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Abstract

The surge of Multimodal Large Language Models (MLLMs), given their promi-
nent emergent capabilities in instruction following and reasoning, has greatly ad-
vanced the field of visual reasoning. However, constrained by their non-lossless
image tokenization, most MLLMs fall short of comprehensively capturing de-
tails of text and objects, especially in high-resolution images. To address this,
we propose P2G, a novel framework for plug-and-play grounding of reasoning in
MLLMs. Specifically, P2G exploits the tool-usage potential of MLLMs to employ
expert agents to achieve on-the-fly grounding to critical visual and textual objects
of image, thus achieving deliberate reasoning via multimodal prompting. We fur-
ther create P2GB, a benchmark aimed at assessing MLLMs’ ability to understand
inter-object relationships and text in challenging high-resolution images. Compre-
hensive experiments on visual reasoning tasks demonstrate the superiority of P2G.
Noteworthy, P2G achieved comparable performance with GPT-4V on P2GB, with
a 7B backbone. Our work highlights the potential of plug-and-play grounding of
reasoning and opens up a promising alternative beyond model scaling2.

1 Introduction

The rise of large language models (LLMs) [35, 28, 36] demonstrates its strong potential in be-
coming a unified backbone for almost any task in language modality, given their promising emer-
gent capabilities like in-context learning [4, 39], instruction following [29], reasoning [34], and
beyond. To extend LLMs to a general interface beyond language modality, a surging trend of work
[46, 19, 13, 2, 38, 7] extends them into Multimodal Large Language Models (MLLMs), through
incorporating each modality as a foreign language [13, 42]. Being able to perceive multimodal input
and leverage instruction following and in-context learning, MLLMs achieve significant results in the
realm of visual reasoning.

However, despite these promising achievements, there remain significant limitations for MLLMs
in visual reasoning. One crucial drawback rooted within the high demand for high-quality, large-
scaled annotated data for vision instruction tuning [46, 19]. Compared to pure language modality,
it is conceivably harder to collect annotated multimedia training examples or generate synthesized
ones. Worse, the demand for multimodal instruction tuning data poses a greater challenge to scaling
of MLLMs.

Another limitation lies in the challenges of capturing details comprehensively, especially when deal-
ing with high-resolution images or those containing complex textual information due to the rich
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details these images entail, resulting in hallucinations and/or incorrect reasoning solutions. And
the non-lossless tokenization of images would inevitably overlook critical semantic details within
images, due to fixed, and normally small input resolutions.

To overcome these limitations, successor works explore strategies for grounding reasoning in
MLLMs. Particularly, to ground reasoning in semantic objects, KOSMOS-2 [31] finetunes MLLM to
generate bounding boxes for visual occurrences in context, a training strategy that has also been ap-
plied in later works like CogVLM [38]. For another challenging scenario, text-rich visual reasoning,
recent works like LLaVAR [45] and TGDoc [40] augment instruction tuning data with OCR-based
textual clues and corresponding bounding boxes. However, a common problem faced by these meth-
ods is the need for large amounts of instruction data and training costs, which significantly limits
their application.

To achieve grounding, the above methods invariably train MLLMs to equip them with this capa-
bility from scratch, which is undoubtedly challenging and less efficient. Many recent studies have
shown that LLMs can effectively utilize external tools and agents [32, 47]. Drawing inspirations
from the above, we propose P2G, a novel framework that achieves Plug-and-Play Grounding of
reasoning in MLLMs. Beyond supervised fine-tuning of MLLM itself, we leverage state-of-the-art,
lightweight proxy models as agents for obtaining critical clues for reasoning. Particularly, we pro-
pose an OCR agent (via PaddleOCR [1]) and a visual grounding agent (via Grounding-DINO [21]),
aiming at challenging text-rich and high-definition images. We then instruct MLLMs to generate
specific queries in need of supporting textual or visual clues, based on the intrinsic complexity of
the reasoning task.

To better assess P2G on aforementioned text-rich and/or high-definition images, we introduce
P2GB, a challenging Visual Question Answering (VQA) benchmark, which is expressly designed
to assess MLLM’s visual grounding, especially identifying multiple objects of the same category
within high-resolution images and to enhance the comprehension of textual content in text-rich sce-
narios. Our comprehensive experiments on visual reasoning tasks including P2GB demonstrate the
superiority of P2G. Noteworthy, P2G achieved comparable performance with GPT-4V on P2GB,
with a 7B backbone. Our work highlights the potential of plug-and-play grounding of reasoning
and opens up a promising alternative beyond model scaling. In summary, our contributions are
three-fold:

1) We propose P2G, a novel framework for plug-and-play grounding of reasoning in high-resolution
natural and text-rich visual reasoning scenarios, through leveraging agents for enhanced textual
and visual grounding and perception.

2) We introduce P2GB, a VQA benchmark designed to thoroughly assess MLLM’s reasoning ca-
pability under text-rich and high-definition image queries.

3) We conduct extensive experiments on text-rich reasoning datasets to verify the superior perfor-
mance of P2G. Empowered with P2G, we surpass similar scaled (7B) or even larger model (13B)
with a 7B MLLM backbone, demonstrating the significance of P2G.

2 Methods

Our proposed framework, which we refer to as P2G, primarily addresses the challenge of visual
reasoning tasks that involve high-resolution natural images and text-rich images. Our goal is to
enhance the model’s ability to interpret and analyze these complex visual inputs effectively, thereby
improving its performance on visual reasoning that require a nuanced understanding of both visual
and textual elements in detail.

2.1 Overall Design of P2G

Figure 1 illustrates the proposed P2G: Plug-and-Play Grounding of Reasoning in large vision lan-
guage models. The key objective of P2G lies in enhancing the groundedness and factualness of
reasoning from multimodal language models (MLLMs), without relying on heavily supervised (in-
struction) fine-tuning on extensive annotated data. And to achieve this objective, we harness the
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Challenging High-Resolution Image Challenging High-Resolution ImageSimpler Image Simpler Image

Question: What is the 
name of this book?

Question: When did this 
movie come out?

Question: What is 
displayed in this image?

Question: What is the color of the 
shirt of the person standing in the left 
between the car and the mailbox?

Critical texts that tiny in scale Critical objects that not being prominent

Vision Language Model
Instruction-Tuned on VQA

① Deliberate Reasoning

1) Simpler questions are directly answered by MLLM

Answer: It is named 
“BRITAIN BC”. 

Answer: A passenger jet.Query: Some visual information 
about the following objects is 
missing or unclear: text in the image.

Query: Some visual information about 
the 3 following objects is missing or 
unclear: person, mailbox, car.

Call dedicated agents for text-grounding Call dedicated agents for object-grounding

2) Generate agent calls for more details for challenging tasks

② Plug-and-Play Grounding

OCR Agent for text-grounding Grounding Agent for visual clue curation

DEADPOOL
1/6TH SCALE COLLECTION 
FIGURE
FOX.TM 2016 MARVEL
IN THEATERS
FENRUARY 12
PROTOTYPES …

Object class 1
(person)

Object class 2
(mailbox)

Object class 3
(car)

Critical textual clues are identified from given visual query Critical visual clues are identified from given visual query 

<query image> Additional visual information to focus on:
Text in the image:

“DEADPOOL” at location [0.1, 0.5, 0.5, 0.9]; 

“2016 MARVEL” at location [0.1, 0.1, 0.3, 0.2] …

When did this movie come out?

<query image> Additional visual information to focus on:  
1 mailbox          at location [0.8, 0.1, 0.9, 0.3]; 

1 car                   at location [0.4, 0.1, 0.6, 0.2];

4 person(s)                     at location [0.6, 0.2, 0.7, 0.4],   [0.6, … 
What is the color of the shirt of the person standing in the left 
between the car and the mailbox?

3) Incorporate grounded clues for comprehensive reasoning

Additional 
textual clues

Additional 
visual clues

Vision Language Model
Instruction-Tuned on VQA

Answer: It was released in 2016 by MARVEL. Answer: The person is in black t-shirts. 

Detected 
4 person(s)

Detected 
1 mailbox

Detected 
1 car

Figure 1: Illustration of our proposed P2G for grounding visual reasoning. Given a multi-modal
query including an image and its corresponding question, (1) P2G first deliberately decide whether
to seek additional clues (anticipated text and/or visual objects) from dedicated textual and/or visual
grounding agents, or provide a direct answer for simple and confident cases. For challenging cases,
(2) additional text or visual clues are then obtained via OCR Agent (text) or Grounding Agent (im-
age) according to MLLM’s request. Specifically, we include OCR texts and their relative positions
for textual clues, and for visual clues, we detect and locate all objects for each requested class.
Finally, we incorporate these clues into a multi-modal prompt for obtaining a grounded reasoning
answer.

3



emergent capabilities like in-context learning [8], instruction following [23] and tool-usage [32]
capability of large language models. Below, we introduce the procedure of P2G in detail.

2.1.1 Deliberate Reasoning

To ground the reasoning procedure of MLLMs, one key challenge is the hallucination of reasoning
paths. In other words, it is crucial for MLLMs to know their don’t-knows [5] ahead. To mitigate this
issue, we propose Deliberate Reasoning in P2G, which encourages the MLLMs to first assess their
current ability to solve the provided question, before moving forward on reasoning.

As illustrated in Figure 1, for a simple and straightforward visual query, P2G generates the cor-
rect answer directly, while for challenging cases, P2G autonomously assesses its current capability,
and poses demand on support from external agents (experts) on specific textual or visual support-
ing clues (in the form of natural language query). By introducing this deliberate reasoning process
before moving on to the reasoning problem, we could thereby empower the MLLM with external
agents for concise textual or visual understanding, which is generally challenging for large vision
language models, especially for nuanced but important details high-definition images. The capa-
bility of deliberate reasoning ahead is attained through dedicated instruction tuning, which we will
elaborate on in Sec. 2.3.

2.1.2 Plug-and-Play Grounding

The surging works in the field of retrieval augmented generation (RAG) [11] and tool-usage [32, 17]
inspired us on leveraging external experts (agents) in grounding multimodal reasoning with rich
textual and visual facts and clues. One major challenge for MLLMs in reasoning [18, 19, 43] is
the expressiveness of image representation, where an only representation (visual tokens) is provided
for reasoning, which hinders the comprehensiveness of encompassed visual information, especially
under high-definition or text-rich scenarios. The information loss during such auto-encoding com-
pression refrains MLLM from generating grounded, accurate reasoning. Latest works either finetune
on more VQA data [45], or prepend OCR texts into context [40, 22], which does not essentially mit-
igate this core limitation.

As a step forward, we propose Plug-and-Play Grounding in P2G, to mitigate the limitation above by
providing both rich textual and visual clues, leveraging external agents (experts). As illustrated in
Figure 1, based on the specific query on semantic details from MLLMs, we correspondingly call 1)
OCR Agent to collect text pieces, or 2) Grounding Agent to fetch visual patches corresponding to the
crucial sementic objects requested by the MLLM. Beyond fetching these semantic premises, we also
incorporate their relevant position in the image into a multi-modal question prompt, before obtaining
an final comprehensive reasoning answer. Such plug-and-play design enables us to leverage SOTA
text (PaddleOCR [1]) or image (Grounding DINO [21]) processing tools, mitigating the demand
to dedicated tuning of backbone MLLMs. By providing dedicated textual and visual clues, we
significantly improve the correctness and groundedness of MLLM’s reasoning. Details are described
in Sec. 2.2.

2.2 Model Structure

In this subsection, we dive deeper into the architectural implementation and design of P2G. Specifi-
cally, our MLLM is composed of four components: an LLM, a vision encoder, a projection module,
and textual (OCR) and visual grounding agents, which collectively enhance the model’s capability
to process and interpret complex multimodal data.

In this work, our LLM is powered by Vicuna-7B [6], which has been trained on approximately
400K high-quality, instruction-following samples, incorporating 150K conversations between users
and GPT [6]. We have chosen the CLIP ViT-L/14 as the vision encoder, with inputs resized and
padded to 2242. We apply this encoder to process not only the original images, but also the specific
regions cropped from the image that contain detected objects (from Grounding Agent).

In the process of mapping visual characteristics to the hidden space of the LLM, we utilize two types
of projection modules: an MLP and a Resampler. The MLP preserves the count of visual tokens as
outputted by the vision encoder, whereas the Resampler, functioning on cross-attention principles,
diminishes the token quantity (i.e. 256 to 32).
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To efficiently manage the sequence length of the LLM when processing various content and visual
features, we’ve devised a straightforward strategy that allows for seamless toggling between two
projection modules. For inputs consisting solely of initial image features without cropped areas, the
MLP is utilized to map all visual tokens. In instances where 1 to 6 critical objects are detected,
indicating a need for the model to concentrate on these specific targets, we apply the MLP to the vi-
sual features of these objects and use the Resampler to downsample the overarching image features.
Conversely, when more than 6 objects are detected, the Resampler is employed across all visual fea-
tures to mitigate computational demands. The Grounding Agent employs Grounding DINO [21] to
identify and extract objects from images that are relevant to the query, while the OCR Agent utilizes
PaddleOCR1 to discern and retrieve potential textual information embedded within the image query.

2.2.1 Reasoning with Plug-and-Play Grounding

In this subsection, we elaborate in detailed procedures for plug-and-play grounding of reasoning
in P2G. As illustrated in Figure 1, we first perform dedicated reasoning with MLLMs to identify
whether additional visual or textual clues are needed for reasoning. In scenarios involving straight-
forward images (e.g. clear main objects, headline texts only, etc.), the model directly output its
reasoning. Conversely, when confronted with high-resolution natural images or images abundant
with detailed textual content, the MLLM would generate dedicated query responses, calling OCR
Agent or Grounding Agent. This deliberate reasoning capability is gained through instruction fine-
tuning, which we will elaborate in Section 2.3.

Sorry, I cannot answer the question. Some visual information about the following objects is missing or
unclear: object1, . . . , objectn.

Table 1: Query response for calling Grounding Agent for detailed visual clues.

Sorry, I cannot answer the question. Some visual information about the following objects is missing or
unclear: text in the image.

Table 2: Query response for calling OCR Agent for detailed textual clues.

For instances involving high-resolution natural images, the model’s initial response is documented
in Table 1. This demonstrates that the MLLM may not effectively perceive the presence of certain
objects or details within these high-resolution images. To address this, we employ Grounding DINO
to detect and crop these objects. The cropped images are then magnified relative to their original
size, which facilitates a more focused analysis. An example of how these crops are incorporated into
prompts for a subsequent round of inference is illustrated in Table 3. This tailored approach enables
MLLM to provide more accurate and grounded answers given high-resolution images.

This operation is formalized through a detection function, denoted Fd, which processes an input
image I and a specified set of target objects {object1, . . . , objectn}, resulting in a set of image
crops P :

P = Fd(I, {object1, . . . , objectn}), (1)

where the set P = {p1, p2, . . . , pm} consists of the image crops identified by Grounding DINO.
The relationship between the total number of objects and the individual quantities of each type of
object is given by the equation

∑n
i=1 xi = m, where n represents the total number of object types

and xi denotes the quantity of the i-th object.

Likewise, when dealing with high-resolution text-rich images, the model’s call to OCR Agent is
shown in Table 2. Subsequently, we employ PaddleOCR to extract textual elements from the images.
The extracted OCR tokens, along with their corresponding bounding boxes and the posed questions,
are then cohesively integrated, as exemplified in Table 4. By incorporating the OCR tokens and

1https://github.com/PaddlePaddle/PaddleOCR
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<image> (Original image)

Additional visual information to focus on:
3 button(s) <object>, <object>, <object> at location [0.25, 0.63, 0.26, 0.64], [0.47, 0.59, 0.48,
0.60], [0.52, 0.62, 0.53, 0.63]

1 paper clip <object> at location [0.65, 0.70, 0.66, 0.71] (Object features and their positions)

Are all buttons in the image larger than the paper clips?
Answer the question using a single word or phrase. (Original question)

Table 3: Example multimodal prompt for the model’s second round of reasoning with additional
visual clues from Grounding Agent.

<image> (Original image)

Additional visual information to focus on:
Text in the image: ‘May311918’ at location [0.66, 0.043, 0.931, 0.077]; ‘3379Bark Jane Rd’ at
location [0.545, 0.103, 0.921, 0.131]. (Text and their positions)

By whom is this letter written? (Original question)

Table 4: Example prompt for the model’s second round of reasoning with additional textual clues
from OCR Agent.

their bounding boxes into the prompts presented to the MLLM, we enhance the model’s capability
to recognize the presence and positions of text within the given images.

Given additional textual clues T and visual clues P obtained via external agents, we obtain our final
visual reasoning results via

R = MLLM(qi, qt, T ,P), (2)

where qi and qt demote image and text query, respectively. By conditioning on both image qi
and enriched information T and P on semantics, we thereby achieve plug-and-play grounding of
reasoning, leveraging in-context learning and instruction following capabilities of MLLMs.

2.3 Instruction-following Data for Fine-tuning

The instruction tuning process of P2G is structured into two distinct phases, namely multimodal
instruction tuning and learning of deliberate reasoning.

2.3.1 Multimodal Instruction Tuning

In the first phase, we equip our backbone LLM (Vicuna-7B [6]) with fundamental multimodal capa-
bilities, following procedures in LLaVA [19]. Specifically, we apply a 120K sampling from LLaVA
instruction data, following the exact same procedure and splits of V* [41].

2.3.2 Learning of Deliberate Reasoning

In the second phase, we tune MLLM to utilize agents with deliberate reasoning ahead, as elaborated
in Section 2.2. For both agents, we meticulously curated a set of challenging Visual Question An-
swering (VQA) inquiries to serve as both positive and negative samples. For the negative samples,
the model explicitly acknowledges its inability to provide an answer, necessitating the provision of
additional detailed information. Conversely, positive samples, whether they are simpler VQA ques-
tions or complex inquiries, are directly answered, with the latter being supplemented by additional
detailed information. Following the procedures outlined in Section 2.2, we prepared the initial agent
interactions (round 1), followed by multimodal prompt instructions (round 2). Details on dataset
selection are listed as follows.
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1) Critical objects that not being prominent 2) Critical texts that tiny in scale

Question: How many people are there in 
the picture?

Options:
"There is one person in the picture.",
"There are two people in the picture.",
"There are three people in the picture.",
"There are four or more people in the 
picture."

Question: What color are the trousers of 
the person under the arch in the picture?

Options:

Black, 
Brown, 
Blue, 
Grey

Question: How many times does the 
word 'peer' appear in the image?

Options:

"3 times",
"1 times",
"0 times",
"2 times"

Question: How to contact the 
author?

Options:

www.teensmeetonline.com, 
www.teenomeetonline.com, 
www.teensmetonline.com, 
www.teensimtonline.com 

Figure 2: Illustration of our proposed P2GB benchmark. In P2GB, we consider two challeng-
ing visual reasoning scenarios: comprehensive image understanding and text-rich visual reasoning.
For the former, we delicately collect high-definition image samples where the critical object is not
prominent (i.e., tiny in scale) and challenging to identify, while for the latter we include samples in
which crucial textual parts are tiny as well.

Negative data (54k) & Multimodal instruction data (26k) for text-rich image reasoning In the
context of certain simplistic text-based image scenarios, such as identifying the title of a book from
its cover, straightforward answers can be directly provided. However, for more complex text-based
image queries, where the text within the image is abundant and the questions cannot be answered
solely based on the text present in the image, one must leverage the powerful zero-shot or inferential
capabilities of LLMs to respond further. In these instances, the direct responses from an MLLM
are insufficient, necessitating additional supplementary information to effectively address the query.
Building on the aforementioned complexities of text-rich image analysis, we curated a subset of data
from ChartVQA, DOCVQA, and TextVQA to serve as positive and negative samples. For scenes
that presented a greater challenge to address, we selected images with resolutions exceeding 500
pixels and then employed PaddleOCR to extract text from these images. Textually sparse images
were filtered out using a predetermined threshold. For the remaining dataset, 70% was designated as
negative samples, where the model explicitly acknowledges its inability to answer the query based
solely on the image content, indicating a necessity for further textual information from within the
image. The remaining 30% of the data was augmented with OCR-extracted text as input for the
second iteration of inferential VQA processing. Data filtered out through the initial two processes
were directly employed as VQA data for the first inference process, ensuring a structured approach
to handling varying complexities of text-based image queries.

Negative data (100k) & Multimodal instruction data (167k) for visual objects grounding in
reasoning These two data segments were obtained from V* [41]; however, we have transformed
them to improve the model’s understanding of both quantitative relationships and spatial arrange-
ments between objects by integrating the extracted number of objects and their ordered bounding
boxes into the training dataset.

3 P2GB Benchmark

To quantitatively assess the visual reasoning capabilities of MLLMs under text-rich or high-
resolution scenarios, we constructed a challenging benchmark test named P2GB. In order to quanti-
tatively evaluate the abilities of Multimodal Large Language Models (MLLMs) to process images
containing rich and complex information scenes, we devised a novel benchmark test that includes
two challenging tasks: Comprehensive Image Understanding with Fine-grained Recognition (101
samples), and Image Text Content Understanding (50 samples), with a total of 151 samples.

Comprehensive Image Understanding with Fine-grained Recognition This task involves a
deep analysis of high-resolution images from high-quality datasets, which depict rich and complex
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scenes with multiple objects of the same or different types. The challenge for the model is to iden-
tify the presence and characteristics of various objects within the image, which includes but is not
limited to the type, location, and possible interactions of the objects. This not only tests the model’s
capability in recognizing and distinguishing objects within the image but also requires the model to
understand how these objects collectively form a scene in the image, especially when objects may
be difficult to identify due to their small size or their color blending into the background.

Image Text Content Understanding Here, the model is challenged to identify and understand
small textual content within images and to answer questions related to this information. The model
must be capable of discerning fine text in high-resolution images and engage in logical reasoning to
correctly respond to inquiries based on this textual content.

For the quantitative comparison of these tasks, we designed multiple-choice answers for each ques-
tion. These options have been carefully crafted and manually reviewed to ensure the validity and
fairness of the test and to eliminate potential ambiguities between choices.

4 Experiments

4.1 Experimental Setup

Models and Baselines For MLLMs, we select Vicuna-7B [6] as the language backbone, and fol-
low LLaVA to train an MLLM backbone for P2G3. To build up two agents for visual and textual
grounding, we select Grounding DINO [21] for obtaining visual clue (i.e., objects) and PaddleOCR
[1] for screening texts within the image query. We compare P2G against multiple similar-scaled,
instruction-tuned MLLMs, including vanilla LLaVA [19], MiniGPT-4 [46], mPLUG-OWL [43], and
Instruct-BLIP [7]. In addition, we compare P2G against MLLMs dedicated optimized for semantic-
rich reasoning, i.e., SEAL [41], LLaVAR [45], and TGDoc [40]. Finally, we include the most
capable MLLM so far, GPT-4V [28] on our challenging benchmark P2GB.

Datasets Following previous works, we test P2G on a variety of visual reasoning benchmarks.
For text-rich visual reasoning, we select DocVQA [26] and ChartVQA [25], and GQA [14], SEED
[15], MM-VET [44], and MME [15] for semantic-rich and general visual reasoning. Beyond exist-
ing benchmark, we also curate a challenging benchmark P2GB, which contains challenging high-
definition, semantic or text-rich visual queries.

Implementation We implement P2G based on instruction-finetuning the 7B version of LLaVA
model. Specifically, we employ general visual instruction tuning data proposed in LLaVA [19], VQA
data from train sets of benchmarks, and our self-curated Negative data for learning on deliberate
reasoning (generating calls to grounding agents). Details are elaborated in Sec. 2.3. We finetune
our models on 8 A100 GPUs, with a learning rate of 2e−5, batch size of 16, for one epoch, with
cosine scheduler and Adam optimizer. Pre-training was executed on the 558K image subset from
LAIONCC-SBU, as utilized in LLaVA, with subsequent fine-tuning performed on a 467K dataset,
comprising 154K negative samples, as delineated in Section 2.3.

4.2 Results

4.2.1 Performance on Visual Reasoning

The performance of P2G on visual reasoning benchmarks are presented in Table 6. On text-rich
visual reasoning, P2G significantly outperform baselines, including the vanilla LLaVA, by more than
doubled (3× on DocVQA, 2.4× on ChartVQA), and also greatly surpass MLLMs that dedicated
tuned for text-rich visual reasoning, e.g., LLaVAR and TGDoc, and even surpasses 13B LLaVA
variants. On general visual reasoning benchmarks, P2G also enjoys a consistent improvement over
LLaVA and InstrtuctBLIP, demonstrating the superiority of P2G.

3Due to compute resource constraints, we train Vicuna-7B on a 120K subset of LLaVA instructions follow-
ing [41]. Details are elaborated in Section 2.3
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Model Size DocVQA ChartVQA GQA SEED MMVET MME

MiniGPT-4 [46] 7B 3.0 4.3 - - - -
mPLUG-OWL [43] 7B 6.9 9.5 - - - -

LlaVAR [45] 7B 11.6 8.0 - - - -
TGDoc [40] 7B 9.0 12.72 - - - -
LLaVA [19] 7B 19.06 15.30 21.80 25.66 27.20 1151

Instruct-BLIP [7] 7B - - 49.20 - 26.20 -
LLaVA [19] 13B 31.77 25.70 17.82 17.01 33.90 1224

Instruct-BLIP [7] 13B - - 49.50 - 25.60 -

LLaVA + P2G (Ours) 7B 61.44 37.20 59.87 27.47 30.40 1223

Table 5: Experimental results of P2G and baselines on visual reasoning benchmarks. The best
performing 7B-scaled MLLM is marked in bold.

Model Size Objects Texts

GPT-4V [28] >1T 36.0 68.0
SEAL(V*) [41] 7B 19.6 30.0

LLaVA 7B 12.3 8.0

LLaVA + P2G (Ours) 7B 39.7 50.0
Gain (%) - 3.2× 6.3×

Table 6: Experimental results on our challenging high-resolution benchmark P2GB.

4.2.2 Performance on P2GB

On the more challenging P2GB, P2Gachieved a significant improvement over V* and LLaVA,
demonstrating a markedly enhanced comprehension of object details in high-resolution images by
over 5x compared with vanilla LLaVA. Remarkably, P2G even outperforms GPT-4V on reasoning
related with nuanced Objects, the most capable MLLM so far, and is huge in scale and training com-
pute. These promising results further highlight the significance of P2G in plug-and-play grounding.
A detailed case study on P2GB against GPT-4V is illustrated in Figure 3.

4.2.3 Ablation Study

We study the effect of P2G in Table 7. We first remove the two agents for plug-and-play grounding
(w/o Grounding Agents) by providing no additional clues, and the performance drops drastically,
indicating the significance of Plug-and-Play Grounding. Upon removing the relative position vector
for grounded objects and texts, we observed a performance degradation across multiple benchmarks.
This decrement was more notable in structured image datasets like ChartVQA, where grounding
bounding boxes are essential for the model to locate crucial text pieces4. We finally replaced the
grounding agent with a model that being continually trained. It yields improvements in benchmarks
that require both object and text recognition, such as MM-VET, while it does not impact benchmarks
focused solely on text recognition, like DocVQA.

5 Related Work

5.1 Multimodal LLMs

The surge of large language models (LLMs) [28, 35], especially instruction-tuned ones [23, 6, 36,
27] demonstrated a strong potential in becoming generic interface for language modality. To extend
LLMs beyond language perception, recent works [46, 19, 13, 2, 38, 7] extends them into Multimodal
Large Language Models (MLLMs) with instruction tuning, through incorporating each modality as

4In DocVQA, we discover that removing bounding boxes unintentionally enables room for more detected
texts within the maximized input token limitation (2K). We expect a positive effect of bounding boxes, given a
MLLM with longer context.
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How many people 
are there in the 
picture?

GPT-4V:
There is one person 
in the picture.

P2G:
There are two
persons in the picture.

GPT-4V:
It is blue.

What color is the 
shirt of the person 
on the far left in the 
picture?

GPT-4V:
To contact the other party, you can 
use the telephone numbers provided 
in the bottom right corner of the 
picture. There are three numbers 
listed: 1. 0865 88191 2. 0865 88105 3. 
0865 88106

P2G:
cell. 320.6515815 339.2307582

Based on the picture, how do we 
contact the other party?

GPT-4V:
The magazine issue number 
mentioned in the picture is 
1522.

What is the magazine 
issue number mentioned 
in the picture?

GPT-4V:
The line of numbers that appears at the 
bottom of the image is as follows:

"50 49 48 47 46 45 44 43 42 41 40"

What is the line of numbers that 
appears at the bottom of the image？

How many people are in the 
picture?

P2G:
There are five people in the picture.

GPT-4V:
There are two people in the picture.

How many people 
are in the picture?

GPT-4V:
There are three people 
in the picture.

From which university did Theodore 
Harold Maiman obtain his PhD?

GPT-4V:
Theodore Harold Maiman obtained his PhD 
from University of California.

P2G:
Theodore Harold Maiman obtained his PhD 
from the University of California, Berkeley.

P2G:
The shirt of the person 
on the far left in the 
picture is white.

P2G:
The issue number mentioned 
in the picture is 1517.

P2G:
There are  two people 
in the picture.

P2G:
The line of numbers is 1850.

(Correct answer: Stanford University)(Correct answer: 12 people)

Figure 3: Case study of visual reasoning on P2GB, where we compare rationales generated by
P2G and GPT-4V(ision). The first three lines from top to bottom demonstrate cases on both text-
rich and semantic-rich reasoning, and bounding boxes generated with OCR agent and/or Grounding
Agent of P2G, where P2G (based on LLaVA-7B) demonstrates its superior capability in generating
grounded reasoning leveraging additional semantic clues against GPT-4V. The last row comprises
two challenging failure cases where both P2G and GPT-4V fails in generating an accurate answer.
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Benchmark P2G w/o Position in
Prompt

w/ Improved
DINO

w/o Grounding
Agents

DocVQA 61.4 71.6 (+10.2) 61.4 (0.0) 19.0 (-42.4)
ChartVQA 37.2 26.8 (-10.4) 37.2 (0.0) 15.3 (-21.9)
SEED 27.5 24.6 (-2.9) 27.5 (0.0) 25.7 (-1.8)
MM-VET 29.3 29.1 (-0.2) 30.4 (+1.1) 27.2 (-2.1)
GQA 59.9 59.8 (-0.1) 60.0 (+0.1) 21.8 (-28.0)

Table 7: Effects on removing the relative position vector for grounded (text and/or visual) objects in
prompt (w/o Position in Prompt), replacing the visual grounding agent with a stronger, continue fine-
tuned DINO (w/ Improved DINO), and removing the two agents in P2G (w/o Grounding Agents).

a foreign language[13, 42]. To equip LLM with capability in image perception, pioneer works like
Flamingo [2] and BLIP-2 [16] first encode image with a dedicated model (e.g.ViT [9]), then pro-
pose specific modules for aligning image and text modality. Subsequent works like LLaVA [19] and
KOSMOS-1 [13] leverage vision tokenizers to feed image semantics as in-context tokens, thereby
aligns the perception of image and language. To further advance MLLMs, recent works explored
enabling grounding and reference to visual contexts [31, 38], generating contents leveraging mul-
timodal adaptors [42, 30], leveraging parameter-efficient fine-tuning [10, 33], and scaling of mul-
timodal instruction data and model parameters [28, 3, 24]. Despite these improvements, MLLMs
so far still suffers from multiple prevailing limitations, including high-demand on quality and quan-
tity of instruction-following data, hallucination [20], and difficulties in processing images within
text-rich contexts [40] or grasping details within high-resolution images [19].

5.2 Visual Reasoning in Text-Rich Images

Zhang et al. [45] developed LLaVAR, which aims to enhance the interactive capabilities of MLLMs
through improved visual instruction tuning for text-rich image understanding. Hu et al. [12] intro-
duce BLIVA, which employs a novel approach by integrating both learned query embeddings and
image-encoded patch embeddings to enhance the multimodal LLM’s understanding and processing
of text-rich visual questions. Wang et al. [40] focus on enhancing MLLMs with text-grounding to
improve document understanding, especially in text-rich scenarios. Despite employing extensive
instruction fine-tuning data, the models’ capability for text grounding remains limited. Wadhawan
et al. [37] emphasize the need for models to understand interactions between text and visual con-
tent in their evaluation of context-sensitive text-rich visual reasoning in large multimodal models.
They primarily employ OCR tools and GPT-4 to construct instruction-finetuned datasets that en-
hance MLLM’s visual reasoning of text-rich images; however, mere instruction finetuning struggles
to effectively leverage LLM’s potent generative capabilities, resulting in marginal improvements.

6 Conclusion

In this paper, we focus on the challenge in grounding visual reasoning of multimodal large language
models. To address the limitations of most existing works that heavily rely on question-answer pairs
for instruction tuning, we propose P2G, a novel framework for plug-and-play grounding of visual.
Dedicately tuned on deliberate thinking, P2G promptly generate calls on external agents for detailed
text and visual clues within image, thus performing better reasoning. Furthermore, we propose
P2GB, a challenging benchmark with text-rich and high-definition images to better assess reasoning
capabilities. Comprehensive experiments on a variety of datasets demonstrates the superiority of
P2G, especially under text-rich and high-definition images. Our work provides meaningful insights
into the enhancement of MLLM reasoning capabilities with tool usage and plug-and-play grounding.
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