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Magic-angle twisted bilayer graphene is a tunable material with remarkably flat energy bands
near the Fermi level, leading to fascinating transport properties and correlated states at low tem-
peratures. However, grown pristine samples of this material tend to break up into landscapes of
twist-angle domains, strongly influencing the physical properties of each individual sample. This
poses a significant problem to the interpretation and comparison between measurements obtained
from different samples. In this work, we study numerically the effects of twist-angle disorder on
quantum electron transport in mesoscopic samples of magic-angle twisted bilayer graphene. We
find a significant property of twist-angle disorder that distinguishes it from onsite-energy disorder:
it leads to an asymmetric broadening of the energy-resolved conductance. The magnitude of the
twist-angle variation has a strong effect on conductance, while the number of twist-angle domains is
of much lesser significance. We further establish a relationship between the asymmetric broadening
and the asymmetric density of states of twisted bilayer graphene at angles smaller than the first
magic angle. Our results show that the qualitative differences between the types of disorder in
the energy-resolved conductance of twisted bilayer graphene samples can be used to characterize
them at temperatures above the critical temperatures of the correlated phases, enabling systematic
experimental studies of the effects of the different types of disorders also on the other properties
such as the competition of the different types of correlated states appearing at lower temperatures.

I. INTRODUCTION

Twisted bilayer graphene (TBG) is a fascinating two-
dimentional (2D) material that exhibits exceptionally flat
energy bands with nontrivial topological properties and
van Hove singularities near the Fermi level at certain
magic twist angles [1–6], leading to an appearance of su-
perconductivity and other correlated phases at low tem-
peratures due to the large density of states [7–21] and
strongly energy-dependent transport due to the van Hove
singularities [22]. The presence of such rich phenomena
in a simple carbon-based 2D structure with a tunable pa-
rameter makes TBG one of the best model systems for
investigating the exotic flat-band physics.

Experimental and theoretical studies have shown that
magic-angle TBG is very sensitive to the twist angle. In
particular, the width of the quasi-flat energy bands and
their overall topology changes abruptly with variations
of even a tenth of a degree of twisting. Moreover, the
TBG samples typically crystallize into unique landscapes
of domains with slightly varying twist angles [23–25],
and with the current fabrication techniques the twist-
angle variation can be reduced down to a range of δθ ≈
0.1◦ [23]. Therefore, it is important to understand the
effect of twist-angle disorder on the physical properties
of TBG. Previous theoretical works on twist-angle disor-
der in TBG have used a variety of approaches, such as
a real-space domain models [26, 27], non-uniform moiré
patterns with a minimal continuous model [28], trans-
mission calculations though one-dimensional variation of

twist angle in minimal continuous models [27, 29, 30],
and a Landau-Ginzburg theory to study the interplay
between electron-electron interactions and disorder [31].
In this work we introduce a novel method for the study of
twist-angle disorder in TBG, in which we induce disorder
via the interlayer hopping amplitude instead of directly
through the twist angle. This approach is possible due
to the equivalence of small deviations in twist-angle and
interlayer hopping amplitude discussed in our previous
work [22].

Most of the research on TBG has so far focused on
observables in the thermodynamic limit and on trans-
port in macroscopic samples in the semiclassical regime
[32, 33]. Previous quantum transport studies of TBG
have addressed specific questions, such as the angle-
dependent minimal conductivity and effects of onsite dis-
order [34, 35], transport across twist-angle domains [29],
and emergent magnetic textures in driven TBG [36].
Studies on quantum transport have often used crossed
graphene nanoribbons [37–39], where the scattering re-
gion is smaller than the magic-angle moiré unit cell. In
our previous work we showed that quantum transport in
mesoscopic TBG samples allow to probe the electronic
properties in an energy-resolved fashion, revealing de-
tailed effects arising from the quasi-flat band topology
and van Hove singularities [22]. Such kind of quantum
transport calculations can retain information about co-
herent quantum effects over the length scale of many
magic-angle moiré unit cells.

In this paper we study the effects of twist-angle disor-
der on the two-terminal conductance in mesoscopic TBG
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samples containing approximately one million sites, near
the first magic angle θm ≈ 1.05◦. We first show that
small deviations of twist angle and interlayer hopping
amplitude induce the same changes to the topology of the
moiré bands and to the electron density of states (DOS),
and the interval of twist angles in which this equivalence
takes place is larger than the variation of the twist an-
gle in the state-of-the-art experimental samples. Then
we demonstrate that the effects of twist-angle disorder
are qualitatively different from onsite-energy disorder by
comparing the energy-resolved conductances. Finally, we
establish a connection between the differences observed
in the conductances and DOS in the presence of these
two types of disorder. Our findings show that conduc-
tance measurements can be used to quantify the type and
strength of disorder present in TBG samples at temper-
atures higher than the critical temperatures of the cor-
related phases, enabling comparisons between measure-
ments obtained from different samples and systematic
experimental studies of the dependencies of the various
physical properties on the disorder.

The structure of the paper is as follows. In Sec. II we
introduce the two-terminal geometry for quantum trans-
port calculations and the tight-binding model. In Sec. III
we show the local equivalence between the variation of
twist angle and interlayer hopping amplitude in magic-
angle TBG, and describe how we use this equivalence
to induce disorder in the samples. In Sec. IV we show
the effects of twist-angle disorder and onsite-energy dis-
order on the energy-resolved conductance as a function
of disorder strength and number of disorder domains. In
Sec. V we present the effects of twist-angle and onsite-
energy disorder on the DOS, and show how they relate
to the conductance results. Finally, we summarize our
results in Sec. VI.

II. MODEL AND SETUP

To study quantum transport through a TBG region
formed by two crossed graphene ribbons, as illustrated
in Fig. 1, we utilize similar approach as in our previous
work [22]. The ribbons are placed such that for θ = 0 the
two layers are stacked in a AA fashion, and then they are
rotated relative to each other by an angle around the cen-
ter of the overlap region. The continuation of the top rib-
bon outside the bilayer region defines one semi-infinite,
monolayer graphene lead, which we use for our trans-
port calculations (see red section in Fig. 1). In contrast
to Ref. [40], we make the leads metallic by setting the
chemical potential of the leads far away from the Dirac-
point energy, and deep into the bulk of the spectrum,
to contain as many modes as possible. As shown in our
previous work [22], this setup realizes a short and wide
contact capable of probing the properties of the system
in an energy resolved fashion, thanks to the large number
(thousands) of modes in the leads.

The low-energy properties of TBG have been stud-
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FIG. 1. Twisted bilayer graphene setup: two crossed
graphene nanoribbons with leads (red) form a bilayer region.
The top layer is twisted relative to the bottom layer around
the center of the overlap region by an angle θ ≈ 1.05◦. Each
color in the sample represents a twist-angle domain. We show
a system of width W ≈ 50nm and length L ≈ 250nm, which
is the actual size of the systems considered in this work.

ied using continuum models [2, 41, 42], ab-initio cal-
culations [37–39], and tight-binding models [1, 43–46].
Continuum models are long-wavelength, low-energy the-
ories and, therefore, cannot fully capture the details at
lengths and energy scales relevant to transport in meso-
scopic systems. The ab-initio calculations are compu-
tationally expensive to model samples sufficiently large
to overcome finite-size effects at small twist angles, and
thereby the effects attributable to the electronic proper-
ties of the bulk are necessarily obscured. Therefore, in
this work we adopt the tight-binding model approach,
which is able to accurately capture the low-energy elec-
tronic properties of TBG over a wide range of twist angles
in the vicinity of the first magic angle [44, 45] and al-
lows to efficiently study systems with close to 106 lattice
sites. In our conductance calculations we used samples
of 4×20 magic-angle moiré unit cells, which is equivalent
to 50 nm × 250 nm.

The Hamiltonian for TBG is H = H1+H2+H12, where
H1,2 are the nearest-neighbor tight-binding Hamiltonians
of the individual layers [47]

Hm = −t
∑

⟨i,j⟩,σ

c†imσcjmσ − µ
∑
i,σ

c†imσcimσ, (1)

and H12 contains interlayer-coupling terms [40, 44, 45]

H12 = −
∑

⟨i,j⟩,σ

t′(rij) c
†
i,2,σcj,1,σ + H.c., (2)

where rij = |ri − rj | is the in-plane distance between
two lattice sites in different layers at positions ri and rj ,
respectively, and t′(r) is the isotropic interlayer hopping
integral given by

t′(r) = V 0
ppσ e

−
(√

r2+d2
0−d0

)
/λ d20

r2 + d20
. (3)

Here c†imσ (cimσ) creates (annihilates) a pz electron with
spin σ =↑, ↓ at lattice site ri of the m-th layer (m =
1, 2), t = 3.09 eV is the nearest-neighbor hopping am-
plitude [44], µ is the chemical potential, V 0

ppσ = 0.39 eV
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is the nearest-neighbor interlayer coupling, d0 = 3.35 Å
is the distance between the graphene layers, and λ is
the decay parameter. In accordance with Ref. 44, we use
λ = 0.27 Å, which reproduces the band structures of AA-
and AB-stacked BLG. Making use of the rapidly decaying
nature of the hopping integral t(r) in Eq. (3), we further
neglect interlayer terms with r > 5 Å, which is sufficient
to accurately capture the moiré bands of TBG near the
first-magic angle. We set µ = 2 eV in the leads, such that
the leads are metallic, and µ = 0 throughout the scat-
tering region. In our calculations we use the quantum
transport Python package kwant [48].

We further aim to draw a connection between trans-
port signatures and spectral features of the bulk. For a
countable set of commensurate twist angles, the emerging
moiré pattern is periodic, and forms a hexagonal super-
lattice, so that we can impose periodic boundary condi-
tions on the moiré unit cell and calculate the moiré band
structure, from which we can extract the bulk DOS. The
set of commensurate twist angles has an accumulation
point at zero, thus at small angles θ ≈ 1◦ we find a
commensurate twist angle in the vicinity (δθ ≲ 0.1◦) of
any angle. In conductance calculations we use a com-
mensurate twist angle θm = arccos(2976.5/2977)◦ ≈
1.05◦, which is located near the experimentally discov-
ered magic-angle θ ≈ 1.1◦ [9]. At θm the moiré lat-
tice constant is a ≈ 15 nm, the moiré bands are re-
markably flat (bandwidth ∆E ≈ 3 meV), and we ob-
tain the strongest conductance signal [22], but we note
that the smallest bandwidth of the moiré bands in our
model occurs at the commensurate twist angle θ =
arccos(3168.5/3169)◦ ≈ 1.02◦, which is also used in our
DOS calculations, similarly as the commensurate twist
angle θ = arccos(2790.5/2791)◦ ≈ 1.08◦ (see below). We
emphasize that the commensurate angles are only used to
enable efficient calculation of the DOS. The conductance
does not depend on whether the system is commensu-
rate or incommensurate. Throughout this work, we align
E = 0 with the energy of the Dirac points at the K and
K′ points of the moiré Brillouin zone (BZ).

We restrict our study to a non-interacting description
of the system, which is a good approximation as long as
the Fermi level is tuned away from the quasi-flat bands
or temperature is above the critical temperature of the
correlated phases. We note that even if the Fermi level is
tuned away from the quasi-flat bands, the transport can
still be studied in an energy-resolved manner across the
flat band energies by tuning the voltage bias. In this case,
only nonequilibrium quasiparticles are occupying the flat-
band states so that interaction effects are not expected
to be as important as in the case of equilibrium flat-band
systems. Alternatively, it is also possible to screen the in-
teractions so that a non-interacting description becomes
more accurate [49, 50]. From the practical perspective, it
is easiest to avoid the interaction-induced reconstruction
of the energy bands, which obscures the effects of van
Hove singularities and the disorder on transport, by in-
creasing the temperature above the critical temperature

FIG. 2. (a),(b) DOS and spectrum through high-symmetry
lines for θ ≈ 1.08◦ and θ ≈ 1.02◦, when the interlayer hop-
ping amplitude is fixed to V 0

ppσ = 390meV. (c),(d) Same for
interlayer hopping amplitudes V 0

ppσ = 377meV and V 0
ppσ =

403meV, when the twist angle is fixed to θm ≈ 1.05◦.

of the correlated phases. Therefore, in the following we
pay special attention also to the temperature dependence
of the conductance.

III. EFFECTIVE MODEL FOR TWIST-ANGLE
DISORDER

We begin by discussing the local equivalence between
twist angle and interlayer hopping amplitude in TBG.
Panels (a) and (b) in Fig. 2 show the DOS and the moiré
bands through high-symmetry lines of TBG at the two
commensurate angles closest to the first magic angle, at
a fixed interlayer hopping amplitude. Panels (c) and (d)
show the same at the first magic angle, with slightly
changed interlayer hopping amplitudes. The width of
the moiré bands, the position of van Hove singularities
(shown in Fig. 2 as peaks in the DOS) and the overall
topology of the bands is near identical. Thus, we can
evolve the moiré bands starting from the first magic an-
gle to its two nearest commensurate twist angles, one
below and one above it, either using twist angle or the
interlayer hopping amplitude as a parameter. Roughly
speaking, the twist angle in TBG tunes the coupling be-
tween the layers. Indeed, for large angles θ ⪆ 3◦ the
two layers are effectively decoupled, and consequently the
system has a conductance equal to twice that of mono-
layer graphene. On the other hand, at small angles the
graphene sheets show enhanced conductance, and near
θ ≈ 1◦ the graphene sheets are strongly coupled [22, 34].
Thus, it is not surprising that the twist angle has a sim-
ilar effect as the interlayer hopping amplitude, which by
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definition determines the strength of the interlayer cou-
pling. However, it is remarkable that also the changes in
the topology of the moiré bands are effectively identical
in the vicinity of the magic angle.

Using this approach we can establish an equivalence
between small twist-angle deviations δθ and interlayer
hopping amplitude deviations δV 0

ppσ. In our model δθ =

0.1◦ corresponds to δV 0
ppσ = 42.5meV. Furthermore, we

find that around θm this equivalence holds for deviations
in twist angle of more than δθ = 0.1◦, which is the re-
ported range of twist-angle disorder in pristine samples of
TBG using state-of-the-art experimental crystal growth
techniques [23]. We note that the center of the moiré
bands in energy is slightly different when varying V 0

ppσ in-
stead of θ. However, these shifts are so small that they do
not play a significant role in our analysis. Thus, for spec-
trum calculations we fix the center of the moiré bands at
E = 0.

We aim to study the effects of disorder in conduc-
tance, both with regard to disorder strength and number
of twist-angle domains throughout the sample. For this
purpose we generated smooth bubble-like domains (see
Fig. 1) by utilizing the contour lines g(x⃗) = C of a scalar
function g(x⃗) consisting of a sum of 2D Gaussian func-
tions, where the centers of the Gaussians are sampled
from uniform random distribution (see Appendix A). For
one set of parameters (twist angle, interlayer hopping
amplitude, and number of domains) we generate twenty
samples with randomized twist-angle domains. Then we
simulate twist-angle disorder in our samples by utilizing
the equivalence between twist angle and interlayer hop-
ping amplitude discussed above. Thus, we fix the twist
angle to θm ≈ 1.05◦, and induce disorder by deviating the
interlayer hopping amplitude in the twist-angle domains
as V 0

ppσ → V 0
ppσ+δV , where δV are sampled from the uni-

form random distribution U(−δVppσ, δVppσ). Thus, each
sample in the ensemble has a distinctive landscape of do-
mains and each domain has a slightly varying interlayer
hopping amplitude, as exemplified in Fig. 1. When cal-
culating the interlayer hopping between sites belonging
to different domains, we use the average of the interlayer
hopping amplitudes in each domain.

IV. EFFECTS OF DISORDER AND
TEMPERATURE ON CONDUCTANCE

For a two-terminal setup, the differential conductance
G is defined through the relation G = dI/dV , where
I is the current and V is the applied voltage. We are
interested in the conductance G(E) as a function of en-
ergy E = Ef + eV (controlled by V ) throughout the
energy window of the quasi-flat bands at the first magic
angle, which in our model has width ∆E ≈ 3meV. In the
Landauer-Büttiker formalism, the conductance G(E) is
related to the total transmission T (E) between the ter-
minals (sum over the transmissions probabilities between

FIG. 3. Energy-resolved disorder-averaged conductance G(E)
for Nd =: 3, 5, and 7 twist-angle domains. The strengths of
the twist-angle disorder are: (a) δθ ≈ 0.04◦ (corresponding
to δV 0

ppσ = 17meV), (b) δθ ≈ 0.08◦ (δV 0
ppσ = 34meV) and

(c) δθ ≈ 0.12◦ (δV 0
ppσ = 51meV). In the disorder average

we use an ensemble of 20 TBG samples (see Appendix A).
The conductance of the pristine TBG sample is shown for
comparison in all figures (blue line).

all incoming and outgoing modes) through the relation

G(E) = 2
e2

h

∫
dẼ

(
− ∂f(Ẽ − E)

∂Ẽ

)
T (Ẽ), (4)

where f(E) = 1/(eβE + 1) is the Fermi distribution,
β = 1/(kBT ) and the factor 2 originates from the spin
degeneracy. At zero temperature, −∂f(E)/∂E = δ(E),
and thus G(E) = (2e2/h)T (E). At nonzero tempera-
ture the derivative of the Fermi function in Eq. (4) has
a sharp peak centered at E and width proportional to
kBT . Thus, the conductance G(E) is determined by the
weighted average of the total transmission T (E) over an
energy window proportional to the thermal energy.

A. Effects of twist-angle disorder

The disorder-averaged conductance G(E) for a range
of values of disorder strength δθ (modelled via δVppσ as
discussed above) and number of domains Nd is shown
in Fig. 3. Already very small disorder strengths [(a)
δθ ≈ 0.04◦, (b) δθ ≈ 0.08◦ and (c) δθ ≈ 0.12◦] lead to
strong suppression of the conductance while the number
of domains influences the results only weakly. Interest-
ingly, the suppression is asymmetric in energy: The left
peak in the conductance of the pristine sample in Fig. 3,
which corresponds to a van Hove singularity in the hole
bands, is quickly washed out, while the right peak com-
ing from the electron bands is more robust. As we will
show in Sec. 6, this is due to the asymmetry of the DOS
of TBG below the first magic twist angle.

B. Effect of onsite-energy disorder

In order to highlight that the asymmetric effect of the
twist-angle disorder is a particularity of the type of dis-
order, we calculated the conductance G(E) for magic-
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FIG. 4. Energy-resolved disorder-averaged conductance G(E)
for different values of disorder strength δEOS . In the disorder
average we use an ensemble of 20 TBG samples. The conduc-
tance of the pristine TBG sample is shown for comparison.

FIG. 5. Disorder-averaged conductance G(E) of magic-angle
TBG samples at different temperatures for twist-angle dis-
order strengths (a) δθ ≈ 0.04◦ (δV 0

ppσ = 17meV) and (c)
δθ ≈ 0.08◦ (δV 0

ppσ = 34meV), and same for onsite-energy dis-
order strengths (b) δEOS = 17meV and (d) δEOS = 34meV.

angle TBG also in the presence of onsite-energy disorder,
see Fig. 4. In this case the broadening and suppression
of the conductance peaks is clearly symmetric, and for
sufficiently strong disorder the two peaks merge so that
maximum conductance appears in the middle of them.

C. Effect of temperature

Figure 5 shows the temperature-dependence of the
disorder-averaged conductance G(E) calculated using
Eq. (4). The asymmetric suppression of the conductance
in the presence of twist-angle disorder is visible at tem-
peratures below 3 K [panels (a), (c)], so that these G(E)
curves can be clearly distinguished from the G(E) curves
in the presence of onsite-energy disorder [panels (b), (d)].
The typical critical temperatures of the correlated phases
in magic-angle TBG are Tc ≈ 1-2 K, which means that
the type and the strength of the disorder present in the
samples can be characterized at T > Tc.

FIG. 6. DOS of magic-angle TBG samples averaged over (a)
an ensemble of samples with interlayer couplings uniformly
distributed within the range V 0

ppσ ∈ [377, 403] meV and (b) an
ensemble of samples with Fermi levels uniformly distributed
within the range Ef ∈ [−200, 200] meV.

V. EFFECTS OF DISORDER ON THE
DENSITY OF STATES

The conductance peaks in magic-angle TBG are re-
lated to van Hove singularities in the DOS [22]. Thus,
we investigated if the asymmetry in the suppression of
the peaks shown in Fig. 3 is connected to asymmetries in
the DOS near the first magic angle. Indeed, Fig 2 shows
that for twist angles below θm (panels (b) and (d)) the
DOS of the hole bands is spread wider in energy than the
DOS of the electron bands.

Fig 6(a) shows the DOS averaged over an ensemble of
twenty samples with twist angles in the vicinity of the
magic angle. The averaged DOS is spread wider and
has a smaller peak in the hole bands than in the elec-
tron bands. For comparison, if we average the DOS over
an ensemble of samples with different Fermi levels [see
Fig. 6 (b)], we find a symmetric averaged DOS. This
clearly indicates that the asymmetric suppression of the
conductance in magic-angle TBG is a particularity of the
twist-angle disorder.

VI. CONCLUSION

Twist-angle disorder is thought to be one of the main
reasons behind the variations between the properties of
the different magic-angle TBG samples. In this paper, we
have shown that the twist-angle disorder leads to signif-
icant suppression of the conductance. The conductance
depends strongly on the strength of the twist-angle vari-
ations but the size of twist-angle domains influences the
conductance only weakly. Remarkably, we found that the
effect twist-angle disorder is qualitatively different from
the effect of onsite-energy disorder in magic-angle TBG.
Namely, the twist-angle disorder leads to the asymmet-
ric suppression of the conductance peaks originating from
the van Hove singularities in the electron and hole bands,
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whereas the onsite-energy disorder suppresses these con-
ductance peaks symmetrically. This difference is a useful
tool for the characterization of the type and strength of
the disorder present in each magic-angle TBG sample be-
cause the effect is observable at temperatures above the
critical temperatures of the correlated phases. We fur-
ther found that the asymmetric suppression of the con-
ductance is a consequence of the asymmetry of the DOS
at angles below the magic angle θm ≈ 1.05◦. This is an-
other important finding because it indicates that for an-
gles significantly above θm the twist-angle disorder does
not lead to this kind of asymmetric effects.
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sisted commensuration resonance in disordered twisted
bilayer graphene, Phys. Rev. B 109, 085412 (2024).
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FIG. A1. Three representative examples of rectangular pris-
tine samples broken into Nd domains with smooth boundaries:
(a) Nd = 3, (b) Nd = 5 and Nd = 7. Each color represents
one domain.

would raise questions regarding the physical meaning of
having Nd distinct domains. Thus, we demand that the
domains have at least an area of 10% of the domain aver-
age (As/Nd, where As is the area of the whole sample).

We find that smooth bubble-like boundaries for the
domains can be created by utilizing the contour lines
g(x⃗) = C of a scalar function

g(x⃗) =

N∑
i=1

1

σ
√

2π
e

|x⃗−x⃗i|
2

2σ2 , (A1)

consisting of a sum of N 2D Gaussian functions, where
the centers x⃗i are sampled from uniform random distri-
bution and the standard deviations σ are equal to each
other. We thus define a domain as a region in the sample

enclosed by such a contour line and the boundaries of
the sample. Domains that are fully interior to a another
domain, i.e. holes in the bigger domain, are deleted (the
hole is filled and the area added to the containing do-
main). Finally, we define the area which remains after
taking out all domains defined above from the sample
as a distinct domain, even if it is composed of separated
regions. Figure A1 shows three samples, with 3 (panel
(a)), 5 (panel (b)) and 7 (panel (c)) domains. The resid-
ual domain described above is shown in blue.

To obtain the randomized samples we consider the
ranges of parameters N ∈ [20, 50], σ ∈ [1.0, 5.0] and
C ∈ [0.01, 0.2] of Eq. (A1). We then fix the desired num-
ber of domains to Nd = 3, 5 or 7, and generate random-
ized samples with Nd domains until we have an ensemble
of 20. Samples with other Nd, or which contain very
small domains (less than 10% of the domain average) are
discarded. Therefore, for each set of values N , σ and C,
we obtain an ensemble of 20 randomized samples.

Finally, we want to have domains that are similar in
size. For this purpose, for a given Nd, of all the ensembles
generated we select the one with the smallest standard
deviation σa of the area of domains. The resulting three
ensembles are the ones we utilized for the results shown
in Fig. 3.

We note that we discard samples having small domains
because these domains would affect very little the con-
ductance of the sample, and thus obscure the physical
meaning of having an ensemble of samples with exactly
Nd domains. Furthermore, sharp and small domains are
not typically found in real TBG samples. Furthermore,
one could propose the deletion of small domains instead
of repetition of the randomization process, but this would
increase the variance of the area in the ensembles, as
possibly multiple small domains would be added to the
already typically largest residual domain.
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