
TableLLM: Enabling Tabular Data Manipulation by LLMs in Real
Office Usage Scenarios

Xiaokang Zhang
1∗
, Jing Zhang

1
, Zeyao Ma

1∗
, Yang Li

1∗
, Bohan Zhang

1∗
, Guanlin Li

1∗
, Zijun Yao

2
,

Kangli Xu
2
, Jinchang Zhou

2
, Daniel Zhang-Li

2
, Jifan Yu

2
, Shu Zhao

3
, Juanzi Li

2
, Jie Tang

2

1
School of Information, Renmin University of China, China

2
Computer Science, Tsinghua University

3
Computer Science, Anhui University, China

{zhang2718,zhang-jing,zeyaoma}@ruc.edu.cn,{juanzi,jietang}@tsinghua.edu.cn

{yaozj20,xukl21,zhoujc21,zlnn21,yujf21}@mails.tsinghua.edu.cn,zhaoshuzs2002@hotmail.com

ABSTRACT

We introduce TableLLM, a robust large language model (LLM) with

13 billion parameters, purpose-built for proficiently handling tab-

ular data manipulation tasks, whether they are embedded within

documents or spreadsheets, catering to real-world office scenarios.

We propose a distant supervision method for training, which com-

prises a reasoning process extension strategy, aiding in training

LLMs to understand reasoning patterns more effectively as well as a

cross-way validation strategy, ensuring the quality of the automati-

cally generated data. To evaluate the performance of TableLLM,

we have crafted a benchmark tailored to address both document

and spreadsheet formats as well as constructed a well-organized

evaluation pipeline capable of handling both scenarios. Thorough

evaluations underscore the advantages of TableLLM when com-

pared to various existing general-purpose and tabular data-focused

LLMs.We have publicly released the model checkpoint, source code,

benchmarks, and a web application for user interaction
1
.

KEYWORDS

Large language model, Tabular data manipulation

1 INTRODUCTION

A substantial amount of data is routinely structured in tabular for-

mats, a format widely embraced across various industries for differ-

ent purposes. For instance, they enable bank employees to monitor

transactions and detect fraud, assist human resources in managing

employee information efficiently, and facilitate government agen-

cies in conducting censuses and surveys for policy-making. While

tabular data is ubiquitous, specific table-related tasks can be labori-

ous, error-prone, and require specialized skills. Automating these

tasks offers significant benefits to both academic and industrial

sectors, attracting considerable interest [4, 10].

Conventionalmethods for processing tabular data predominantly

focus on adapting language model architectures, incorporating ele-

ments like position embeddings, attention mechanisms, and learn-

ing objectives to encode the inherent structural attributes of tabular

data [13, 14, 26, 41]. However, a shift in paradigm has occurred

with the rise of large language models (LLMs) like GPT-4 [28],

GPT-3.5 [29], and PaLM2 [2]. Recent research emphasizes craft-

ing precise prompts that integrate crucial partial information from

provided tabular data and leveraging external programming lan-

guages like SQL and Python. This approach facilitates a step-by-step

1
https://tablellm.github.io/

∗
Work was done when interned at Zhipu AI.

Figure 1: Illustration of the user study about (a) table-related

tasks (tableQA, table revision, chart, table matching, dupli-

cate data removal, etc.); (b) table formats (Excel, Word, etc.);

(c) table length (Small: < 50 rows, Large: ≥ 50 rows).

Chain-of-thought (COT) [36] inference process by close-sourced

LLMs [7, 19, 23, 40, 46]. The availability of open-source LLMs, exem-

plified by Llama [34], enables the fine-tuning of models for tabular

data processing, as demonstrated by TableLlama [44].

Numerous previous studies have focused on improving a model’s

reasoning capabilities for table question answering (tableQA) [7, 14,

19, 24, 26, 40, 41, 44, 46]. Moving beyond tableQA, some of these

endeavors have also tackled diverse table-related tasks, including

fact verification [19, 26, 40, 44, 46], column type annotation [24, 44],

table matching [24], schema augmentation [24, 44], and more. How-

ever, many of these efforts, while valuable in an academic context,

may fall short of reflecting the complete realism of individuals

working with tabular data in real-world office scenarios.

To capture authentic insights from office users, we conduct an

extensive user study utilizing a questionnaire focused on various

tasks related to tables. The questionnaire is distributed to 507 par-

ticipants across diverse professions, aiming to capture their specific

ar
X

iv
:2

40
3.

19
31

8v
1

 [
cs

.C
L

]
 2

8
M

ar
 2

02
4

https://tablellm.github.io/

requirements in real-world office scenarios. For further details on

the user study, please refer to Section 3. The results, depicted in

Figure 1, reveal a clear preference among respondents for tasks

related to tableQA, table revision, chart creation, table matching.

Notably, tables in Excel/CSV andWord/PDF formats, as well as long

tables, emerged as the preferred choices among participants.

Challenges. Compared to academically-focused table tasks, real-

world office use of tabular data presents two primary challenges.

(1) Diverse Operations: user preferred tasks involve a wide range

of operations, including query, update, merge, and chart, which

go beyond the query operations in tableQA. (2) Unique Process-

ing Approaches for Different Formats:Word/PDF documents

often contain contextual textual data alongside tabular informa-

tion, allowing for hybrid querying. Excel/CSV spreadsheets, on the

other hand, contain regular and long tables, enabling more intricate

operations like update and merge.

While existing works either focus on leveraging LLMs’ ability

to derive answers directly from their internal parameters, particu-

larly suitable for document-embedded tabular data, or specialize

in writing and executing code to obtain answers from spreadsheet

tabular data, they each have limitations. The former struggles with

long tables and diverse operations in spreadsheets, while the latter

fails to handle hybrid queries involving both text and tabular data.

In summary, existing works have yet to effectively address both

types of tabular data simultaneously, meeting the requirements of

real-world office usage.

Our Solution. We present TableLLM, specifically designed to

handle a wide array of table operations encountered in spreadsheet

and document usage scenarios, named tabular data manipulation in

real office usage scenario. To facilitate model training, we introduce

a distant supervision method that complements the reasoning pro-

cess of existing benchmarks, aiding in training LLMs to understand

reasoning patterns more effectively. Additionally, we validate the

automatically generated questions and answers through a cross-

way validation strategy, ensuring data quality. We also provide a

theoretical analysis of the effectiveness of cross-way validation com-

pared to single-answer sampling and same-way validation. Utiliz-

ing this distant supervision training data, we fine-tune CodeLlama

(13B) [33], resulting in the development of TableLLM. This model

adeptly handles tabular data embedded within documents through

an inner-parameter-driven approach and spreadsheet-embedded

tabular data via a code-driven method.

A rigorous performance assessment is conducted, involving the

collection of primary tableQA test instances from existing bench-

marks and the creation of additional table manipulation instances

by an annotation team. Given the complex evaluation process under

the two scenarios, we design a meticulous evaluation method that

considers query, update, merge and chart operations with distinct

metrics. TableLLM proves to be on par with GPT-3.5 and even

outperforms the most capable commercial LLM GPT-4 in the

spreadsheet-embedded scenario.

Impact and Beneficial Groups In the realm of tabular data pro-

cessing research, our contributions encompass: (1) Addressing a

practical problem of tabular data manipulation in real-world office

usage scenarios. (2) Presenting techniques that extend reasoning

processing and integrate a cross-way validation strategy to en-

hance the quality of distant supervision training data. Theoretical

proof is provided for the effectiveness of cross-way validation. We

firmly believe that TableLLM holds significant potential to create

a positive impact on both industrial developers and users, owing

to the following contributions: (3) Delivering a high-quality open-

source LLM tailored for tabular data manipulation in both 7B and

13B, thereby enhancing accessibility and fostering collaboration

within the community. (4) Offering an online application service to

facilitate convenient usage and improve the overall user experience.

2 RELATEDWORK

We review table tasks, including basic analysis tasks represented

by tableQA, table manipulation, and advanced table data analysis.

TableQA-representedBasicAnalysis. Beyond the primary tableQA

task, various research endeavors tackle basic table analysis tasks like

fact verification, column type annotation, schema augmentation,

data-to-text, and more [8, 12–14, 19, 24, 26, 37, 39–41, 44, 46]. These

tasks commonly involve tables extracted from the web, typically of

relatively short length and interspersed with textual content.

Representation Learning. Many traditional methods, such

as TaBERT [41], TAPAS [14], TableGPT [13], Tableformer [39],

MATE [12], TUTA [35], Tabbie [18], TABT5 [1], TAG-QA [48] and

TURL [8], emphasize intricate encoder design, incorporating vari-

ous positional encodings and dense/sparse attention mechanisms

to represent tables. These methods also integrate reconstruction

losses at token, cell, and column levels. TAPEX [26] and GraPPa[42]

additionally integrate SQL execution as a pre-training task.

Finetuning LLM. As LLM capabilities progress, researchers are

shifting focus from intricate table encoding to gathering ample data

for training unified LLMs capable of handling multiple table-related

tasks. For instance, TableLlama [44] and TAT-LLM [51] fine-tune

the Llama2 (7B) model on various table-related benchmarks. Uni-

fiedSKG [37] further integrates structured data-related benchmarks,

like knowledge graph question answering, into the tuning process

of the T5 (3B) [32] model to address tasks requiring structured data.

Prompting LLM. Due to the closed-source nature of GPT series

LLMs and the high cost associated with fine-tuning these models,

researchers have focused on designing effective prompts for GPT

series LLMs to enable tableQA analysis tasks [3, 7, 19, 20, 40, 46, 47].

The approach typically involves a multi-step inference process,

breaking down the main question into subquestions, invoking ex-

ternal tools like SQL and Python to address these subquestions. For

instance, DATER [40] employs SQL, StructGPT [19] and Chain-of-

Table [3] use self-defined interfaces/actions, and ReAcTable [46]

employs SQL for querying tabular data and Python for handling

string manipulation tasks. In contrast to incorporating tool execu-

tion results directly into the LLM, Binder [7] integrates the LLM’s

generated results back into SQL/Python.

Table Manipulation. A new research direction aims to enhance

table manipulation capabilities, particularly focusing on tasks such

as insert, update, and delete operations within spreadsheet formats

like Excel and CSV, as well as databases [11, 23, 31, 45]. Such tasks

often involve working with lengthy and regular tables, making

it practical to utilize LLMs alongside tools to address them. For

instance, DB-GPT [38], ChatDB [15], C3 [11] and Din-SQL [31]

2

Table
operations

Query

Update

Merge

Chart

Filter
Aggregate

Group

Compute

Update
Delete
Insert

Sort

Sub query

Figure 2: Common operations for tabular data manipulation.

translate questions into SQL queries. SheetCopilot [23] and Data-

Copilot [45] develop their atomic interfaces based on Excel’s em-

bedded functions and various programming languages like C++

and Python, allowing LLMs to invoke them.

Advanced Analysis. Recently, researchers have redirected their

focus towards advanced table data analysis tasks [16, 22]. These

tasks involve intricate operations such as correlation analysis, fea-

ture engineering, and machine learning. The predominant methods

in this area enable LLMs to generate Pandas code, which offers

comprehensive support for advanced data analysis, facilitating the

handling of these advanced analysis tasks.

Summary. The majority of research still focuses on TableQA-

represented basic analysis tasks, with some beginning to explore ta-

ble manipulation and advanced analysis. Direct inference from LLM

parameters is common for basic tasks, while inferring code/APIs

and executing their results is favored for table manipulation and ad-

vanced analysis. However, current research seldom considers user

scenarios. SQL-invoked tasks suit database administrators, while

advanced analysis is for data analysts requiring in-depth pattern

analysis. For office usage, people prefer both QA tasks on document-

embedded tables and manipulation tasks on spreadsheet-embedded

tables. Existing methods fall short of fully supporting these needs.

3 USER STUDY AND PROBLEM DEFINITION

3.1 User Study

To gather authentic insights from office users, we conduct an ex-

tensive user study involving a questionnaire, focusing on two key

aspects: (1) inherent characteristics of tables and (2) exploration

of table-related tasks. The questionnaire covers usage frequency

of different tables, preferred length, and format options like Ex-

cel, CSV, Word, PDF, Markdown, and HTML. For tasks, we design

17 frequently mentioned ones, drawing inspiration from TableL-

lama [44] and Table-GPT [24]. We’ve distributed the questionnaire

to 507 diverse participants, including teachers, students, university

administrators, marketing professionals, HR personnel, and R&D

specialists. They’re asked about preferred table lengths, formats,

and frequently required tasks.

The user study findings, depicted in Figure 1, indicate a clear pref-

erence among participants for tasks such as tableQA, table revision,

chart creation, and table matching, followed by the data cleaning

related tasks, including error detection, duplicate data removal,

and missing value detection. Notably, table extraction, focused on

format conversion, is in demand but can be handled efficiently by

non-LLM tools, thus not considered LLM-related tasks. There’s

relatively less demand for tasks like column type annotation, entity

linking, and fact verification. Additionally, tables in Excel/CSV and

Word/PDF formats, along with long tables (typically in Excel/CSV

format), emerged as the preferred choices among participants. We

also present the complete questionnaire in Appendix A.2.

3.2 Problem Definition

Tabular Data refers to data organized in a table or grid format,

with rows and columns facilitating efficient organization and ac-

cess. Each row typically represents a different record, while each

column represents a different attribute of the record. On top of

it, document-embedded tabular data is tabular data integrated

into documents, often in compact formats within Word or PDF

files, accompanied by textual content for context and explanation,

while spreadsheet-embedded tabular data refers to tables within

spreadsheets, typically in Excel or CSV files, presented in regular

and extensive formats.

Operation Definition. In the user study, tableQA tasks are ad-

dressed by query operations, table revision tasks by update oper-

ations, table matching tasks by merge operations, and chart gen-

eration tasks are regarded as standalone operations. Furthermore,

data cleaning tasks such as error detection, duplicate removal, and

missing value detection can be handled using update operations.

In summary, tabular data manipulation tasks can be categorized

into four primary operations: query, update, merge, and chart, as

detailed in Figure 2. The “query” operation selects desired data,

encompassing filter, aggregate, group, sort, compute, and subquery

functionalities, effectively addressing most tableQA instances. The

“update” operation modifies or deletes existing data and adds new

data. “Merge” operation combines two tables into one. Lastly, the

“chart” operation visualizes table content using graphical represen-

tations such as bar, pie, or line charts. These operations serve as a

guide for generating supervision data, as discussed in Section 4.1.

Problem 1. Tabular Data Manipulation in Real Office Us-
age Scenarios focuses on developing an LLM that can perform a
range of query, update, merge, and chart operations with tabular data
embedded in documents and spreadsheets.

For document-embedded tabular data, querying specific infor-

mation is the primary user need, while for spreadsheet-embedded

tabular data, users often require querying, data modification, and

chart creation. Tasks for document-embedded data suit the LLM’s

inner parameters due to its text and tabular data handling profi-

ciency, whereas spreadsheet-embedded tasks demand a more intri-

cate, code-driven approach for effective manipulation.

4 TABLELLM

The overview design of TableLLM is shown in Figure 3, which

consists two primary aspects: (1) Distant Supervision Data Con-

struction. The development of distant supervision data involves

the integration of both existing benchmark training data and new

questions and answers generated from available tabular data. To

enhance the training of LLMs, we suggest expanding the reasoning

processes within benchmark data. This includes text-based reason-

ing for queries on document-embedded tabular data and code-based

reasoning for manipulations of spreadsheet-embedded tabular data.

Additionally, to assure the quality of the automatically generated

3

Figure 3: Overview illustration of TableLLM. The construction of distant supervision data involves two key steps: (1) expanding

the reasoning processes based on (question, answer) pairs from existing benchmarks, and (2) cross-way validation of generated

(question, answer) pairs. Model training necessitates unique prompts tailored to operations in different scenarios.

training data, we introduce a cross-way validation strategy. This

strategy utilizes diverse solution methods for cross-validation, en-

suring the reliability and accuracy of the data; (2) Model Training.

The training of the model utilizes distinct prompts for document-

embedded and spreadsheet-embedded tabular data.

4.1 Distant Supervision Data Construction

ExtendingReasoningProcess for ExistingBenchmarks. While

existing benchmarks offer ample training data for tableQA, the sim-

ple short answers provided by individual instances fall short for

tackling complex tabular data manipulation tasks, which often de-

mand intricate reasoning processes to derive answers effectively.

Therefore, we augment existing benchmarks by enriching their

reasoning processes to facilitate the training of LLMs.

Primarily, to address queries on document-embedded tabular

data, we gather training data from widely-adopted tableQA bench-

marks including WikiTQ [30], FeTaQA [27], and TAT-QA [50]. In-

spired by CoT [36], We extend the provided short answers by pre-

senting GPT-3.5 with the (question, answer) pairs and instructing

it to enhance the reasoning process. This augmentation is repre-

sented in textual form, rather than as code, to align with the nature

of queries involving hybrid text and tabular data inputs. We con-

jecture that expanding on the reasoning process beyond the short

answers during training could enhance the reasoning ability of

LLMs. Notably, for WikiTQ and FeTaQA that solely provide tabular

data, we supplement them by generating table descriptions using

GPT-3.5. Due to the inner-parameter-driven technique employed,

we impose a constraint on the length of input tables, limiting them

to a token count of fewer than 500. To validate the quality of these

text-based reasoning processes, we utilize CritiqueLLM [21], an

LLM model specialized in rating, to assess the consistency between

the reasoning process and the answers provided in the benchmarks.

Furthermore, to handle queries on spreadsheet-embedded tabu-

lar data, we compile training data from two Text2SQL benchmarks:

WikiSQL [49] and Spider [43]. Given that spreadsheet-embedded

tabular data manipulation primarily involves pure tabular data

inputs and complex table manipulations, it aligns more with code-

driven techniques. Thus, we select training instances fromWikiSQL

and Spider, as they correspond to SQL queries. However, instead

of directly using the provided SQL queries, we expand pandas

code as the reasoning process for each (question, answer) pair by

Deepseek [5], a recent powerful code LLM , as Pandas offers greater

flexibility to support functionalities such as chart beyond table

query, update, and merge. We ensure the quality of the generated

code by validating that the executed outcomes align with the pro-

vided answers in the benchmarks. Note for Spider, in line with

our focus on single-table operations typical in office scenarios, we

exclude multi-table queries and those whose SQL queries yield null

results, to better reflect real-world applications.

Automatically Generating Training Data by Cross-way Vali-

dation. While the training data derived from existing benchmarks

is of high quality, the variety of questions and answers, especially

the table update, merge, and chart operations they offer is limited.

To address this, we introduce a cross-way validation strategy for

automatically generating new questions and answers using only

the provided tabular data. The detailed process is as follows:

(1) Question Generation. We select 5,177 tables from WikiTQ,

5,000 from TAT-QA, and 4,019 from FeTaQA with less than 500

tokens to simulate document-embedded tabular data. For each ta-

ble, GPT-3.5 generates questions involving single or multiple table

query operations, as depicted in Figure 2. GPT-3.5 also creates con-

textual table descriptions for WikiTQ and FeTaQA-sourced tables,

while TAT-QA tables retain their original text context. Furthermore,

we select 1,300 long tables from GitTables [17]. For each table, we

4

generate 20 questions involving various table manipulation oper-

ations, as illustrated in Figure 2. Existing benchmarks typically

focus on table query operations, so update, chart, and merge opera-

tions are all generated. For query, update, and chart operations, we

prompt GPT-3.5 for question generation. However, for the merge

operation, given its well-defined nature, we directly construct tem-

plates to generate the merge question. Appendix A.7 provides the

prompts and templates used for question generation.

(2) Answer Generation and Cross-way Validation. For ques-

tions based on document-embedded tabular data, we employ GPT-

3.5 for both answer generation through inner-parameter and code-

driven solutions. The generated code is executed to produce an

answer, which serves as the reference. CritiqueLLM [21] is used

to evaluate the alignment between the inner-parameter-inferred

answer and this reference, thereby improving answer quality. Such

inner-parameter-driven and code-driven techniques offers diverse

solutions, constituting a form of cross-way validation.

This cross-validation approach is inspired by ensemble learn-

ing [9], which combines multiple weak learners to create a strong

learner. Building on this concept, we conduct an improved theo-

retical inference to ensure the quality of automatically generated

data. Let’s denote 𝑌𝑎 as the event that the first response is correct,

𝑌𝑏 as the event that the second response is correct, 𝑌 as the event

that both responses are correct, and 𝐸 as the event that the two re-

sponses are consistent. Based on these definitions, we can establish

the following theorem:

Theorem 4.1. (1) If 𝐴 and 𝐵 are drawn from the same distribution
such that 𝑃 (𝑌𝑎) = 𝑃 (𝑌𝑏) = 𝑝 > 1/2, then consistency checking
outperforms single inference, i.e., 𝑃 (𝑌 |𝐸) ≥ 𝑃 (𝑌𝑎).
(2) If 𝐴 and 𝐵 are further drawn from independent distributions, the
effect will be superior (in terms of expectation).

This theorem suggests that when the model’s probability of

providing correct answers exceeds 1/2, employing consistency veri-

fication is decisively more effective than direct inference. Moreover,

in terms of expected performance, utilizing cross-validation with

two independent distributions surpasses consistency checks with a

single distribution. The proof is provided in Appendix A.3.

Then for questions on spreadsheet-embedded tabular data, we

employ GPT-3.5 to generate a pandas code solution, which is then

followed by the generation of an alternative code solution using

GPT-3.5 again. The accuracy of the executed outcomes from the

first code are verified by comparing them with the outcomes of the

second code. Given the potential diversity of two coding solutions

resulting in the same answers, this dual-coding strategy can be

regarded as stemming from different distributions. Thus it also

functions as a cross-way validation method, ensuring the reliability

of the solutions.

4.2 Model Training

In the scenario of document-embedded tabular data, the input for

LLMs includes both the text and the entire content of the table.

However, in the case of spreadsheet-embedded tabular data, due to

the typically extensive length of the table, only the header and a

subset of rows are provided as input to the LLM. The prompt for the

merge operation, involving two tables, is distinct and specifically

designed. Figure 3 illustrates the specific prompts.

Given the prompt 𝑥 as input, we enable LLMs to generate ei-

ther the textural or code solution, collectively denoted as 𝑦. Subse-

quently, the training loss function is defined as:

L(𝑥,𝑦) = −
|𝑦 |∑︁
𝑖=1

log TableLLM(𝑦𝑖 |𝑥,𝑦 𝑗<𝑖),

where TableLLM(𝑦𝑖 |𝑥,𝑦 𝑗<𝑖) represents the probability of gener-

ating the 𝑖-th token of 𝑦 given 𝑥 and the preceding tokens of 𝑦.

This loss function resembles the standard language model loss but

exclusively considers the loss computed on 𝑦. We hybridize the

document-embedded and spreadsheet-embedded training data in

a 1:1 ratio, thoroughly shuffle them, and then partition them into

batches for training.

The trained single model addresses two types of data sources.

Given that code models tend to excel in reasoning-intensive tasks

compared to text models [25], combining the two data sources can

enhance text-level reasoning with code-level reasoning. Moreover,

a single model could alleviate deployment pressure.

4.3 Model Deployment as Web Application

We recently launch our TableLLM as a web application
2
, with a

screenshot shown in Figure 5. The typical workflow is as follows:

Users begin by uploading their tabular data embedded in docu-

ments (with support for Word and PDF formats) and spreadsheets

(supporting Excel and CSV formats). The system utilizes Grobid
3
to

parse PDF files and python-docx
4
for Word files, converting them

into CSV format for web visualization. Users then enter queries or

instructions in the query box. Depending on the type of uploaded

document or spreadsheet, appropriate prompts from Figure 3 guide

the TableLLM to generate answers. The response could be a table,

a chart, or a textual answer. Additionally, the application offers a

feature for merging two tables, where users can upload two spread-

sheets and specify the merging conditions in the query box
5
.

We open the application for trial to a diverse group including

teachers, students, administrators from universities, marketing pro-

fessionals, human resources personnel, and research and develop-

ment specialists. They are encouraged to provide feedback by click-

ing “Thumbs up” or “Thumbs down”. So far, we have collected 2,000

use cases from users, with 1,560 involving spreadsheet-embedded

scenarios (1,869 for single table operations and 131 for double ta-

ble operations) and 440 for document-embedded scenarios. Among

these, we have received 1,473 feedbacks with 1,293 “Thumbs up” and

180 “Thumbs down”, closely aligning with the performance metrics

reported in Table 2. We conduct an error analysis in Appendix A.4

for further improvement.

5 EXPERIMENT

5.1 Test Set Creation

We collect test sets from established benchmarks for document-

embedded query tasks, including WikiTQ [30], FeTAQA [27], and

TAT-QA [50]. Additionally, we incorporate the OTT-QA [6] dataset,

2
https://tablellm.github.io/

3
https://github.com/kermitt2/grobid

4
https://pypi.org/project/python-docx/

5
Currently, the system is configured to support the merging of two tables only.

5

https://tablellm.github.io/

Table 1: Benchmark (test set) statistics

Scenario Name Description Size

Document

-embedded

WikiTQ <500 tokens & add text 633

FeTaQA <500 tokens & add text 753

TAT-QA <500 tokens 800

OTT-QA <1000 tokens 1,987

Spreadsheet

-embedded

WikiSQL Remove vague questions 1,000

Spider Choose single table 512

Our created Query/Update/Merge/Chart 1,200

Both TableLLM-bench - 6,885

which features distinct tables and questions compared to our train-

ing data, to evaluate the generalization capabilities of our model.

For spreadsheet-embedded table tasks, we utilize test sets fromWik-

iSQL [49] and Spider [43], which align with our query operation

requirements. We extract the table, question, and answer from each

instance, omitting the SQL statement. To ensure quality, we select

clearly phrased questions with accurate answers from WikiSQL

and discard instances with vague questions or flawed SQL resulting

in multiple potential answers or incorrect results.

As no benchmarks exist for table update, merge, and chart oper-

ations, we create test set through human annotation. We choose

50 long tables from InfiAgent-DABench [16], ensuring they are en-

tirely distinct from our training data. Following the process outlined

in Section 4.1, we generate questions and answers. An annotator

team verifies and corrects the generated content, including an-

swers, codes, and operation types. They execute the code to ensure

functionality and check if the answers align with the questions,

making adjustments as needed. Since initial questions lack linguis-

tic diversity, we utilize five prominent models from Huggingface

for rewriting to enhance variety. This results in a composition of

10% original questions and 90% rewritten ones, with each model

contributing to 18% of the rewrites. Human annotators also manu-

ally review the questions to retain essential information and avoid

irrelevant additions. Table 1 displays the benchmark statistics.

5.2 Evaluation Approach

Given the diverse range of operation types in our dataset, we have

adopted a categorized evaluation approach to assess the perfor-

mance of models across different operations:

• Query operations: For the answers obtained through code

execution, we conduct an exact match comparison between

the model’s output and the ground truth answers to determine

correctness. However, for answers directly inferred via inner-

parameters, we rely on CritiqueLLM [21] to assign a score from

1 to 10 by comparing the model’s output with the ground truth

answers, with a score threshold of 7 considered correct. This

is because the generated answers are often lengthy and chal-

lenging to precisely match. We also conduct a meta evaluation

on CritiqueLLM’s rating scores by humans, obtaining 3% false

positive percentage and 4.25% false negative percentage, which

highlights the reliability of CritiqueLLM. Details about the meta

evaluation is provided in Appendix A.9.

• Update and merge operations: As these operations directly

modify tables, we require the model’s output to be the complete

modified table. We then perform an exact match comparison

between the model’s output and the ground truth answers to

determine correctness.

• Chart operations: Assessing charting operations is challeng-

ing through direct answer comparison. Instead, we compare

code output by the model with the corresponding code from the

ground truth answer. CritiqueLLM is once again employed to

compare the model’s output code with the ground truth code,

using a score threshold of 5 for evaluation.

Based on the correctness determination, we assess accuracy.

5.3 Comparison Methods

The comparison methods are categorized into four types:

• Pre-training and fine-tuning LLMs: This category encom-

passes models like TaPas [14] (based on BERT) TAPEX [26]

(based on BART), and TableLlama [44] (based on Llama2 (7B)).

• General LLMs: This group includes GPT-3.5 [29], GPT-4 [28],

and Llama2 (13B) [34].

• Coding-specific LLMs: This category contains LLMs tailored

for coding tasks, including CodeLlama [33] and DeepSeek [5].

• Prompt-driven LLMs: This group includes StructGPT [19],

ReAcTable [46], Binder [7], and DATER [40], focusing on creating

sophisticated prompts to guide LLMs in processing tabular data.

Baseline Selection Principle. We compare with methods fea-

turing fully-maintained codes runnable under Linux Server, thus

excluding ReAcTable [46] and SheetCopilot [23]. DataCopilot [45]

is also not considered due to its self-designed interfaces limited to

certain areas like finance. DIN-SQL [31] and C3 [11] are excluded as

they focus on generating SQL and rely on databases. Daagent [16],

designed for advanced data analysis, is also excluded as its func-

tionalities do not align with the intended scope of our assessment.

Implementation. (1) TaPas and TAPEX have individual check-

points trained on WikiTQ and WikiSQL. We assess their perfor-

mance in document-embedded tabular data scenarios using the

WikiTQ-trained versions and in spreadsheet-embedded tabular

data scenarios using the WikiSQL-trained versions. As for TableL-

lama, we evaluate its single checkpoint directly. (2) For both gen-

eral and coding-specific LLMs, we provide customized prompts

for scenarios involving the processing of document-embedded and

spreadsheet-embedded tabular data, as detailed in Appendix A.8. (3)

Prompt-driven LLMs follow their established prompts. StructGPT,

for instance, designs distinct prompts for WikiTQ, WikiSQL, and

Spider. We standardize StructGPT’s prompts for WikiTQ, TAT-QA,

FeTaQA, OTT-QA, and WikiSQL, aligning them with the prompts

used for WikiTQ. Meanwhile, both Binder and DATER use a sin-

gle unified set of prompts across all benchmarks. (4) TableLLM is

trained using both CodeLlama (7B) and CodeLlama (13B) versions.

During inference with our TableLLM , we consistently apply the

same set of prompts used during its training phase. The generated

distant supervision data is presented in Table 7 in Appendix A.6.

6

Table 2: Overall evaluation in both document-embedded and spreadsheet-embedded tabular data scenarios (%)

Model

Document-embedded tabular data Spreadsheet-embedded tabular data

Average accuracy Inference times

WikiTQ TAT-QA FeTaQA OTT-QA WikiSQL Spider Our created

TaPEX 38.55 – – – 83.90 15.04 – 45.83 1

TaPas 31.60 – – – 74.20 23.05 – 42.95 1

TableLlama 24.01 22.25 20.47 6.39 43.70 – – 23.36 1

Llama2-Chat (13B) 48.82 49.63 67.73 61.50 – – – 56.92 1

GPT-3.5 58.45 72.13 71.18 60.80 81.70 67.38 77.08 69.82 1

GPT-4 74.09 77.13 78.35 69.50 84.00 69.53 77.83 75.78 1

CodeLlama (13B) 43.44 47.25 57.24 49.72 38.30 21.88 47.58 43.63 1

Deepseek-Coder (33B) 6.48 11.00 7.12 7.44 72.50 58.40 73.92 33.84 1

StructGPT (GPT-3.5) 52.45 27.53 11.80 13.96 67.80 84.80 – 43.06 3

Binder (GPT-3.5) 61.61 12.77 6.85 5.13 78.60 52.55 – 36.25 50

DATER (GPT-3.5) 53.40 28.45 18.26 13.03 58.20 26.52 – 32.98 100

TableLLM (7B) 58.77 66.88 72.64 63.11 86.60 82.62 78.83 72.68 1

TableLLM (13B) 62.40 68.25 74.50 62.51 90.70 83.40 80.83 74.66 1

* Underline represents the runner up.

5.4 Overall Experimental Results

Effectiveness. Table 2 displays the overall evaluation in two sce-

narios. “–” in the table indicates that the method does not sup-

port the dataset or that the tested accuracy is too low. The re-

sults show that TableLLM generally surpasses others in the

spreadsheet-embedded scenario and is on par with GPT-3.5

in the document-embedded scenario. Detailed findings include:

(1) TaPEX and TaPas show limited performance due to

their small model sizes. These two pre-training and fine-tuning

models, utilizing BART and BERT respectively, only demonstrate

relatively strong performance on WikiSQL and WikiTQ bench-

marks when using their respective trained versions.

(2) StructGPT, Binder, and DATER’s varying performance

across datasets suggests a limitation in the generalization

capability of prompt-driven LLMs. While these models, which

generate prompts for tabular data QA tasks, consistently perform

well in the WikiTQ benchmark, their performance weakens on

other datasets. StructGPT stands out in the Spider benchmark due

to its customized prompts tailored for this specific dataset.

(3) DeepSeek (33B) excels in the spreadsheet-embedded

tabular data scenario. This superior performance is attributed to

DeepSeek’s extensive optimization for coding capabilities, enabling

proficient code generation for processing spreadsheet-embedded

tabular data. However, this specialization in coding proficiency

comes at the expense of other abilities, such as direct answer infer-

ence from inner parameters.

(4) Our TableLLM outperforms both GPT-3.5 and GPT-4

in the spreadsheet-embedded scenario.Moreover, in our cre-

ated benchmark with entirely distinct tabular data and questions

from the training data, TableLLM achieves an impressive 80.83%

accuracy, showcasing robust generalization ability. Conversely, in

the document-embedded scenario, TableLLM matches GPT-3.5 but

slightly trails GPT-4, possibly due to the scenario’s demand for ex-

tensive commonsense reasoning with text data, where TableLLM

could benefit from enhanced training in text QA. It’s noteworthy

Table 3: Effect of diverse training data sources (%)

Train data

Document-embedded Spreadsheet-embedded

WikiTQ TAT-QA Spider Our created

CodeLlama (13B) 43.4 47.3 21.9 47.6

Original train data 49.9 53.4 – –

Extended train data 53.7 62.6 82.0 52.2

Generated train data 51.5 59.8 63.7 80.1

Mixed data 54.7 63.5 84.2 80.9

Table 4: Effect of cross-way validation strategy (%)

Validation strategy WikiTQ TAT-QA

Self-check validation 49.4 55.8

Same-way validation 49.6 58.2

Cross-way validation 51.5 59.8

that OTT-QA features entirely different tabular data and questions

from the training data, where TableLLM (7B) surpasses GPT-3.5 by

2.31% accuracy, further demonstrating its generalization prowess.

Efficiency. All methods, except prompt-driven LLMs, require only

one inference process per instance. However, Binder necessitates

a one-step inference for each instance, requiring 50 samples per

step for self-consistency validation. DATER requires four-step in-

ferences for each instance, with self-consistency validation at each

step, totaling 100 inferences per instance. StructGPT requires three

inferences per question.

5.5 Ablation Studies on Training Data

Effect of Diverse Training Data Sources. We analyze the in-

fluence of different training datasets by comparing five distinct

training configurations:

• CodeLlama (13B): The base version without any training.

7

• With original training data of existing benchmarks: Train

CodeLlama using 2,000 training instances from TAT-QA and

WikiTQ, then evaluate on corresponding test sets.

• With extended training data of existing benchmarks: Train

on 2,000 training instances fromWikiTQ/TAT-QA, supplemented

with extended reasoning process for each instance. Train on 2,000

training instances from Spider, supplementedwith extended code,

and evaluate on both Spider and our created test sets.

• With generated training data: Train on 2,000 generated in-

stances based on WikiTQ/TAT-QA’s tabular data, then test on

corresponding test sets. Train on 2,000 generated code-outputted

instances based on GitLab’s tabular data, and evaluate on Spider

and our created test sets.

• With mixed data: Train with a mix of 2,000 extended and 2,000

generated instances from TAT-QA/WikiTQ, then evaluate on

corresponding test sets. Train with amix of 2,000 extended Spider

training instances and 2,000 generated code-outputted instances,

and evaluate on both Spider and our created test sets.

The results presented in Table 3 demonstrate the effectiveness of

incorporating extended reasoning processes, showcasing a perfor-

mance boost of 3.8% and 9.2% on WikiTQ and TAT-QA respectively,

compared to using solely original training data (i.e., question and

answer pairs). This improvement is primarily attributed to the in-

clusion of detailed textual explanations of results, aiding LLMs

in recognizing reasoning patterns. Furthermore, the addition of

generated data yields an additional 1.6% and 6.4% enhancement in

performance over the original training data on WikiTQ and TAT-

QA, respectively, emphasizing the value of including answers with

reasoning processes. Notably, the combination of both extended

and generated training data leads to a significant 4.8% and 10.1%

increase in performance relative to using only the original data,

highlighting the advantages of integrating diverse data sources.

The results observed on Spider and our created test sets further

corroborate the benefits of extended and generated training data.

Effect of Cross-way Validation. We examine the effectiveness

of our proposed cross-way validation method, which assesses the

consistency between direct answer generation and code generation

solutions during the automatically generating training data process.

We compare it against two other validation methods: Same-way

validation, which generates two direct answers by the same inner-

parameter technique of GPT-3.5 and assesses their alignment using

CritiqueLLM, and Self-check validation, which enables GPT-3.5

to generate one textual solution and self-check its answer. Accord-

ing to the results presented in Table 4, our cross-way validation

method outperforms the other methods. This superior performance

is attributed to its use of two distinct responses, leading to more

reliable validation results.

5.6 Training Strategy Investigation

We investigate three training aspects: data size, the ratio between

document- and spreadsheet-embedded data, and shuffling data strat-

egy. We explore the following variants:

• Data size:Options include 1k, 2k, 5k, 10k, 20k, and 40k instances.

• Data ratio:The proportion of document- to spreadsheet-embedded

data, explored in ratios of 0:10, 2:8, 4:6, 5:5, 6:4, 8:2, and 10:0.

(a) Data size (b) Data ratio (c) Shuffle strategy

Figure 4: Effects of data size, ratio, and shuffle strategies.

• Shuffle strategy: Three approaches – full shuffle (instance-level

shuffling), batch shuffle (keeping instances within a batch of the

same type and shuffling batches), and epoch shuffle (keeping

instances within an epoch of the same type and shuffling epochs).

The default configuration for our experiments is 10k training

data instances, a 5:5 data ratio, and full shuffle. When evaluating

one factor, the default settings are maintained for the other factors.

Figure 4 illustrates the accuracies of TableLLM under various

training data settings. As depicted in Figure 4(a), performance gains

follow a log-linear relationship with the training data size, moti-

vating us to stop early at 40K, which offers a cost-effective balance.

Figure 4(b) indicates that a 5:5 ratio yields balanced performance

across both data types. Lastly, Figure 4(c) demonstrates that full

shuffle and batch shuffle lead to faster convergence than epoch

shuffle because epoch lacks a sufficient mixture of the two data

sources.

6 CONCLUSION

Our pioneering study introduces a TableLLM (13B) tailored for

tabular data manipulation in real office scenarios. We gather actual

requirements from office settings and identify document-embedded

and spreadsheet-embedded scenarios. Ensuring high-quality data

through extended reasoning processes and cross-way validation

on automatically generated training data, the resulting TableLLM

performs comparably to GPT-3.5 and even surpasses GPT-4 in the

spreadsheet-embedded scenario. We anticipate that our published

dataset, model checkpoint, and code will offer a cost-effective solu-

tion for researchers and developers aiming to enhance LLM capa-

bilities for tables and develop diverse table-related applications.

8

REFERENCES

[1] Ewa Andrejczuk, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene,

and Yasemin Altun. 2022. Table-to-text generation and pre-training with tabt5.

arXiv preprint arXiv:2210.09162 (2022).
[2] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,

Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,

Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-

Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebas-

tian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernández

Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan A. Botha, James Bradbury,

Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,

Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi

Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan

Dyer, Vladimir Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier

Garcia, Sebastian Gehrmann, Lucas Gonzalez, and et al. 2023. PaLM 2 Technical

Report. CoRR abs/2305.10403 (2023). https://doi.org/10.48550/arXiv.2305.10403

arXiv:2305.10403

[3] Anonymous. 2024. Chain-of-Table: Evolving Tables in the Reasoning Chain

for Table Understanding. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=4L0xnS4GQM

[4] Gilbert Badaro, Mohammed Saeed, et al. 2023. Transformers for Tabular Data

Representation: A Survey of Models and Applications. TACL (2023).

[5] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi

Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. 2024. DeepSeek

LLM: Scaling Open-Source Language Models with Longtermism. arXiv preprint
arXiv:2401.02954 (2024).

[6] Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William Wang, and William W

Cohen. 2021. Open Question Answering over Tables and Text. Proceedings of
ICLR 2021 (2021).

[7] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu,

Caiming Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A.

Smith, and Tao Yu. 2023. Binding Language Models in Symbolic Languages. ICLR
(2023).

[8] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: ta-

ble understanding through representation learning. Proceedings of the VLDB
Endowment 14, 3 (2020), 307–319.

[9] Thomas G Dietterich et al. 2002. Ensemble learning. The handbook of brain
theory and neural networks 2, 1 (2002), 110–125.

[10] Haoyu Dong, Zhoujun Cheng, et al. 2022. Table Pre-training: A Survey on Model

Architectures, Pre-training Objectives, and Downstream Tasks. In IJCAI.
[11] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu

Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT. CoRR
abs/2307.07306 (2023). arXiv:2307.07306

[12] Julian Eisenschlos, Maharshi Gor, Thomas Mueller, and William Cohen. 2021.

MATE: Multi-view Attention for Table Transformer Efficiency. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.
7606–7619.

[13] Heng Gong, Yawei Sun, Xiaocheng Feng, Bing Qin, Wei Bi, Xiaojiang Liu, and

Ting Liu. 2020. TableGPT: Few-shot Table-to-Text Generation with Table Struc-

ture Reconstruction and Content Matching. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics, Donia Scott, Nuria Bel, and
Chengqing Zong (Eds.). International Committee on Computational Linguistics,

Barcelona, Spain (Online), 1978–1988. https://doi.org/10.18653/v1/2020.coling-

main.179

[14] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno,

and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via

Pre-training. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel

Tetreault (Eds.). Association for Computational Linguistics, Online, 4320–4333.

https://doi.org/10.18653/v1/2020.acl-main.398

[15] Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao.

2023. ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory.

arXiv preprint arXiv:2306.03901 (2023).
[16] Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin Wang, Xuwu Wang,

Jing Su, Jingjing Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Kun Kuang, Yang Yang,

Hongxia Yang, and Fei Wu. 2024. InfiAgent-DABench: Evaluating Agents on

Data Analysis Tasks. arXiv:2401.05507 [cs.CL]

[17] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. Gittables: A large-

scale corpus of relational tables. Proceedings of the ACM on Management of Data
1, 1 (2023), 1–17.

[18] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. Tabbie:

Pretrained representations of tabular data. arXiv preprint arXiv:2105.02584 (2021).
[19] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin Zhao, and Ji-Rong Wen.

2023. StructGPT: A General Framework for Large Language Model to Reason

over Structured Data. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali

(Eds.). Association for Computational Linguistics, Singapore, 9237–9251. https:

//doi.org/10.18653/v1/2023.emnlp-main.574

[20] Ziqi Jin and Wei Lu. 2023. Tab-CoT: Zero-shot Tabular Chain of Thought. arXiv
preprint arXiv:2305.17812 (2023).

[21] Pei Ke, Bosi Wen, Zhuoer Feng, Xiao Liu, Xuanyu Lei, Jiale Cheng, Shengyuan

Wang, Aohan Zeng, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang.

2023. CritiqueLLM: Scaling LLM-as-Critic for Effective and Explainable Evalua-

tion of Large Language Model Generation. arXiv:2311.18702 [cs.CL]

[22] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-

moyer, Wen-Tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000: A

Natural and Reliable Benchmark for Data Science CodeGeneration. In Proceedings
of the 40th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,

Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 18319–

18345.

[23] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. 2023.

SheetCopilot: Bringing Software Productivity to the Next Level through Large

Language Models. In Thirty-seventh Conference on Neural Information Processing
Systems. https://openreview.net/forum?id=tfyr2zRVoK

[24] Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,

Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-

GPT: Table-tuned GPT for Diverse Table Tasks. arXiv:2310.09263 [cs.CL]

[25] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-

hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar,

Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove,

Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson,

Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu

Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul,

Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter

Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya

Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary,

William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. 2023.

Holistic Evaluation of Language Models. arXiv:2211.09110 [cs.CL]

[26] Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-

Guang Lou. 2022. TAPEX: Table Pre-training via Learning a Neural SQL Executor.

In International Conference on Learning Representations. https://openreview.net/

forum?id=O50443AsCP

[27] Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria Lin, Neha Verma, Rui

Zhang, Wojciech Kryściński, Hailey Schoelkopf, Riley Kong, Xiangru Tang,

Mutethia Mutuma, Ben Rosand, Isabel Trindade, Renusree Bandaru, Jacob Cun-

ningham, Caiming Xiong, and Dragomir Radev. 2022. FeTaQA: Free-form Table

Question Answering. Transactions of the Association for Computational Linguistics
10 (2022), 35–49.

[28] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:

//doi.org/10.48550/arXiv.2303.08774 arXiv:2303.08774

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,

Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan

Lowe. 2022. Training language models to follow instructions with hu-

man feedback. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/

b1efde53be364a73914f58805a001731-Abstract-Conference.html

[30] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on

Semi-Structured Tables. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), Chengqing Zong and
Michael Strube (Eds.). Association for Computational Linguistics, Beijing, China,

1470–1480. https://doi.org/10.3115/v1/P15-1142

[31] Mohammadreza Pourreza and Davood Rafiei. 2023. Din-sql: Decomposed

in-context learning of text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015 (2023).

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits

of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[33] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing

Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Ev-

timov, Joanna Bitton, Manish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori,

Wenhan Xiong, Alexandre D’efossez, Jade Copet, Faisal Azhar, Hugo Touvron,

Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023.

Code Llama: Open Foundation Models for Code. ArXiv abs/2308.12950 (2023).

https://api.semanticscholar.org/CorpusID:261100919

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem

Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,

Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar

Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,

Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,

9

https://doi.org/10.48550/arXiv.2305.10403
https://arxiv.org/abs/2305.10403
https://openreview.net/forum?id=4L0xnS4GQM
https://arxiv.org/abs/2307.07306
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.coling-main.179
https://doi.org/10.18653/v1/2020.acl-main.398
https://arxiv.org/abs/2401.05507
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://arxiv.org/abs/2311.18702
https://openreview.net/forum?id=tfyr2zRVoK
https://arxiv.org/abs/2310.09263
https://arxiv.org/abs/2211.09110
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.3115/v1/P15-1142
http://jmlr.org/papers/v21/20-074.html
https://api.semanticscholar.org/CorpusID:261100919

Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier

Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew

Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan

Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,

Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan

Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien

Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama

2: Open Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).

https://doi.org/10.48550/arXiv.2307.09288 arXiv:2307.09288

[35] ZhiruoWang, HaoyuDong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang.

2021. Tuta: Tree-based transformers for generally structured table pre-training.

In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining. 1780–1790.

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian

Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-

of-Thought Prompting Elicits Reasoning in Large Language Mod-

els. In NeurIPS. http://papers.nips.cc/paper_files/paper/2022/hash/

9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[37] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michi-

hiro Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang,

Victor Zhong, Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu Yao,

Dragomir Radev, Caiming Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,

Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG: Unifying and Multi-Tasking

Structured Knowledge Grounding with Text-to-Text Language Models. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Pro-
cessing, Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association
for Computational Linguistics, Abu Dhabi, United Arab Emirates, 602–631.

https://doi.org/10.18653/v1/2022.emnlp-main.39

[38] Siqiao Xue, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun

Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, et al. 2023.

DB-GPT: Empowering Database Interactions with Private Large Language Mod-

els. arXiv preprint arXiv:2312.17449 (2023).
[39] Jingfeng Yang, Aditya Gupta, Shyam Upadhyay, Luheng He, Rahul Goel, and

Shachi Paul. 2022. TableFormer: Robust Transformer Modeling for Table-Text

Encoding. In Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav Nakov,

and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin,

Ireland, 528–537. https://doi.org/10.18653/v1/2022.acl-long.40

[40] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. 2023.

Large Language Models Are Versatile Decomposers: Decomposing Evidence and

Questions for Table-Based Reasoning. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(<conf-loc>, <city>Taipei</city>, <country>Taiwan</country>, </conf-loc>)

(SIGIR ’23). Association for Computing Machinery, New York, NY, USA, 174–184.

https://doi.org/10.1145/3539618.3591708

[41] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.

TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data.

In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault

(Eds.). Association for Computational Linguistics, Online, 8413–8426. https:

//doi.org/10.18653/v1/2020.acl-main.745

[42] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi

Yang, Dragomir Radev, Richard Socher, and Caiming Xiong. 2020. Grappa:

Grammar-augmented pre-training for table semantic parsing. arXiv preprint
arXiv:2009.13845 (2020).

[43] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,

James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir

Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and

Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for

Computational Linguistics, Brussels, Belgium.

[44] Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. 2023. TableLlama: Towards

Open Large Generalist Models for Tables. arXiv:2311.09206 [cs.CL]

[45] Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. 2023. Data-

Copilot: Bridging Billions of Data and Humans with Autonomous Workflow.

arXiv preprint arXiv:2306.07209 (2023).
[46] Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep,

and Jignesh M. Patel. 2023. ReAcTable: Enhancing ReAct for Table Question

Answering. arXiv:2310.00815 [cs.DB]

[47] Bowen Zhao, Changkai Ji, Yuejie Zhang, Wen He, Yingwen Wang, Qing Wang,

Rui Feng, and Xiaobo Zhang. 2023. Large Language Models are Complex Table

Parsers. arXiv preprint arXiv:2312.11521 (2023).
[48] Wenting Zhao, Ye Liu, Yao Wan, Yibo Wang, Zhongfen Deng, and Philip S Yu.

2023. Localize, retrieve and fuse: A generalized framework for free-form question

answering over tables. arXiv preprint arXiv:2309.11049 (2023).
[49] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating

Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

[50] Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang,

Jiancheng Lv, Fuli Feng, and Tat-Seng Chua. 2021. TAT-QA: A Question An-

swering Benchmark on a Hybrid of Tabular and Textual Content in Finance.

In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto

Navigli (Eds.). Association for Computational Linguistics, Online, 3277–3287.

https://doi.org/10.18653/v1/2021.acl-long.254

[51] Fengbin Zhu, Ziyang Liu, Fuli Feng, Chao Wang, Moxin Li, and Tat-Seng Chua.

2024. TAT-LLM: A Specialized Language Model for Discrete Reasoning over

Tabular and Textual Data. arXiv preprint arXiv:2401.13223 (2024).

A APPENDIX

A.1 Web Application 10

A.2 The Survey Details 10

A.3 Verification of Cross-way Validation 11

A.4 Error Analysis 13

A.5 Training Environment and Settings 13

A.6 Training Data for TableLLM 13

A.7 Prompts for Automatically Generating Dataset 14

A.8 Prompts for Baselines 14

A.9 Meta Evaluation of CritiqueLLM 14

A.1 Web Application

We present a screenshot of the web application deployed with

our proposed TableLLM in Figure 5, where Figure 5(a) shows an

instruction with the update operation and Figure 5(b) shows an

instruction with the chart operation.

A.2 The Survey Details

We conduct a survey among universities and enterprises to as-

sess users’ needs for tabular data-related tasks in real office en-

vironments. We obtain a total of 507 valid responses, represent-

ing various roles, including research and development special-

ists (36.69%), teachers (14.40%), administrators (14.00%), students

(12.62%), marketing professionals (4.14%), and human resources

personnel (1.97%).

The survey results, depicted in Figure 1, reveal: (a) Participants’

demands for various table-related tasks, with TableQA (80.28%)

being the most sought-after, followed by Table revision (71.40%),

which involves creating, updating, and deleting tables. Tasks with

demand exceeding 200 include TableQA, Table revision, Chart cre-

ation, Table matching, Duplicate data removal, Error detection,

Missing value detection, and Table extraction. (b) Participants pre-

fer Excel, Word, PDF, and CSV formats, and (c) long tables with

more than 50 rows.

Below is the complete survey on table usage:

(1) What is your occupation?

A Student

B Teacher

C Administrator

D Human Resources Professional

E Marketing Professional

F Research and Development Specialist

G Others[Fill in the Blank]

(2) In your daily work, how often do you work with tables

(such as Excel, CSV, or direct access to databases)?

A Rarely use (less than once a day on average)

10

https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/2307.09288
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.emnlp-main.39
https://doi.org/10.18653/v1/2022.acl-long.40
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2310.00815
https://doi.org/10.18653/v1/2021.acl-long.254

B Occasionally use (1 to 5 times per day)

C Frequently use (5 to 20 times per day)

D Is my work theme (use more than 20 times a day)

(3) In your normal work, What are the sizes of tables that you

typically work with?[Multiple choice question]

A Tables under 50 rows.

B Tables over 50 rows.

(4) What types of tables do you typically encounter and handle

in your daily work?[Multiple choice question]

A Excel

B Word

C HTML

D CSV

E PDF

F Markdown

G Others[Fill in the Blank]

(5) Which Table manipulation tasks do you need to use in your

work?[Multiple choice question]

A TableQA, e.g.,

– Find the number of people with grade above 90;

– Group them according to 90-100 points, 80-90

points, 60-80 points and 60 points, and count the

number of people in each score segment;

– Find all conferences held in Jiangsu in the second

half of 2023;

B Table revision, e.g.,

– Sort by height column;

– Convert the Date column to Month/Day/year

format;

– Insert a column “total score”, representing the

weighted sum of 60% and 40% from the first to

the third column;

– Delete the “normal score” column;

C Chart, e.g.,

– Draw statistical drawings, such as line diagrams,

column charts, pie charts;

D None.

(6) Which Table cleaning tasks do you need in yourwork?[Multiple

choice question]

A Missing value detection, e.g.,

– Detect missing values and fill in the mean value

of the corresponding column;

B Error detection, e.g.,

– Check a cell whose format is not “month/day/year”

and convert it;

C Delete duplicate data, e.g.,

– To filter duplicate data by name, only keep the

first row with the same name;

D None.

(7) Which Table analysis tasks do you need in yourwork?[Multiple

choice question]

A Column type annotation, e.g.,

– Given some examples of a column like 1,000

RMB, 1,500 RMB, and 2,000 RMB, name the col-

umn;

B Entity linking, e.g.,

– Given a candidate combination of column names,

assign an appropriate column name to each col-

umn in the table;

C Row-to-row transform, e.g.,

– Predict the rating of the fourth team based on

the “win-loss rating” of the first three teams;

D Fact verification, e.g.,

– Based on the content of the table, determine

whether “profit growth in the first quarter of

2023 is 10%” is true;

E None.

(8) Which Table-to-Text tasks do you need in yourwork?[Multiple

choice question]

A Summarization, e.g.,

– Generate a title for the table;

B Dialogue generation, e.g.,

– Given the table and the history of the conversa-

tion, generate the next conversation;

C None.

(9) Which Table augmentation tasks do you need in your work?

[Multiple choice question]

A Row population, e.g.,

– Given “name”, “age”, “height”, generate specific

row data;

B Schema augmentation, e.g.,

– Given “Date”, “Growth rate”, “Net income”, ex-

pand the other columns;

C None.

(10) Do you need Table matching at work? (For example, merge

two tables as required)

A Yes, I need Table matching.

B No, I don’t need Table matching.

(11) Do you need Table extraction at work? (For example, orga-

nize the Markdown format table into Excel, extract a table

from the web page to Excel)

A Yes, I need Table extraction.

B No, I don’t need Table extraction.

(12) Do you have tabular tasks that do not fit into the above

categories? If yes, please give an example.[Fill in the Blank]

A.3 Verification of Cross-way Validation

We use 𝑌𝑎 to denote that the first response 𝐴 is correct, 𝑌𝑏 to de-

note that the second response 𝐵 is correct, 𝑌 to denote that both

responses are correct, and 𝐸 to denote that the two responses are

consistent. We will prove the following:

Theorem A.1. If 𝐴 and 𝐵 come from the same distribution 𝐷 ,
𝑃 (𝑌𝑎) = 𝑃 (𝑌𝑏) = 𝑝 > 1/2, then the consistency check is better
than single inference, that is, 𝑃 (𝑌 |𝐸) ≥ 𝑃 (𝑌𝑎).

Theorem A.2. If 𝑃 (𝑌𝑎) = 𝑃 (𝑌𝑏) = 𝑝 , 𝐴 and 𝐵 are sampled from
independent distributions 𝐷𝐴 and 𝐷𝐵 respectively, the outcome will
improve (in terms of expected value),

𝐸 [𝑃 (𝑌 |𝐸) |𝑌𝑎 ∼ 𝐷,𝑌𝑏 ∼ 𝐷] ≤ 𝐸 [𝑃 (𝑌 |𝐸) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵] .

11

Lemma A.1. If 1

2
≤ 𝑝 ≤ 1, then 𝑝2

𝑝2+(1−𝑝)2
≥ 𝑝 .

Proof.

𝑝2

𝑝2 + (1 − 𝑝)2
− 𝑝 =

𝑝2 − 𝑝 ((1 − 𝑝)2 + 𝑝2)
(1 − 𝑝)2 + 𝑝2

=
𝑝 (−2𝑝2 + 3𝑝 − 1)
(1 − 𝑝)2 + 𝑝2

=
𝑝 (1 − 𝑝) (2𝑝 − 1)
(1 − 𝑝)2 + 𝑝2

≥ 0.

□

Lemma A.2. If 𝑥1 + 𝑥2 + 𝑥3 + . . . + 𝑥𝑘 = 𝑆 and 𝑥1, 𝑥2, . . . , 𝑥𝑘 are
non-negative numbers, then

𝑥2

1
+ 𝑥2

2
+ 𝑥2

3
+ . . . + 𝑥2

𝑘
≥ 𝑆2

𝑘
.

Proof. According to the Cauchy-Schwarz inequality, we have

(𝑥2

1
+ 𝑥2

2
+ 𝑥2

3
. . . 𝑥2

𝑘
) =

1

𝑘
(1 + 1 + 1 + . . . + 1) (𝑥2

1
+ 𝑥2

2
+ 𝑥2

3
+ 𝑥2

𝑘
)

≥ 1

𝑘
(𝑥1 + 𝑥2 + 𝑥3 + . . . + 𝑥𝑘)2

=
𝑆2

𝑘
.

□

Lemma A.3. We define 𝑥 to represent the mean of a set of numbers

𝑥1, 𝑥2, . . . , 𝑥𝑛 , that is, 𝑥 =

∑𝑛
𝑖=1

𝑥𝑖
𝑛 .

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 =

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦) + 𝑛𝑥𝑦.

Proof.

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦) =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛∑︁
𝑖=1

(𝑥𝑖)𝑦 −
𝑛∑︁
𝑖=1

(𝑦𝑖)𝑥 +
𝑛∑︁
𝑖=1

𝑥𝑦

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑦

𝑛∑︁
𝑖=1

(𝑥𝑖) − 𝑥

𝑛∑︁
𝑖=1

(𝑦𝑖) + 𝑛𝑥𝑦

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛𝑦𝑥 − 𝑛𝑥𝑦 + 𝑛𝑥𝑦

=

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 − 𝑛𝑥𝑦.

Moving terms to the other side of the equation, thus proving. □

Proof of Theorem A.1. According to Bayes’ theorem,

𝑃 (𝑌 |𝐸) = 𝑃 (𝑌𝐸)
𝑃 (𝐸) =

𝑃 (𝑌𝐸)
𝑃 (𝑌𝐸) + 𝑃 (𝑌𝐸)

.

Since the two samplings are independent, we have

𝑃 (𝑌) = 𝑃 (𝑌𝑎𝑌𝑏) = 𝑃 (𝑌𝑎) · 𝑃 (𝑌𝑏) = 𝑝2,

𝑃 (𝐸𝑌) = 𝑃 (𝐸 |𝑌) · 𝑃 (𝑌) = 𝑃 (𝑌) = 𝑝2,

𝑃 (𝐸𝑌) = 𝑃 (𝐸𝑌𝑎𝑌𝑏) + 𝑃 (𝐸𝑌𝑎𝑌𝑏) + 𝑃 (𝐸𝑌𝑎𝑌𝑏)
= 𝑃 (𝐸𝑌𝑎𝑌𝑏)
= 𝑃 (𝑌𝑎𝑌𝑏)𝑃 (𝐸 |𝑌𝑎𝑌𝑏)
≤ 𝑃 (𝑌𝑎𝑌𝑏)
= (1 − 𝑝)2 .

Then:

𝑃 (𝑌 |𝐸) = 𝑃 (𝑌𝐸)
𝑃 (𝐸) =

𝑃 (𝑌𝐸)
𝑃 (𝑌𝐸) + 𝑃 (𝑌𝐸)

≥ 𝑝2

𝑝2 + (1 − 𝑝)2
≥ 𝑝.

□

Proof of Theorem A.2.

𝑃 (𝑌 |𝐸) = 𝑃 (𝑌𝐸)
𝑃 (𝑌𝐸) + 𝑃 (𝑌𝐸)

=
1

1 + 𝑃 (𝑌𝐸)
𝑃 (𝑌𝐸)

.

In order to increase the value above, with the numerator fixed

at 1, we need to reduce the denominator, which is as follows:

𝑃 (𝑌𝐸)
𝑃 (𝑌𝐸) =

𝑃 (𝐸 |𝑌) · 𝑃 (𝑌)
𝑃 (𝐸 |𝑌) · 𝑃 (𝑌)

=
𝑃 (𝐸 |𝑌) · 𝑃 (𝑌)

𝑃 (𝑌)

= 𝑃 (𝐸 |𝑌) · 𝑃 (𝑌)
𝑃 (𝑌)

= 𝑃 (𝐸 |𝑌) · 1 − 𝑃 (𝑌)
𝑃 (𝑌) .

In the above process, 𝑃 (𝑌) represents the probability that the

model provides two correct responses, which still equals to

𝑃 (𝑌) = 𝑃 (𝑌𝑎𝑌𝑏) = 𝑃 (𝑌𝑎) · 𝑃 (𝑌𝑏) = 𝑝2 .

Therefore, we should minimize 𝑃 (𝐸 |𝑌), meaning that if the gener-

ated responses are all incorrect, then the probability of them being

consistent should be minimized as soon as possible.

Now we only need to consider the probability of the model not

producing the correct answer, i.e., the probability of making errors.

Assuming there are a total of 𝑘 types of errors generated by the

model, 𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑘 , then 𝑃𝑎 (𝑒1)+𝑃𝑎 (𝑒2)+𝑃𝑎 (𝑒3)+ . . .+𝑃𝑎 (𝑒𝑘) =
𝑃𝑏 (𝑒1) + 𝑃𝑏 (𝑒2) + 𝑃𝑏 (𝑒3) + . . . + 𝑃𝑏 (𝑒𝑘) = 1 − 𝑝 . Then,

𝑃𝑎 (𝑒) = 𝑃𝑏 (𝑒) =
∑𝑘
𝑖=1

𝑃𝑎 (𝑒𝑖)
𝑘

=

∑𝑘
𝑖=1

𝑃𝑏 (𝑒𝑖)
𝑘

=
1 − 𝑝

𝑘
.

If 𝐴 and 𝐵 come from the same distribution 𝐷 , then 𝑃𝑎 (𝑒𝑖) =

𝑃𝑏 (𝑒𝑖), we can obtain

𝑃 (𝐸 |𝑌) = (𝑃𝑎 (𝑒1))2 + (𝑃𝑎 (𝑒2))2 + . . . + (𝑃𝑎 (𝑒𝑘))2 .

According to Lemma A.2 above, we see that the equation for

the same distribution is greater than or equal to
(1−𝑝)2

𝑘
. Since for

each distribution D, it is greater than or equal to this value, then its

expected value should also be greater than this value. That is,

𝐸 [𝑃 (𝐸 |𝑌) |𝑌𝑎 ∼ 𝐷,𝑌𝑏 ∼ 𝐷] ≥ (1 − 𝑝)2

𝑘
.

12

However, when 𝐴 and 𝐵 come from independent distributions

𝐷𝐴 and 𝐷𝐵 respectively, 𝑃 (𝐸 |𝑌) = 𝑃𝑎 (𝑒1)𝑃𝑏 (𝑒1) + 𝑃𝑎 (𝑒2)𝑃𝑏 (𝑒2) +
. . . + 𝑃𝑎 (𝑒𝑘)𝑃𝑏 (𝑒𝑘) =

∑𝑘
𝑖=1

𝑃𝑎 (𝑒𝑖)𝑃𝑏 (𝑒𝑖).
According to Lemma A.3,

𝑘∑︁
𝑖=1

𝑃𝑎 (𝑒𝑖)𝑃𝑏 (𝑒𝑖)

= 𝑘 · 𝑃𝑎 (𝑒) · 𝑃𝑏 (𝑒) +
𝑘∑︁
𝑖=1

(
(𝑃𝑎 (𝑒𝑖) − 𝑃𝑎 (𝑒)) (𝑃𝑏 (𝑒𝑖) − 𝑃𝑏 (𝑒))

)
=

(1 − 𝑝)2

𝑘
+

𝑘∑︁
𝑖=1

(
(𝑃𝑎 (𝑒𝑖) − 𝑃𝑎 (𝑒)) (𝑃𝑏 (𝑒𝑖) − 𝑃𝑏 (𝑒))

)
,

Meanwhile,

𝑘∑︁
𝑖=1

(
(𝑃𝑎 (𝑒𝑖) − 𝑃𝑎 (𝑒)) (𝑃𝑏 (𝑒𝑖) − 𝑃𝑏 (𝑒))

)
= 𝑘 ×

∑𝑘
𝑖=1

(
(𝑃𝑎 (𝑒𝑖) − 𝑃𝑎 (𝑒)) (𝑃𝑏 (𝑒𝑖) − 𝑃𝑏 (𝑒))

)
𝑘

= 𝑘 × Cov(𝑃𝑎 (𝑒), 𝑃𝑏 (𝑒)),
(In the above formula, Cov(𝑋,𝑌) represents the covariance of two
sets of numbers (𝑋,𝑌)).

𝐸 [𝑃 (𝐸 |𝑌) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵]

=
(1 − 𝑝)2

𝑘
+ 𝑘 · 𝐸 [𝐶𝑜𝑣 (𝑃𝑎 (𝑒), 𝑃𝑏 (𝑒)) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵] .

Given that 𝐷𝐴, 𝐷𝐵 are independently distributed, the expected

value of the covariance is 0.

𝐸 [𝑃 (𝐸 |𝑌) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵] =
(1 − 𝑝)2

𝑘
.

Compared with when A and B are from the same distribution,

we can derive the following inequality:

𝐸 [𝑃 (𝐸 |𝑌) |𝑌𝑎 ∼ 𝐷,𝑌𝑏 ∼ 𝐷]
≥ (1 − 𝑝)2/𝑘
= 𝐸 [𝑃 (𝐸 |𝑌) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵] .

Using the corollary obtained from our previous application of

Bayes’ theorem, as 𝑃 (𝐸 |𝑌) decreases, 𝑃 (𝑌 |𝐸) increases, we can

ultimately derive the following result. Therefore,

𝐸 [𝑃 (𝑌 |𝐸) |𝑌𝑎 ∼ 𝐷,𝑌𝑏 ∼ 𝐷] ≤ 𝐸 [𝑃 (𝑌 |𝐸) |𝑌𝑎 ∼ 𝐷𝐴, 𝑌𝑏 ∼ 𝐷𝐵] .
□

A.4 Error Analysis

In the part of document-embedded tabular data, we analyze a sam-

ple of 170 of the results that are significantly different from ground

truth. We classify these errors into four categories and display their

corresponding frequencies in Table 5. Question Understanding Er-

ror (as exemplified in Figure 6) suggests a lapse in comprehending

given question Computational Error (demonstrated in Figure 7) de-

notes an error occurring during comparison, calculation, or logical

operations. Intermediate Answer (depicted in Figure 8) signifies

that the model’s response is only an intermediate solution and does

Table 5: Error analysis for Document-embedded data

Error Type Size

Question Understanding Error 146

Computational Error 14

Intermediate Answer 7

Incomplete Answer 3

Table 6: Error analysis for Spreadsheet-embedded data

Error Type Size

Question Understanding Error 171

Data Type Error 55

Unrunnable Code Error 4

not fulfill the requirements for a final answer. Incomplete Answer

(portrayed in Figure 9) indicates that while there may be multiple

standard answers, the model only provides a partial response.

In the part of Spreadsheet-embedded tabular data, we analyze

a sample of 230 of the results that are significantly different from

ground truth, include 64 samples in TableQA category, 126 samples

in Table revision category (52 samples in Update category, 51 sam-

ples in Insert category, 23 samples in Delete category), 18 samples

in Chart category, and 22 samples in Table matching category.

We present the distribution of each type of error in Table 6.

Question Understanding Error (illustrated in Figure 10) indicates

an error during question comprehension. Data Type Error (demon-

strated in Figure 11) suggests that the model mishandles the data

type within the dataframe. The Unrunnable Code Error (shown

in Figure 12) denotes code generated by the model that does not

adhere to Pandas syntax, resulting in code failure.

A.5 Training Environment and Settings

Our experiments are conducted using PyTorch 2.1.2 on a server run-

ning the CentOS Linux 7 operating system. The system is equipped

with 8 NVIDIA A800 80GB GPUs, an Intel(R) Xeon(R) Platinum

8358 CPU, and 2048GB of RAM.

We set the learning rate to 2e-5, the batch size per GPU to 4, and

accumulate gradients over 4 steps, resulting in a total batch size of

128 across 8 GPU cards.

A.6 Training Data for TableLLM

Table 7 presents the statistics of the constructed distant supervision

data. To train TableLLM (7B) and TableLLM (13B), we initially

experiment with 4K data, maintaining a 1:1 ratio between document-

embedded and code-embedded data sources, which yield promising

results on code-embedded test sets. However, given that the back-

bone model, CodeLlama, is primarily a code model, it may slightly

compromise textual reasoning ability. To enhance performance on

document-embedded test sets, we include additional training data

for this scenario, resulting in a total of 73,157 training instances.

13

Table 7: Training data statistics

Scenario Name Description Size

Document

-embedded

WikiTQ (Extended) <500 tokens & add text 4,811

WikiTQ (Generated) <500 tokens & add text 10,916

FeTaQA (Extended) <500 tokens & add text 3,061

FeTaQA (Generated) <500 tokens & add text 7,236

TAT-QA (Extended) <500 tokens 12,781

TAT-QA (Generated) <500 tokens 7,391

Spreadsheet

-embedded

WikiSQL (Extended) Remove vague questions 12,000

Spider (Extended) Choose single table 3,374

Generated Query/Update/Merge/Chart 11,587

Both TableLLM-bench - 73,157

A.7 Prompts for Automatically Generating

Dataset

The prompt presented in Figure 13 is for generating questions

for both spreadsheet-embedded and document-embedded training

data.

We use templates to automatically generate table merge instruc-

tions, which are presented in the Figure 14.

A.8 Prompts for Baselines

To enhance the model’s ability to generate python code in the

specific format, we use the prompt shown in Figure 15 and Figure 16

to generate inference from Llama2-Chat (13B), GPT-3.5, GPT-4,

CodeLlama (13B) and Deepseek (33B) on Spreadsheet-embedded

tabular data. For Document-embedded tabular data, these models

use the same prompt as the proposed TableLLM, with prompts

shown in Figure 3. For TableLlama, StructGPT, Binder and DATER,

we use the prompts that they have already established.

A.9 Meta Evaluation of CritiqueLLM

We conduct a meta-evaluation of CritiqueLLM [21] through human

annotations.

Initially, we sample 400 instances from our test sets. Among

them, 200 instances are from the document-embedded test sets,

with WikiTQ, TAT-QA, FeTaQA, and OTT-QA each comprising 50

instances, and 200 instances are from the spreadsheet-embedded

test sets, with 150 instances for query operation and 50 instances for

chart operation. Other operations, including update and merge, are

not sampled because they are evaluated by exact match without the

need for CritiqueLLM. For each instance in the test set, CritiqueLLM

accepts the reference answer and the response of TableLLM as

input and outputs a score from 0 to 10 to reflect how well the assis-

tant’s answer matches the reference answer. The prompt to indicate

the scoring criteria to CritiqueLLM and instruct it to score is shown

in Figure 17. A response obtaining a score higher than a threshold

is considered correct. The threshold for document-embedded and

spreadsheet-embedded tabular data is set at 7 and 5, respectively.

Then we allow human annotators to score each response using the

same scoring criteria as CritiqueLLM. Finally, we compare the hu-

man rating results with CritiqueLLM’s rating results and compute

the proportion of false positive and false negative data, which refers

to the incorrect responses correctly judged by CritiqueLLM and the

correct responses that are mistakenly predicted by CritiqueLLM.

The comparative analysis of outcomes from CritiqueLLM and

human scoring results reveals that, within the document-embedded

tabular data, CritiqueLLM exhibits a false positive rate of 1% and

a false negative rate of 6%. For the spreadsheet-embedded tabular

data, the false positive rate noted is 5%, with a false negative rate

of 2.5%. Consequently, on the mixed test set, we obtain a 3% false

positive rate and a 4.25% false negative rate. The congruence in

the distribution of scores between CritiqueLLM and human evalua-

tions substantiates the validity of employing the CritiqueLLM for

assessing response quality.

We also analyze the reasons causing the errors of CritiqueLLM.

The false positive instances are primarily due to that the response

generated by TableLLM is long, and the reference answer is a

proper subset of the response. In this case, CritiqueLLM tends to

give a high score to model’s responses regardless of the incorrect

responses. Figure 18 and Figure 19 show representative examples of

false positives for document-embedded and spreadsheet-embedded

tabular data. False negatives are often caused by the model’s re-

sponse not providing a specific answer at the beginning or end of

the response, or the response is too long. Examples of false negatives

are illustrated in Figure 20 and Figure 21.

In our method, we also employ CritiqueLLM for judging whether

the extended reasoning process is consistent with the reference

answers. Thus, false positive instances judged by CritiqueLLM po-

tentially compromises the accuracy of model-generated responses.

Fortunately, the ratio of such instances only account for 3%. In

contrast, false negative instances do not detract from the model-

generated answer’s quality, because these instances are excluded

from the extended training data.

14

(a) Update operation

(b) Chat operation

Figure 5: The web application deployed with our TableLLM.

15

Error in Document-embedded data: Question Understanding Error

Table:

Binary,Octal,Decimal,Hexadecimal,Glyph

0011 0000,060,48,30,0

0011 0001,061,49,31,1

0011 0010,062,50,32,2

0011 0011,063,51,33,3

0011 0100,064,52,34,4

0011 0101,065,53,35,5

0011 0110,066,54,36,6

0011 0111,067,55,37,7

0011 1000,070,56,38,8

0011 1001,071,57,39,9

Question: Are there more decimal numbers in the 40s or 50s?

Answer: 50s

Assistant answer:

To determine whether there are more decimal numbers in the 40s or 50s, we need to count the number of decimal numbers in each range.

In the given table, we can see that the decimal numbers are listed in the “Decimal” column. We need to count the number of rows that have decimal

values in the 40s and 50s.

Here is the solution:

- Count the number of rows with decimal values in the 40s:

- 40: 0, 41: 1, 42: 2, 43: 3, 44: 4, 45: 5, 46: 6, 47: 7, 48: 8, 49: 9

- There are 10 decimal numbers in the 40s.

- Count the number of rows with decimal values in the 50s:

- 50: 0, 51: 1, 52: 2, 53: 3, 54: 4, 55: 5, 56: 6, 57: 7, 58: 8, 59: 9

- There are 10 decimal numbers in the 50s.

Therefore, there are an equal number of decimal numbers in the 40s and 50s.

Figure 6: Question Understanding Error. In this case, the model counts all numbers from 40 to 49 and from 50 to 59, erroneously

including numbers that do not exist in the table.

16

Error in Document-embedded data: Computational Error

Table:

Rank,Name,Nationality,1st (m),2nd (m),Points

1,Matti Hautamäki,FIN,132.0,131.5,274.3

2,Tami Kiuru,FIN,128.5,130.5,264.7

3,Janne Ahonen,FIN,127.0,130.5,264.0

4,Adam Małysz,POL,127.0,130.5,261.5

5,Andreas Kofler,AUT,126.5,132.0,261.3

11,Jakub Janda,CZE,123.5,128.5,252.6

Question: How many participants have a final score more than 262?

Answer: 3

Assistant answer:

To determine how many participants have a final score more than 262, we need to look at the “Points” column in the table provided.

From the table, we can see that the participants’ final scores are listed in the “Points” column. We need to count the number of rows

where the score is greater than 262.

Let’s go through the table and count the participants with a final score more than 262:

1. Matti Hautamäki - FIN - 274.3 > 262

2. Tami Kiuru - FIN - 264.7 > 262

3. Janne Ahonen - FIN - 264.0 > 262

4. Adam Małysz - POL - 261.5 > 262

5. Andreas Kofler - AUT - 261.3 > 262

6. Jakub Janda - CZE - 252.6 < 262

Based on the table, there are 4 participants who have a final score more than 262.

Figure 7: Computational Error. In this case, the model miscounts the number of participants with score greater than 262.

17

Error in Document-embedded data: Intermediate Answer

Table:

#,Player,Goals,Caps,Career

1,Landon Donovan,57,155,2000–present

2,Clint Dempsey,36,103,2004–present

3,Eric Wynalda,34,106,1990–2000

4,Brian McBride,30,95,1993–2006

5,Joe-Max Moore,24,100,1992–2002

6T,Jozy Altidore,21,67,2007–present

6T,Bruce Murray,21,86,1985–1993

8,Eddie Johnson,19,62,2004–present

9T,Earnie Stewart,17,101,1990–2004

9T,DaMarcus Beasley,17,114,2001–present

Question: How many years was eric wynalda’s career?

Answer: 10

Assistant answer:

Eric Wynalda’s career spanned from 1990 to 2000.

Figure 8: Intermediate Answer: Here, the model provides only the start and end times without calculating the duration.

Error in Document-embedded data: Incomplete Answer

Table:

Rank,Nation,Gold,Silver,Bronze,Total

1,China (CHN),127,63,33,223

2,Japan (JPN),46,56,77,179

3,South Korea (KOR),32,48,65,145

4,Chinese Taipei (TPE),12,34,26,72

5,Macau (MAC),11,16,17,44

6,North Korea (PRK),6,10,20,36

7,Hong Kong (HKG),2,2,9,13

8,Mongolia (MGL),1,1,6,8

9,Guam (GUM),0,0,1,1

Total,Total,237,230,254,721

Question: Which nation won more bronze medals than china?

Answer: Japan (JPN), South Korea (KOR)

Assistant answer:

The nation that won more bronze medals than China is Japan. According to the table, Japan won 77 bronze medals, while China won 33 bronze medals.

Figure 9: Incomplete Answer: In this scenario, the model correctly identifies that Japan won more bronze medals than China

but fails to mention that South Korea also achieved a higher number of bronze medals than China.

18

Error in Spreadsheet-embedded data: Question Understanding Error

Table:

mpg,cylinders,displacement,horsepower,weight,acceleration,modelyear,origin

18.0,8,307.0,130.0,3504.,12.0,70,1

15.0,8,350.0,165.0,3693.,11.5,70,1

18.0,8,318.0,150.0,3436.,11.0,70,1

16.0,8,304.0,150.0,3433.,12.0,70,1

17.0,8,302.0,140.0,3449.,10.5,70,1

15.0,8,429.0,198.0,4341.,10.0,70,1

14.0,8,454.0,220.0,4354.,9.0,70,1

14.0,8,440.0,215.0,4312.,8.5,70,1

14.0,8,455.0,225.0,4425.,10.0,70,1

15.0,8,390.0,190.0,3850.,8.5,70,1

Question: Delete all records where ’modelyear’ is less than 1975 and ’origin’ is 3.

Reference code:

import pandas as pd

Load the data from the csv file

df = pd.read_csv(’data.csv’)

Filter the data where ’modelyear’ is before 75 and ’origin’ is 3

df = df[˜((df[’modelyear’] < 75) & (df[’origin’] == 3))]

print(df)

Assistant code:

import pandas as pd

Load the data from the csv file

df = pd.read_csv(’data.csv’)

Delete all records where ’modelyear’ is less than 1975 and ’origin’ is 3

df = df[˜((df[’modelyear’] < 1975) & (df[’origin’] == 3))]

print(df)

Figure 10: Question Understanding Error. In this case, “modelyear” is a two-digit integer that refers to the last two digits of the

year. The model doesn’t understand this and makes mistakes.

19

Error in Spreadsheet-embedded data: Data Type Error

Table1:

sqft_lot15,sqft_lot,waterfront,sqft_basement,view,yr_built,zipcode,price,yr_renovated,Unnamed: 0

5650,5650,0,0,0,1955,98178,221900.0,0,0

8062,10000,0,0,0,1933,98028,180000.0,0,2

5000,5000,0,910,0,1965,98136,604000.0,0,3

7503,8080,0,0,0,1987,98074,510000.0,0,4

6819,6819,0,0,0,1995,98003,257500.0,0,6

7570,6560,0,0,0,2003,98038,323000.0,0,9

6000,6000,0,300,0,1942,98115,468000.0,0,11

12697,19901,0,0,0,1927,98028,310000.0,0,12

10208,9680,0,0,0,1977,98074,400000.0,0,13

4850,4850,0,0,0,1900,98107,530000.0,0,14

Table2:

lat,floors,sqft_above,Unnamed: 0

47.5112,1.0,1180,0

47.721,2.0,2170,1

47.7379,1.0,770,2

47.6168,1.0,1680,4

47.3097,2.0,1715,6

47.4095,1.0,1060,7

47.3684,2.0,1890,9

47.6007,1.0,1860,10

47.69,1.0,860,11

47.7558,1.5,1430,12

Question: Combine all rows from both tables where the value of ’sqft_above’ is not ’1300’, joining on shared column values and replacing missing

values with NA.

Reference code:

import pandas as pd

df1 = pd.read_csv(“data1.csv”)

df2 = pd.read_csv(“data2.csv”)

df = pd.merge(df1, df2, how=’outer’)

df = df[df[’sqft_above’] != 1300]

print(df)

Assistant code:

import pandas as pd

df1 = pd.read_csv(“data1.csv”)

df2 = pd.read_csv(“data2.csv”)

df = pd.merge(df1, df2, how=’outer’)

df = df[df[’sqft_above’] != ’1300’]

print(df)

Figure 11: Data Type Error. In this case, “sqft_above” is an integer, not a string.

20

Error in Spreadsheet-embedded data: Unrunnable Code Error

Table:

Source,Target,Weight,Type,lng_org,lat_org,lng_dest,lat_dest

0,1.0,10,Directed,51.048332,16.960160000000002,51.089356,17.001061

0,13.0,129,Directed,51.048332,16.960160000000002,51.053396,16.971785

0,14.0,168,Directed,51.048332,16.960160000000002,51.047068,16.95721

0,15.0,1,Directed,51.048332,16.960160000000002,51.116737,17.033555

0,16.0,1,Directed,51.048332,16.960160000000002,51.117021,17.042163000000002

0,19.0,5,Directed,51.048332,16.960160000000002,51.098761,17.036521

0,20.0,8,Directed,51.048332,16.960160000000002,51.094988,17.032866000000002

0,24.0,1,Directed,51.048332,16.960160000000002,51.091722,17.04042

0,26.0,8,Directed,51.048332,16.960160000000002,51.094516,16.980204

0,27.0,1,Directed,51.048332,16.960160000000002,51.09599,16.988189000000002

Question: If there are any duplicates in the source and target columns, keep only the first occurrence and discard the rest.

Reference code:

Import necessary libraries

import pandas as pd

Load the data from the CSV file

df = pd.read_csv(’data.csv’)

Remove duplicates from ’Source’ and ’Target’ columns

df.drop_duplicates(subset=[’Source’,’Target’],keep=’first’,inplace=True)

Print the updated dataframe

print(df)

Assistant code:

import pandas as pd

Load the data from csv

df = pd.read_csv(’data.csv’)

Remove duplicates in source and target columns df = df.drop_duplicates(subset=[’Source’, ’Target’])

Keep only the first occurrence

df = df.keep_first_occurrence()

print(df)

Figure 12: Unrunnable Code Error. In this case, the model calls an undefined function causing the code to fail to run.

21

The prompt for generating questions to the Spreadsheet-Embedded and Document-Embedded training data.

[Task Description]
You will play the role of the user uploading the table data.

For the spreadsheet-embedded tabular data, I will provide you with the first 10 rows of the table.

For the document-embedded tabular data, I will provide you with table and text.

Please according to the data I provide for you, propose complex instructions for table operation.

The requirements need to be from the perspective of [major category-subcategory].
The major category involves:

1.Query,

2.Update (document-embedded tabular data DOES NOT have this category),

3.Chart.

The subcategory of “Query” involves:

1.Filter,

2.Aggregate,

3.Group,

4.Sort,

5.Compute,

6.Sub query,

The subcategory of “Update” involves:

1.Update,

2.Delete,

3.Insert.

The output format is: [major category-subcategory] corresponding instructions, such as:

[Query-Aggregate]Enhance the initial query by calculating the average number of departures per station, including only weekdays. Further,

differentiate the data by peak (7am-10am and 5pm-8pm) and off-peak hours. Display each station alongside its corresponding average number of

departures for both peak and off-peak hours.

[Update-Insert]Augment the table by adding a new column that shows the adjusted running time for each trip. This should be calculated by

subtracting the actual arrival time from the actual departure time. Additionally, apply a time adjustment factor based on weather conditions. The factor

should increase running time by 10% for rainy days and 15% for snowy days.

[Chart]Construct a graph illustrating the progression of reported cases in the ‘Eastern Mediterranean’ WHO region across different years.

Please give me 10 complex and long instructions according to the data and answer in English. Each major category is required to be able to correspond

to multiple subcategories.

For the document-embedded tabular data, you need to provide me with the table description about the data in addition.

Answer in this FORMAT:

[Table Description] (Only document-embedded data needs this part)

[Instructions]
10 “[Category]Instruction”

Figure 13: The prompt for generating questions to the Spreadsheet-Embedded and Document-Embedded training data.

22

The templates for generating instructions on merge operation.

“Merge two tables and keep only the rows that are successfully merged.”

“Merge the two tables and fill in the blanks with NAN.”

“Merge all rows in the two tables that { the value of ’final-weight’ is greater than 168294 }, merging by entries with the same column name, keeping

only the successfully merged portions.”

“Merge all rows in the two tables that { the value of MedInc is not greater than 3.5469 and the value of AveOccup is not less than 2.816011574632264 },

merging by entries with the same column name, and fill in the blanks with NAN.”

“Merge all rows in the two tables, show the value of { HIRE_DT, ANNUAL_RT and NAME }, merging by entries with the same column name, keeping

only the successfully merged portions.”

“Merge all rows in the two tables, show the value of { weight, cylinders, displacement and mpg }, merging by entries with the same column name, and

fill in the blanks with NAN.”

“Merge all rows in the two tables that { the value of ’female’ is greater than 0 }, show the value of { union, female, black and wage }, merging by entries

with the same column name, keeping only the successfully merged portions.”

“Merge all rows in the two tables that { the value of ’FREQUENCY’ is not ’A’ }, show the value of { TIME, Value, FREQUENCY and LOCATION },

merging by entries with the same column name, and fill in the blanks with NAN.”

Figure 14: The templates for generating instructions on merge operations include both internal and external merges with

various restrictions. They can be replaced within braces according to the provided tabular data.

23

The prompt for GPT-3.5, GPT4, Llama2-Chat (13B), Deepseek-Coder (33B) and codeLlama (13B) to infer on Spreadsheet-

embedded scenario.

[Task Description]
You are an agent generating Python code. I will provide the path to the processing table and give you a preview of the first 10 rows of the table you

want to process.

Please follow my instructions and write Python code to generate the answer to the question according to the format I provided and output the answer

in a canonical format.

1. Analyze the format and content of the data in the table to determine the appropriate treatment. May contain non-standard data, please handle this

data correctly. Make sure the generated code is of high quality and works.

2. When loading data, only the path to the csv file is loaded.

3. Generate code, not execute it. You have to write a print statement at the end to output the results.

4. Generate the code directly, DO NOT have the “‘python“‘ annotation.
5. Do not have any file output. If the answer is a dataframe, output the entire table instead of df.head(), unless instruction explicitly indicates the output

range.

[Code Format]

import the necessary libraries

annotation for each step

code

print()

[Path]: “data.csv”
[Data Example]:
timestamp,num. busy overflows,num. calls answered,num. calls abandoned,num. calls transferred,num. calls timed out,avg. num. agents talking,avg.

num. agents staffed,avg. wait time,avg. abandonment time

Apr 13 2017 12:00:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 12:15:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 12:30:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 12:45:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 1:00:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 1:15:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 1:30:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 1:45:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 2:00:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

Apr 13 2017 2:15:00 AM,0,0,0,0,0,0,4,00:00:00,00:00:00

[Instruction]: Identify and delete duplicate rows from the table, if any.

[Python Code Solution]:

Figure 15: The prompt for GPT-3.5, GPT4, Llama2-Chat (13B), Deepseek-Coder (33B) and codeLlama (13B) to infer on Spreadsheet-

embedded scenario.

24

The prompt for GPT-3.5, GPT4, llama2, deepseek and codellama to infer on Spreadsheet-embedded baselines about merge

operation.

[Task Description]
You are an agent generating Python code. I will provide the path to the processing table and give you a preview of the first 10 rows of the table you

want to process.

Please follow my instructions and write Python code to generate the answer to the question according to the format I provided and output the answer

in a canonical format.

1. Analyze the format and content of the data in the table to determine the appropriate treatment. May contain non-standard data, please handle this

data correctly. Make sure the generated code is of high quality and works.

2. When loading data, only the path to the csv file is loaded.

3. Generate code, not execute it. You have to write a print statement at the end to output the results.

4. Generate the code directly, DO NOT have the “‘python“‘ annotation.
5. Do not have any file output. If the answer is a dataframe, output the entire table instead of df.head(), unless instruction explicitly indicates the output

range.

[Code Format]
import the necessary libraries

annotation for each step

code

print()

This is a merge operation, so you need to read two files.

[Path1]: “data1.csv”
[Data Example1]:
Flag Codes,TIME,LOCATION,FREQUENCY

,2012,AUS,A

,2012,AUT,A

,2012,BEL,A

,2012,CAN,A

,2012,CZE,A

M,2012,DNK,A

,2012,FIN,A

,2012,DEU,A

M,2012,GRC,A

,2012,HUN,A

[Path2]: “data2.csv”
[Data Example2]:
Value,LOCATION

1.6,AUS

1.4,BEL

2.5,CAN

,DNK

1.4,FRA

1.2,DEU

,GRC

1.2,HUN

1.4,IRL

0.9,ITA

[Instruction]: Combine all rows from both tables, display the values of TIME and LOCATION columns, and group them by the shared column

names. Only display the merged rows that were successful.

[Python Code Solution]:

Figure 16: The prompt for GPT-3.5, GPT4, Llama2-Chat (13B), Deepseek-Coder (33B) and codeLlama (13B) to infer on Spreadsheet-

embedded scenario about merge operation.

25

The prompt for CritiqueLLM

[Instruction]

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below.

Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. Begin your

evaluation by providing a short explanation.

You will be given a high-quality reference answer and the assistant’s answer. Be as objective as possible. You should first provide your explanation IN

CHINESE, then you must rate the response on a scale of 1 to 10 by STRICTLY following the below MAPPING for the relation between the scores and

response quality:

1) The score 1 2 stands for very chaotic or absence of answer, and the AI assissant completely failed to address the instructions. The gap between the AI

assistant’s answer and the high-quality reference answer is huge and insuperable.

2) The score 3 4 indicates fragment-like responses from AI assistant’s answer. It did not provide answers in proper grammar, fluency, or accuracy. There

are obvious gaps between the high-quality reference answer and the AI assistant’s response.

3) The score 5 6 indicates for existence of minute disadvantage from the AI assistant’s answer compared to the high-quality reference answer. Yet the AI

assistant did provide an average answer. The AI assistant either did not fully satisfy instructions, or was somewhat short of helpfulness, relevance,

depth, creativity, or detailedness. The disadvantages from the AI assistant’s answer overwhelm its advantages.

4) The score 7 8 indicates the AI assistant provided a good answer as well as the high-quality reference answer, satisfying the instruction, while

addressing good helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. The AI assistant might have flaws compared to

the reference answer, but that does not overwhelm the above advantages.

5) The score 9 10 indicates the AI assistant responsed better than the provided reference answer in most aspects, fully achieved the instruction goal, and

have unique advantages to the reference answer. Or the content of the reference answer can be completely covered.

You should give scores around 7 if you do not find obvious advantages or disadvantages. You should seriously consider the above guide before give

lowest and highest scores such as 1 or 10, and avoid such situation if you do not have sound explanations.

Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length

of the responses to influence your evaluation. Do not favor certain names of the assistants. AND again, VERY IMPORTANTLY, after you provide your

explanation IN CHINESE, you must rate the response strictly following this FORMAT:

Rating: [[score]]

[Question]

[Reference Answer]

[Assistant’s Answer]

Figure 17: The prompt for CritiqueLLM, which contains scoring criteria.

26

False positive of document-embedded tabular data

[Table Description]

The table consists of information about the Members of Legislative Assembly for the Ashoknagar constituency in different election years. The table has

four columns: Election Year, Constituency, Name of M.L.A., and Party Affiliation. The table starts with the election year 1967 and ends with 2011. Some

cells in the Constituency column are empty and represented by a hyphen (-).

[Table]

Election Year,Constituency,Name of M.L.A.,Party Affiliation

1967,Ashoknagar,Sadhan Kumar Sen,Communist Party of India (Marxist)

1969,-,Sadhan Kumar Sen,Communist Party of India (Marxist)

1971,-,Nani Kar,Communist Party of India (Marxist)

1972,-,Keshab Chandra Bhattacharya,Independent

1977,-,Nani Kar,Communist Party of India (Marxist)

1982,-,Nani Kar,Communist Party of India (Marxist)

1987,-,Nani Kar,Communist Party of India (Marxist)

1991,-,Nani Kar,Communist Party of India (Marxist)

1996,-,Nirode Roy Choudhury,Communist Party of India (Marxist)

1999 Bye Election,-,Badal Bhattacharya,Bharatiya Janata Party

2001,-,Sarmistha Dutta,Communist Party of India (Marxist)

2006,-,Satyasebi Kar,Communist Party of India (Marxist)

2011,-,Dhiman Roy,All India Trinamool Congress

[Question]

Who are members of legislative assembly before 1975?

[Reference Answer]

Keshab Chandra Bhattacharya of Independent, won in 1972, Nani Kar of Communist Party of India won in 1971, and Sadhan Kumar Sen of Communist

Party of India won in 1969 and 1967.

[Assistant’s Answer]

To determine the members of the legislative assembly before 1975, we need to analyze the table and filter the rows that have an election year before

1975.

From the given table, we can see that the election years range from 1967 to 2011. However, the constituency column contains hyphens (-) for some of

the rows, indicating that the constituency information is not available for those years.

To provide a comprehensive answer, we need to exclude the rows with hyphens (-) in the Constituency column and filter the rows that have an election

year before 1975.

Based on the given information, the members of the legislative assembly before 1975 are:

1. Sadhan Kumar Sen in 1967 (Communist Party of India [Marxist])

2. Nani Kar in 1971 (Communist Party of India [Marxist])

3.keshab Chandra Bhattacharya in 1972 (Independent)

4. Nani Kar in 1977 (Communist Party of India [Marxist])

5. Nani Kar in 1982 (Communist Party of India [Marxist])

6. Nani Kar in 1987 (Communist Party of India [Marxist])

7. Nani Kar in 1991 (Communist Party of India [Marxist])

8. Nirode Roy Choudhury in 1996 (Communist Party of India [Marxist])

9. Badal Bhattacharya in 1999 Bye Election (Bharatiya Janata Party)

10. Sarmistha Dutta in 2001 (Communist Party of India [Marxist])

11. Satyasebi Kar in 2006 (Communist Party of India [Marxist])

These are the members of the legislative assembly before 1975, as per the provided data.

CritiqueLLM scoring result: Right

Manual scoring result: Wrong

Figure 18: False positive of document-embedded tabular data. Explains a typical situation where CritiqueLLM makes mistakes

in scoring assistant’s answers of document-embedded tabular data.

27

False positives of spreadsheet-embedded tabular data

[Table]

Date,Offense,Age,Count,Category,Disqualifying_Offense,Offense_Type,Expungible

1991,Aggravated Assault,15,1.0,Crimes Against Person,True,misdemeanor,False

1991,All Other Larceny,14,1.0,Crimes Against Property,False,misdemeanor,True

1991,All Other Offenses,13,1.0,Group B Offenses,False,misdemeanor,True

1991,Burglary/Breaking & Entering,10,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,14,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,15,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,16,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,17,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,18,1.0,Crimes Against Property,False,misdemeanor,True

1991,Burglary/Breaking & Entering,19,1.0,Crimes Against Property,False,misdemeanor,True

[Question]

Retrieve the maximum ’Age’ for each offense category.

[Reference Answer]

Category

Crimes Against Person 20

Crimes Against Property 20

Crimes Against Society 20

Group B Offenses 20

Name: Age, dtype: int64

[Assistant’s Answer]

Offense Age

0 Aggravated Assault 20

1 All Other Larceny 20

2 All Other Offenses 20

3 Arson 20

4 Assisting or Promoting Prostitution 20

5 Bad Checks 20

.. ...

31 Murder and Nonnegligent Manslaughter 20

32 Negligent Manslaughter 20

33 Operating/Promoting/Assisting Gambling 20

34 Peeping Tom 20

35 Pocket-picking 20

36 Pornography/Obscene Material 20

[37 rows x 2 columns]

CritiqueLLM scoring result: Right

Manual scoring result: Wrong

Figure 19: False positive of spreadsheet-embedded tabular data. Explains a typical situation where CritiqueLLMmakes mistakes

in scoring assistant’s answers of spreadsheet-embedded tabular data.

28

False negative of document-embedded tabular data

[Table Description]

The table contains data related to the Gordon Bennett Trophy for aeroplanes in 1909. It includes columns for the nationality of the pilot, the pilot’s

name, the type of aircraft, the position in the competition, the time taken, the speed achieved, and any additional notes.

[Table]

Nationality,Pilot,Aircraft Type,Position,Time,Speed,Notes

France,Louis Blériot,Blériot XII,Second,15 min 56.2 s,75.31 km/h (46.80 mph),-

France,Hubert Latham,Antoinette VII,Third,17 min 32 s,68.44 km/h (42.53 mph),-

France,Eugène Lefebvre,Wright Model A,Fourth,20 min 47.6 s,57.71 km/h (35.86 mph),-

United Kingdom,George Bertram Cockburn,Farman III,-,-,-,Did not finish course

United States,Glenn Curtiss,Curtiss No. 2,First,15 min 50.4 s,75.74 km/h (47.06 mph),-

[Question]

How did Blériot do compared to Curtiss in the competition?

[Reference Answer]

Blériot finished second place with a time of 15 minutes and 56.2 seconds, 5.8 seconds more than Curtiss, who finished in first place.

[Assistant’s Answer]

To determine how Blériot did compared to Curtiss in the competition, we need to compare their positions in the table.

According to the table, Blériot finished slower than Curtiss in the competition, with a longer time and lower speed. Louis Blériot finished in second

place with a time of 15 min 56.2 s and a speed of 75.31 km/h (46.80 mph), while Glenn Curtiss finished in first place with a time of 15 min 50.4 s and a

speed of 75.74 km/h (47.06 mph).

CritiqueLLM scoring result: Wrong

Manual scoring result: Right

Figure 20: False negative of document-embedded tabular data. Explains a typical situation where CritiqueLLM makes mistakes

in scoring assistant’s answers of document-embedded tabular data.

29

False negative of spreadsheet-embedded tabular data

[Table]

,Date,Open,High,Low,Close,Volume

0,19-Jan-18,90.14,90.61,89.66,90.0,36875013

1,18-Jan-18,89.8,90.67,89.66,90.1,24159683

2,17-Jan-18,89.08,90.28,88.75,90.14,25621164

3,16-Jan-18,90.1,90.79,88.01,88.35,36599736

4,12-Jan-18,88.67,89.78,88.45,89.6,24271531

5,11-Jan-18,88.13,88.13,87.24,88.08,17808877

6,10-Jan-18,87.86,88.19,87.41,87.82,18652201

7,9-Jan-18,88.65,88.73,87.86,88.22,19484317

8,8-Jan-18,88.2,88.58,87.6,88.28,22113049

9,5-Jan-18,87.66,88.41,87.43,88.19,23407110

[Question]

Filter the table to show only rows where the value in the "Volume" column is greater than 30000000.

[Reference Answer]

Unnamed: 0 Date Open High Low Close Volume

0 0 19-Jan-18 90.14 90.61 89.66 90.00 36875013

3 3 16-Jan-18 90.10 90.79 88.01 88.35 36599736

22 22 15-Dec-17 85.26 87.09 84.88 86.85 53936687

31 31 4-Dec-17 84.42 84.43 80.70 81.08 39094880

..

186 186 25-Apr-17 67.90 68.04 67.60 67.92 30242730

188 188 21-Apr-17 65.67 66.70 65.45 66.40 32522645

212 212 17-Mar-17 64.91 65.24 64.68 64.87 49219686

241 241 3-Feb-17 63.50 63.70 63.07 63.68 30301759

242 242 2-Feb-17 63.25 63.41 62.75 6

[30 rows x 7 columns]

[Assistant’s Answer]

Unnamed: 0 Date Open High Low Close Volume

0 0 19-Jan-18 90.14 90.61 89.66 90.00 36875013

3 3 16-Jan-18 90.10 90.79 88.01 88.35 36599736

22 22 15-Dec-17 85.26 87.09 84.88 86.85 53936687

31 31 4-Dec-17 84.42 84.43 80.70 81.08 39094880

..

186 186 25-Apr-17 67.90 68.04 67.60 67.92 30242730

188 188 21-Apr-17 65.67 66.70 65.45 66.40 32522645

212 212 17-Mar-17 64.91 65.24 64.68 64.87 49219686

241 241 3-Feb-17 63.50 63.70 63.07 63.68 30301759

242 242 2-Feb-17 63.25 63.41 62.75 6

[30 rows x 7 columns]

CritiqueLLM scoring result: Wrong

Manual scoring result: Right

Figure 21: False negative of spreadsheet-embedded tabular data. Explains a typical situation where CritiqueLLMmakesmistakes

in scoring assistant’s answers of spreadsheet-embedded tabular data.

30

	Abstract
	1 Introduction
	2 Related Work
	3 User Study and Problem Definition
	3.1 User Study
	3.2 Problem Definition

	4 TableLLM
	4.1 Distant Supervision Data Construction
	4.2 Model Training
	4.3 Model Deployment as Web Application

	5 Experiment
	5.1 Test Set Creation
	5.2 Evaluation Approach
	5.3 Comparison Methods
	5.4 Overall Experimental Results
	5.5 Ablation Studies on Training Data
	5.6 Training Strategy Investigation

	6 Conclusion
	References
	A Appendix
	A.1 Web Application
	A.2 The Survey Details
	A.3 Verification of Cross-way Validation
	A.4 Error Analysis
	A.5 Training Environment and Settings
	A.6 Training Data for TableLLM
	A.7 Prompts for Automatically Generating Dataset
	A.8 Prompts for Baselines
	A.9 Meta Evaluation of CritiqueLLM

