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Abstract. Random diffusions are a popular tool in Monte-Carlo estimations, with well established algorithms
such as Walk-on-Spheres (WoS) going back several decades. In this work, we introduce diffusion
estimators for the problems of angular synchronization and smoothing on graphs, in the presence of
a rotation associated to each edge. Unlike classical WoS algorithms, these estimators allow for global
estimations by propagating along the branches of multi-type spanning forests, and we show that they
can outperform standard numerical-linear-algebra solvers in challenging instances, depending on the
topology and density of the graph.
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Introduction. Data processing over graphs is of interest in many fields of research, such as
discrete geometry, signal processing or graph machine learning for instance. A common setting
is that of nodes supporting some kind of data, typically numerical values, whereas the edges
describe the topology of the underlying space. In a number of situations, the edges can carry
more precise geometric information regarding how two data points defined on adjacent nodes
should compared, and thus processed. In geometrical parlance, this information is known as
a connection (an idea first formalized in [13]).

We focus here on a connection describing rotations of angle θi,j associated to each edge
(i, j), a setting which has found a growing number of applications over the last decade, includ-
ing angular synchronization [63, 71], signal processing over directed graphs [24, 73], discrete
geometry processing [60], or even direction of arrival estimation [48, 54]. Solving these prob-
lems requires computing the solution to large numerical-linear-algebra (NLA) problems, whose
formulation relies on the connection Laplacian Lθ (the formal definition of Lθ is postponed to
Section 1.2), a linear operator encoding both the topology of the graph and the rotations θi,j .

Computing an exact solution to these problems (e.g., the smoothing problem we will
consider requires solving a linear system, with generic time complexity in O(n3)) remains
prohibitive beyond moderately large graphs (n ≃ 104), so that approximations computed
from iterative Krylov-subspaces-based algorithms are typically used instead [56,57]. The main
drawback of these methods is that their convergence can depend in a complex manner on the
spectrum of the matrix at hand [37] (linear-system solvers for instance require good-quality
preconditioners to ensure fast convergence).

Randomized numerical linear algebra (RandNLA) is a successful and modern alterna-
tive [21,45]: Monte-Carlo estimators allow flexible schemes of computation (e.g., parallelized
or distributed) and can exhibit both advantageous complexities and state-of-the-art practical
performances, in spite of their slow convergence rates in O

(
σ
m

)
(with σ2 the variance of the

estimator and m the number of Monte-Carlo samples). Methods specialized in graphs, based
∗This work is an extension of the conference proceedings [31].
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on random walks and decompositions of the graph, have also appeared (e.g. [39, 51,65]).
In this paper, we leverage novel connection-aware random decompositions of the graph,

and propose RandNLA estimators for two connection-Laplacian-based problems:
• A graph Tikhonov smoothing problem in the presence of a connection.
• The angular synchronization problem on graphs.

Tikhonov smoothing. Connection-aware graph Tikhonov smoothing amounts to solving:

(0.1) argmin
f∈Cn

q∥f − g∥22 + 1
2

∑
i,j

|f(j)− eιθi,jf(i)|2,

where g ∈ Cn, q ∈ R∗
+ is an a priori known regularization parameter, and the sum is over a

subset of ordered pairs of indices (i, j) describing the edges of the graph. This problem appears
in different contexts, such as vector field extension in discrete geometry processing [60], or
directed graph signal processing [24]. Here, the regularization term penalizes functions that are
not locally coherent with respect to the connection, and can be expressed using the connection
Laplacian Lθ. The solution to this first problem takes the form q(Lθ + qI)−1g, and can be
leveraged in the second problem we consider: angular synchronization.

Angular Synchronization. The objective is to recover a set of n unknown angles ω = (ω)i ⊆
[0, 2π)n from measured pairwise offset measurements {θi,j}i,j [63] :

(0.2) θi,j = ωj − ωi + εi,j mod 2π,

where εi,j represents some unknown degradation of the measurement. This task appears in
many structured signal processing problems, where it is often a key component in state-of-
the-art recovery methods, such as perceived luminance reconstruction [70], ptychography [23],
ranking [16], clock synchronization [25] or phase reconstruction [1], and also appears in the
statistical physics literature (e.g. [14]).
In practice, we may only observe a subset of all such measurements θi,j , and the problem is
naturally formulated on a graph G with n nodes whose set of edges E is indexed by the number
of measurements, and where edge (i, j) (resp. (j, i)) carries the offset θi,j (resp. (θj,i = −θi,j)).
If noiseless measurements θi,j = ωj−ωi are available, exact recovery can be trivially performed
up to a global phase shift, by propagating values according to the offset measurements along
a spanning tree of G (a procedure explained in Figures 0.1a and 0.1b).
The problem becomes more involved when considering imperfect measurements θi,j , with non-
zero noise εi,j . In general, exact angular synchronization can no longer be performed in this
noisy regime, as long as even one incoherent cycle is present in the graph (see Figure 0.1c).
A common workaround, first introduced in [70], consists in quantifying the incoherence of an
angular assignment s ∈ [0, 2π)n as

(0.3) I(s) =
∑

{i,j}∈E
(2− 2 cos ((sj − si)− θi,j)) ,

before minimizing this incoherence over all possible assignments. While this problem is non-
convex and NP-hard in general [72] (see also [10] for a discussion), different techniques allowing
to recover a solution have been proposed [10,27,50,63,71], be it approximately via relaxations
or for specific noise regimes or topologies. Most of those techniques also rely on the introduc-
tion of the connection Laplacian Lθ (see Section 1.2).
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(a) Propagation from the large
blue node (bottom left) to the
large blue square (top right)
along the path in blue. A rota-
tion is applied when traversing
each edge.

(b) Synchronization by propa-
gation from the large blue node
to all other nodes in the graph,
along the branches of the blue
spanning tree (only possible if
there is no incoherence).

(c) Propagation from the large
blue node to the large blue
rectangle (bottom left), along
two different paths (blue and
purple). Here, the rotations
are incoherent and the result
of the propagation depends on
the specific path.

Figure 0.1: Propagations on the 4× 2 grid graph, along different paths. The rotation angles
θi,j ’s associated to each edge are represented as circular rotating arrows (only drawn along
the paths we consider). Propagations always start from the large blue node, and propagated
angles are represented as straight arrows (top left of each node). Left 0.1a: propagation
along an arbitrary path. Center 0.1b: exact synchronization achieved by propagation along
a spanning tree, in the absence of noise. Right 0.1c: synchronization impossible due to noise
and incoherence along cycles.

Our contributions. We propose novel RandNLA estimators for the smoothing and angular
synchronization problems. We rely on propagations along branches of Multi-Type Spanning
Forests (MTSF): spanning subsets of both edges and nodes of a graph, whose connected
components are either rooted trees or unicycles (connected subsets of edges containing exactly
one cycle). Our main theorem concerns our estimator for the graph Tikhonov smoothing
problem, and can be roughly described as follows (see Theorem 2.4 for a formal statement).

Theorem 0.1. For MTSFs sampled from the probability distribution in Equation (2.4),
propagating the values from the roots of the trees to the other nodes yields an unbiased estima-
tion of the solution of the connection-aware Tikhonov smoothing problem of Equation (0.1).

See Figure 0.2 for an illustration. We include a teaser runtime comparison with a standard
deterministic solver in Figure 0.3, which shows that our estimators are less sensitive to the
density of the graph, and can provide significant speed-ups for equivalent precision.
In practice, we obtain a fast and scalable algorithm. MTSF-sampling is achieved via a Wilson-
like random-walk-based algorithm with runtime linear in the number of edges of the graph.
From the theoretical side, our arguments rely on the theory of Determinantal Point Processes
(DPPs) [29,44], and generalize the combinatorial analyses of [35,51].

A preliminary version of this work already appeared in [31], where we presented our
smoothing estimator along with two variance-reduction techniques, and an application to a
ranking problem for a simple synthetic data model. We improve and extend this work in a

3



root

unicycle

unicycle

rooted tree

(a) A MTSF in purple, with two unicycles (top left,
bottom) and one tree (right). The large purple
node is the root of the tree.

(b) Estimation: we propagate the values from the
root (blue circle) to its tree via the blue arrows.
The estimation is 0 on the unicycles (represented
by arrowless dots at the top left of the nodes).

Figure 0.2: Theorem 0.1 illustrated on the 4×4 grid graph. Left: a MTSF. Right: estimation
by propagations along the branches of the MTSF. The estimation in C is represented using
angled arrows (top left of the nodes).

number of different manners, some of which we list below.

Theoretical results. In addition to Theorem 2.4, we derive a connection-aware Feynman-
Kac formula (Proposition 2.2), resulting in a local (node-wise) random-walk based estimator
for the smoothing problem, similar to walk-on-spheres algorithms [49, 58]. In comparison,
our MTSF-based estimators allow for global estimation on all the nodes at once. We further
relate these two estimators, which may pave the way to generalizations (see Section 13 of the
Supplementary Material). We also improve one of our variance-reduction techniques to better
handle heterogeneous degree distributions, with significant improvements.

Methodological and experimental contributions. We compare our estimators with stan-
dard Krylov-subspaces methods on synthetic data, for both the angular synchronization and
smoothing problems. For the angular synchronization problem, we leverage our smoothing
estimator as an iterative step in existing approaches [10, 63, 71]. We analyze and contrast
the behavior of these methods on different graph topologies which, up to our knowledge,
has never been studied in the literature before. Our results show that MTSF-based estima-
tions can outperform standard deterministic methods whenever the graph is not very sparse
(the gain getting bigger as the density increases). See Figure 0.3. The code used for these
experiments is publically available1.

Related Work. Our main result can be understood as a specialization of the approach
in [19,20], based on DPPs, a class of distributions exhibiting negatively-correlated samples [29,
38], and resulting in unbiased estimators for least-squares problems. In contrast to this general
work, the specific structure of MTSFs allows efficient sampling and practical algorithms.

1https://gricad-gitlab.univ-grenoble-alpes.fr/gaia/synchromtsf
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(a) DC-SBM with mean degree d ≃ 30.
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(b) DC-SBM with mean degree d ≃ 420.

Figure 0.3: Runtime-precision comparisons for the graph Tikhonov smoothing problem,
comparing two MTSF-based estimators (MTSF and MTSF+GS) against a diagonally-
preconditioned conjugate-gradient-descent (D−1+CG) on degree-corrected stochastic block
model graphs (DC-SBM, see Section 3 for a definition) with 10000 nodes. Results are averaged
over 10 graphs generated from DC-SBM models with two different parametrizations, resulting
in different average degrees d: on the left, a DC-SBM with average degree d ≃ 30 and, on the
right, a DC-SBM with average degree d ≃ 420. x-axis: average runtime. y-axis: average recon-
struction error. Each data-point corresponds to a number m ∈ {1, 2, 3, 5, 8, 13, 22, 36, 60, 100}
of MTSFs (or of CG iterations) used in the estimation. The vertical (resp. horizontal) line is
the computation-time (resp. error) of an exact Cholesky solver (see Section 3 for details).

There exists similar applications of random spanning forests distributions in RandNLA for
problems on connection-free graphs [3,4], such as the trace estimation of (regularized) inverse
Laplacians [6] or, the Tikhonov regularization and interpolation of graphs signals [51]. Multi-
Type Spanning Forests have also been used to build spectral sparsifiers for the (regularized)
connection Laplacian in [22], resulting in randomized preconditioners. Our Feynman-Kac
formula is inspired from a similar result in [34] for continuous-time random walks, but is
specially tailored to the graph Tikhonov smoothing problem; discrete-time walks also exhibit
intriguing links with propagations on MTSFs (see Section 13 of the Supplementary Material).

Organisation of the Paper. In Section 1, we introduce preliminary background on graphs
and connections used in the rest of the paper. In Section 2, we present our Feynman-Kac
formula (Section 2.1) and our MTSF-based estimators (Section 2.2), analyze an efficient sam-
pling algorithm for MTSFs (Section 2.3), and describe our variance-reduction techniques (Sec-
tion 2.4). We analyze the numerical behavior of our estimators in Section 3, and compare
them with standard deterministic algorithms (Sections 3.1 and 3.2). In Section 4, we propose
an iterative scheme leveraging our smoothing estimators to solve the angular synchronization
problem (Section 4.1), illustrate its application to a denoising problem inspired from cryo-
genic electron microscopy (Section 4.2), and compare this scheme with standard deterministic
methods (Section 4.3). Proofs are deferred to the Supplementary Material.
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1. Background. A graph G is defined as a set on nodes V interconnected by a set of edges
E . The edges of E are non-oriented edges. However, for the purpose of this paper, we will
also need to consider their oriented counterparts, denoted by −→E . The size of −→E is twice the
size of E : each edge e ∈ E is associated to two oriented edges in −→E . Choosing arbitrarily an
orientation for e and writing se and te its source and target, we have e = (se, te) ∈

−→
E , and

its reversely-oriented edge e∗ = (te, se) ∈
−→
E . We state our results for unweighted graphs, the

weighted case is included in the Supplementary Material.

1.1. Combinatorial Laplacian. An elementary instance of graph-supported data is that
of real values attached to the nodes of the graph, usually formalized as a vector f ∈ RV ,
and called a graph signal [62]. The regularity of such a signal can be quantified using the
combinatorial Laplacian L : RV → RV , a symmetric semi-definite positive operator,
conveniently expressed as L = D − A, where D is the diagonal degree matrix (Di,i = di the
degree of node i) and A the adjacency matrix of the graph (with A(i,j) = 1 if (i, j) ∈ −→E and 0
otherwise) [15]. The quadratic form associated to L acts as:

(1.1) ⟨f, Lf⟩ = 1
2

∑
e∈

−→
E

|f(te)− f(se)|2,

which associates a high value to functions with important local variations over the edges of
the graph, and serves as a basis for the notion of frequency for graph signals [62, 67]. These
operators are also related to combinatorial properties of the graph G [8], for instance:

(P1) ker L is always non-empty, with dimension the number of connected components of G.
This observation forms one of the bases for spectral clustering on graphs [68].

(P2) D−1A is the matrix of the natural random walk on G, which transitions from a node
to one of its neighbors with uniform probability at each step, with (D−1A)li,j the
probability that a path of length l starting at i ends up in node j.

1.2. Connection Laplacian: Definition and Basic Properties. Unitary connections are
a practical way to add additional information to the graph’s structure2. We describe in
the following how we can capture additional rotations associated to edges in the form of a
Laplacian-like operator. The main idea is to represent rotations as unitary complex numbers,
which will naturally lead to consider complex-valued functions f ∈ CV when studying varia-
tional properties on G. The entries of f should be understood as belonging to different copies
Cv of the complex plane C associated to each node v ∈ V, see Figure 1.13.

We will associate to each directed edge in −→E a map representing the transformation along
that edge, which is known as a connection [35]. A unitary connection Ψ on a graph G is
a collection of unitary linear maps (ψe)e∈−→

E , with each map ψe : Cse → Cte acting as
multiplication by a unitary complex number eιθe , so that ψe(z) = eιθe · z, with ι the complex
imaginary unit (we sometimes abuse notation and write ψe = eιθe when there is no risk
of confusion). In addition, we require that ψe∗ = ψ∗

e (i.e. ψ(te,se) = ψ∗
(se,te)), so that the

2By describing explicit geometrical transformations between the signal values of the nodes of G.
3This association of a copy of C is analogous to a fiber bundle over a manifold (e.g. its tangent bundle),

and is known as a complex line bundle over G.
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transformation associated to an edge traversed in one direction or the other differs only by
conjugation. This notion is illustrated in Figure 1.1.

z2 = ψ(v1,v2)(z1) = eι
π
4 · z1

z3 = ψ(v2,v3)(z2) = eι
π
4 · z2 z′

1 = ψ(v3,v1)(z3) = eι
π
4 · z3

Cv1

z1

z′
1

Cv2

z2

Cv3

z3

v2 v1

v3

ψv2,v3 ψv3,v1

ψv1,v2

Figure 1.1: A connection Ψ on the triangle graph K3 (in the center). The connections maps
ψe are associated with angles θ(v1,v2) = θ(v2,v3) = θ(v3,v1) = π

4 , and we represent their action on
some z1 ∈ Cv1 . A cyclic path C = ((v1, v2), (v2, v3), (v3, v1)) is depicted using directed arrows,
we denote by ψC = ψ(v3,v1) ◦ ψ(v2,v3) ◦ ψ(v1,v2) the composition of the connection maps along
this cycle (a rotation of θC = 3π

4 ). Top right: z1 ∈ Cv1 (bold arrow) and z′
1 = ψC(z1) ∈ Cv1

(blue dotted arrow). Top left, bottom: z2 = ψ(v1,v2)(z2) ∈ Cv2 and z3 = ψ(v2,v3)(z2) ∈ Cv3

(dotted arrows).

Remark 1.1. In applications, such as angular synchronization, the θe’s often represent a
priori known rotations, and are frequently modulated by a scale parameter γ ∈ R+, resulting
in connections such that ψe(z) = eιγθez. While we will forego this additional parameter in our
theoretical results, it is easily recovered by replacing each θe with γθe.

The connection Laplacian. To a graph endowed with a unitary connection, we associate
the connection Laplacian Lθ : CV → CV , defined by Lθ = D − Aθ, with Aθ a connection-
aware adjacency matrix such that (Aθ)i,j = e−ιθ(i,j) if {i, j} ∈ E , and Ai,j = 0 otherwise.
This operator generalizes the Laplacian to non-trivial connections, and is associated to the
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quadratic form:

(1.2) ⟨f, Lθf⟩ = 1
2

∑
e∈

−→
E

|f(te)− eιθef(se)|2.

For the trivial connection, with ψe = idCse ,Cte
(i.e. θe = 0) for all edges e ∈ −→E , we recover

Lθ = L and the expression in Equation (1.1). Unlike this specific case, ⟨f, Lθf⟩ also penalizes
functions that are incoherent with respect to the connection, including constant functions.

Let us now answer a natural question: when is the kernel ker Lθ non-empty, and what are
the functions f ∈ CV that are not penalized by ⟨f, Lθf⟩?

(P1′) Angular synchronization and kerLθ. When the entries fi of the vector f are unitary
complex numbers fi = eιsi , we recover from Equation (1.2) the expression in Equation (0.3).
In this case, |f(j) − eιθ(i,j)f(i)|2 = 2 − 2Re((eιsj )∗eιθ(i,j)eιsi), which, thanks to conjugation-
invariance of the real part, results in:

(1.3) ⟨f, Lθf⟩ =
∑

{i,j}∈E
2− 2 cos((sj − si)− θ(i,j)).

Even though this equality only holds for f ∈ U(C)V , note that ⟨f, Lθf⟩ = 0 if and only if
fi = eιθ(j,i)fj for all (i, j) ∈ −→E , that is, if si = sj + θ(j,i). As a consequence, Lθ is not only
semi-definite positive (as seen from Equation (1.2)), but positive definite, unless there is an
exact solution x ∈ U(C)V to the associated angular synchronization problem, in which case
the kernel ker Lθ is generated by x.

This behavior of the smallest eigenpair of Lθ is in clear contrast to that of L (which is always
zero, see property (P1)), and we explain in Section 2 how a generalization of property (P2)
pertaining to random propagations can be used to solve connection-Laplacian-based problems.

2. Random Estimators for Tikhonov Smoothing under a Connection. The goal of the
next Section is to smooth a complex signal on a graph, by way of random propagations. More
precisely, we fix a graph G = (V, E) endowed with a connection Ψ, and we aim at smoothing
a signal g ∈ CV by solving:

(2.1) argmin
f∈CV

q∥f − g∥22 + ⟨f, Lθf⟩,

with q ∈ R∗
+. This is nothing but a re-writing of Equation (0.1), and ⟨f, Lθf⟩ penalizes

functions that are not coherent with respect to the connection Ψ. Denoting by f∗ the optimal
solution to this problem, we have.

Proposition 2.1. The solution to Problem (2.1) can be expressed as:

(2.2) f∗ = q(Lθ + qI)−1g.

The proof of Proposition 2.1, based on straightforward CR-calculus, is detailed in Section 8
of the Supplementary Material.

Let us now describe how to recover the solution of this problem via local propagation over
random paths on G.

8



2.1. Local Estimation: a Feynman-Kac Formula. Feynman-Kac formulas express solu-
tions of variational problems as the expectations of stochastic processes: we develop here an
instance tailored to the Tikhonov smoothing problem of Equation (2.1). We start with a few
definitions. A path p in G is an ordered sequence of oriented edges in −→E . We consider the two
operations of concatenation pq of two paths p and q and of orientation-reversal p∗ of a path p,
and denote by P ji the set of paths from i to j in G. Connection maps extend to paths induc-
tively as ψpq = ψq ◦ψp, and we will for instance frequently encounter the map ψp∗ : Cj → Ci,
acting by composition of the (inverse) rotations encountered along path p ∈ P ji from i to j.

The stochastic process we consider is a random walk with a non-zero probability of being
interrupted at any node. It is conveniently defined on an extended graph GΓ, with nodes
V ∪ {Γ} and edges E ∪

⋃
v∈V{{v,Γ}} (so that all the nodes of V are connected to Γ), where

Γ is an additional boundary node. We then define the random walk (ut)t≥0, which starts at
some fixed node u0 = i ∈ V and transitions to some other node at time t as follows:

• ut+1 = Γ with probability q
dut+q

,

• ut+1 = v ∈ V with probability Aut,v
dut+q

.
The process ends upon reaching node Γ. In other words, this is the natural random walk on
GΓ, with a stopping criterion at the boundary Γ. Writing ul = Γ for some time l, this process
results in a random path ((u0, u1), ..., (ul−1, ul)). We denote by PΓ

i the set of all possible paths
obtainable via this process, and by νi the resulting probability measure on PΓ

i .
We can then show that propagating along paths sampled according to νi converges in expec-
tation to the solution of Problem (2.1) on node i. More precisely:

Proposition 2.2. Denoting by j = ul−1 the last node reached before p reaches Γ, we have:

(2.3) f∗(i) = Ep∼νi

(
ψp∗

Γ
(gj)

)
,

where p = pΓeΓ with eΓ the last edge in p.
In other words, an unbiased estimate of f∗(i) is obtained by drawing a random path from i to Γ,
and retropropagating the value of g at the node just before Γ (j in Proposition 2.2), taking into
account the rotations along the path. See Algorithm 2.1. This formula is a discrete-time analog
of a Theorem in [34], and we prove a more general version in the Supplementary Material
(Section 8, Proposition 8.1), building upon a connection-aware version of property (P2).

Algorithm 2.1 Feynman-Kac estimator (Proposition 2.2).
1: fi ← 0
2: Repeat m times
3: Sample a path p ∈ PΓ

i from νi ▷ By running an interrupted random walk on G
4: fi ← fi + ψp∗

Γ
(gj) ▷ j the last node before interruption of p

5: Output 1
mfi

Algorithm 2.1 is simple but may be computationally expensive: estimation on one node
requires sampling m paths of unbounded length, which needs to be repeated for each of the
|V| nodes in G (a locality issue inherent to Walk-on-Spheres-type algorithms [49]). We ad-
dress these limitations in the remainder of this Section and propose novel propagation-based
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estimators of f∗, allowing to update the Monte-Carlo estimates on all the nodes at once, by
sampling specific substructures of the graph, which is achieved with an expected number of
steps of a random walk linear in the number of edges |E|.

Remark 2.3. The restriction to complex signals on G and unitary connections (encoding
2D rotations) is mostly artificial, and Proposition 2.2 generalizes to transformations in e.g.
O(Rd). This setting is encountered for instance for 3D molecule alignement in cryogenic
electron microscopy (cryo-EM) [64], or in structure-from-motion problems [2], where the ψe’s
act as 3D rotations ( i.e. ψe ∈ SO(R3)).

2.2. Multi-Type Spanning Forests: a first global estimator. To build our global estima-
tors, we rely on decompositions of the graph into Multi-Type Spanning Forests (MTSFs) [22].
A MTSF ϕ ⊆ V ∪ E decomposes G into disjoint components that are either rooted trees, or
unicycles. More precisely, a MTSF ϕ must have fixed cardinality |ϕ| = |V|, and is divided into
(maximal) components cϕ ⊆ ϕ, which must be of one amongst two types:

• A rooted tree cϕ ⊆ V ∪ E , such that cϕ ∩ E is a connected cycle-free subset of edges,
and cϕ ∩ V is reduced to a single node, connected to cϕ ∩ E .
• A unicycle cϕ ⊆ E , which is a connected subset of edges containing exactly one cycle.

This structure is illustrated in Figure 2.1. We denote by M(G) the set of all MTSFs over the
graph G.

Note that in the absence of unicycles, a MTSF is a rooted spanning forest [3, 4], whereas
a tree-free MTSF is a spanning forest of unicycles [35].

We will consider the distribution DM over M(G) defined by:

(2.4) PDM(ϕ) ∝ q|ϕ∩V| ∏
C∈C(ϕ)

(2− 2 cos(θC)) ,

where C(ϕ) is the set of cycles belonging to the unicycles of ϕ, and θC is the argument of the
unitary complex number associated connection map ψC obtained from a path traversing C one
time (as in Figure 1.1). Note that, while ψC depends on the orientation of this path, cos(θC) is
insensitive to this orientation. Moreover, a cycle has a non-zero probability of being sampled
if and only if it is inconsistent (if C is perfectly consistent then θC = 0 and 2−2 cos(θC) = 0).

Distribution DM is a rooted variant of the distribution considered in [22], and is in fact a
DPP4. We can now state our main theorem.

Theorem 2.4. Let ϕ be a MTSF sampled according to DM. Denote by a
ϕ−→ b the unique

path from a to b in some tree of a MTSF ϕ and, if v ∈ V belongs to a rooted tree of ϕ, by
rϕ(v) the root of this tree. Consider the estimator

(2.5) f̃(i, ϕ, g) = ψ
rϕ(i)

ϕ−→i
(g(rϕ(i)))

propagating the value from rϕ(i) to i if i ∈ V belongs to a rooted tree, and f̃(i, ϕ, g) = 0 if i
lies in a unicycle. Then, we have:

(2.6) f∗(i) = EDM(f̃(i, ϕ, g)).

4So is the distribution of [22], but their non-combinatorial argument does not carry over to our rooted
process. See the Section 9 of the Supplementary Material for a proof in this case
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The proof of Theorem 2.4 relies on the reformulation of DM as a DPP, and an extension
of arguments coming from both [35] and [51]. It is a special case of Theorem 9.1, proved in
Section 9 of the Supplementary Material.

In a less technical phrasing, propagating for each tree in a MTSF ϕ the value of g at its
root r to its other nodes i (along path r

ϕ−→ i) results in an unbiased estimator of f∗. The
estimation on nodes belonging to unicycles is then 0. See Algorithm 2.2 and Figure 2.1.

r

(a) A MTSF ϕ in purple, with two unicycles (top
left, bottom) and one tree (right) with its root r
(large purple node).

f̃(j, ϕ, g) = 0
f̃(i, ϕ, g) = ψ(r,i)(g(r))

f̃(r, ϕ, g) = g(r)

(b) Estimation: we set f̃(i, ϕ, g) = ψ
r

ϕ−→i
(gr) for

nodes in the tree (blue arrows), and f̃(j, ϕ, g) = 0
on unicycles (teal crosses).

Figure 2.1: Theorem 2.4 illustrated on the 4× 4 grid graph, on one MTSF.

Algorithm 2.2 MTSF-based estimator (Theorem 2.4).
1: fi ← 0 ∀i ∈ V
2: Repeat m times
3: Sample ϕ ∈M(G) from DM ▷ Algorithm 2.3 can be used
4: for i ∈ V do
5: if i belongs to a rooted tree of ϕ then
6: fi ← fi + ψ

rϕ(i)
ϕ−→i

(g(rϕ(i)))

7: end if
8: end for
9: Output 1

m(f1, ..., f|V|)

Remark 2.5. If the connection Ψ is trivial ( i.e., ψe = idCse ,Cte
for all edges), we recover

the result from [51]. There are no inconsistent cycles in this case, and DM reduces to another
determinantal distribution DF over rooted spanning forests ϕ ∈ V ∪ E [3, 4].

Unlike Algorithm 2.1, Algorithm 2.2 allows to update the estimates on all the nodes for
11



each sampled MTSF, in O(|V|) time. On the other hand, it becomes necessary to sample a
MTSF ϕ according to DM. A first naive strategy is to use sampling algorithms designed for
general DPPs, relying on the eigendecomposition of the DPP’s kernel matrix (a Hermitian
matrix of size (|V |+ |E|)× (|V |+ |E|)), which is much too expensive. In the next section, we
recall the much more efficient random-walk-based algorithm proposed in [22], and analyze its
expected computational cost.

2.3. Sampling Multi-Type Spanning Forests. Efficient sampling from DM is possible
thanks to loop-erased random walks, traditionally used in Wilson’s algorithm for uniformly
sampling spanning trees of a graph [69], under the following additional condition5.

Condition 2.6 (Weak-Inconsistency). For all cycles C in G, cos(θC) ≥ 0.

We stress that this condition must hold for all the cycles of the graph, and not just for the
cycles C(ϕ) in some MTSF ϕ ∈M(G). When Condition 2.6 is satisfied, 1−cos(θC) ≤ 1 defines
a probability measure over the oriented cycles inG, which can be leveraged to efficiently sample
MTSF ϕ, as we will see in the following.

Remark 2.7. Even though efficient sampling from DM can only be performed under Condi-
tion 2.6, Theorem 2.4 holds beyond this technical condition. Furthermore, in some applicative
settings ( e.g. directed graph signal processing [24], ranking [16, 71] or perceived luminance
reconstruction [70]), this condition can be forced by tweaking the scale parameter γ.

MTSF sampling algorithm. The algorithm of [22], recalled here as Algorithm 2.3, samples
a MTSF ϕ according to DM by simulating multiple random walks on GΓ, and constructs ϕ
iteratively from these random paths. The precise way in which a path is turned into a part of
ϕ relies on a loop-erasure procedure. The full sampling scheme is detailed in Algorithm 2.3,
performing random walks that can be stopped in a number of ways: by being interrupted (i.e.
reaching Γ), by building a cycle θC (kept with probability 1− cos(θC)), or by reaching a node
already spanned by ϕ6. We suppose that the nodes of G are arbitrarily ordered in a queue,
and say that a node i is spanned by ϕ if i ∈ ϕ or if i is an endpoint of some edge e ∈ ϕ. We
also use a function random_successor(u) that, at each call, randomly outputs either Γ with
probability q

du+q , or some node v with probability Au,v
du+q .

One then proves the following by applying the arguments of [22] (which describes how to
sample unrooted MTSFs), and keeping track of the roots.

Proposition 2.8. Suppose that Condition 2.6 holds. Then, Algorithm 2.3 outputs a MTSF
ϕ distributed according to DM.

Let us now discuss the cost of Algorithm 2.3.

5Condition 2.6 has already been identified as a technical sampling condition for Wilson-like algorithms
(in [33] and [22]). It also appears in a different guise in [34], under the name of trace-positivity, where it allows
to simplify some technical statements.

6Some implementation details of Algorithm 2.3 are not made completely explicit here, such as the precise
way in which we detect cycles (instruction at line 11), or how to track the cycle-acceptance probabilities (i.e.
θC). Please refer to Section 10 of the Supplementary Material and our Julia implementation for more details

12



Algorithm 2.3 MTSF sampling algorithm [22].
1: ϕ← ∅
2: while ϕ not spanning do
3: Let i ∈ V be the first node in the queue not spanned by ϕ
4: u← i ▷ u is the current node of the random walk
5: p← ϵ ▷ ϵ the empty path
6: while (u ̸= Γ) and (p does not intersect ϕ or contain a cycle) do
7: u′ ← random_successor(u) ▷ Move to next node
8: if u′ ̸= Γ then
9: e← (u, u′), p← pe ▷ Add e to the path p

10: end if
11: if p contains a cycle C then
12: Remove this cycle from p with probability cos(θC)
13: end if
14: uold ← u, u← u′ ▷ uold the previous node
15: end while
16: if u = Γ then
17: ϕ← ϕ ∪ p ∪ uold ▷ Add the sampled path p and the root uold to ϕ7

18: else
19: ϕ← ϕ ∪ p
20: end if
21: end while
22: Output ϕ

Proposition 2.9. The expected number of random walk steps of Algorithm 2.3 is bounded
from above by

(2.7) tr
(
(L + qI)−1(D + qI)

)
.

Furthermore, Algorithm 2.3 can be implemented with O
(

|E|
q

)
expected time complexity.

See Section 10 for the proof. The bound is obtained by noting that Algorithm 2.3 neces-
sitates fewer steps than the Wilson-like algorithm in [51], used to sample random spanning
forests [3,4], with expected number of steps given by (2.7). Unlike the algorithm in [51] though,
Algorithm 2.3 requires both tracking of the angular offsets accumulated along a cycle, and de-
tecting said cycle, at additional computational cost. We discuss two possible implementations
in Section 10 of the Supplementary Material, one of them resulting in the O

(
|E|
q

)
expected

time complexity mentioned in Proposition 2.9. This translates to O
(

|E|
q + |V|

)
expected run-

time for Algorithm 2.2.
Remark 2.10. In case Condition 2.6 is not satisfied, one can still estimate f∗ up to a

multiplicative constant (af∗ for some a), using the importance sampling strategy from [22].

7We abuse notations and denote here by p the set of non-oriented edges in the path.
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Specifically, one can threshold the incoherence 2− 2 cos(θC) and sample from

(2.8) PIS(ϕ) ∝ q|ϕ∩V| ∏
C∈C(ϕ)

min(2, 2− 2 cos(θC))

using a straightforward variant of Algorithm 2.3. The estimation then uses the importance
weights

(2.9) w(ϕ) =
∏

C∈C(ϕ)
max(1, 1− cos(θC)).

Both the Feynman-Kac-based Algorithm 2.1 and the MTSF-based Algorithm 2.2 can be
roughly understood as performing a random walk on the graph before stopping at some root
node, and then propagating the value from this root to the starting point of the random walk.
One main difference is that MTSFs allow to update the estimated values on all nodes jointly.

2.4. Variance Reduction for the MTSF-based estimator. A paramount property of
Monte-Carlo estimators is not only their unbiased behavior in expectation, but also their
variance: they are significantly improved when used in conjunction with efficient variance
reduction techniques. We propose two such improvements over f̃ , based on the classical ap-
proaches of Rao-Blackwellization [7,55] and control variates [36] respectively, generalizing the
variance reduction techniques introduced in [51,52].

Rao-Blackwellization. Rao-Blackwellization leverages the two laws of total expectation and
variance, roughly stating that conditioning an estimator using another statistic extracted from
the same sample still results in an unbiased estimator, with lower variance (see Section 11
of the Supplementary Material for more details in our case). Here, our technique consists in
conditioning on the set of edges in ϕ. This yields the following estimator:

(2.10) f(i, ϕ, g) = ψ
rϕ(i)

ϕ−→i
(hϕ(rϕ(i), g)) if i belongs to a rooted tree,

where hϕ is defined as

(2.11) hϕ(r, g) =

∑
j∈cϕ(r) ψ

j
ϕ−→r
g(j)

|cϕ(r)| ,

and cϕ(r) is the set of nodes spanned by the tree containing r. If i belongs to a unicycle, we
once again set f(i, ϕ, g) = 0.
This results in Algorithm 2.4, which amounts to:

• Computing at the root r of each tree the average hϕ(r, g) of the values of g over the
tree (obtained by propagating from each node i in the tree to r).
• Propagating this average back to the other nodes of the tree.

As compared with Algorithm 2.2, this procedure can be implemented at little additional cost8.

8Note also the similarity to the Belief Propagation algorithm over trees [47].
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Algorithm 2.4 Rao-Blackwellized MTSF-based estimator (Theorem 2.4).
1: fi = 0 ∀i ∈ V, hr = 0 ∀r ∈ V
2: Repeat m times
3: Sample ϕ ∈M(G) from DM ▷ Via Algorithm 2.3
4: for r ∈ ϕ ∩ V do
5: for j ∈ cϕ(r) do
6: hr = hr + ψ

j
ϕ−→r
g(j) ▷ Propagate and average at the root

7: end for
8: end for
9: for i ∈ V belonging to a rooted tree of ϕ do

10: fi = fi + ψ
rϕ(i)

ϕ−→i

(
hrϕ(i)

|cϕ(rϕ(i))|

)
▷ Propagate back

11: end for
12: Output 1

m(f1, ..., f|V|)

Control variates. Second is the introduction of control variates: an addition of another ran-
dom quantity to f , designed to have zero mean (so that the expectation remains unchanged),
but resulting in an estimator with lower variance when designed properly. We propose to use
a single gradient-descent step with parametrized step-size α:

(2.12) f̂(ϕ, g) = f(ϕ, g)− αP(q−1(Lθ + qI)f(ϕ, g)− g),

where P =
(
q−1D + I

)−1 is a diagonal preconditioner for the system q−1(Lθ + qI)f = g, and
α ∈ R∗

+. A good choice of step-size α is crucial in order to obtain a significant reduction
of variance. We simply take α = 1 in the following (see Section 11 of the Supplementary
Material for empirical results backing this choice).

We prove in Section 11 of the Supplementary Material that generalizations of both f and
f̂ are unbiased estimators of f∗.

Proposition 2.11. EDM(f(i, ϕ, g)) = EDM(f̂(i, ϕ, g)) = f∗(i)
Both variance-reduction techniques are easy to implement, and do not incur large addi-

tional computational costs: The Rao-Blackwellization f has O(|V|) additional cost, and the
gradient-descent step in f̂ entails a single matrix-vector multiplication, in O(|E|) time.

3. Numerical Results under Weak-Inconsistency. We now analyze the behavior of the
estimator proposed in Theorem 2.4, along with the improved versions discussed in Section 2.4,
and compare their performance with (deterministic) conjugate-gradient-based solvers [56], on
graphs with different topologies9. We perform experiments on the following connection model.

Connection Model. For a given graph G with n nodes, we associate to each of its nodes v
an angle ωv chosen uniformly in [0, 2π), and we set

(3.1) θe = ωte − ωse + ηεe

9In this Section and in Section 4, we perform all our measurements using a single thread on a laptop with
an intel i7-1185G7 processor.
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for all edges e, with εe a perturbation uniformly distributed in [−1, 1], and η ∈ R∗
+ a scaling

constant. We set η = π
2n to ensure that Condition 2.6 is satisfied (so that Algorithm 2.3 in

fact samples a MTSF according to DM).

3.1. A First Runtime Experiment on Erdös-Rényi Graphs. We first analyze the behav-
ior of our estimator f̃ with respect to two parameters: the choice of regularization parameter
q and the mean degree d of the graph (controlling the graph’s density). In our first ex-
periment, we let d take values in {50, 100, 150, 200}, and q take values equal to q′d, with
q′ ∈ {10−3, 10−1, 1}. The complexity bound of Equation (2.7) becomes linear in |V| when
using such a parametrization.

Setup. We generate Erdös-Rényi random graphs G ∼ ER(n, p) of size n = 10000 for
varying p ∈ [0, 1], so that each edge e independently appears with probability p. To control
the density, we set p = d

n−1 so that the expected mean degree of these random graphs is d. For
each such graph, we generate a random signal f ∈ CV with independent complex Gaussian
entries fv ∼ NC(0, 1).
We then measure the running time of sampling one MTSF ϕ and applying the estimator
f̃ . As a reference, we also measure in the same manner the runtime of the matrix-vector
multiplication Lθf , where Lθ is implemented as a sparse Hermitian matrix in CSC format.
Note that this operation is the most expensive part of an iteration of the Conjugate-Gradient
algorithm, and serves as a simple baseline to compare computation costs.
The results, depicted in Figure 3.1, are the average over 10000 time measurements, themselves
averaged over 10 realizations of the graph G.

50 100 150 200

10−3.00

10−2.75

10−2.50

Mean degree d

T
im

e
in
s

MTSF, q′ = 10−3

MTSF, q′ = 10−1

MTSF, q′ = 1
Lθf, q

′ = 10−3

Lθf, q
′ = 10−1

Lθf, q
′ = 1

Figure 3.1: Runtime when varying d, for different values of q.
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Analysis. Two trends emerge in Figure 3.1. First, as q′ (hence q) increases, computing f̃
becomes less expensive, since the probability of the random walk stopping at some root node
increases. Second, in contrast to the matrix-vector product Lθf , our estimator is less sensitive
to the density of the graph: computing f̃ is more expensive than computing Lθf for d = 50,
and systematically faster for d = 200. This reflects the O(|V|) expected complexity for f̃
(obtained with the parametrization q = q′d).

Remark 3.1. Results are similar when varying the size n of the graph (not shown).

3.2. Runtime-Precision Trade-offs in the context of Complex Graph Signal Denoising.
We compare the performance of our improved estimators f and f̂ with conjugate-gradient
methods [56]. The objective consider is to recover a signal f⊤ ∈ CV given a noisy degradation
g = f⊤ + ε.

In the specific instance where f⊤ ∈ RV and the connection on G is trivial (ψe = idCse ,Cte

for all e ∈ E), a common assumption in the graph signal processing literature is that f⊤ is
a smooth signal, that is, a linear combination of the first (low-frequency) eigenvectors of L
(associated to the smallest eigenvalues) [43,53].

We here similarly assume that f⊤ ∈ CV is B-bandlimited (i.e. f⊤ ∈ ran(u1, ..., uB)10,
with ui the i-th eigenvector of Lθ), so that solving the Tikhonov smoothing Problem (2.1):

(3.2) argmin
f∈CV

q∥f − g∥22 + ⟨f, Lθf⟩,

should allow to faithfully recover f⊤ from g, by penalizing high-frequency components in the
optimal solution f∗ = q(Lθ + qI)−1g. We refer the reader to Section 12 of the Supplementary
Material for additional supporting arguments in this connection-aware setting.

Recall that this matrix inversion can be computed using a Cholesky decomposition (for
an exact solution), or a conjugate-gradient-based iteration (for a high quality approximation).
We compare our estimators with these methods, and consider two cost functions:

• The reconstruction error er(f) = ∥f −f⊤∥2/n, measuring the quality of the denoising.
• The approximation error ea(f) = ∥f − f∗∥2/n, measuring the quality of the approxi-

mation of f∗.
Our estimators and the conjugate-gradient algorithms are respectively parametrized by

the number of MTSFs used and the number of gradient steps, that we both denote by m.

Setup. For each graph, we generate a B-bandlimited signal f⊤, each ui being weighted
by a random complex Gaussian value ai ∼ NC(0, σ2), with σ2 such that the SNR is equal to
2. We then degrade f⊤ with some additive Gaussian noise ε ∼ NC(0, 1) (independently on
each entry), and determine the optimal parameter q∗ for which er(f∗) = er(q∗(Lθ + q∗I)−1g)
is minimized11, before measuring the errors and running time associated to different values of
m (taken amongst 10 logarithmically-spaced values from 1 to 100). The iterative algorithms
are initialized at g.
We compare the following estimation strategies: the estimators f and f̂ , the conjugate-
gradient descent with no preconditioner, with a simple diagonal preconditioner P = (q−1D +

10The linear subspace generated by the vectors u1,...,uB .
11We perform our search in (0, 30).
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I)−1, and with a CROUT ILU preconditioner12. Computing this high-quality ILU precondi-
tioner is too expensive to be competitive with the other methods, and we only include these
results on one type of graph, for illustration purposes.
Each runtime measurement is averaged over 100 runs. The results are averaged over 5 real-
izations of the noise ε and 10 samples for each random graph model. We plot in Figure 3.2
the mean results.

Graphs used. We use the following graphs:
• An ε-graph obtained by sampling |V| = 10000 i.i.d. points xi’s in [0, 1]3, with an edge

between xi and xj whenever ∥xi − xj∥2 < 0.1.
• A graph generated from a Stochastic Block Model (SBM), with |V| = 10000 nodes,

each belonging to one of two communities C1 and C2 of size 5000 each. In this model,
an edge is drawn randomly between two nodes i, j with probability equal to ck,l

n , where
k, l denote respectively the community label of i and j. Here, we take c1,1 = c2,2 = 36
and c1,2 = c2,1 = 4, resulting in average degree d = 40.
• A graph generated from a related Degree-Corrected Stochastic Block Model (DC-SBM

1), with two communities of size 5000 and an edge between nodes i ∈ Ck and j ∈ Cl
present with probability proportional to pipj

ck,l
n . pi is a randomly sampled positive

real value, representing the intrinsic connectivity of node i, with E(pi) = 1 and finite
second moment [32]. Here, we take c1,1 = c2,2 = 36, c1,2 = 4, and the pi’s are drawn
from a normalized mixture of Gaussian distributions13, resulting in a graph with mean
degree d close to 40. The objective of adding this model is to illustrate, at constant
density, how the degree distribution affects the results.
• Another DC-SBM-graph (DC-SBM 2), with higher density (typically with an average

degree more than 10 times that of the previous DC-SBM model). We take two com-
munities of size 5000, c1,1 = c2,2 = 480, c1,2 = 20, and the pi’s are drawn from another
mixture of Gaussian distributions14. The objective of this second DC-SBM model is
to illustrate how density affects the results.
• We also illustrate the results on a real-world graph: a relationship graph for internet

Autonomous Systems (AS), recorded by the Center for Applied Internet Data Analysis
(CAIDA) and provided in the SNAP datasets [41]15.

In the event of a randomly generated graph containing isolated nodes, we remove them so
that the graph is connected (to make the interpretations simpler). We summarize in Table 3.1
the information concerning the graphs generated, and the associated optimal q∗’s (averaged
over all realizations of the noise ε). All those graphs are endowed with a synthetic connection
as specified in Equation (3.1). The parameters used for the (DC) SBM models ensures that
the resulting graphs have a strong community structure.

12We use the implementations from the libraries: https://github.com/JuliaLinearAlgebra/IterativeSolvers.jl,
https://github.com/JuliaLinearAlgebra/Preconditioners.jl and https://github.com/haampie/IncompleteLU.jl.
For the ILU preconditioner, we fix the drop threshold to 0.1.

13Specifically, the connectivity parameters are independently sampled from a mixture of N (50, 20),
N (500, 100) and N (10000, 100), with weights of 0.59, 0.4 and 0.01 respectively, and then normalized.

14Here from the mixture of N (50, 20), N (1000, 50), N (5000, 100) and N (10000, 100), with weights of 0.45,
0.1, 0.44 and 0.01.

15We use the library available at https://github.com/JuliaGraphs/SNAPDatasets.jl.
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Graph |V| d dmin dmax q∗

ε-graph 10000 37.3 5.2 67.5 6.518
SBM 10000 39.87 17.7 66.6 21.04
DC-SBM 1 9833.7 33.4 1 906.1 2.634
DC-SBM 2 9932.8 418.8 1 1513.7 4.31
AS CAIDA 26475 4.032 1 2628 0.4808

Table 3.1: Experimental parameters associated to each graph. Values are averaged over all
10 realizations for random graph models.

For the ε-graph and the AS-graph, we arbitrarily set B = 5 when generating the bandlim-
ited signal f⊤. For (DC) SBMs, we take B = 2. It is known that the eigenvectors of the
combinatorial Laplacian L encode the community structure of these graphs (here„ and taking
B = 2 here results in signals coherent with the community structure (see Section 12 of the
Supplementary Material for more on the first few eigenvectors of Lθ).

Discussion. Let us first comment on the approximation error for the ε-graph (Figure 3.2a,
left). Both of our estimators converge linearly in log-log-scale with a mild slope, as expected for
Monte-Carlo estimators. Any of the other three conjugate-gradient-based algorithms achieves
a better approximation error within 3 steps than our estimators in 100 steps (as expected
for Monte-Carlo convergence rates), and our methods are not competitive in this setting.
However, in this denoising setting, the quality of the denoising is reflected in the reconstruction
error (depicted in all the plots of Figure 3.2). Overall, we observe that:

(1) f̂ consistently performs better than f , but how much better depends on the graph
(see e.g. SBM and DC-SBM 1), and improvements are smaller for graphs with more
heterogeneous degree distributions (DC-SBM graphs).

(2) Compared with MTSF-based estimators, the CG algorithms perform worse on graphs
with heterogeneous degree distributions.

(3) CG solvers perform worse than our methods when the density increases.
CG’s somewhat poor performance on DC-SBM 1 (bullet point (2)) is partly explained by the
conditioning of the system considered: a bound on the condition number κ is given by

(3.3) κ = q∗ + λn
q∗ + λ1

≤ q∗ + 2 maxv∈V dv
q∗ + λ1

,

where λ1 ≤ ... ≤ λn are the eigenvalues of Lθ, and where λ1 is a measure of the quality of the
optimal angular assignment (the lower λ1 is, the better the quality of the synchronization),
which is small for our synthetic connection (good synchronization due to low incoherence).
CG iterations are slower for high-density graphs (O(|E|) time per iteration), and f and f̂ reach
near-optimal reconstruction around 10 times faster than (preconditionned) CG on DC-SBM
2 (with expected complexities in O

(
|E|
q + |V|

)
and O

((
1 + 1

q

)
|E|+ |V|

)
respectively).

Our observations so far show that our estimators are competitive with standard methods,
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(d) DC-SBM 2 Reconstruction error.
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Figure 3.2: Runtime-precision trade-offs for Tikhonov smoothing with optimal q. Each data-
point corresponds to a value of m. The vertical blue line records the average runtime of the
Cholesky-based solver, the horizontal red line the average reconstruction error of the exact
solution to the Tikhonov problem, and the horizontal yellow line the average reconstruction
error of the noisy signal. Vertical bars represent standard deviations.
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especially for low-accuracy solutions, and in the following situations:
• On graphs resulting in poorly conditioned systems (with high-degree nodes and for

low values of q∗).
• On graphs with higher density (to which MTSF-based methods less sensitive).

Further profiling also shows that the most expensive operations during the computation of f
(and f̂) are the instantiation of the data structures we use, and the successive memory accesses
to the different θe. These issues will likely benefit from further democratization of randomized
computational schemes, with more efficient compiler optimizations and architectures special-
ized for these types of computations. Note also that the connection model used here is only
representative of a subset of applications (e.g. [71], [16] or [24], see also Remark 1.1).

4. Randomized Angular Synchronization. We describe in this Section how our novel
estimators can be successfully applied to angular synchronization. Recall from Section 1.2
that, to perform angular synchronization, we aim to minimize the incoherence

(4.1) argmin
f∈U(C)n

⟨f, Lθf⟩,

which is NP-hard in general [72]. We go over existing approaches before introducing in Sec-
tion 4.1 a randomized schemed based on a spectral relaxation of Problem (4.1).

Spectral relaxation and other existing approaches. Problem (4.1) is often relaxed to the
following form [63,71]:

(4.2) argmin
∥f∥2

2=n
⟨f, Lθf⟩,

the solution of which is given by the eigenvector associated to the smallest eigenvalue of Lθ.
This solution differs from the exact solution of Problem (4.1) (even though guarantees on its
quality exist, e.g. [23]), and can be computed using either an inverse power method, a Rayleigh
quotient iteration, or a Lanczos iteration [57]. Most theoretical studies focus on Erdös-Rényi
graphs, and suggest that spectral relaxations work best in small noise regimes (as compared
with other algorithms, regarding the resulting error) [10,40,50].
Other existing methods include (see [18] for a similar discussion):

• Semi-definite relaxations [63], providing flexible theoretical tools and performance sim-
ilar to spectral relaxations, but impractical past mid-sized instances (n ≃ 104).
• The generalized power method proposed in [10], provably reaching the optimal solution

of Problem (4.1) in the presence of (low) Gaussian noise, on complete graphs.
• Graph Neural Networks, with state-of-the-art performance for high noise [27,30].
• Message-passing algorithms. For Gaussian noise, Approximate Message Passing has

been conjectured to be statistically optimal among polynomial time algorithms [50],
even at higher noise levels, but is limited to very dense graphs. Cycle-Edge Message-
Passing allows exact recovery under a theoretical corruption model (with linear rate),
but is more computationally-expensive than spectral relaxations [40].
• Descent techniques such as [46], with exact recovery under a (different) corruption

model (see also [42]).
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Note that message-passing algorithms and descent techniques (along with others we did not
mention as well) can be applied to synchronization problems over more general groups, but
are often not competitive on benchmarks for angular synchronization [27].

We will now discuss how to use our randomized estimators for eigenvector-computation.

4.1. Proposed Approach. One way to solve the spectral relaxation of Equation (4.2) is
to perform an inverse power iteration, by setting f0 ∈ CV and iterating:

(4.3) fr+1 = L−1
θ fr

∥L−1
θ fr∥2

until convergence. Note that for this iteration to be well-defined, Lθ needs to be invertible,
i.e., the angular synchronization problems needs to be non-trivial.

Our approach stems from the observation that Lθ and q−1(Lθ + qI) share the same eigen-
vectors. The power method applied to this regularized matrix consists in computing iterations
of the form:

(4.4) fr+1 = q(Lθ + qI)−1fr
∥q(Lθ + qI)−1fr∥2

,

where an estimation of q(Lθ + qI)−1fr can be obtained by our estimators f and f̂ (or other
deterministic algorithms). The convergence of this iteration is geometric with ratio

(4.5) µ1
µ2

= λ2 + q

λ1 + q
,

where µ1 ≤ µ2 and λ1 ≤ λ2 denote respectively the two smallest eigenvectors of q(Lθ + qI)−1

and Lθ [57]. The choice of q is then a trade-off between:
• Low values of q that induce smaller λ2+q

λ1+q ratio, favoring faster convergence of the power
iteration.
• Large values of q that enable a faster sampling time of MTSFs (in O

(
|E|
q

)
).

Remark 4.1. One could instead maximize ⟨f,Aθf⟩ in Equation (4.1). This formulation
is common in theoretical works, that mostly focus on (often dense) Erdös-Rényi graphs, and
applying the power method to Aθ is efficient on these graphs. More involved estimators are
necessary in case the ratio α1/α2 of the top eigenvalues of Aθ is large. For trivial connections,
such cases include: regular grids (with α1/α2 growing worse with the dimension), graphs with
homogeneous spatial correlations ( e.g., ε-graphs, nearest-neighbors-graphs), or graphs with ho-
mogeneous degree distributions and bottlenecks (poor expansion) such as in SBMs (for regular
graphs, this is the Cheeger inequality). Our experiments (not shown) suggest that the same
behavior arises for non-trivial connections. Further, Cramér-Rao bounds for angular synchro-
nization suggest that angular synchronization is difficult on these graphs [11].
It is also possible to consider a normalized Laplacian L̃θ = D− 1

2 LθD− 1
2 in the spectral re-

laxation (4.2), which was proposed in [17, 71] and comes with similar guarantees [5]. Our
approach is flexible enough to be used in this case. Indeed, our MTSF-based estimators extend
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to quantities such as f◦ = (Lθ + qD)−1(qD)g′ (see Section 9 of the Supplementary Material),
which allows to estimate q(L̃θ + qI)−1g by setting g′ = D− 1

2 g and leveraging the decomposition

(4.6) q(L̃θ + qI)−1g = D
1
2 ((Lθ + qD)−1(qD))g′.

4.2. Illustration: Intra-Class Denoising. Before delving into precise computation time
comparisons with state-of-the-art methods, we first illustrate our proposed method on a toy
denoising problem, inspired from an application in cryo-EM [59,74].

We consider n copies (Ii)ni=1 of some image I∗ that have been rotated and degraded:

(4.7) Ii = ri(I∗) + ε,

with ri a rotation and ε ∼ N (0, σ2I) some Gaussian noise. The rotations ri are unknown,
and the goal is to recover image I∗. This is a simplified version of the intra-class denoising
problem in cryo-EM, where each (2D) image corresponds to a noisy projection of a (3D)
molecule observed in an unknown orientation.

In the absence of rotations ri, a solution consists in averaging the Ii’s, trivially recovering
I∗ as n→∞. This strategy fails in our setting (due to the rotations), and we need to estimate
the ri’s before denoising. To do that, we first estimate angles θi,j between a subset of pair of
images E (representing the edges of a graph) using image moments [26]16, and perform angular
synchronization to estimate the rotations ri’s. We then rotate and average the images Ii’s.

We take I∗ the 256×256 Shepp-Logan phantom [61], n = 1000, q = 10−3, k = 20 iterations
of the power method, and randomly choose the underlying graph G ∼ ER(n, p) with p = 5

n .
We uniformly sample rotations ri with angles in (−π

2 ,
π
2 )17. We display the recovered images in

Figure 4.1 (solving the spectral relaxation (4.2) using both our method, with m = 10 MTSFs
for the estimator f at each step, and an exact solver), for different noise levels σ2 ∈ {1, 3, 5, 10}.
We also plot the image reconstruction error eI(x) = ∥I∗ − x∥2 for σ2 = 5 with varying values
of m. Here, we have no guarantee that the connection resulting from the image-moment-based
estimation is weakly-incoherent, and do not perform importance sampling. Instead, we always
accept a cycle in Algorithm 2.3 if cos(θC) ≤ 0, and apply estimator f on the resulting MTSF.

Even though the connection may not be weakly-incoherent, the MTSF-based synchroniza-
tion allows to obtain results of a quality very similar to exact synchronization on this problem,
even at higher noise levels.

We will now investigate trade-offs between the quality of the synchronization and the
runtime of our methods depending on the solver used to compute the power-method iteration
in Equation 4.4, and the topology of the graph.

4.3. Numerical Evaluation. We compare the performance of the method from Section 4.1
on synthetic graph data using four different iterative solvers: f , f̂ and a conjugate-gradient
descent with and without diagonal preconditioning.

16Specifically, we estimate the orientation of each of the two images using the eigenvectors of the matrix of
its covariant moments, and take θi,j the angle between these two sets of eigenvectors

17We restrict the possible rotations so that we can use the simple image-moment-based registration, other
methods could be used instead.
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(a) r(I∗) + ε, σ2 = 1 (b) σ2 = 1, exact (c) σ2 = 1, MTSF

(d) r(I∗) + ε, σ2 = 5 (e) σ2 = 5, exact (f) σ2 = 5, MTSF
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(g) Error for σ2 = 5, m ∈ {1, ..., 10},

Figure 4.1: Examples of recovery from noisy images, with different noise levels, using both
the exact solution to the spectral relaxation (4.2) and the approach from Section 4.1.
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Setup. We work with the SBM and DC-SBM graph models discussed in Section 3.2. We
endow each graph G with a random connection generated according to the model described
in Section 3, for both coherent (η = π

2n) and incoherent connections (η = π
10), and aim to

recover the vector x with xi = eιωi . Starting from f0 taken uniformly in U(C)n, we perform
k iterations of the power iteration of Equation (4.4), estimating the solution with m MTSFs
(resp. conjugate-gradient iterations) for each of our methods. We use m = 3 for coherent
connections, and m = 10 for incoherent ones. For incoherent connections, we do use the
importance sampling strategy from Remark 2.1018. We average the synchronization errors

(4.8) es(f) = min
r∈U(C)

∥f − rx∥2
n

over 20 executions, and measure the mean runtimes over 100 runs. We set q = 10−2 × d and
take measurements for different values of k (10 logarithmically-spaced values in {1, ..., 100}).
The results are averaged over 10 realizations of the random graphs. See Figure 4.2.
We also take measurements for a Lanczos-iteration-based computation19 (for the matrix Lθ),
and for a naive synchronization algorithm going as follows. First, fix a root node v ∈ V , then:

• sample a spanning tree of G uniformly (a UST, using Wilson’s algorithm [69]),
• propagate the value from v to the other nodes (taking into account the offsets).

Note that this procedure does not depend on k or m. Finally, we also evaluate a similar
strategy propagating along a maximum spanning tree (MST), with respect to the edge-weights
wi,j = | cos(θi,j)| (a strategy inspired from surface reconstruction techniques such as [28]).

Comments. Results vary greatly depending on the graph and connection. For coherent
connections (η = π

2n), we observe the following:
(1) Krylov-subspaces-based methods are sensitive to : all methods perform similarly on the

SBM, but the CG-based power-methods and Lanczos iteration converge more slowly
on the (less well-conditioned) DC-SBM 1 graph.

(2) Higher density results in significant slow-downs for Krylov-subspaces methods, and
MTSF-based iterations are roughly 10 times faster than the preconditioned-CG itera-
tion for equivalent precision on the DC-SBM 1.

For these coherent connections, the tree-based methods also achieve good synchronization
quality, and are cheap to compute. This is no longer the case for incoherent connections (DC-
SBM 1 with η = π

10): in this case, our estimators require more MTSFs (resp. CG iterations)
to converge (m = 10), and achieve a synchronization error around 10 times smaller than
tree-based methods.

Remark 4.2. We also experimented with two other estimation strategies (not shown): the
spectral relaxation using the normalized Laplacian L̃θ, and a generalized-power-method-like
algorithm, replacing the global normalization in Equation (4.4) by a component-wise normal-
ization, so that each fk belongs to U(C)n (like in [10]). In our experiments, we did not observe
any qualitative differences with the method described in Section 4.1.

18Here, there is no issue with estimating af∗ instead of f∗ due to the re-normalization in Equation (4.4).
19We use the variant implemented in https://jutho.github.io/KrylovKit.jl/stable/man/eig/#KrylovKit.

eigsolve.
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(c) DC-SBM 1, η = π
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Figure 4.2: Runtime-precision trade-offs for angular synchronization for m = 10. Each data
point corresponds to a value of k. The vertical yellow line records the average runtime of the
Lanczos-based computation, the horizontal blue line the synchronization error for the Lanczos-
based computation. The horizontal red (resp. orange) line is the mean synchronization error
for the UST-based (resp. MST-based) synchronization, and the horizontal teal line the error
for the random initialization.

For spectral relaxations, our results suggest that MTSF-based solutions perform no-worse
than deterministic solutions, and get comparatively better as the density of the graph in-
creases. These techniques are mostly suitable for approximations, especially since previous
studies (e.g. [50]) suggest that spectral-relaxation-based techniques mainly offer good-quality
solutions at low noise-level, but are otherwise sub-optimal. One drawback of our strategy is
that it requires to set a value for q: further refinements may include adapting our methodology
to Rayleigh-quotient iterations [66], such that q no longer needs to be fixed, and that better
convergence rates may be obtained.

5. Conclusion and Perspectives. We proposed MTSF-based estimators for the problems
of smoothing (in presence of a connection) and angular synchronization, reaching competitive
performance on both problems, especially in low-precision regimes, and even without imple-
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menting parallelization. Our estimators perform propagation along the branches of MTSFs
and, as compared to standard deterministic methods, have another noteworthy advantage:
they are insensitive to both the density of the graph and the conditioning of the system con-
sidered (which is typically bad for graphs with broad degree distributions). Such techniques
can apply to a variety of other problems: one result we did not include is the extension of
the smoothing estimator to the interpolation problem, which may find applications to e.g.
synchronization in presence of anchor nodes.

This opens a number of research directions. From the theoretical side: could we lift the
weak-inconsistency condition, following the development in Section 13 of the Supplementary
Material? Could similar estimators be developed for O(Rd) synchronization? Instead of using
a fixed number m of MTSFs for the estimation (or CG iterations) of each of k iterations of
the power method, how should those km MTSFs be used the to achieve maximal precision?

From a more applied perspective, many applications of angular synchronization only con-
sider the exact solution of the spectral relaxation, but how much loss in precision (and gain in
speed) is actually acceptable? Our estimators can be seamlessly implemented on distributed
systems (with communication complexity of the order of the number of steps in the sampling
algorithm): could this be leveraged in practical applications? Finally, can random graph de-
compositions such as MTSFs be useful in other iterative inference algorithms, for instance
message-passing algorithms [40,47]?
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Supplementary Material
We work with a weighted graph G in all the following proofs, with we ∈ R+ the weight

of edge e. We still denote by Lθ the resulting (weighted) connection Laplacian, with off-
diagonal entries (Lθ)i,j = −wi,jeιθ(j,i) if {i, j} ∈ E ((Lθ)i,j = w(i,j) = 0 otherwise), and diagonal
(Lθ)i,i = di =

∑
j wi,j the weighted degree of node i.

6. Proof of Proposition 2.1. Denote by C : CV → R the cost function

(6.1) C(f) = q∥f − g∥22 + ⟨f, Lθf⟩.

We use a standard argument from CR-calculus, and seek the zeros of the Fréchet Wirtinger
derivatives of C (see e.g. [9]). Let us first compute these derivatives: for f, h ∈ CV , we have

C(f + h) = q⟨(f + h)− g, (f + h)− g⟩+ ⟨(f + h), Lθ(f + h)⟩,(6.2)
= C(f) +DW

f C(h) +DW ∗
f C(h) + (q⟨h, h⟩+ ⟨h, Lθh⟩) ,(6.3)

where (h 7→ q⟨h, h⟩ + ⟨h, Lθh⟩) ∈ o(h), and the associated (conjugate) Fréchet Wirtinger
derivatives of C (at f) DW

f C and DW ∗
f C : CV → C are given by:

DW
f C(h) = ⟨q(f − g) + Lθ, h⟩(6.4)

DW ∗
f C(h) = ⟨h, q(f − g) + Lθ⟩.(6.5)

The result follows from the fact that DW
f C = 0 (resp. DW ∗

f C = 0) identically if and only if
f = q(Lθ + qI)−1g.

7. A Generalization of Property (P2). Define ∆θ = D−1Lθ the weighted connection-
aware random walk Laplacian ∆θ. Proposition 7.1 generalizes property (P2).

Proposition 7.1. For all l ≥ 1, we have

(7.1) (I−∆θ)li,j =
∑
p∈P ji
l(p)=l

 ∏
0≤k<l

w(uk,uk+1)

duk

ψp∗ ,

with l(p) the length of a path p = ((u0, u1), (u1, u2), ..., (ul(p)−1, ul(p))).

For each path p, the product in the r.h.s. of Equation (7.1) is the probability of observing
p when performing a random walk from i to j on G. For the trivial connection this expression
is equal to (D−1A)li,j , the probability of a path going from i to j in l steps, but Proposition 7.1
more broadly captures random propagations along the corresponding sampled paths.
Observations similar to Proposition 7.1 have been laid out in a few works, such as [34] for
continuous time random walk, and in a number of other situations, where the connection often
stems from theoretical physics considerations [12].
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Proof. The result is obvious for l = 1. We proceed by induction and assume the result
true for some l ∈ N. Then, recalling that (I−∆θ)v,j = wv,j

dv
, we have:

(I−∆θ)l+1
i,j =

(
(I−∆θ)l(I−∆θ)

)
i,j

(7.2)

=
∑
v∈V

∑
p∈P vi
l(p)=l

 ∏
0≤k<l

w(uk,uk+1)

duk

 wv,j
dv

ψp∗ψ(v,j)∗(7.3)

=
∑
p∈P ji

l(p)=l+1

 ∏
0≤k<l+1

w(uk,uk+1)

duk

ψp∗ .(7.4)

Remark 7.2. For l = 0, we have (I−∆θ)l = I.

8. Proof of Proposition 2.2. We will show an extension of Proposition 2.2 to heteroge-
neous values of q. That is, we associate to each node i some non-negative weight qi ∈ R (at
least one of them needs to be positive), that we record in the diagonal matrix Q with Qi,i = qi.
These qi’s and can be interpreted as edge weights in the extended graph GΓ, and we extend
the definition of the measure νi over PΓ

i to account for these weights, so that

(8.1) Pνi(p) = 1{i}(u0)1{Γ}(ul)
∏

0≤k<l

(
1V\{Γ}(uk)

w(uk,uk+1)

duk + quk

)
for a path p = ((u0, u1), ..., (ul−1, ul)) of length l, and 1S(x) the indicator that x ∈ S. We
show the following Feynman-Kac formula, on weighted graphs and for heterogeneous qi’s.

Proposition 8.1. For j the last node reached before absorption of a path p, we have

(8.2)
(
(Lθ + Q)−1Qg

)
(i) = Ep∼νi

(
ψp∗

Γ(gj)
)
.

Note that the l.h.s. is a more general smoothing operation than the solution to the
Tikhonov problem, that can be leveraged in the presence of heteroscedastic noise (e.g. for the
problem considered in Section 3.2 with different values of σ2 for each node).

Proof. Consider the connection-aware random-walk Laplacian ∆Q
θ associated to the ex-

tended graph GΓ. Its restriction to the rows and columns indexed by V reads (∆q
θ)V =

(D + Q)−1(Lθ + Q). It is clearly invertible, and all its eigenvalues lie in (0, 2) (for instance by
the Gershgorin circle theorem), hence the eigenvalues of (I− (∆Q

θ )V) are in (−1, 1), ensuring
the convergence of the right-hand-side expression in:

(
(∆q

θ)
−1
V

)
i,j

=

∑
l≥0

(
I− (∆q

θ)V
)l(8.3)

=
∑
p∈P ji

 ∏
0≤k<l(p)

w(uk,uk+1)

duk + quk

ψp∗ ,(8.4)
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where Equation 8.4 follows from applying Proposition 7.1 to GΓ.
The result follows by right multiplication with (D+Q)−1Q, where

(
(D + Q)−1Q

)
j,j = qj

dul−1 +qj
accounts for the probability of the last transition from ul−1 = j to Γ.

9. Proof of Theorem 2.4. Before presenting the proof of our main Theorem, we state it
for weighted graphs with heterogeneous qi’s.

Statement in the presence of weights. Consider the distribution DM over M(G) such that

(9.1) PDM(ϕ) ∝
∏

r∈ϕ∩V
qr

∏
e∈ϕ∩E

we
∏

C∈C(ϕ)
((2− 2 cos(θC)) ,

and the estimator f̃(i, ϕ, g) = ψ
rϕ(i)

ϕ−→i
(g(rϕ(i))) propagating the value from rϕ(i) to i if i

belongs to a rooted tree, and f̃(i, ϕ, g) = 0 if i lies in a unicycle. Then, we have:
Theorem 9.1.

(9.2)
(
(Lθ + Q)−1Qg

)
(i) = EDM(f̃(i, ϕ, g)).

We now proceed with the proof.
Determinantal Point Processes. The first step in our proof consists in re-stating the defi-

nition of DM as a Determinantal Point Process (DPP), which will provide us with powerful
tools for reasoning about MTSFs. A (discrete) DPP over a finite set X associates a probability
to each subset X ⊆ X , and is defined by its marginal probabilities. It is parametrized by an
Hermitian matrix K ∈M|X |(C), whose eigenvalues must all lie in [0, 1], known as the marginal
kernel of the DPP, denoted DPP(K). Precisely, we say that X ∼ DPP(K) if

(9.3) PDPP(K)(A ⊆ X) = det(K)A,A

for all A ⊆ X , where det(K)R,C is the minor of K restricted to the rows and columns indexed
respectively by R and C. We write det(K):,C (resp. det(K)R,:) in case R = X (resp. C = X ).

Marginal kernel of DM. Let us now describe the marginal kernel K that we will associate
to distribution DM. To this end, we consider a twisted discrete differential operator ∇ : CV →
CE , mapping complex values defined on the complex planes Cv (associated to the nodes of
G) to copies of the complex planes Ce associated to the edges of G. Its expression relies on a
splitting of the connection maps ψe : Cse

ψse,e−−−→ Ce
ψe,te−−−→ Cte such that ψe = ψe,te ◦ψse,e (this

is always possible, e.g. ψe,te = idCe,Cte
and ψse,e(z) = eιθe · z), and reads [35]:

(9.4) (∇f)(e) =
√
weψte,e(f(te))−

√
weψse,e(f(se)).

Expliciting the entries of the matrix of ∇, we have:

(9.5) ∇e,v =


−√weψse,e if v = se
√
weψe,te if v = te

0 otherwise.
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We finally take X = V ∪ E and define the marginal kernel K:

(9.6) K = ∇Q(Lθ + Q)−1∇∗
Q, where ∇Q =

 ∇√
Q

 .

Remark 9.2. For trivial connections, ∇ is the edge-vertex incidence matrix of G, and we
have L = ∇t∇. In a similar manner, one shows that Lθ = ∇∗∇.
We will show that DM is a DPP with kernel K. First, notice that

(9.7) Lθ + Q = ∇∗
Q∇Q,

so that K is a projection operator (i.e. K2 = K), and all its eigenvalues are in {0, 1}. DPPs
associated to such kernels are known as projection DPPs, and can be defined without resorting
to marginal probabilities, with PDPP(K)(X) = det(K)X,X when |X| = rk(K) the rank of K
(rk(K) = |V| in our case), and PDPP(K)(X) = 0 otherwise [29].
This will allow to show that the samples of DPP(K) are MTSFs, distributed according to DM
(we generalize here an argument from [35]). Let ϕ ⊆ V ∪ E with |ϕ| = |V|, and remark that:

(9.8) det(K)ϕ,ϕ =
det(∇∗

Q∇Q)ϕ,ϕ
det(Lθ + Q) .

The next step then consists in expliciting det(∇∗
Q∇Q)ϕ,ϕ = det(∇Q)ϕ,: det(∇∗

Q):,ϕ depending
on ϕ: we start by inspecting det(∇∗

Q):,ϕ (similar arguments apply to det(∇Q)ϕ,:). In this case,
ϕ indexes the columns of ∇Q, with two columns linearly independent if they do not belong to
the same component cϕ. If cϕ spans m nodes, det(∇∗

Q):,cϕ can only be non-zero if |cϕ| = m, so
that cϕ must be either a unicycle or a rooted tree. We can then can compute det(∇∗

Q∇Q)cϕ,cϕ
from det(∇∗

Q):,ϕ and det(∇Q)ϕ,: explicitly in those cases.
Lemma 9.3.

(9.9) det(∇∗
Q∇Q)cϕ,cϕ =

(2− 2 cos(θC))
∏
e∈cϕ we if cϕ is a unicycle with cycle C

qr
∏
e∈cϕ∩E we if cϕ is a tree rooted in r

Proof. Suppose first that cϕ is a unicycle (this is the case treated in [35]). We fix an
orientation of the edges of cϕ such that all edges are oriented towards the cycle C, and that
the edges belonging to C form a directed cycle (there are only two such orientations, we choose
one arbitrarily). The only non-zero permutations in the determinant

(9.10) det(∆∗
Q):,cϕ =

∑
σ∈Sm

∏
1≤i≤m

sgn(σ)(∆∗
Q)i,σ(i),

where sgn(σ) denotes the signature of permutation (bijection from nodes to edges) σ, corre-
spond to these orientations, and map vertices se to edges e (σ(se) = e). These two bijections,
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denoted σC and σC∗ , differ only on nodes adjacent to edges in C, and correspond to the two
possible orientations of the cycle. We then obtain:

(9.11) det(∆∗
Q):,cϕ = (−1)msgn(σC)

∏
e∈cϕ\C

√
weψse,e

 ∏
e′∈C

√
we′ψse′ ,e′ −

∏
e′∈C

√
we′ψte′ ,e′

 .

Performing a similar computation for det(∆Q)cϕ,: and multiplying the two resulting expressions
then allows to show that (this computation also appears in [35]):

(9.12) det(∇∗
Q∇Q)cϕ,cϕ = (2− 2 cos(θC))

∏
e∈cϕ

we,

where we used ψe = ψe,te ◦ ψse,e and ψC + ψ∗
C = 2 cos(θC).

Similarly, for cϕ a rooted tree with root r ∈ cϕ ∩ V, we have

(9.13) det(∆∗
Q):,cϕ = √qr × (−1)msgn(σC)

∏
e∈(cϕ∩⌉)\C

√
weψse,e,

which results in

(9.14) det(∇Q)cϕ,cϕ = qr
∏

e∈cϕ∩E
we.

As a corollary, we obtain

(9.15) PDPP(K)(ϕ) =
∏
r∈ϕ∩V qr

∏
e∈ϕ∩E we

∏
C∈C(ϕ) ((2− 2 cos(θC))

det(Lθ + Q) ,

which is exactly PDM(ϕ).
Unbiased estimator. It remains to show that f̃(i, ϕ, g) is an unbiased estimator of the

desired quantity
(
(Lθ + Q)−1Qg

)
(i). Our argument is inspired from that of [51], and we will

require another determinantal tool.
Proposition 9.4 (Cauchy-Binet formula). For two matrices A ∈Mm,n(C) and B ∈Mn,m(C)

with m < n, we have:

(9.16) det(AB) =
∑
T

det(A):,T det(B)T,:,

where T ranges over all subsets of {1, ..., n} of size m.
We begin by rewriting (Lθ + Q)−1

i,j as an expectation, starting from Cramer’s rule

(9.17) (Lθ + Q)−1
i,j = (−1)i+j

det(Lθ + Q)V\{j},V\{i}
det(Lθ + Q) .

We can rewrite the numerator using the Cauchy-Binet formula:

det(Lθ + Q)V\{j},V\{i} =
∑

ϕ⊆V∪E
|ϕ|=|V|−1

(−1)i+j det
([

(∇∗
Q):,ϕ δj

])
det

(∇Q)ϕ,:
δi

 ,(9.18)

35



where δi is the i-th vector in the usual basis of RV . An argument analogous to Lemma 9.3
then shows that the product of determinants

(9.19) det
([

(∇∗
Q):,ϕ δj

])
det

(∇Q)ϕ,:
δi


can only be non-zero if ϕ contains a tree T ji ⊆ E spanning both i and j (with no root), with
contribution ψ

j
ϕ−→i

∏
e∈T ji

we to the product, and if all the other components are rooted trees
or unicycles, with associated contributions described in 9.3. We thus obtain

(Lθ + Q)−1
i,j = 1

qj

∑
ϕ∈M(G)

Pϕ∼DM(ϕ)1cϕ(j)(i)ψ
j
ϕ−→i

(9.20)

= 1
qj

Eϕ∼DM

(
1cϕ(j)(i)ψ

j
ϕ−→i

)
,(9.21)

where 1cϕ(j)(i) is the indicator that i belongs to the set of nodes cϕ(j) spanned by the tree
rooted in r. Finally, we have(

(Lθ + Q)−1Qg
)

(i) = ⟨δi, (Lθ + Q)−1Qg⟩(9.22)

=
∑
j∈V

qj(Lθ + Q)−1
i,j g(j)(9.23)

=
∑
j∈V

Eϕ∼DM

(
ψ
j
ϕ−→i

(g(j)) 1cϕ(j)(i)
)

(9.24)

= Eϕ∼DM(f̃(i, ϕ, g)).(9.25)

■

10. Complexity Analysis. We will describe the complexity of different implementations of
the MTSF-sampling algorithm. We recall the MTSF-sampling procedure in Algorithm 10.1.
We consider here the generalization to weighted graphs with heterogeneous qi’s, and use a
generalized random_successor(u) that outputs either Γ with probability qu

du+qu , or some node
v with probability wu,v

du+qu . This generalized algorithms provably samples MTSFs from the
distribution DM, with the argument from [22] still applying.

10.1. Number of Steps. Let us re-state the upper bound on the expected number of
steps of the random walk in the sampling Algorithm 2.3. Denote by Tϕ the number of random
neighbors sampled to build ϕ ∈M(G) during an execution of Algorithm 10.1. Then, we have:

Proposition 10.1.

(10.1) Eϕ∼DM(Tϕ) ≤ tr
(
(L + Q)−1(D + Q)

)
,
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Algorithm 10.1 MTSF sampling algorithm [22].
1: ϕ← ∅
2: while ϕ not spanning do
3: Let i ∈ V be the first node in the queue not spanned by ϕ
4: u← i ▷ u is the current node of the random walk
5: p← ϵ ▷ ϵ the empty path
6: while (u ̸= Γ) and (p does not intersect ϕ or contain a cycle) do
7: u′ ← random_successor(u) ▷ Move to next node
8: if u′ ̸= Γ then
9: e← (u, u′), p← pe ▷ Add e to the path p

10: end if
11: if p contains a cycle C then
12: Remove this cycle from p with probability cos(θC)
13: end if
14: uold ← u, u← u′ ▷ uold the previous node
15: end while
16: if u = Γ then
17: ϕ← ϕ ∪ p ∪ uold ▷ Add the sampled path p and the root uold to ϕ
18: else
19: ϕ← ϕ ∪ p
20: end if
21: end while
22: Output ϕ

where we abuse notation and write ϕ ∼ DM for ϕ sampled using Algorithm 10.1. This bound
is easily obtained by considering the special case of the trivial connection with ψe = idCse ,Cte

for all e ∈ −→E , in which case Algorithm 10.1 samples spanning forests of G from the distribution
mentioned in Remark 2.5, and the expected number of steps is known to be [51]:

(10.2) tr
(
(L + Q)−1(D + Q)

)
.

This is also the slowest scenario: in this case, θC = 0 for all cycles, and p can never contain
a cycle in step 6 of Algorithm 10.1. Hence, the only way to exit the while loop is to reach Γ
or to intersect ϕ, and we obtain the bound of Proposition 10.1 as a consequence.

Let us briefly comment on the value of the trace in Equation 10.1. We have:

(10.3) tr
(
L + Q)−1(D + Q)

)
=

∑
i∈V

(L + Q)−1
i,i (qi + di),

where it is known that (L + Q)−1
i,i equals the probability that i ∈ f ∩ V for f ∼ DF , and hence

lies in [0, 1]. It follows that Eϕ∼DM(Tϕ) is in O
(

|E|
qmin

)
.

Remark 10.2. Algorithm 10.1 can be used in conjunction with Equation 9.2 to estimate
q(L̃θ + qI)−1g (see Remark 4.1). In this context, we take Q = qD, and obtain the bound
Eϕ∼DM(Tϕ) ∈ O

((
1 + 1

q

)
|V|

)
.
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10.2. Implementation-specific Complexity. The time complexity of Algorithm 10.1 does
not only depend on the number of steps taken by the random walk, but also on the cost of
the cycle-detection (step 10). We propose two counter-based solutions.

One-counter detection. The first strategy consists in dynamically assigning a numerical
value cv ∈ N to each node v ∈ V encountered during the random walk (initialized to cv = 0),
based on a global counter c ∈ N. This counter is incremented each time a new random walk
begins (instruction at line 3), and we set cu′ = c whenever the random walk reaches u′ on the
instruction at line 7 (if it not already spanned by MTSF). If a cycle C is created in node u′

and discarded, we reset cv = 0 for all nodes v spanned by C except u′. A cycle can then be
detected in O(1) time by checking the value of cu′ at each step of the random walk: there is
a cycle if cu′ = c, and no cycle if cu′ < c.
In a run of Algorithm 10.1, resetting the values cv when cycles are discarded requires going
through at most Tϕ nodes, which results in O

(
|E|
qmin

)
overall expected time complexity.

In practice, we found it faster to use an implementation of the following strategy.

Multiple-counters detection. The cv’s need to be reset in the one-counter cycle-detection
strategy because, whenever a cycle is discarded, nodes spanned by this cycle should no longer
be remembered as spanned by the path p. This expensive resetting step can be bypassed by
considering multiple counters, in addition to the c’s (indexed by a global c). We will keep track
of couples of values (idv, valv) ∈ N2 for each v, initialized to (0, 0)) and with updates based
on two global counters id, val ∈ N2, and of values cap(id) associated to each id. idv should
be thought of as the ID of a counter at v (amongst multiple others), and valv as its value
(we only need to store the value associated to the largest idv). These counters are reset to 0
whenever c is incremented (and a new random walk is initiated), and are otherwise updated
by applying the following rules for all nodes u′ reached by the random walk (if not already
spanned by the MTSF).

• If no cycle is created and discarded at u′, set idu′ = id, valu′ = val, and increment val.
• If a cycle is created at node u′ and discarded, store the value cap(id) = val (the

maximum value for the idth counter), set cap(k) = 0 for all k > idu′ , valu′ = val, and
increment id.

Using these counters, a cycle is detected at u′ if valu′ ≤ cap(idu′).
The number id of counters used is unbounded, and we did not derive an expected time
complexity for this multiple-counters strategy, but consistently obtained better performance
in our measurements when using it.

Remark 10.3. The O
(

|E|
qmin

)
complexity can seem daunting for very small values of qi’s,

but one should remember that this is only an upper bound, not accounting for the presence
of unicycles in the sample. As the qi → 0, DPP(K) approaches a distribution over spanning
forests of unicycles, with a Wilson-like sampling algorithm described in [33]. Our implemen-
tation strategy can also be applied in this case and translates to the bounds on the number of
steps of the random walks they derive (see also [22]).

Finally, we point out another implementation detail.

Remark 10.4. The propagation maps used in Algorithm 2.2 can be computed during the
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sampling process and, one actually only needs knowledge of: the root of each tree, whether or
not a node i belongs to a rooted tree and, if it does, the propagation map from the root rϕ(i)
to i. The actual MTSF ϕ is never used in the estimation.

11. Variance Reduction. We show that the estimators in Equations 2.10 and 2.12 are
unbiased (Proposition 2.11).

Rao-Blackwell estimator. Let us first re-define f for heterogeneous values of q. The differ-
ence resides in the aggregation function hϕ:

(11.1) hϕ(r, g) =

∑
j∈cϕ(r) ψ

j
ϕ−→r
g(j)∑

r′∈cϕ(r) qr′
,

where we recall that cϕ(r) denotes the set of nodes spanned by the tree containing r. We still
take f(i, ϕ, g) = ψ

rϕ(i)
ψ−→i

(hϕ(rϕ(i), g)), and show that:

Proposition 11.1. Eϕ∼DM(f(i, ϕ, g)) = f∗(i).

Proof. We will express f as a conditional expectation, the result will follow from the law
of total expectation. Here, we choose a connected subset of edges π ⊆ E , and condition on
ϕ ∩ E containing π as one of its (maximal) components, which we denote by π ⊑E ϕ. For i
belonging to the connected component spanned by π, we have:

Eϕ∼DM(f̃(i, ϕ, g) | π ⊑E ϕ) =
∑

ϕ∈M(G)
PDM(ϕ | π ⊑E ϕ) f̃(i, ϕ, g)(11.2)

=
∑

ϕ∈M(G)
π⊑Eϕ

qr1ϕ∩cϕ(i)(r)∑
r′∈cϕ(i) qr′

f̃(i, ϕ, g)(11.3)

= f(i, ϕ, g).(11.4)

Gradient step as control variates. We show that Eϕ∼DM(f̂(ϕ, g)) = f∗. First recall that
EDM(f) = f∗ (and f∗ = q(Lθ + qI)−1g) so that, by linearity of the expectation:

(11.5) Eϕ∼DM(f̂(ϕ, g)) = f∗ − αP(g − g) = f∗

where, for heterogeneous qi’s, we set P = (Q−1D + I)−1.
This shows that f̂ is unbiased. Let us now discuss the choice of α. We plot in Figure 11.1

the mean errors ∥f −f∗∥ and ∥f̂ −f∗∥ over 5 trials, for different values values of α. We always
take m = 20 MTSFs, and set q = 10−2× d. We use the random graph models from Section 3.

The extent of the error reduction depends on the graph, but the optimal choice of α seems
to always be close to 1. This behavior can be observed across order-of-magnitude variations
of q (not shown), and setting α = 1 resulted in meaningful variance reduction for our other
experiments (e.g. Section 3). This contrasts with the (similar) variance reduction technique
proposed in [52], developed for connection-free graphs, for which a good choice of step-size
was less straightforward.
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(a) ε-graph mean error.
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(b) SBM mean error.
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Figure 11.1: Mean error as a function of α.

12. Supporting Arguments for Tikhonov Smoothing. The goal of this Section is to
argue that, when the connection is sufficiently consistent, eigenvectors of L and Lθ can be
used similarly in graph-signal-processing applications, such as the smoothing experiment in
Section 3.

Coherent connection. Let us first consider a perfectly coherent connection, such that θi,j =
ωj − ωi for all edges {i, j}. Consider the eigendecomposition L = UΛU∗ of L, and denote
respectively by x the vector with entries xi = e−ιωi , and Dx the diagonal matrix with (Dx)i,i =
xi. In this situation, we have

(12.1) Lθ = DxLD∗
x = (DxU)Λ(DxU)∗,

and the eigenvectors vi of Lθ are given by Dxui, with ui the eigenvectors of L.

Noisy connection. Equation 12.1 no longer holds for incoherent connections. We provide
illustrations of the resulting eigenvectors of Lθ for connections of the form:

(12.2) θi,j = ωj − ωi + ηεi,j ,
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for different values of η, and εi,j uniformly distributed in [−1, 1] (like in Section 3). Specifically,
we represent ui, vi, and Dxvi (which should approximate ui). We also measure the difference
between eigenvectors ui and vi as a function of η using the normalized error

(12.3) min
r∈U(C)

∥ui − rvi∥2
n

,

and use the following graphs:
• An ε-graph built from n = 100 points uniformly sampled in [0, 1]3, with ε = 0.3

(Figure 12.1).
• A SBM with two communities on size 50 (n = 100), with c1,1 = c2,2 = 19 and c1,2 = 1

(Figure 12.2).
We only use a single realization of these graphs, equipped with a single realization of the
connection. The normalized errors are computed across a linear range of values of η in [0, 1].
For each graph, we plot the real and imaginary parts of the entries of the corresponding
eigenvectors, for η1 ≃ 0.11 and η2 ≃ 0.75. The corresponding errors are also highlighted,
along with the value η0 = π

2n (for which we know that the connection always satisfies the
weak-inconsistency Condition 2.6). Recall that the eigenvectors of Lθ are only defined up to
a global rotation, and this is apparent in our illustrations.
Finally, we provide similar illustrations for a cyclic graph on size n = 100, in a more controlled
setup: the values of εi,j are no longer randomly sampled, and we instead set εe = 1 for all
e along a coherent orientation. This way, η0 corresponds exactly to the weak-inconsistency
threshold in Condition 2.6. We plot the corresponding normalized errors in Figure 12.3.

Discussion. We observe in Figure 12.1 that D∗
xvi provides a good approximation of ui for

low levels of noise (η = η1), but this is no longer the case at higher noise-levels (η = η2): D∗
xv2

somewhat recovers the shape of u2, but D∗
xv3 appears completely unrelated to u3. Results

for the SBM (Figure 12.2) suggest that major structural properties of the graph (here, the
community structure) are still captured even for high noise: for both η = η1 and η = η2, D∗

xv2
clearly partition the graph into the same communities as ui.
These behaviors are reflected in the normalized-error plots (Figure 12.1), with greater error
associated to higher values of η, and smooth decay. Results on the cycle-graph (Figure 12.3)
are very different, with three different behaviors (similar for both eigenvectors), occurring at
sharp thresholds: perfect correspondence with ui at η = 0, two small, low-error, plateau (one
of them occurring as soon as η > 0, and containing η = η0), and a higher, essentially constant,
error otherwise. For the SBM (not shown), the error decayed linearly with η.

These illustrations provide weak evidence that eigenvectors of L and Lθ behave similarly in
low-noise regimes. In this spirit, simple instances (e.g. ωv = 0 for all v but non-trivial noise)
may be amenable to perturbative analyses, with Lθ understood as an analytic perturbation
of L (this is similar to the setting mentioned in Remark 1.1). The situation is much more
nuanced for strongly-incoherent connections, and likely requires more involved mathematical
descriptions.

13. Towards Extensions: an Alternative Construction. We exhibit how the loop-erasure
procedure in Algorithm 2.3 can be understood as stemming from the Feynman-Kac formula
in Proposition 2.2. The aim is twofold: first, to better understand the relation between the
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Feynman-Kac formula in Proposition 2.2 and the MTSF-based estimaton of Theorem 2.4
and, second, to propose a possible proof outline for generalizations of our work. We are not
aware of a similar observation appearing in the literature and, as such, the argument may
also be of independent interest. For notational brevity, we consider here the simple case of
paths sampled from νi containing a single cycle, the reasoning is straightforwardly extended
to paths with multiple cycles at the price of heavier notations.

Loop-erasure from Feynman-Kac. Define the equivalence relation p ≃ q on PΓ
i for paths in

the extended graph GΓ that differ by the orientation of at most one cycle (denoted PΓ
i (1)):

that is, p ≃ q if p = aCb and q = aC∗b, with C a (possibly empty) cycle. For convenience,
we will denote the two elements of each of the induced equivalence classes as p(C) and p(C∗),
with p(C) denoting the equivalence class itself. For node i ∈ V, we then have:∑

p∈PΓ
i (1)

Pνi(p)ψp∗
Γ

=
∑

p(C)∈P
Γ
i (1)⧸≃

(
Pνi(p(C))ψp(C)∗

Γ
+ Pνi(p(C∗))ψp(C∗)∗

Γ

)
(13.1)

=
∑

p(C)∈P
Γ
i (1)⧸≃

Pνi(p(C)) (ψa∗ ◦ (ψC + ψC∗) ◦ ψb∗)(13.2)

=
∑

p(C)∈P
Γ
i (1)⧸≃

2Pνi(pC)
((

ψa∗ ◦
(
ψC + ψC∗

2

))
◦ ψb∗

)
,(13.3)

where pC = aCb, and Pνi(pC) = Pνi(pC) in Equation 13.2 (we use Pνi(pC) = Pνi(pC∗)).
Let us rephrase this observation: whereas propagation along a cycle C in Proposition 2.2
depends on its orientation, in expectation this dependency disappears when propagating not
by ψC but by ψC+ψC∗

2 , the factor 2 in Equation 13.3 in turn accounting for the possibility
of sampling either pC or pC∗ . Loop-erasures appear when probabilistically interpreting the
maps ψC+ψC∗

2 , acting by multiplication with cos(θC), which, under Condition 2.6, defines a
Bernoulli trial for cycle acceptance.

Extending this argument to general paths (with more than one cycle) provides an al-
ternative proof that propagating along the first branch sampled in Algorithm 2.3 (starting
from node i) results in an unbiased estimator of f∗(i). As a corollary of the same analysis, if
cos(θC) < 0 for some cycle C encountered in path p, one can perform a Bernoulli trial with
success probability − cos(θC) = (−1)× cos(θC), and multiply the resulting estimate −1 each
time such a cycle is constructed in path p, extending the estimation to any connection.

Now, the question is: can such a construction be extended to all nodes in G, resulting
in unbiased MTSF-based estimators free from the weak-inconsistency Condition 2.3? Also,
could similar observations be leveraged to generalize these estimators to higher-dimensional
connections (see Remark 2.3)?
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(c) Normalized error as a function of η. The colored vertical lines represent the values of η0 (orange),
η1 (green) and η2 (purple).

Figure 12.1: Results for the ε-graph. Left: second eigenvector. Right: third eigenvector.
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Figure 12.2: Second eigenvector for the SBM-graph. The two communities are depicted as
triangles and squares respectively. Left: η1 ≃ 0.11. Right: η2 ≃ 0.75.
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Figure 12.3: Normalized errors for the cycle-graph. Left: second eigenvector. Right: third
eigenvector. Vertical lines represent η0 (orange), η1 (green) and η2 respectively (purple).
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