plots of
the volume fractions (first phase in blue, second phase in yellow and the third one in blue-green) (top), the A1,12

component of the distortion field for the first phase (center) and the mixture density (bottom). A zoom in the region
[2.0, 4.0] × [0.5, 2.5], which illustrates the formation of vorticity resulting from the initial contact discontinuity, is
shown (right).
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of the semi-implicit numerical scheme presented by the authors in [42]. Unlike the previous work,
using the explicit FV scheme developed in this paper for the compressible multiphase fluid and
solid mechanics, we have a possibility to reproduce the experimental setup [130] in its completeness.
Namely, by imposing only the initial velocity of the solid wedge, we can now evaluate the complete
dynamics of the three phases resulting from their interaction. Therefore, the vertical velocity of the
wedge recorded experimentally by Zhao et al. [130] and reported in Fig. 14, which was prescribed
in the previous work [42] and in the numerical test by Oger et al. [84], now becomes an excellent
indicator to judge about the validity of the multiphase simulation presented here.

In this numerical experiment, we follow the geometric setup used in our previous work [42]
but with the significant modification of defining an initial problem involving three phases. The
computational domain Ω = [−0.5; 0.5]× [−0.5; 0.5] is divided into three subdomains occupied with

Fig. 13: Results for the multiphase and multi-material triple point problem at time t = 5: the contour levels of
the volume fractions (first phase in blue, second phase in yellow and the third one in blue-green) (top), the A1,12

component of the distortion field for the first phase (center) and the mixture density (bottom). A zoom in the region
[3.0, 5.0] × [0.5, 2.5], which illustrates the formation of vorticity resulting from the initial contact discontinuity, is
shown (right).
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three phases describing an ideal elastic solid, a viscous liquid phase and a viscous gaseous phase.
The initial condition for each phases are set by means of jumps in volume fraction. The first phase,
the solid one, is defined according to the the geometry of the experimental section, which consider
the wedge with a dead-rise angle of 30◦ illustrated in Fig. 14 (left); specifically the initial conditions
for this phase read

α1(x, y) =

{
1− 2ϵ if |x| ≤ 0.25 ∧ y ≥ |x tan(π6 )| ∧ y ≤ 0.25 tan(π6 ),

ϵ if otherwise,

ρ1 = 7×103, v1 = (0,−6.15), p1 = 103, A1 = I, (161)

where the density is evaluated to obtain the total weight of the measuring section used in the
experiment by Zhao et al. [130], which corresponds to 255.5 kg; thus the density is calculated as
the weight of the instrumental tools divided by the effective area described by the wedge in this
numerical setup. The initial condition for the second phase, defining the viscous liquid phase, are

α2(x, y) =

{
1− 2ϵ if x ∈ Ω2,

ϵ if x /∈ Ω2,
with Ω2 = [−0.5; 0.5]×[−0.5; 0.0]

ρ2 = 103, v2 = 0, p2 = 103, A2 = I,

(162)

while the third one, defining the gaseous phase, is initialized as

α3 = 1− α1 − α2, ρ3 = 1, v3 = 0, p3 = 103, A3 = I. (163)

For the solid and liquid phase, the stiffened gas EOS is used; the other material parameters are
γ1 = γ2 = 1.4, Cv1 = Cv2 = 1, Cs1 = 120, Cs2 = 100, Co1 = Co2 = 120 and po1 = po2 = p1.
For the viscous gas, the ideal gas EOS is used with the following parameters γ3 = 1.4, Cv3 = 1,
Cs3 = 60.0 and ν3 = 10−1. To consider an ideal elastic material, the relaxation time for the first
phase is chosen to be τ e1 = 1014, while a kinematic viscosity ν1 = 10−6 is adopted for the viscous
liquid phase.

Two simulations are carried out up to the final time tf = 0.025 on two different uniform
Cartesian meshes composed of 1024 × 1024 and 2048 × 2048 control volumes, in order to ver-
ify qualitatively the mesh convergence of the solution. In these simulations, reflective slip wall
boundary conditions are set in all the directions.

Fig. 14 (left) shows the distribution of the different volume fractions in accordance with the
initial conditions describing the geometric and experimental setup of the test water entry of a
symmetric wedge. The solid phase is shown in yellow, the liquid phase in blue-green and the gas
phase in blue. Moreover, in Fig. 14 (right) we present a comparison that verifies the validity of the
results obtained. In this comparison, the vertical velocity of the wedge experimentally recorded by
Zhao et al. [130] is compared with the purely elastic solid body velocity computed in this test by
evaluating an averaged vertical velocity using the volume fraction, in accordance with the following
definition

|v1,2| =
|
∑N1N2

ij α1,ijv1,2|∑N1N2

ij αij

, (164)

where N1 and N2 are the discrete elements in the first and in the second directions, respectively. It
is possible to observe how qualitatively the dynamics of the impact is well represented, in particular
the deceleration over time follows the correct trend, i.e. deceleration increases in modulus until
about half the simulation time and then tends to decrease. Furthermore, both the results obtained
with a 1024× 1024 mesh and that obtained by doubling the mesh resolution are represented, and
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Fig. 14: Filled contour map of the different volume fractions of the constituents to represent the initial test condition
(left). Comparison with the reference vertical wedge fall velocity experimentally recorded by Zhao et al. [130] of
the average components of the vertical velocity of the solid wedge v1,2 evaluated with the explicit FV scheme for
the complete compressible multiphase fluid and solid mechanics on two different uniform Cartesian meshes (right).

it can be seen that the numerical solution is getting closer to that recorded experimentally by
Zhao et al. [130] as mesh is getting more finer. The main reason for the discrepancy from the
experimental result has to be found in the strongly low Mach nature of the test. Indeed, this
impact, in which the solid must maintain a particularly rigid behaviour, represents a complex test
for an explicit numerical scheme. Moover, it should be noted that this is the first time this test
has been solved by considering the interaction of three phases through a monolithic mathematical
model for compressible multiphase fluid and solid mechanics.

Fig. 15 shows the temporal evolution of volume fractions obtained with the explicit FV scheme
for compressible multiphase fluid and solid mechanics (right column). For the sake of comparison,
the results previously obtained in [42] with a semi-implicit numerical method are shown along
side with the new results, see the left column. From the top to the bottom, the results for three
different instants are shown: t = 0.005, t = 0.015 and t = 0.020. It can be observed that the
phenomenological evolution of the free surface during the entry of the wedge, obtained with the
new numerical method that solves the entire three-phase dynamics, is in agreement with what was
previously obtained in [42] with a semi-implicit solver. The first time instant shows quite well the
formation of two jets escaping along the edges of the wedge. At time t = 0.015, these two jets
reach the point of separation, which corresponds to the end of the edge. It can be seen that the
jets leave the edge almost tangentially at this initial phase of flow separation. Then, at t = 0.020,
the jets tend to move more vertically as well as breaking. This shape is qualitatively similar to the
experimental illustration in the article by Zhao et al. [130].

Furthermore, Fig. 15 shows the velocity fields obtained with both numerical methods. One can
see that the gas phase was not considered in [42] presented in the left column, while the dynamics
of all three phases is taken into account in this paper. The interraction of the liquid jets and the
gas phase might in particular be responsible for the slight differences in jets shape between the
two simulations.

7.11 Multiphase and multi-material solid impact

This is the last test presented in this work, the aim of which is to show from a qualitative point
of view the wide applicability of the model and numerical scheme presented. As in the previous test,
all the capabilities of the developed model and numerical scheme are tested. Namely, an impact
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Fig. 15: Filled contour map of the different volume fractions of the constituents and velocity field of the mixture,
the solid phase is shown in yellow, the liquid phase in blue-green and the gas phase in blue. Results obtained with
the explicit FV scheme for compressible three-phase fluid and solid mechanics (right), and the two-phase results
obtained with a semi-implicit numerical method from [42] (left). From the top to the bottom, three different time
instants are shown: t = 0.005, t = 0.015 and t = 0.020.
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of true multi-material three-phases will be simulated, which exhibits elastic and also elasto-plastic
behaviour in a inviscid fluid environment.

In this test, we roughly follow the approach presented in [29, 15], which has been modified
by not paying particular attention to physical material characteristics, as the interest is to qual-
itatively verify the approach ability to solve such a complex test. Thus, while maintaining the
geometry similar to the tests in the literature, the parameters and physical quantities that define
the properties of the aluminium bar in 7.7 are used. Therefore, this test case presents an impact
of an aluminium ball into an aluminium plate embedded in the surrounding inviscid fluid modeld
with the perfect gas EOS. The computational domain Ω = [−0.5; 0.5] × [−0.5; 0.5] is divided into
three subdomains filled with three phases describing two solids with the same properties and a
perfect gas. As for the previous test, the initial conditions are set by means of jumps in volume
fraction; the first phase, that defines the aluminium ball, is initialized as

α1(x, y) =

{
1− 2ϵ if ((−0.125− x)2 + (0.5− y)2)0.5 ≤ 0.075,

ϵ if otherwise,

ρ1 = 2.785, v1 = (0.002, 0), p1 = 10−6, A1 = I,

(165)

the second phase, defining the aluminium plate, as

α2(x, y) =

{
1− 2ϵ if x ∈ Ω2,

ϵ if x /∈ Ω2,
with Ω2 = [0.05; 0.225]× [−0.35; 0.35]

ρ2 = 2.785, v2 = 0, p2 = 10−6, A2 = I,

(166)

and the third, defining the surrounding perfect gas, is initialised as

α3 = 1− α1 − α2, ρ3 = 10−3, v3 = 0, p3 = 10−6, A3 = I. (167)

Since the first and second phases represent the same material, i.e. aluminium, the other parameters
and physical quantities that define the properties of such a material using the stiffened gas EOS
are γ1 = γ2 = 1.4, Cv1 = Cv2 = 1000, Cs1 = Cs2 = 0.305, Co1 = Co2 = 0.533 and po1 = po2 = p1.
For the inviscid gas phase surrounding the solid phases, the ideal gas EOS is used and the physical
parameters are γ3 = 1.2, Cv3 = 1000, Cs3 = 0.0 and τ e3 = 10−14. In a first simulation, the solid
materials are assumed to have purely elastic behaviour, so the relaxation time is assumed to be
τ e1 = τ e2 = 1014 for both phases. Subsequently, to obtain a non-linear elasto-plastic behaviour of
the material, the relaxation time τ e1 , τ

e
2 is chosen as a non-linear function of an invariant of the

shear stress tensor as done in the previous test, see (152). In this case, however, the yield stress
of the material is set to a lower number, i.e. σo = 2.5×10−4, for the sake of making the plastic
deformations more visible.

Two simulations are carried out up to the final time tf = 200 discretizing the computational
domain with a uniform Cartesian mesh composed of 2048×2048 control volumes; periodic boundary
conditions are set in all the directions.

Fig. 16 shows the volume fraction of the first and second phase at times t = 60, t = 100 and
t = 140 from left to right, respectively. The first time instant represents the moment of impact
with the plate. As one can see from the subsequent instants the behavior of an elastic collision is
qualitatively well represented by the numerical solution. It should be emphasized that, in a diffuse
interface approach, and if both the solid objects are represented by the same volume fraction
function, it is not obvious that the two solids would bounce instead of sticking to each other.
The results for multibody problems in which the solids are carrying their own volume fractions is,
therefore, of considerable interest. Additionally, Fig. 18 shows the A12 component of the mixture
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Fig. 16: Results for the multiphase and multi-material elastic solid impact. The contour levels of the volume
fractions of the first and the second phases at times t = 60, t = 100, and t = 140 (from left to right).

Fig. 17: Results for the multiphase and multi-material elastic solid impact. The contour levels of the von Mises
stress of the first σ̄1 and the second σ̄2 at times t = 60, t = 100 and t = 140 (from left to right).

distortion field, obtained through the following relation

A12 = α1A1,12 + α2A2,12 + α3A3,12. (168)

This allows the dynamics of the gas phase to be clearly shown as well, making it evident that
the dynamics of all three phases have been resolved through a distortion field for each phase. It
is possible to see the two fluid jets with non-trivial vorticity being generated at the moment of
impact.

Similarly, Fig. 19 shows a collision of the same solid objects but withe plasticity effect taken into
account. The obtained results visually compare well with the one in [15]. To better understand
how the different definitions of material properties in these two tests affect the behavior of solids, it
is useful to observe the von Mises stress of the first phase σ̄1 and the second phase σ̄2, evaluated as
in (153), and presented in Fig. 17 and 20. It can be seen that the stress in an ideal elastic material
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Fig. 18: Results for the multiphase and multi-material elastic solid impact. The contour levels of the A12 component
of the mixture distortion field A are presented at times t = 60, t = 100, and t = 140 (from left to right).

Fig. 19: Results for the multiphase and multi-material elasto-plastic solid impact. The contour levels of the volume
fractions of the first and the second phases at times t = 60, t = 100, and t = 140 (from left to right).
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Fig. 20: Results for the multiphase and multi-material elasto-plastic solid impact. The contour levels of the von
Mises stress of the first σ̄1 and the second σ̄2 at times t = 60, t = 100, and t = 140 (from left to right).

propagates through the body by means of waves, which are reflected over time from the body
boundaries. On the contrary, in the case of an elasto-plastic material, it can be observed that the
stress reaches a lower magnitude than in the ideal elastic case, due to the stress relaxation process
in the inelastic deformations. Furthermore, it is evident that over time, the highest stress values
are localised in the area undergoing plastic deformations, while the regions far from the impact, in
this case, are less stressed.

Finally, to emphasize the multimaterial character of the test, Fig. 21 shows the gas pressure p3
and the contours of the solid objects. One can see quite complicated flow structures consisting of
multiple shock waves interracting with the boundaries of the solid bodies and with each other.

Fig. 21: Results for the multiphase and multi-material elastic-plastic solid impact. The contour levels of the the
gas pressure p3 and the contours of the solids presented at times t = 60, t = 100, and t = 140 (from left to right).
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8 Conclusion

The goal of the presented research was to investigate the applicability of the continuous mixture
theory to the numerical simulation of multiphase and multi-material flows, and in particular to
the fluid structure interaction problems. Within various formulations for the mixture theory, we
opted for the SHTC formulation of continuum mechanics and multiphase flows. The finite volume
MUSCL-Hancock method was selected due to its robustness and easy adaptability to complex PDE
systems like the one presented in this paper.

The multiphase SHTC model [106, 101, 105] was presented in a general non-equilibrium for-
mulation with different phase pressure, velocities, temperatures, etc., and for arbitrary number of
phases. The phase can be of different nature, viscous gas or liquid, or elastoplastic solid, and the
material interfaces are treated as diffuse interfaces represented by a rapid but smooth change of
the corresponding volume fraction function across the interface. This presented level of unification
of various materials has been achieved by introducing the unified model of continuum fluid and
solid mechanics [94, 37] which also belongs to the SHTC class of equations.

The SHTC formulation was put into a form resembling the Baer-Nunziato (BN) model, which
is a popular model within the compressible multiphase community. The motivation for such a
reformulation of the SHTC equations was twofold. First, we wanted to demonstrate how the
BN model can be extended beyond its two-fluid formulation. The second reason is due to our
experience with the numerical discretiztion of the BN model [66] in the past. However, we find
out that in a true multiphysics (e.g. including heat conduction, elasticity, phase transition, etc.)
and multiphase (more than 2 phase) setting, a BN formulation might be not an optimal choice for
building a computational code due to the complexity of the system of equations. Nevertheless, it
was a simplified version of the BN form of the SHTC equations that was solved numerically in this
work.

Despite being a standard finite volume method, the MUSCL-Hancock scheme required some
adaptation to the complicated PDE system presented in this paper. To deal with the presence of
non-conservative product terms a path-conservative variant of the scheme is employed. Moreover,
in order to cope with the stiff character of the relaxation source terms, the MUSCL-Hancock
scheme is implemented in an operator splitting manner with the aid of a specially designed implicit
discretization of the sources. Particular attention is also given to the reconstruction phase through
a specific reconstruction procedure in the primitive variable space that also performs positivity
preserving limiting of certain quantities.

This research will be continued in the future in the following directions. We plan to solve the
original SHTC multiphase equations with the help of the new class of Hyperbolic Thermodynam-
ically Compatible (HTC) schemes [20, 1, 123], which will allow to respect most of the structure
of the continuous SHTC equations at the discrete level, and to deal with non-isentropic flows due
to the natural ability of the HTC schemes to deal with hyperbolic models with multiple entropy
inequalities, e.g see [123, 20].

The multiphase SHTC model presented in Sec. 4 can be further extended to include phenomena
such as phase transition and surface tension [95, 25], likewise to include the SHTC coupling with
electrodynamics [38], e.g. for multifluid plasma models. Also, a proper SHTC multi-distortion
formulation for multiphase flows is missing. In this paper, the multi-distortion formulation was
achieved in a ad hoc manner, and further research is required.
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A Eigenvalue estimates

From the very nature of the hyperbolic equations, it is important to understand the characteris-
tic structure of the PDE system (77) under consideration. However, even if simplified with respect
to the full SHTC model in (47), this system remains too complex for analytical calculation of all
eigenvalues due to coupling of convective, acoustic, and shear parts, as well as due to coupling
between the phases. Therefore, since our FV method requires the knowledge of the maximum
sound speeds, we shall use some estimates for the eigenvalues discussed below.

As has been suggested in [23] in teh context of -two-fluid model coupled with the GPR model, a
practical and effective choice for estimating the spectral radius of the Jacobian matrix for moderate
Mach numbers is λM

k in each direction xk as

λM

k = max
a

(|va · n̂k + λ|, |va · n̂k − λ|) , with λ =
√

λ2
p + λ2

s (169)

where
λp = Ca = paγa/ρa (170)

accounts for the pressure waves of the multiphase model, while

λs =

√
4 Cs2a/3 (171)

is a linearised estimate for contribution by the shear modes. Through our numerical experiments,
we found out that (171) is quite safe, leading to only occasional slight overestimates.

B Variational formulation

Here, we provide a variational formulation of the SHTC multifluid heat conducting equations in
the Lagrangian coordinates, which extends the variational scheme from [93] for two-fluid systems
to the multifluid case. With the variational principle we can only obtain the Eulerian homoge-
neous multifluid system (19) that represents the reversible part of the overall time evolution. The
irreversible part is represented by the relaxation source terms, which are added afterwards in ac-
cordance with the second law of thermodynamics and Onsager’s principle [93]. Additionally, the
following formulation is limited to the case of single distortion field because it remains unclear to
us how to extend it to multiple distortion fields.

We consider a vector potential xi(t,XK), i = 1, 2, 3, N − 1-scalar potentials χa(t,XK), and
another set of N scalar potentials φa(t,XK). Here, t is the time, and xi(t,XK) is the map (also
called motion) between the Lagrangian XK , K = 1, 2, 3 and Eulerian position xi of the mixture
element. The physical meaning of the other potentials might be not clear (similar to the vector
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potential in the electrodynamics). Yet, their time derivatives are assumed to have the following
meaning

Vi =
dxi

dt
, FiK =

∂xi

∂XK
,

−µa =
dχa

dt
, wa,K =

∂χa

∂XK
,

−ϑa =
∂φa

∂t
, Ja,K =

∂φa

∂XK
,

(172)

where µa, a = 1, . . . ,N − 1 stands for the phase chemical potential, while ϑa, a = 1, . . . ,N is the
phase temperature. Also, d/dt should be understood as the material time derivative.

The action integral can be defined in a general form

L =

∫
Λ(xi, χa, φa; dtxi, ∂Kxi,dtχa, ∂Kχa,dtφa, ∂Kφa)dtdX, (173)

with the Lagrangian density Λ being a function (unspecified at the moment) of the potentials xi,
χa, φa, and their time and space gradients denoted with the symbols dt = d/dt and ∂K = ∂/∂XK .
However, for our purposes, the explicit dependence of Λ on xi, χa, and φa is not required.

One can immediately write down the Euler-Lagrange equations corresponding to this action
integral:

dΛVi

dt
+

∂ΛFiK

∂XK
= 0, (174a)

−dΛµa

dt
+

∂Λwa,K

∂XK
= 0, (174b)

−dΛϑa

dt
+

∂ΛJa,K

∂XK
= 0, (174c)

and the following space-time integrability conditions

dFiJ

dt
− ∂Vi

∂XK
= 0, (175a)

dwa,K

dt
+

∂µa

∂XK
= 0, (175b)

dJa,K
dt

+
∂ϑa

∂XK
= 0. (175c)

and pure spatial integrability conditions

∂FiI

∂XK
− ∂FiK

∂XI
= 0,

∂wa,I

∂XK
− ∂wa,K

∂XI
= 0,

∂Ja,I
∂XK

− ∂Ja,K
∂XI

= 0. (176)

which are trivial consequences of definitions (172).
After introducing new unknowns (mixture momentum Ui)

Ui = ΛVi
, ϱa = −Λµa

, ηa = −Λϑa
, (177)

a new potential

U(Ui, FiJ , ϱa, wa,K , ηa, Ja,K) = ViΛVi − µaΛµa − ϑaΛϑa − Λ, (178)
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and noting that the derivatives of the old potential and new potential are related by

UFiI
= −ΛFiI

, Uwa,I
= Λwa,I

, UJa,I
= ΛJa,I

, (179)

Ui = UVi
, µa = Uϱa

, ϑa = Uηa
, (180)

we can rewrite the Euler-Lagrange equations (174) and the integrability conditions (175) in the
following form

dUi

dt
− ∂UFiK

∂XK
= 0, (181a)

dFiK

dt
− ∂UUi

∂XK
= 0, (181b)

dϱa
dt

+
∂Uwa,K

∂XK
= 0, (181c)

dwa,K

dt
+

∂Uϱa

∂XK
= 0, (181d)

dηa
dt

+
∂UJa,K

∂XK
= 0, (181e)

dJa,K
dt

+
∂Uηa

∂XK
= 0, (181f)

The conversion from the SHTC Lagrangian master system (181), which admits the original
Godunov structure [48], to the Eulerian system (19) can be carried out by means of the Lagrange-
to-Euler coordinate transformation which also concerns the change of the state variables, potential
U , and is described in detail in [93, 51].
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