
Improving performance of contour integral-based nonlinear
eigensolvers with infinite GMRES

Yuqi Liu1, Jose E. Roman2, and Meiyue Shao3,4

1School of Mathematical Sciences, Fudan University, Shanghai 200433, China
2D. Sistemes Informàtics i Computació, Universitat Politècnica de València, Camí de Vera s/n, 46022

València, Spain
3School of Data Science, Fudan University, Shanghai 200433, China

4Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Shanghai
200433, China

March 29, 2024

Abstract

In this work, the infinite GMRES algorithm, recently proposed by Correnty et al., is em-
ployed in contour integral-based nonlinear eigensolvers, avoiding the computation of costly
factorizations at each quadrature node to solve the linear systems efficiently. Several tech-
niques are applied to make the infinite GMRES memory-friendly, computationally efficient,
and numerically stable in practice. More specifically, we analyze the relationship between
polynomial eigenvalue problems and their scaled linearizations, and provide a novel weight-
ing strategy which can significantly accelerate the convergence of infinite GMRES in this
particular context. We also adopt the technique of TOAR to infinite GMRES to reduce the
memory footprint. Theoretical analysis and numerical experiments are provided to illustrate
the efficiency of the proposed algorithm.

Keywords: Krylov methods, infinite Arnoldi, nonlinear eigenvalue problem, contour inte-
gration, companion linearization.

AMS subject classifications (2020). 65F10, 65F15, 65F50

1 Introduction
By nonlinear eigenvalue problem (NEP), we refer to

T (λ)v = 0, v ∈ Cn \ {0} , λ ∈ Ω, (1)

where Ω ⊆ C is a connected region with a smooth boundary, and T (ξ) : Ω → Cn×n is a ξ-
dependent matrix [17, 26]. In the particular case that T (ξ) is a matrix polynomial in ξ, (1) is
also called a polynomial eigenvalue problem (PEP). Many well-known problems are of this type,
such as the Orr–Sommerfeld equation [33] for the incompressible Navier–Stokes equation, and
the vibration analysis of the damped beams [19].

Nowadays, an increasing number of non-polynomial NEPs arise form physics, chemistry, and
industrial applications. These problems have remarkable practical and theoretical value. But

1

ar
X

iv
:2

40
3.

19
30

9v
1

 [
m

at
h.

N
A

]
 2

8
M

ar
 2

02
4

they are far more complicated to solve due to their large scale and nonlinearity. One emerging
example appears in quasi normal mode (QNM) analysis [28], where the computation of a small
set of eigentriplets of large, sparse rational eigenvalue problems

p∑
j=1

rj(λ)Ljv = 0, rj(·) : C→ C, Lj ∈ Cn×n, j = 1, . . . , p

is needed for modal expansions, whose results can be used for the physical understanding of
nanophotonic devices. Actually, solving rational eigenvalue problems for QNM analysis is cur-
rently a very active field; see also [7, 24, 27]. Examples with other nonlinear functions can be
found in [20], where nonlinear eigenvalue problems of the form

(A+ λB + λ2C)v = eiλτSv (2)

are to be solved. Here, A, B, C, and S are constant matrices, and τ is a scalar. The solution
of (2) can be used to obtain the acoustic modes of the Helmholtz wave equation with high
efficiency and accuracy.

To address these problems, one can consider employing Krylov-based methods. This kind of
algorithms reformulate the NEP as a generalized eigenvalue problem, and subsequently apply
a Krylov algorithm to solve it. Depending on the specific approximations of T (ξ), there are
Taylor expansion-based algorithms [22], Chebyshev interpolation-based algorithms [23] and, more
complicated, rational approximation-based algorithms [8, 18, 36].

Nevertheless, the Krylov-based methods suffer from the drawback that the eigenvalues have
to be distributed in certain patterns. For example, Taylor expansion proves unsatisfactory when
some eigenvalues are located far away from the expansion point. Chebyshev interpolation, on
the other hand, is specifically designed for the eigenvalues lying exactly on the real axis or some
pre-specified curves [12]. In some practical applications, users seek for the eigenvalues lying in
certain regions, without prior knowledge of their number and distribution. In these cases, to
capture all the eigenvalues by a single Taylor expansion point is almost impossible, not to say
connecting them with a pre-specified curve. To overcome this, people may employ the rational
Krylov method to target multiple points instead of just one. However, there is still no guarantee
that all eigenvalues lying in the region of interest can be obtained.

Contour integral-based algorithms are another type of widely-used eigensolvers that are orig-
inally developed for linear eigenvalue problems. One of the most representative algorithms, the
Sakurai–Sugiura method [30], transforms the original problems into a generalized eigenvalue
problem of two small Hankel matrices from which it extracts eigenvalue approximations using
standard dense eigensolvers. Nevertheless, computing these eigenvalues can be numerical unsta-
ble because the Hankel matrices, formed by higher moments, are usually ill-conditioned. Thus,
people developed projection methods like FEAST [29, 32] and CIRR [31]. Similar to the Sakurai–
Sugiura method, these methods approximate the characteristic subspace by integration rules, but
after that, apply a projection on this subspace to avoid generating Hankel matrices.

When dealing with non-linear eigenvalue problems, the previously mentioned algorithms have
corresponding extensions. In the case of the Sakurai–Sugiura method, all its theories follow and
can be directly adapted to NEP cases [2]. However, the same ease does not apply to FEAST or
CIRR, because computing an approximate solution of a general NEP on a projection subspace is
no longer an easy task. Hence, nonlinear FEAST [15] or CIRR [37] need additionally an auxiliary
solver for solving projected problems. To avoid the numerical instability of the Sakurai–Sugiura
method and the uncertainty of nonlinear FEAST and CIRR, we will take Beyn’s algorithm [6] as
the eigensolver for this work. It can be regarded as a nonlinear extension of the Sakurai–Sugiura
algorithm using only the first two moments. We will make a detailed introduction later.

2

These contour integral-based algorithms share the same advantages that their efficiency does
not depend too much on the distribution of eigenvalues. Hence they are well-suited for extracting
all eigenvalues lying in the domain of interest. However, these algorithms require solving a series
of linear systems, which could be a heavy workload, especially for large, sparse problems.

Our interest in this work is to solve these linear parameterized systems efficiently. If T is
linear with respect to ξ, nested Krylov methods, such as multi-shift GMRES [13] or multi-shift
QMRIDR [3] can be applied to reuse the Arnoldi basis [1]. Nevertheless, these techniques are
designed for linear cases, and cannot be easily extended when the system is not linear with
respect to the parameter. In this paper, we employ infinite GMRES [10, 21] to overcome these
difficulties. In simple terms, infinite GMRES uses a companion linearization to transform the
parameterized systems to a form that is linear with respect to the parameter, and then, use
multi-shift GMRES to solve multiple systems together.

Briefly, our algorithm solves the NEP using contour integral-based algorithms where the
Arnoldi process is employed to solve the linear systems efficiently. It not only avoids the draw-
back of poor parallelism in Krylov-based algorithms by achieving partial parallelism in matrix
factorizations and solving least squares problems, but also significantly reduces the number of LU
decompositions required for the contour integral. This makes our algorithm suitable for finding
eigenvalues lying within certain contours for large, sparse problems.

The remainder of this paper is organized as follows. In Section 2, we provide a review
of Beyn’s algorithm and the infinite GMRES, along with some of their useful properties. In
Section 3 we introduce the weighting technique and the two-level orthogonalization technique,
and propose the structure of our algorithm. Implementation details, including the selection of
some parameters and corresponding analysis, will be discussed in Section 4. Finally, numerical
experiments will be presented in Section 5 to illustrate the efficiency of our algorithm.

2 Preliminaries

2.1 Nonlinear eigenvalue problems
In this work, we focus on nonlinear eigenvalue problems (1), where T : Ω→ Cn×n is holomorphic
in the domain Ω ⊂ C with sufficiently smooth boundary. Our goal is to find all eigenvalues λ1,
. . ., λk lying in Ω, as well as their corresponding (right) eigenvectors v1, . . ., vk.

We say λj is a simple eigenvalue if ker
(
T (λj)

)
= span{vj} while T ′(λj)vj /∈ Range

(
T (λj)

)
.

For convenience, in the following, we always assume that there are finitely many eigenvalues
lying in Ω, and all of them are simple.

2.2 Beyn’s algorithm
Beyn’s algorithm [6] can be regarded as a special case of the Sakurai–Sugiura algorithm where
only the zeroth moment

M0 =
1

2πi

∫
∂Ω

T (ξ)−1Z dξ

and first moment
M1 =

1

2πi

∫
∂Ω

ξT (ξ)−1Z dξ

are involved. For almost any Z ∈ Cn×k, if we perform the singular value decomposition (SVD),
M0 = V0Σ0W

∗
0 , and construct M̆1 = V ∗

0M1W0Σ
−1
0 , it can be proved that λ1, . . ., λk are

exactly the eigenvalues of M̆1. Furthermore, we can diagonalize M̆1 as M̆1 = SΛS−1, where
Λ = diag{λ1, . . . , λk} so that V0S = [v1, . . . , vk] consists of the corresponding eigenvectors.

3

In Beyn’s algorithm, numerical quadrature rules are used to approximate these moments. We
assume the boundary of the region, ∂Ω, can be parameterized as

φ ∈ C1[0, 2π], φ(θ + 2π) = φ(θ).

Taking N equidistant quadrature nodes as θj = 2jπ/N (for j = 0, . . ., N − 1) and applying the
trapezoidal rule, we will obtain

M0,N =
1

iN

N−1∑
j=0

φ′(θj)T
(
φ(θj)

)−1
Z, M1,N =

1

iN

N−1∑
j=0

φ(θj)φ
′(θj)T

(
φ(θj)

)−1
Z. (3)

In this work, we always use an ellipse contour

φ(θ) = c+ a cos(θ) + ib sin(θ)

as well as the trapezoidal rule. This is a usual choice in many works [2, 15, 37], and has been
proved to converge exponentially; see [34].

Though we take Beyn’s algorithm as a framework in this paper, we remark here that the
technique we shall propose is not dependent on a particular eigensolver, but can be applied to
any contour integral-based algorithm where several moments need to be computed.

2.3 Infinite GMRES
To approximate the moments by (3), we have to evaluate T (ξj)

−1Z for several quadrature nodes
of the form ξj = φ(θj). With infinite GMRES (infGMRES) [10], we can solve them efficiently.

Suppose we need to compute T (ξ)−1z for several values of ξ around ξ = 0 all at once with
infGMRES. We will firstly approximate T by a Taylor expansion as

T (ξ) ≈
p∑

j=0

ξj

j!
T (j)(0),

and linearize it to L0 − ξL1, where

L0 =


T (0) T (1)(0)

1!
T (2)(0)

2! · · · T (p)(0)
p!

I
I

. . .
I

 , L1 =



0
I 0

I
. . .
. . . 0

I 0

 . (4)

It can be proved that the first n elements of (L0 − ξL1)
−1 vec0(z) are exactly equal to(p∑

j=0

ξj

j!
T (j)(0)

)−1

z, (5)

where vec0(z) = [z∗, 0, . . . , 0]∗. Under the assumption that the Taylor expansion is sufficiently
accurate, in order to compute T (ξ)−1z, we just compute (L0 − ξL1)

−1 vec0(z).
After extracting L−1

0 , a multi-shift GMRES can be employed to solve linear systems (I −
ξL1L−1

0)−1 vec0(z) for several ξ’s easily. This is because once we obtain

L1L−1
0 Um = Um+1Hm

4

Algorithm 1 infGMRES

Input: Maximum iteration m, the parameter-dependent matrix T (ξ) : C → Cn×n, the right-
hand side z ∈ Cn and the points to be solved ξj for j = 0, . . ., N − 1

Output: Approximations x0,j ≈ T (ξj)
−1z for j = 0, . . ., N − 1

1: Linearize T to

L0 =


T (0) T (1)(0)

1! · · · T (p)(0)
p!

I
. . .

I

 , L1 =


0
I 0

.
I 0

 , p > m

2: Perform Arnoldi process on
(
L1L−1

0 , vec0(z)
)

to obtain L1L−1
0 Um = Um+1Hm

3: Set yj ← argminy
∥∥(Im − ξjHm)y − ∥z∥e1

∥∥
2

for j = 0, . . ., N − 1

4: Set x0,j ← T (0)−1
[
I −T (1)(0) · · · −T (p)(0)/p!

]
Umyj for j = 0, . . ., N − 1

by the Arnoldi process, we also have

(I − ξL1L−1
0)Um = Um+1(Im − ξHm),

which is exactly the Arnoldi decomposition of (I − ξL1L−1
0). Here, Um is the matrix whose

columns are Arnoldi vectors, Im is the m×m identity with an extra zero row at the bottom, and
Hm ∈ C(m+1)×m is an upper Hessenberg matrix. Thus, as we already obtained the Hessenberg
matrix Hm by an Arnoldi process on L1L−1

0 , we need only to tackle a small-scale least squares
problem

min
y

∥∥(Im − ξHm)y − ∥z∥2e1
∥∥
2
, (6)

for any ξ. Since Umy is the approximate solution of (I − ξL1L−1
0)−1 vec0(z), we take L−1

0 Umy as
the approximate solution of (L0− ξL1)

−1 vec0(z). Then, the first n elements of L−1
0 Umy become

the solution for that particular ξ. For reference, we list our infGMRES briefly in Algorithm 1.
From Algorithm 1, we know that applying L−1

0 to several vectors involves essentially only
one matrix factorization of T (0). Hence, infGMRES is efficient when solving with many ξ’s.
Furthermore, in [10], it is proved that under certain mild assumptions the action L−1

0 can be
applied approximately without affecting the convergence of the algorithm. This feature makes
infGMRES even more attractive, if implemented properly.

Additionally, we note here that the order of the Taylor expansion, p, does not need to be
determined in advance because at the jth iteration of GMRES only T (s)(0)’s with s ≤ j are
involved. If we process up to some certain iterations, say j, and find that the desired accuracy is
not achieved, we can just provide the algorithm with a new T (j+1)(0) and continue. In practice,
we can always assume p = ∞ and terminate once the accuracy is satisfactory. That is also
why these algorithms are usually called infinite, or hold dynamic polynomial approximation
properties [35]. For simplicity, we will always use a finite order linearization with p > m in this
paper. But readers should keep in mind that p and m are in fact infinite.

3 Proposed algorithm
With the methods we mentioned above, our idea is to solve linear systems in Beyn’s method by
infGMRES. A framework is summarized in Algorithm 2. In the following paragraphs, we will

5

Algorithm 2 Beyn’s method with infGMRES

Input: The parameter-dependent matrix T (ξ) : C → Cn×n, the initial guess Z = [z1, . . . , zk] ∈
Cn×k, the contour φ and quadrature nodes θj ’s for j = 0, . . ., N − 1

Output: Approximate eigenvalues Λ and eigenvectors V
1: for s = 1, . . ., k do
2: Use infGMRES to solve T

(
φ(θj)

)−1
zs for j = 0, . . ., N − 1 simultaneously

3: end for
4: SetM0,N ← 1

iN

∑N−1
j=0 φ′(θj)T

(
φ(θj)

)−1
Z

5: SetM1,N ← 1
iN

∑N−1
j=0 φ(θj)φ

′(θj)T
(
φ(θj)

)−1
Z

6: Singular value decompositionM0,N = V0Σ0W
∗
0

7: Set M̆1,N ← V ∗
0M1,NW0Σ

−1
0

8: Eigenvalue decomposition M̆1,N = SΛS−1

9: Set V ← V0S

0 5 10
Real 6 #104

-6

-4

-2

0

2

4

6

Im
a
g
6

#104 infGMRES

0.98

0.98

0.98
0.980.98

0.98

0.98

0.98

0.98

0.98

0.98
0.98 0.98

0.98

0.98

0.98

0 5 10
Real 6 #104

-6

-4

-2

0

2

4

6

Im
a
g
6

#104 infGMRES with scaling

9.1e-05

8.6e-05

4.4e-06
2.6e-075.3e-08

2.9e-08

5.6e-08

2.8e-07

9.1e-08

2.4e-09

3.2e-10
1.6e-10 3.1e-10

2.2e-09

6.4e-08

7.9e-06

Domain of interest Quadrature nodes Expansion point

Figure 1: Running infinite GMRES with a single expansion point on the center of a circular
contour (center at 66762 with a radius 45738) to solve 16 linear parameterized systems of the
gun problem lying equidistantly on the contour. The value m = 32 is used in both figures.
In practice, for approximating eigenpairs, we usually need these linear systems to be solved
to an accuracy higher than 10−10. The original infinite GMRES method (left) failed at all 16
points, whereas the infinite GMRES applied to the variable-substituted system T (5aξ̃+c) (right),
although still not accurate enough, demonstrates a seemingly improved performance.

discuss how to employ infGMRES economically and efficiently in Step 2 of Algorithm 2.
One may consider expanding the Taylor series of T on the center of the contour to approximate

all the linear systems on the contour at once. Unfortunately, the original implementation of
infGMRES is usually not accurate enough, especially when the ellipse is relatively large or some
eigenvalues lie close to the quadrature nodes [10]. To illustrate this, we take the gun problem
from the NLEVP collection [5] as an example. We apply infGMRES on the center of a circular
contour and solve the linear systems at each quadrature node; see Figure 1 (left). With 32
GMRES iterations, we obtained completely incorrect solutions.

Though this failure is partly caused by using too few iterations, it is not unavoidable within

6

the same number of iterations. If we instead run infGMRES on the variable-substituted system
T (5aξ̃ + c) to solve the same linear systems, the accuracy can be improved apparently within
the same number of iterations; see Figure 1 (right). Here, we take a = 45738 as the radius of
the circular contour and c = 66762 as the center of the contour. The reason why we take such
a variable substitution will be explained in Section 4.1. For this section, we shall first provide a
more general description of this technique to construct our algorithm.

The other problem is the redundant memory usage of Um. Storing the whole Um, as classical
GMRES does, requires O(m2n) memory. This will greatly limit the maximum iteration count
GMRES can take, especially when n is very large. Following [23], we will apply a TOAR-like
technique [25] to compress the memory footprint to O(mn+m3). A generalized framework can
be found in [36].

3.1 Weighting
In [10, Remark 6.2], it has been mentioned that an appropriate scaling can accelerate the conver-
gence of infGMRES. But no proof or theoretical analysis is provided to justify the essential cause.
In this subsection, we provide a more general implementation of the scaling. Further insights on
this technique and its specific application for accelerating the convergence of infGMRES will be
covered in Section 4.1.

When using infGMRES to solve T (ξ0)
−1z with a Taylor expansion centered at 0, we are

actually solving

(L0 − ξ0L1)
−1 vec0(z) =


T0 T1 · · · Tp

−ξ0I I
.

−ξ0I I


−1 

z
0
...
0

 ,

where for simplicity we denote Tj = T (j)(0)/j!. To apply a scaling here, firstly notice that solving
T (ξ)−1z at ξ = ξ0 is equivalent to solving T̃ (ξ̃)−1z at ξ̃ = ξ0/ρ, where T̃ (ξ̃) = T (ρξ̃). Repeating
the same linearization process on T̃ (ξ̃) yields alternative companion matrices of the form

L̃0 =


T0 ρT1 ρ2T2 · · · ρpTp

I
I

. . .
I

 , L̃1 = L1. (7)

To solve the original system at ξ̃ = ξ0/ρ, we solve

(
L̃0 −

ξ0
ρ
L̃1

)−1

vec0(z) =


T0 ρT1 · · · ρpTp

− ξ0
ρ I I

.
− ξ0

ρ I I


−1 

z
0
...
0

 .

Comparing (4) and (7), we notice that

L̃0 = D−1
ρ L0Dρ,

1

ρ
L̃1 = D−1

ρ L1Dρ, L̃0 −
ξ0
ρ
L̃1 = D−1

ρ (L0 − ξ0L1)Dρ,

7

where

Dρ =


I

ρI
. . .

ρpI

 .

This reminds us the balancing techniques [9] for eigenvalue problems, where we may take

D =


d0I

d1I
. . .

dpI

 (8)

with arbitrary dj ’s. In fact, we can also obtain the approximate solution (5) by solving
(
D−1(L0−

ξL1)D
)−1

vec0(z); see Lemma 1.

Lemma 1. Suppose dj ∈ C\{0} and Tj ∈ Cn×n for j = 0, . . ., p, and

D =


d0I

d1I
. . .

dpI

 ,

L0 =


T0 T1 T2 · · · Tp

I
I

. . .
I

 , L1 =



0
I 0

I
. . .
. . . 0

I 0

 .

Then, for any scalar ξ ∈ C and vector z ∈ Cn,

(
D−1(L0 − ξL1)D

)−1
vec0(z) =


(∑p

j=0 ξ
jTj

)−1
z

∗
...
∗

 .

Proof. The proof of Lemma 1 follows from [10, Theorem 3.1]. We do not repeat it here.

Lemma 1 indicates that we can perform infGMRES on any balanced companion linearization
(D−1L0D,D−1L1D), and a scaling can be regarded as a special case where D = Dρ. Addi-
tionally, since D−1LjD = (d−1

0 D)−1Lj(d
−1
0 D), we can always assume d0 = 1 without loss of

generality.

3.2 Compact representation of the Arnoldi basis
TOAR [25] is a memory-efficient algorithm for the Arnoldi process of quadratic eigenvalue prob-
lems (QEP). The most remarkable insight of TOAR is that the Arnoldi vectors of a companion
linearization of the QEP can be represented in terms of a common basis for both upper and lower
halves. In [36], it is proved that similar techniques can be applied to more general cases. In this

8

work, we apply a similar two-level orthogonalization for infGMRES to reduce the increasingly
larger memory usage.

Firstly, partition the Arnoldi vectors Um by row blocks to

Um =

Um,0

...
Um,p

 , Um,j ∈ Cn×m, j = 0, . . . , p.

Then, there is a Qm ∈ Cm×n, Q∗
mQm = I, such that Um,j = QmŬm,j for some Ŭm,j ∈ Cm×m

(for j = 0, . . ., p). Furthermore, the Arnoldi process can be rearranged into

L1L−1
0 Um = L1L−1

0

QmŬm,0

...
QmŬm,p

 =

QmŬm,0 [Qm, qm+1]ŭm+1,0

...
...

QmŬm,p [Qm, qm+1]ŭm+1,p

Hm = Um+1Hm,

where the columns of both [Qm, qm+1] andQmŬm,0 [Qm, qm+1]ŭm+1,0

...
...

QmŬm,p [Qm, qm+1]ŭm+1,p


are orthonormal. Thus, by setting Qm+1 = [Qm, qm+1] and

Ŭm+1,j =

[
Ŭm,j

0
ŭm+1,j−1

]
,

the Arnoldi vectors Um+1 share the same structure

Um+1 =

Qm+1Ŭm+1,0

...
Qm+1Ŭm+1,p

 .

Therefore, we only need to store Qm and Ŭm,j in memory for the Arnoldi process. Additionally,
thanks to the pattern of vec0(z), we have Ŭm,j = 0 for j ≥ m. Overall, the memory usage will be
O(mn+m3). However, since Um is not explicitly formed, additional care should be taken when
orthogonalizing, using the so called two-level orthogonalization. Combined with weighting, we
list our weighted two-level orthogonalization infGMRES in Algorithm 3 for reference.

Remark 1. For simplicity and consistency, we initialize Ŭj,s’s for s = 0, . . ., p from the be-
ginning. However, readers should remember that Ŭj,s = 0 for s ≥ j. Hence, Ŭj,s’s are neither
computed nor stored in memory.

Remark 2. Notice that in Step 4 of Algorithm 1, we have to apply

Qlog = T (0)−1
[
I −T (1)(0) · · · −T (p)(0)/p!

]
Um

on each yj to recover the approximate solution x0,j, which may involve extra workload. Fortu-
nately, as mentioned in [10], we can store Qlog column by column during the infGMRES process,
to make this cheaper; see Step 6 and Step 19 in Algorithm 3.

9

Algorithm 3 Weighted two-level orthogonalization infGMRES

Input: Maximum iterations m, the matrices Tj ∈ Cn×n for j = 0, . . ., p, p > m, the initial
guess z ∈ Cn and the weights d1, . . ., dp

Output: Function fx(ξ) returning the approximate solution of T (ξ)−1z
1: function [fx] = WTinfGMRES(T0, . . . , Tp, d1, . . . , dp, z)
2: Q1 ← z/∥z∥2, H0 ← [], Qlog ← []

3: Ŭ1,0 ← 1, ŭ1,0 ← 1, Ŭ1,s ← 0, ŭ1,s ← 0, s = 1, . . ., p
4: for j = 1, . . ., m do
5: qj+1 ← d−1

1 T−1
0

(
Qj ŭj,0 −

∑p
s=1 dsTsQj ŭj,s

)
6: Qlog ← [Qlog, d1qj+1] % Record L−1

0 Qj

7: lj ← Q∗
jqj+1 % First level orthogonalization

8: qj+1 ← qj+1 −Qj lj
9: αj ← ∥qj+1∥2

10: qj+1 ← qj+1/αj

11: Qj+1 ← [Qj , qj+1]

12: hj = Ŭ∗
j,1lj +

∑p
s=2(ds−1/ds)Ŭ

∗
j,sŭj,s−1 % Second level orthogonalization

13: ŭj+1,0 ← 0, ŭj+1,1 ←
[
lj − Ŭj,1hj

αj

]
, ŭj+1,s ←

[
ŭj,s−1 − Ŭj,shj

0

]
, s = 2, . . ., p

14: βj ←
√∑j

s=0 ŭ
∗
j+1,sŭj+1,s

15: ŭj+1,s ← ŭj+1,s/βj , s = 0, . . ., p

16: Hj ←
[
Hj−1 hj

0 βj

]
% Update U and H

17: Ŭj+1,s ←
[

Ŭj,s

0
ŭj+1,s

]
, s = 0, . . ., p

18: end for
19: fx(ξ) = ∥z∥2Qlog(I − ξHm)†e1
20: end function

10

Table 1: Application of Algorithm 3 with/without reorthogonalization to all 9 test examples from
Table 2. The last two columns show the orthogonality of Qm and Ŭm. The test is performed on
all the expansion points, and only the worst values are shown here.

Problem ∥Q∗
mQm − I∥2 ∥Ŭ∗

mŬm − I∥2

w/o reorthog.

spring 2.3× 101 6.3× 10−7

acoustic_wave_2d 2.1× 10−8 5.8× 10−11

butterfly 7.8× 10−4 1.4× 10−3

loaded_string 1.6× 101 1.5× 10−13

photonics 1.9× 101 7.1× 10−11

railtrack2_rep 1.7× 101 4.0× 10−14

hadeler 1.2× 10−14 2.0× 10−14

gun 1.8× 101 4.0× 10−14

canyon_particle 1.9× 101 8.1× 10−6

with reorthog.

spring 1.1× 10−15 5.0× 10−16

acoustic_wave_2d 6.8× 10−16 5.0× 10−16

butterfly 6.3× 10−16 6.7× 10−16

loaded_string 1.1× 10−15 7.0× 10−16

photonics 7.7× 10−16 8.1× 10−16

railtrack2_rep 5.7× 10−16 4.3× 10−16

hadeler 9.7× 10−16 3.3× 10−16

gun 9.1× 10−16 7.4× 10−16

canyon_particle 9.6× 10−16 6.7× 10−16

Remark 3. We remark here that even with the TOAR-like technique, Qm and

Ŭm =

Ŭm,0

...
Ŭm,p


may not be fully orthogonal in finite precision arithmetic. As we show in Table 1, Algorithm 3
loses the orthogonality of Qm in almost every test example and sometimes loses the orthogonality
of Ŭm as well. However, the loss of orthogonality does not always destroy the convergence of
GMRES; see [16]. In fact, we can perform a reorthogonalization on Qm and Ŭm to make them
orthogonal; see Table 1. Nevertheless, the accuracy of infGMRES will not increase, even though
both Qm and Ŭm are numerically orthogonal. Therefore, we will not use reorthogonalization in
our numerical experiments.

4 Implementation details of the algorithm
While our modified infGMRES has been fully described in previous sections, the implementation
process involves determining numerous parameters, including the scalars dj , the locations for
applying Taylor expansion ξj , and others. In this section, we will reveal the connections among
these parameters and the convergence of infGMRES, offering practical guidance on their selection,
and hence finishing the last details needed in Algorithm 2.

11

4.1 Scaling is essentially a weighting strategy on GMRES
In Section 3.1, we have already showed that a scaling can be generalized into a balanced compan-
ion linearization, say D−1L0D and D−1L1D. Here, we declare that this technique is essentially
a weighting strategy for the least squares problems within GMRES and, if used appropriately,
can help to find a more accurate solution in a certain search space.

To see this, we have to look into the process of GMRES. First notice that if the Krylov sub-
space Km

(
I−ξ0L1L−1

0 , vec0(z)
)

is spanned by Um, by induction, we can prove that Km

(
D−1(I−

ξ0L1L−1
0)D, vec0(z)

)
is spanned by D−1Um. Thus, at the mth iteration, infGMRES will give the

solution by
y∗ = argmin

y

∥∥D−1(I − ξ0L1L−1
0)DD−1Umy − vec0(z)

∥∥
2

= argmin
y

∥∥D−1
(
(I − ξ0L1L−1

0)Umy − vec0(z)
)∥∥

2
,

(9)

where the last equality follows because d0 = 1.
Equation (9) provides us with several insights. Firstly, whichever the weighting matrix D is

chosen, the final approximation of T (ξ0)−1z will be selected from the same search space. That is
because the approximate solution will be the first n elements of D−1L−1

0 Umy∗ and d0 = 1. The
role D plays in infGMRES is actually a weighting matrix in the least squares problems (9). We
can choose D appropriately to guide GMRES to pick a more accurate solution from Um.

One may feel confused because GMRES already provides the best solution that minimizes
the residual norm. However, what we really care about is not the residual of GMRES (9), but

∥rN∥2 =
∥∥T (ξ0)x0 − z

∥∥
2
,

or

∥rP∥2 =
∥∥∥ p∑
j=0

ξj0Tjx0 − z
∥∥∥
2
, (10)

where x0 is the approximate solution of T (ξ0)−1z. In an ideal scenario, we choose the weighting
matrix D so that (9) returns the best solution in the sense of (10). Therefore, it is crucial to
reveal the relationship between (9) and (10).

Lemma 2. Suppose z, Um, L0, L1 and Tj (for j = 0, . . ., p) are all defined as before. The
vector y∗ ∈ Cm is the solution of (9) for some weighting matrix D. Then, the polynomial-wise
residual rP =

∑p
j=0 ξ

j
0Tjx0 − z can be represented as

rP =

[
I,−

p∑
j=1

ξj−1
0 Tj ,−

p∑
j=2

ξj−2
0 Tj , . . . ,−Tp

]
r0
r1
...
rp

 , (11)

where 
r0
r1
...
rp

 = (I − ξ0L1L−1
0)Umy∗ − vec0(z). (12)

Proof. We know that if y∗ is the solution of (9), infGMRES will give x∗ = D−1L−1
0 Umy∗ as the

approximate solution of
(
D−1(L0 − ξ0L1)D

)−1
vec0(z). Then, by Lemma 1, the first n elements

12

of x∗, denoted by x0 ∈ Cn, will be taken as the approximate solution of T (ξ0)
−1z. In other

words, we have

D−1L−1
0 Umy∗ = x∗ =


x0

x1

...
xp

 ,

where x0 here is same as the one in (10).
Therefore, we can represent (12) in terms of x∗ instead of y∗:

r0
r1
...
rp

 = (I − ξ0L1L−1
0)Umy∗ − vec0(z) = (L0 − ξ0L1)Dx∗ − vec0(z). (13)

Just listing out the equations in (13)

d0T0x0 + d1T1x1 + · · ·+ dpTpxp = d0r̃0,

−ξ0d0x0 + d1x1 = d1r̃1,

...
−ξ0dp−1xp−1 + dpxp = dpr̃p,

and substituting all other equations into the first one yields (11).

Remember that the solution y∗ minimizes (9), so that rj ’s minimize

∥∥D−1
(
(I − ξ0L1L−1

0)Umy − vec0(z)
)∥∥

2
=

∥∥∥∥∥∥∥∥∥D
−1


r0
r1
...
rp


∥∥∥∥∥∥∥∥∥
2

=

√√√√ p∑
j=0

∥rj∥2
d2j

,

which means we can adjust the magnitude of rj by setting dj properly. If we set dj to be larger,
then, ∥rj∥2 must be more modest.

On the other hand, we know from Lemma 2 that

∥rP∥ ≤ ∥r0∥2 +
∥∥∥ p∑
j=1

ξj−1
0 Tj

∥∥∥
2
∥r1∥2 + · · ·+ ∥Tp∥2∥rp∥2.

Therefore, intuitively, if we make ∥rj∥2 relatively small for larger ∥
∑p

j=s ξ
j−s
0 Tj∥2, and relatively

large for smaller ∥
∑p

j=s ξ
j−s
0 Tj∥2, overall, ∥rP∥ could be modest.

With this insight, we may set the weights as d0 = 1 and ds = ∥
∑p

j=s ξ
j−s
0 Tj∥−1

2 for s = 1,
. . ., p. However, there are cases where ∥

∑p
j=s ξ

j−s
0 Tj∥2 ≪ 1 or ∥

∑p
j=s ξ

j−s
0 Tj∥2 ≫ 1, which will

make D extremely ill-conditioned. Thus, in practice, we prefer to balance dj by

dj ← dj/

(
d22
d3

)
, j > 0.

Consequently, in our algorithm, the weights dj ’s will be taken as

d0 = 1, ds =
γ

∥
∑p

j=s ξ
j−s
0 Tj∥2

, γ =
∥
∑p

j=2 ξ
j−2
0 Tj∥22

∥
∑p

j=3 ξ
j−3
0 Tj∥2

, s = 1, . . . , p. (14)

13

Remark 4 (How to determine ξ0). Since several linear systems will share the same expansion
points, we cannot set a specified D for each linear system, so that we can neither set a specified
ξ0. In practice, we prefer to use a ξ0 that is a little bit larger than the radius of a circle that
encloses the integration points we want to associate to it. For example, if we expand at ξ = 0
and want to solve linear systems within |ξ| < ν, then, ξ0 = 2ν will be a satisfying choice.

Remark 5. Our analysis does not depend on specific styles of the companion linearizations. For
example, if we use the classical companion linearization

L0 =


A1 A2 · · · Ap

I
. . .

I

 , L1


A0

−I
. . .

−I

 ,

it can also be proved that

D−1
ρ (ξL−1

1 L0 − I)Dρ =
ξ

ρ
L̃−1
1 L̃0 − I,

where L̃0 and L̃1 are the companion linearization matrices corresponding to the scaled system T̃ .
Other analyses on D will follow.

4.2 On polynomial eigenvalue problems
Since infGMRES is originally designed for non-polynomial eigenvalue problems, additional care
must be taken when dealing with a PEP, or in other words when

T (ξ) = T0 + ξT1 + · · ·+ ξgTg.

In these cases, it is not necessary for us to use infGMRES. On the contrary, just linearizing it to

L̆0 =


T0 T1 T2 · · · Tg

I
I

. . .
I

 , L̆1 =



0
I 0

I
. . .
. . . 0

I 0

 , (15)

and using multi-shift GMRES to solve (L̆0 − ξL̆1)
−1 vec0(z) is sufficient to solve the problem.

However, if one insists on employing infGMRES, the linearization becomes

L0 =



T0 T1 · · · Tg 0 · · ·
I

. . .
I

I
. . .


, L1 =



0
I 0

I
. . .
. . . 0

I 0
.


, (16)

where we use 0 to fill the position of Tj , j > g because T (j)(ξ) = 0, j > g. It is interesting to
note that (L0 − ξL1)

−1 vec0(z) also gives the true solution of T (ξ)−1z on the first n elements.
One question that naturally comes to one’s mind is: (15) or (16), which linearization is better?

14

From the point of view of computational cost and memory usage, in the jth iteration of (15),
the cost of orthogonalization will be O(jn+j2g) and the total memory usage is also O(jn+j2g).
As for (16), they are O(jn + j3). For general cases m > g, so that (15) is cheaper. However,
since g < m≪ n, there is not much difference.

Things become interesting if we look from the perspective of convergence rate. Equation (15)
can actually be regarded as (16) with the weighting we mentioned in Section 4.1. Remember
that, with our weighting strategy, the weighting matrix D will be

D =



d0I
d1I

. . .
dgI

∞I
. . .


.

Then, if we regard ∞ as a very large number that can be used in arithmetic computation, we
will have the weighted system

D−1L0D =



T0 T1 · · · Tg 0 · · ·
I

. . .
I

I
. . .


,

D−1L1D =



0
d0

d1
I 0

.
dg−1

dg
I 0

0 0
I 0

.


.

Notice that D−1L1L−1
0 D is a diagonal block matrix now. Since the right-hand side vec0(z) has

non-zero elements only on the first n dimensions, solving
(
D−1(I − ξL1L−1

0)D
)−1

vec0(z) and(
D−1

g (I − ξL̆1L̆−1
0)Dg

)−1
vec0(z) with GMRES will result in exactly the same process, where

Dg = diag{d0I, . . . , dgI} is the truncated D.
Since both the cost and the convergence of the two methods are similar, we also use infGMRES

in Section 5 for PEP to keep results uniform.

4.3 How to choose expansion points
Even with the weighting strategy, it may still take too many iterations for infGMRES to converge,
especially for quadrature nodes that are far from expansion points. Therefore, it is sensible to
use more than one expansion point in practice. However, a good choice of the expansion points
depends on the singularities, eigenvalues and many other things. Therefore, adaptively selecting
the expansion points is usually impractical, and it is not the focus of interest in this paper. In

15

A single expansion
point at center

Well-condit ioned ?

Yes

No

2 equidistant points
on the contour

2 equidistant points
on inner ellipse

4 equidistant points
on the contour

4 equidistant points
on inner ellipse

Add more expansion
points

Add more expansion
points

: If not converge

Figure 2: A brief guideline on choosing expansion points: If a single point at the center does not
work, choose expansion points equidistantly on the contour or on an inner ellipse, based on the
condition number of the problem. Continue doubling the number of expansion points till the
accuracy is satisfactory.

this subsection, we provide a flowchart for users to heuristically determine the distribution of
expansion points; see Figure 2.

At this point, we can fully describe the computation needed for Step 2 of Algorithm 2; see
Algorithm 4.

Algorithm 4 Step 2 of Algorithm 2

Input: The parameter-dependent matrix T (ξ) : C → Cn×n, the right-hand side z ∈ Cn, the
contour φ and quadrature nodes θj ’s for j = 0, . . ., N − 1

Output: Approximations x0,j ≈ T
(
φ(θj)

)−1
z for j = 0, . . ., N − 1

1: Determine expansion points ξ0, . . ., ξnep
as in Figure 2

2: for j = 0, . . ., nep do
3: Set Ts,j ← T (s)(ξj)/s! for s = 0, . . ., p
4: Compute weights ds,j ’s as in Section 3.1
5: Set fx,j(·)← WTinfGMRES(T0,j , . . . , Tp,j , d0,j , . . . , dp,j , z)
6: end for
7: for j = 0, . . ., N − 1 do
8: Find ξs ∈ {ξ0, . . . , ξnep

} closest to φ(θj)
9: Set x0,j ← fx,s

(
φ(θj)

)
10: end for

5 Numerical experiments
In this section we present experimental results of Algorithms 3. All numerical experiments were
performed using MATLAB R2022b on a Linux server with two 16-core Intel Xeon Gold 6226R
2.90 GHz CPUs and 1024 GB main memory.

16

Table 2: Information of test problems. Here, n is the size of the problem and k is the number
of the eigenvalues to be computed. The number of quadrature nodes, expansion points are
represented by N and nep, respectively. The times consumed by Beyn’s method with MATLAB
backslash, ts, and with infGMRES tiG are also listed in the last columns.

Problem Type n k N nep ts(s) tiG(s) (ts − tiG)/ts
spring QEP 3000 32 1024 6 3.472 15.72 −353%

acoustic_wave_2d QEP 9900 10 512 5 28.14 9.475 66%
butterfly PEP 5000 9 512 9 11.54 8.453 27%

loaded_string REP 20000 10 128 4 1.07 9.805 −816%
photonics REP 20363 16 3060 18 600 209.7 65%

railtrack2_rep REP 35955 2 128 1 533.4 71.95 87%
hadeler NEP 5000 13 32 1 40.2 46.6 −16%

gun NEP 9956 21 1024 10 501.2 148.9 70%
canyon_particle NEP 16281 5 256 4 40.94 7.652 81%

5.1 Experiment settings
Most of our test examples are chosen from the NLEVP collections [5] except photonics, which is
similar to the one described in [11], but with a more general model for the permittivity as in [14].
We set the maximum number of the outer iterations of infGMRES as 32 for all these examples,
while the number of quadrature nodes and expansion points varies from case to case. Details
regarding these examples, including their respective types, the problem size n, the number of
quadrature nodes N , and the number of expansion points nep, are listed in Table 2. For the
exact distribution of these points or the contour, readers can check Figure 3.

For computed approximate nonlinear eigenpair (λ̂j , v̂j), the convergence criterion is

∥T (λ̂j)v̂j∥2 ≤ tol · ∥T (λ̂j)∥2∥v̂j∥2, (17)

where tol is the user-specified tolerance. Unless otherwise stated, all the test results presented
in this section achieved an accuracy of tol = 10−12.

As we mentioned in Section 2.3, it is possible to apply the action T−1
0 in Algorithm 3 in

an inexact way, e.g., using algebraic multigrid or GMRES, to make the algorithm even faster.
However, to emphasize the effect of our algorithm, we use LU decomposition to solve all the
linear systems T−1

0 exactly in our numerical experiments. Readers should keep in mind that, in
practice, inexact linear solvers can be implemented here for further acceleration.

5.2 Overall performance on the test examples
To illustrate the efficiency of our algorithm, we solve the linear systems by MATLAB backslash (\)
as comparative experiments. The times consumed by Beyn’s method with MATLAB backslash
(ts) and with infGMRES (tiG) are listed, respectively, in the last columns of Table 2. Except for
the spring, loaded_string and hadeler, our algorithm achieved a speedup of at least 27%.
The acceleration rate increases when the problems size becomes larger, where our algorithm can
benefit from taking fewer matrix decompositions and reach a speedup over 80%.

However, there are two scenarios where the advantages of our algorithm are less evident.
In the cases of spring and loaded_string, MATLAB implements specialized optimizations
for tridiagonal matrices, making it several times faster than the general MATLAB backslash
operation. On the other hand, in the case of hadeler, two out of its three component matrices

17

-1.575 -1.57 -1.565 -1.56 -1.555
Real 6

-5

0

5
Im

a
g
6

#10-3 spring

Domain of interest Approximate eigenvalues True eigenvalues Expansion points

-1 0 1
Real 6

-0.4

-0.2

0

0.2

0.4

Im
a
g
6

acoustic wave 2d

0.248 0.25 0.252
Real 6

0.234

0.236

0.238

Im
a
g
6

butterfly

500 1000 1500
Real 6

-50

0

50

Im
a
g
6

loaded string

0 0.05 0.1 0.15
Real 6

0

0.1

0.2

0.3

Im
a
g
6

photonics

0.8 1 1.2
Real 6

-0.2

0

0.2

Im
a
g
6

railtrack2 rep

0.009 0.0095 0.01 0.0105 0.011
Real 6

-1

0

1

Im
a
g
6

#10-4 hadeler

4 6 8 10
Real 6 #104

-4

-2

0

2

4

Im
a
g
6

#104 gun

-0.18 -0.16 -0.14
Real 6

-5

0

5

Im
a
g
6

#10-3canyon particle

Figure 3: Interest field, expansion points and eigenvalues of different test problems.

are dense. Generally, iterative methods are not as efficient for dense matrices, leading to reduced
effectiveness in these specific instances.

To obtain a more detailed analysis, we have extracted the time proportions of each operation,
as illustrated in Figure 4. It can be found that a significant portion of time is dedicated to the
Arnoldi process (matrix–vector multiplications and orthogonalization) in our algorithm. Even in
the challenging problem photonics, where over 3000 quadrature nodes are needed to be solved,
solving least squares problems consume comparatively less time. This implies that our algorithm
proves especially advantageous in cases involving a large number of quadrature nodes.

One thing to note from Figure 4 is that the time consumed by LU decomposition is relatively
higher for railtrack2_rep. That is because the size of this problem is obviously larger, bringing
about more expensive factorizations. However, it is actually a good news for our algorithm, which
means that when the problem size become larger, our algorithm can benefit more from solving
these factorizations in parallel.

5.3 Comparison on different weighting strategies
In Section 3.1, we introduce a weighting strategy for infGMRES. Here, we illustrate its efficiency
under different circumstances with numerical experiments. The gun problem is taken as the test
problem. We compute the Taylor expansion on the leftmost and rightmost points of the contour,
respectively, to approximate the linear systems corresponding to quadrature nodes around. The
difference between these two points is that there are singularities close to the left side one,
leading to a more ill-conditioned problem. The full picture can be found in Figure 5 (a), where

18

sp
ri
ng

ac
ou
st
ic

wa
ve

2d

bu
tt
er
fl
y

lo
ad
ed

st
ri
ng

ph
ot
on
ic
s

ra
il
tr
ac
k2

re
p

ha
de
le
r

gu
n

ca
ny
on

pa
rt
ic
le

0%

20%

40%

60%

80%

100%

T
im

e
co
n
su
m
ed

Rest
Least squares
Orthogonalization
Matrix-vector multiplications
LU decomposition

Figure 4: The proportional chart of Beyn’s methods with infinite GMRES. The times consumed
by different operations are illustrated.

we illustrate the corresponding relationships between expansion points and quadrature nodes.
The number of outer iterations of infGMRES is fixed to 32 in all experiments. The residuals
obtained with or without weighting can be found in Figures 5 (b), (c), (f), (g). Our weighting
strategy can bring significant boost on the accuracy in both cases.

As a comparison, we refer to the scaling strategy from [4, Section 6]. In that algorithm, a
scalar

ρ =

(
∥T0∥
∥Tp∥

)1/p

(18)

is used to make the norm of ρjTj as similar as possible. Their consideration is that solving a
PEP by applying a backward stable algorithm is backward stable if

∥T0∥= ∥T1∥= · · · = ∥Tp∥.

Even though this algorithm is designed for eigenvalue problems but not for solving linear systems,
it shares similar motivations with our algorithm. We implement it in Figure 5 (d), (e). It can be
found that, both strategies perform well for well-conditioned cases. Nevertheless, the accuracy
of (18) decays rapidly in the ill-conditioned case; see Figure 5 (d); while our algorithm performs
obviously better; see Figure 5 (f).

6 Conclusion
In this work, we introduce infGMRES to reduce the cost of solving linear systems in con-
tour integral-based nonlinear eigensolvers. We have worked out all the details including the
convergence-accelerating weighting strategy, the memory-friendly TOAR-like trick, and the se-
lection of the parameters. With these ingredients, we proposed a robust and efficient imple-
mentation of infGMRES. While our numerical experiments are carried out in Beyn’s method,
this technique can actually be applied to all contour integral-based nonlinear eigensolvers, where
several moments are needed to be approximated.

Our method reduces the computational cost by reducing the number of required matrix
factorizations. More precisely, it requires as many factorizations as the number of expansion
points, which is usually much smaller than the number of quadrature nodes. This is especially
relevant for difficult problems, where the quadrature rule demands a large number of quadrature
nodes or the scale is extremely large, making a matrix decomposition very expensive.

19

0.8 0.9 1 1.1 1.2
Real 6 #105

-4

-2

0

2

4

Im
a
g
6

#104 No weight

0.98
0.98

0.97
0.95

0.93
0.87
0.7
0.21
0.21
0.7

0.87
0.93

0.95
0.97

0.98
0.98 (c)

1 2 3 4 5
Real 6 #104

-4

-2

0

2

4

Im
a
g
6

#104 No weight

0.99
0.98

0.98
0.97

0.95
0.9

0.76
0.27
0.27
0.76
0.9

0.95
0.97

0.98
0.98

0.99

(b)

2 4 6 8 10
Real 6 #104

-5

0

5

Im
a
g
6

#104 Full picture of two sides

(a)

Integral contour
Right expansion point
Right quadrature nodes
Left expansion point
Left quadrature nodes

0.8 0.9 1 1.1 1.2
Real 6 #105

-4

-2

0

2

4

Im
a
g
6

#104 Scalar weight

2.8e-09
3.3e-10

2.3e-11
6.7e-13

5.5e-15
1.4e-15
1.1e-15
5.6e-16
4.5e-16
1.3e-15

2e-15
8.2e-13

3.2e-10
2.8e-08

6.1e-07
4.7e-06 (e)

0.8 0.9 1 1.1 1.2
Real 6 #105

-4

-2

0

2

4

Im
a
g
6

#104 Our weight

1.1e-09
1.5e-10

1.1e-11
3.7e-13

2.4e-14
2.5e-14
1.5e-14
9.7e-15
5.8e-15
1.2e-14

2.8e-14
7.2e-13

2.8e-10
2.5e-08

5.5e-07
4.2e-06 (g)

1 2 3 4 5
Real 6 #104

-4

-2

0

2

4

Im
a
g
6

#104 Scalar weight

0.001
0.00082

0.00063
0.00042

0.00018
1.7e-06

1.5e-12
8.6e-17
9.3e-17
1.5e-12
1.7e-06

0.00018
0.00042

0.00063
0.00082

0.001

(d)

1 2 3 4 5
Real 6 #104

-4

-2

0

2

4

Im
a
g
6

#104 Our weight

1.5e-06
2.2e-07

1.8e-08
5.5e-10

3.6e-12
3.5e-15

5.2e-16
8.7e-16
1.3e-15
1.4e-15
9.7e-15

8.6e-12
8.7e-10

2.4e-08
3e-07

2e-06

(f)

Figure 5: Solving linear systems of the gun problem by infGMRES without weighting (b, c),
with scaling weighting (18) (d, e) and with our weighting (14) (f, g). (a) shows a full picture of
the distribution of the expansion points and quadrature nodes.

Our future work may involve developing a machine learning-based adaptive strategy for se-
lecting expansion points automatically. Additionally, we may implement a block variant of
infGMRES to efficiently solve all right-hand sides.

20

Acknowledgments
We would like to thank Guillaume Demésy for providing us with the data from the photonics test
case. Y. Liu and M. Shao were partly supported by the National Natural Science Foundation of
China under grant No. 92370105. J. E. Roman was supported by grant PID2022-139568NB-I00
funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”. This
work was carried out while Y. Liu was visiting Universitat Politècnica de València.

References
[1] Junko Asakura, Hiroto Sakurai, Tetsuya Tadano, Tsutomu Ikegami, and Kinji Kimura. A

numerical method for polynomial eigenvalue problems using contour integral. Japan J.
Indust. Appl. Math., 27(1):73–90, 2010. doi:10.1007/s13160-010-0005-x.

[2] Junko Asakura, Tetsuya Sakurai, Hiroto Tadano, Tsutomu Ikegami, and Kinji Kimura. A
numerical method for nonlinear eigenvalue problems using contour integrals. JSIAM Lett.,
1:52–55, 2009. doi:10.14495/jsiaml.1.52.

[3] Manuel Baumann and Martin B. Van Gijzen. Nested Krylov methods for shifted linear
systems. SIAM J. Sci. Comput., 37(5):S90–S112, 2015. doi:10.1137/140979927.

[4] Timo Betcke. Optimal scaling of generalized and polynomial eigenvalue problems. SIAM J.
Matrix Anal. Appl., 30(4):1320–1338, 2009. doi:10.1137/070704769.

[5] Timo Betcke, Nicholas J. Higham, Volker Mehrmann, Christian Schröder, and Françoise Tis-
seur. NLEVP: A collection of nonlinear eigenvalue problems. ACM Trans. Math. Software,
39(2):1–28, 2013. doi:10.1145/2427023.2427024.

[6] Wolf-Jürgen Beyn. An integral method for solving nonlinear eigenvalue problems. Linear
Algebra Appl., 436(10):3839–3863, 2012. doi:10.1016/j.laa.2011.03.030.

[7] Felix Binkowski, Fridtjof Betz, Rémi Colom, Patrice Genevet, and Sven Burger. Poles and
zeros in non-Hermitian systems: Application to photonics. Phys. Rev. B, 109(4):045414,
2024. doi:10.1103/PhysRevB.109.045414.

[8] Carmen Campos and Jose E. Roman. NEP: a module for the parallel solution of nonlinear
eigenvalue problems in SLEPc. ACM Trans. Math. Software, 47(3):1–29, 2021. doi:10.
1145/3447544.

[9] Tzu-Yi Chen and James W. Demmel. Balancing sparse matrices for computing eigenvalues.
Linear Algebra Appl., 309(1-3):261–287, 2000. doi:10.1016/S0024-3795(00)00014-8.

[10] Siobhán Correnty, Elias Jarlebring, and Kirk M. Soodhalter. Preconditioned infinite GMRES
for parameterized linear systems. SIAM J. Sci. Comput., pages S120–S141, 2023. doi:
10.1137/22M1502380.

[11] Guillaume Demésy, André Nicolet, Boris Gralak, Christophe Geuzaine, Carmen Campos,
and Jose E. Roman. Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode
computations of frequency-dispersive photonic open structures. Comput. Phys. Common.,
257:107509, 2020. doi:10.1016/j.cpc.2020.107509.

[12] Cedric Effenberger and Daniel Kressner. Chebyshev interpolation for nonlinear eigenvalue
problems. BIT. Numer. Math., 52:933–951, 2012. doi:10.1007/s10543-012-0381-5.

21

https://doi.org/10.1007/s13160-010-0005-x
https://doi.org/10.14495/jsiaml.1.52
https://doi.org/10.1137/140979927
https://doi.org/10.1137/070704769
https://doi.org/10.1145/2427023.2427024
https://doi.org/10.1016/j.laa.2011.03.030
https://doi.org/10.1103/PhysRevB.109.045414
https://doi.org/10.1145/3447544
https://doi.org/10.1145/3447544
https://doi.org/10.1016/S0024-3795(00)00014-8
https://doi.org/10.1137/22M1502380
https://doi.org/10.1137/22M1502380
https://doi.org/10.1016/j.cpc.2020.107509
https://doi.org/10.1007/s10543-012-0381-5

[13] Andreas Frommer and Uwe Glässner. Restarted GMRES for shifted linear systems. SIAM
J. Sci. Comput., 19(1):15–26, 1998. doi:10.1137/S1064827596304563.

[14] Mauricio Garcia-Vergara, Guillaume Demésy, and Frédéric Zolla. Extracting an accurate
model for permittivity from experimental data: hunting complex poles from the real line.
Optics Letters, 42(6):1145–1148, 2017. doi:10.1364/OL.42.001145.

[15] Brendan Gavin, Agnieszka Międlar, and Eric Polizzi. FEAST eigensolver for nonlinear
eigenvalue problems. J. Comput. Sci., 27:107–117, 2018. doi:10.1016/j.jocs.2018.05.
006.

[16] Anne Greenbaum, Miroslav Rozložnik, and Zdenek Strakoš. Numerical behaviour of the
modified Gram–Schmidt GMRES implementation. BIT. Numer. Math., 37(3):706–719,
1997. doi:10.1007/BF02510248.

[17] Stefan Güttel and Françoise Tisseur. The nonlinear eigenvalue problem. Acta Numer.,
26:1–94, 2017. doi:10.1017/S0962492917000034.

[18] Stefan Güttel, Roel Van Beeumen, Karl Meerbergen, and Wim Michiels. NLEIGS: A class
of fully rational Krylov methods for nonlinear eigenvalue problems. SIAM J. Sci. Comput.,
36(6):A2842–A2864, 2014. doi:10.1137/130935045.

[19] Nicholas J. Higham, D. Steven Mackey, Françoise Tisseur, and Seamus D. Garvey. Scaling,
sensitivity and stability in the numerical solution of quadratic eigenvalue problems. Int. J.
Numer. Method Engineering, 73(3):344–360, 2008. doi:10.1002/nme.2076.

[20] Varun Hiremath and Jose E. Roman. Acoustic modal analysis with heat release fluctuations
using nonlinear eigensolvers. Appl. Math. Comput., 458:128249, 2023. doi:10.1016/j.amc.
2023.128249.

[21] Elias Jarlebring and Siobhán Correnty. Infinite GMRES for parameterized linear systems.
SIAM J. Matrix Anal. Appl., 43(3):1382–1405, 2022. doi:10.1137/21M1410324.

[22] Elias Jarlebring, Wim Michiels, and Karl Meerbergen. A linear eigenvalue algorithm for
the nonlinear eigenvalue problem. Numer. Math., 122(1):169–195, 2012. doi:10.1007/
s00211-012-0453-0.

[23] Daniel Kressner and Jose E. Roman. Memory-efficient Arnoldi algorithms for linearizations
of matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl., 21(4):569–588,
2014. doi:10.1002/nla.1913.

[24] Philippe Lalanne, Wei Yan, Alexandre Gras, Christophe Sauvan, J.-P. Hugonin, Mondher
Besbes, Guillaume Demésy, M. D. Truong, B. Gralak, F. Zolla, A. Nicolet, F. Binkowski,
L. Zschiedrich, S. Burger, J. Zimmerling, R. Remis, P. Urbach, H. T. Liu, and T. Weiss.
Quasinormal mode solvers for resonators with dispersive materials. J. Opt. Soc. Am. A,
36(4):686–704, 2019. doi:10.1364/JOSAA.36.000686.

[25] Ding Lu, Yangfeng Su, and Zhaojun Bai. Stability analysis of the two-level orthogonal
Arnoldi procedure. SIAM J. Matrix Anal. Appl., 37(1):195–214, 2016. doi:10.1137/
151005142.

[26] Volker Mehrmann and Heinrich Voss. Nonlinear eigenvalue problems: A challenge for mod-
ern eigenvalue methods. GAMM-Mitteilungen, 27(2):121–152, 2004. doi:10.1002/gamm.
201490007.

22

https://doi.org/10.1137/S1064827596304563
https://doi.org/10.1364/OL.42.001145
https://doi.org/10.1016/j.jocs.2018.05.006
https://doi.org/10.1016/j.jocs.2018.05.006
https://doi.org/10.1007/BF02510248
https://doi.org/10.1017/S0962492917000034
https://doi.org/10.1137/130935045
https://doi.org/10.1002/nme.2076
https://doi.org/10.1016/j.amc.2023.128249
https://doi.org/10.1016/j.amc.2023.128249
https://doi.org/10.1137/21M1410324
https://doi.org/10.1007/s00211-012-0453-0
https://doi.org/10.1007/s00211-012-0453-0
https://doi.org/10.1002/nla.1913
https://doi.org/10.1364/JOSAA.36.000686
https://doi.org/10.1137/151005142
https://doi.org/10.1137/151005142
https://doi.org/10.1002/gamm.201490007
https://doi.org/10.1002/gamm.201490007

[27] Xianshun Ming. Quasinormal mode expansion method for resonators with partial-fraction
material dispersion, 2023. arXiv:2312.11048, doi:10.48550/arXiv.2312.11048.

[28] André Nicolet, Guillaume Demésy, Frédéric Zolla, Carmen Campos, Jose E. Roman, and
Christophe Geuzaine. Physically agnostic quasi normal mode expansion in time dispersive
structures: From mechanical vibrations to nanophotonic resonances. Eur. J. Mech. A/Solids,
100:104809, 2023. doi:10.1016/j.euromechsol.2022.104809.

[29] Eric Polizzi. Density-matrix-based algorithms for solving eigenvalue problems. Phys. Rev. B,
79:115112, 2009. doi:10.1103/physrevb.79.115112.

[30] Tetsuya Sakurai and Hiroshi Sugiura. A projection method for generalized eigenvalue
problems using numerical integration. J. Comput. Appl. Math., 159(1):119–128, 2003.
doi:10.1016/S0377-0427(03)00565-X.

[31] Tetsuya Sakurai and Hiroshi Sugiura. CIRR: a Rayleigh–Ritz type method with contour
integral for generalized eigenvalue problems. Hokkaido Math. J., 36(4):745–757, 2007. doi:
10.14492/hokmj/1272848031.

[32] Ping Tak Peter Tang and Eric Polizzi. FEAST as a subspace iteration eigensolver accelerated
by approximate spectral projection. SIAM J. Matrix Anal. Appl., 35(2):354–390, 2014.
doi:10.1137/13090866X.

[33] Françoise Tisseur and Nicholas J. Higham. Structured pseudospectra for polynomial eigen-
value problems, with applications. SIAM J. Matrix Anal. Appl., 23(1):187–208, 2001.
doi:10.1137/S0895479800371451.

[34] Lloyd N. Trefethen and J. A. C. Weideman. The exponentially convergent trapezoidal rule.
SIAM Rev., 56(3):385–458, 2014. doi:10.1137/130932132.

[35] Roel Van Beeumen, Karl Meerbergen, and Wim Michiels. A rational Krylov method
based on Hermite interpolation for nonlinear eigenvalue problems. SIAM J. Sci. Comput.,
35(1):A327–A350, 2013. doi:10.1137/120877556.

[36] Roel Van Beeumen, Karl Meerbergen, and Wim Michiels. Compact rational Krylov methods
for nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl., 36(2):820–838, 2015. doi:
10.1137/140976698.

[37] Shinnosuke Yokota and Tetsuya Sakurai. A projection method for nonlinear eigenvalue
problems using contour integrals. JSIAM Lett., 5:41–44, 2013. doi:10.14495/jsiaml.5.41.

23

http://arxiv.org/abs/2312.11048
https://doi.org/10.48550/arXiv.2312.11048
https://doi.org/10.1016/j.euromechsol.2022.104809
https://doi.org/10.1103/physrevb.79.115112
https://doi.org/10.1016/S0377-0427(03)00565-X
https://doi.org/10.14492/hokmj/1272848031
https://doi.org/10.14492/hokmj/1272848031
https://doi.org/10.1137/13090866X
https://doi.org/10.1137/S0895479800371451
https://doi.org/10.1137/130932132
https://doi.org/10.1137/120877556
https://doi.org/10.1137/140976698
https://doi.org/10.1137/140976698
https://doi.org/10.14495/jsiaml.5.41

	Introduction
	Preliminaries
	Nonlinear eigenvalue problems
	Beyn's algorithm
	Infinite GMRES

	Proposed algorithm
	Weighting
	Compact representation of the Arnoldi basis

	Implementation details of the algorithm
	Scaling is essentially a weighting strategy on GMRES
	On polynomial eigenvalue problems
	How to choose expansion points

	Numerical experiments
	Experiment settings
	Overall performance on the test examples
	Comparison on different weighting strategies

	Conclusion

