
Rapid nonlinear convex guidance via overparameterized monomial

coordinates and fundamental solution expansions

Ethan R. Burnett∗ and Francesco Topputo†

This paper introduces a framework by which the nonlinear trajectory optimization problem
is posed as a path-planning problem in a space liberated of dynamics. In this space, general
state constraints for continuous and impulsive control problems are encoded as linear constraints
on the native overparameterized variables. This framework is enabled by nonlinear expansion
in the vicinity of a reference in terms of fundamental solutions and a minimal nonlinear ba-
sis of mixed monomials in problem initial conditions. The former can be computed using state
transition tensors, differential algebra, or analytic approaches, and the latter is computed analyt-
ically. Nonlinear guidance schemes are proposed taking advantage of this framework, including
a successive convex programming scheme for delta-V minimizing trajectory optimization. This
work enables a stable and highly rapid nonlinear guidance implementation without the need for
collocation or real-time integration.

1 Introduction

In the context of modern guidance and control, spacecraft autonomy presents itself as a par-
ticularly technically and politically challenging problem. Strict computational and hardware limi-
tations are imposed by the need for radiation-hardened processors and on-board power and mass
constraints. Experimentation with autonomous agents is furthermore extremely regulated in com-
parison to terrestrial ventures in autonomy (such as self-driving cars) due to the high risk of testing
autonomous capabilities with no flight heritage on extremely expensive space vehicles. In prac-
tice, this has always motivated onboard guidance implementations that are computationally lean,
deterministic, and easy to test and validate. Nonetheless recent trends in dropping cost-to-orbit
and the proliferation of CubeSats anticipate the deployment of numerous lower-cost deep space
spacecraft which will require an increased degree of autonomy to avoid overwhelming human-in-
the-loop on-ground tracking and planning capabilities (Di Domenico et al., 2021). Thus it seems
likely that efforts in robust computationally constrained guidance will find increasing demand in
onboard planning and decision-making applications in the years to come.

The main characteristics of suitable on-board spacecraft guidance, are, according to Starek et al.
(2016), (1) that it should be computationally reasonable, (2) it should compute an optimal solu-
tion wherever possible, and (3) it should enable verifiability. Convex optimization-based guidance
presents an appealing candidate for meeting these challenges because by nature it is fast, extremely
stable, computationally well-posed, and thus easy to profile computationally (Boyd and Vanden-
berghe, 2004). Within the convex optimization framework, it is also possible to develop stochastic

∗Marie Sk lodowska-Curie Postdoctoral Fellow, Department of Aerospace Science and Technology, Politecnico di
Milano, ethanryan.burnett@polimi.it

†Professor, Department of Aerospace Science and Technology, Politecnico di Milano

1

ar
X

iv
:2

40
3.

19
32

4v
1

 [
m

at
h.

O
C

]
 2

8
M

ar
 2

02
4

guidance schemes that robustly accommodate expected dispersions in control performance as well
as state and parameter estimation errors. Chance-constrained methods are becoming popular for
this because they provide performance guarantees with a user-defined confidence level – see e.g.
Oguri and McMahon (2021) and Berning Jr. et al. (2023) for recent examples from academia and
industry. In addition to stochasticity, nonlinearity poses a perennial and ubiquitous challenge.
Even for otherwise convex problems, the general non-convexity of nonlinear dynamics often forces
an iterative approach via successive convexification (Mao et al., 2017), whereby a non-convex prob-
lem is solved locally as a convex sub-problem subject to trust region constraints to enforce a stable
iterative march towards the optimal solution. While extremely powerful, successive convexifica-
tion implementations tend to require fairly problem-specific details of choice of transcription and
trust-region updates to ensure stability, feasibility, and computational efficiency.

Among the aforementioned challenges of on-board guidance, for this work we are focused on
methods for fast and easily characterizable onboard guidance for nonlinear systems. Guidance of
nonlinear systems invariably comes with some non-trivial computational cost. However, not all
of this cost needs to be paid in real-time. Developing computationally feasible on-board guidance
thus involves the development of frameworks that keep specifically the real-time computational
footprint to a minimum. This is done is by enabling pre-computation of useful and reusable
information to the maximum extent possible. Along these motivational lines, we introduce a new
framework for using and studying nonlinear expansions of problem dynamics that is demonstrably
computationally efficient. It requires no real-time integration – either explicitly (as in predictor-
corrector methods or multiple shooting) or implicitly (as with collocation schemes). The method
requires in real-time only fairly simple computation and manipulation of matrices and vectors of
monomials and standard linear algebra. Furthermore it enables geometrically intuitive and easy-to-
implement differential correction and successive convexification schemes for trajectory optimization.
The truncated nonlinear expansion of the solution, written in a special ordered quasi-linear form, is
our “transcription” scheme. The optimization problem is then posed entirely in terms of a special
set of coordinates – an overparameterized set of monomials in the osculating initial conditions of
the problem. The accuracy of the guidance scheme is then easily characterized by ensuring that
the problem, when parameterized in these coordinates, always remains within a region of desired
accuracy of the domain of the truncated nonlinear expansions.

Many past works are relevant to the ideas and techniques expounded in this work. First, to
facilitate our computations, we make use of a computerized monomial algebra, whereby monomial
series of an arbitrary order and number of variables are represented by arrays of their coefficients,
whose spatial arrangement matches the ordering of the monomial terms. Similar schemes have
been implemented before – Giorgilli and Sansottera (2011) gives a broad overview of commonly
used methods. Jorba (1999) develops a computer algebra system in which they compute, store, and
manipulate monomials in a manner very similar to ours. Their applications are otherwise starkly
different, leveraging manipulation of monomials in a sequence of canonical transformations for the
purpose of constructing normal forms and obtaining approximate integrals of Hamiltonian systems.

The other half of our methodology involves the computation of nonlinear fundamental solution
expansions about a reference – each associated with a particular unique monomial in the initial
conditions. We’ve explored their computation by many means. Firstly, via “State Transition Ten-
sors”, which are an extension of the ubiquitous state transition matrix involved in almost any
method involving both linearization and discretization. Park and Scheeres (2006) provide a classic
overview, and Boone and McMahon (2021) provide a more recent predictor-corrector guidance im-
plementation for two-burn maneuvers. We have also computed the nonlinear fundamental solutions

2

leveraging Differential Algebra methods, which facilitates automated computation of derivatives via
a structure allowing direct treatment of many topics related to the differentiation and integration
of functions (Berz, 1999). This methodology has seen noteworthy use in spaceflight GNC in un-
certainty propagation (Valli et al., 2013) and optimal control (Di Lizia et al., 2014; Greco et al.,
2020). Lastly, nonlinear fundamental solution expansions can be computed analytically for some
specialized problems. This is typically aided nowadays by the use of computational software such as
Mathematica (Wolfram Research, Inc., 2023), and usually involves the use of perturbation methods
(Nayfeh, 2000; Hinch, 1991). In this work, our example application is one for which many such
expansions have been analytically derived: the spacecraft relative motion and rendezvous problem.
References such as Butcher et al. (2016), Butcher et al. (2017), Willis et al. (2019b), and Willis
et al. (2019a) are thus especially relevant to us.

This work makes use of convex optimization for trajectory optimization. In addition to the thor-
ough foundational work of Boyd and Vandenberghe (2004), see also work outlining the successive
convexification algorithm SCvx (Mao et al., 2017) and recent improvements (e.g. Oguri (2023)
for an augmented Lagrangian formulation to enable a feasibility guarantee of SCvx). Python is
our chosen language for convex optimization prototyping, offering mature open-source tools such as
CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018) and ECOS (Domahidi et al., 2013), as well as
the recent introduction of CVXPygen (Schaller et al., 2022) for especially rapid problem-solving via
generation of a speedy custom solver implementation in C called directly from the Python imple-
mentation as a CVXPY solver method. For a clear and simple introduction for convex optimization
methods for spacecraft trajectory optimization, see Wang and Grant (2018), and for a discussion
of the necessary collocation schemes, we recommend Kelly (2017). Our work within the DART
Lab at Polimi follows some notable other works making use of convex optimization for trajectory
optimization. Much of this work falls under the ERC-funded EXTREMA project (Di Domenico
et al., 2021) for self-driving interplanetary CuebSats. Hofmann and Topputo (2021) present a com-
putationally simple and robust convex optimization-based algorithm for low-thrust interplanetary
trajectories. Morelli et al. (2022) apply convex optimization to a similar problem while consider-
ing a homotopic energy-to-fuel optimal approach along with “second-order” trust region methods.
Hofmann et al. (2023) perform a wide study of different discretization and trust region methods
for convex low-thrust trajectory optimization. In this early work we lay the groundwork for both
continuous and impulsive control, but we explore only the latter in-depth. Our example application
is the long-range spacecraft rendezvous problem under impulsive thrust – see e.g. Berning Jr. et al.
(2023) (with drift safety guarantees) or Burnett and Schaub (2022) (for methods applicable to any
general periodic orbits) for applications to the close-range problem with convex programming.

This paper is organized as follows. In Section 2, we highlight the fundamental ideas behind our
methodology. We discuss the idea of osculating initial conditions, which is central to this work, along
with the useful kinematic constraints that arise from this concept. In Section 3.1 we move on to
the applications of our framework to spacecraft trajectory optimization, culminating in an example
simple successive convexification implementation whose real-time operations are computationally
extremely lean and easy to implement. In Section 4 we provide a thorough example application
to the nonlinear spacecraft rendezvous problem. Section 4.1 provides a simple two-stage (linear
prediction, nonlinear correction) convex guidance strategy leveraging our developments, and Section
4.2 showcases implementation of the successive convexification scheme from Section 3.1. We make
concluding remarks and suggestions for future work in Section 5.

3

2 Theory

2.1 Osculating Initial Conditions

This work considers controlled dynamical systems with coordinates x ∈ RN of the following
control-affine form:

ẋ = f(x, t) +B(x, t)u (1)

where u ∈ Rm is a control signal and t is time. For any instantaneous state x(t), it is always
possible to parameterize instead by its initial conditions x(0) and a time t, such that the two are
related by the flow of the natural dynamics (e.g. control-free, u = 0) as x(t) = φ(x(0), t, 0) or
equivalently by the inverse mapping:

x(0) = φ−1(x(t), t, 0) (2)

Based on Eq. (2), we could take some controlled state x(t) at some time t > 0 and back-propagate
to a corresponding “osculating” initial condition at time 0. This osculating initial condition, when
propagated via the natural dynamics, matches up with the controlled state at time t. Depending
on the selected “matching” time with the controlled trajectory, the osculating initial condition
will assume a different value. We denote this as c1(t). In this manner the c1 serves as its own
coordinate description of the problem, because the mapping to and from x(t) is always well-defined.
Conveniently, this parameterization removes the influence of natural dynamics, so the problem state
is stationary unless control is actively being applied.

For a linear dynamical system, the transformation φ is linear and easy to compute, and so past
works have explored solving linearized guidance problems leveraging parameterization in terms
of the initial conditions (or more generally, integration constants) of the system (Guffanti and
D’Amico, 2018; Burnett and Schaub, 2022). This transcribes trajectory optimization problems as
a path planning problem in a transformed domain free of natural dynamics. For nonlinear systems,
by contrast, we are accustomed to computing the mapping φ or its inverse via relatively costly
numerical integration techniques. Because of this, a general reformulation of nonlinear guidance
or control problem in terms of initial states previously would not be considered much of an im-
provement on the problem to be solved. In this work we use the concept of nonlinear fundamental
expansions to develop a practical theory valid for nonlinear systems in the vicinity of some reference.
We leverage (1) pre-computation of the nonlinear fundamental solution expansions and (2) a spe-
cial quasi-linear parameterization, in lieu of nonlinear representations such as tensors/summation
notations, which greatly facilitates our developments.

2.2 Overparameterized Representation

Instead of the minimal parameterization (linear in the initial conditions) discussed previously, we
need to instead parameterize our system by cj – a minimal collection of unique mixed monomials
up to O(xk(0)j), which is generated from the N initial states x1(0), . . . , xN (0). Thus the aforemen-
tioned c1 is just cj for j = 1. For j > 1, cj lies on an N -dimensional constrained surface in RKj ,
with Kj given below:

Kj =

j∑
q=1

(
N + q − 1

q

)
(3)

One strategy for building an ordered cj is as follows. For all unique mixed monomials of a given
order r, multiply by x1(0), and append to the list. Then multiply the order-r mixed monomials by

4

x2(0), and append in order only the non-repeated values, repeating this procedure through all state
variables to xN (0). This process initializes with c1 = x(0) and r = 1, and finishes after r = j − 1
to produce cj . For example, for N = 3, j = 2, c2 is computed as below:

c2 =
(
x1(0), x2(0), x3(0), x21(0), x1x2(0), x1(0)x3(0), x22(0), x2(0)x3(0), x23(0)

)⊤
(4)

See e.g. Giorgilli and Sansottera (2011) and Jorba (1999) for more discussion about the computer-
ized algebraic manipulation of sets of monomials. With the construction of cj established, we can in
general nonlinearly expand the solution of a dynamical system about a fixed point (or an arbitrary
reference, w.l.o.g.) in terms of unique monomials and their associated fundamental solutions as
below:

x(t) ≈ x1(0)ψx1(t) + x2(0)ψx2(t) + . . .+ xN (0)ψxN (t)

+ x21(0)ψx2
1
(t) + x1(0)x2(0)ψx1x2(t) + . . .+ xjN (0)ψ

xj
N

(t)

= Ψj(t)cj

(5)

The ψ functions are the fundamental solutions of the expanded dynamics, and can be constructed to
a given desired order by various means, including using the relevant terms from the associated state
transition tensors (STTs) for the problem (Park and Scheeres, 2006; Boone and McMahon, 2021)
or the higher-order Taylor map (HOTM) from differential algebra (DA) (Berz, 1999; Valli et al.,
2013) – computed numerically, or perturbation solutions (Nayfeh, 2000; Hinch, 1991) which are
computed analytically. These topics are discussed in greater detail the Appendix A. An important
thing to note is that, at a given order, the fundamental solution/monomial representation is a
minimal representation written in a linear form, whereas the STTs are a redundant representation,
written in general in summation form.

We denote the N -dimensional surface that cj lies on as C(N), which is embedded in a Kj-
dimensional space. Figure 1 depicts for a system x = (x, ẋ)⊤ (i.e. N = 2) the surface obtained with
a set of monomials up to order 2 - omitting ẋ20 and x0ẋ0 from the second-order monomials (reducing
Kj from 5 to 3) to enable a simple 3D example. Note that, given a point cj ∈ C(N), any physically

Figure 1: Monomial Coordinates and Initial Conditions

admissible infinitesimal variations δcj are constrained to lie in the tangent space TcjC(N), because

5

the monomials are an overparameterized representation of the system. For example, applying a
change in the linear component of cj associated with x1(0), the higher-order components of cj such
as x21(0) are forced to take on a certain value, because they are functionally dependent on the linear
components. You can convince yourself of this by computing variations of Eq. (4) based on various
values of x(0) ∈ RN , and noting that the higher-order components are nonlinearly dependent on
the linear components.

2.3 Variation of Parameters

The overparameterized monomial representation is quite useful, but before explaining we must
emphasize that our arguments are locally and not globally valid. The size of the region of validity
grows with the order of expansion j, up to the limit of the radius of convergence. Below the jth

order approximate representation is restated for the control-free case u = 0:

x(t) ≈ Ψj(t)cj (6)

where the approximation notation simply indicates that the nonlinear fundamental solutions only
approximate the evolution of the true state from x(0). We define our operative domain and
timescale, D × T , to be that in which for our order j and basis Ψj the state x(t) is continu-
ously well-represented by our finite nonlinear expansion throughout that space for any t ∈ T . In
particular, the x(t) generated by the nonlinear expansion should always satisfy some error metric
ε when compared to a numerically integrated counterpart xn(t) propagated from the same initial

condition x(0), e.g. ∥x(t)− xn(t)∥ < ε ∀t ∈ T . At an epoch time t0
∆
= 0, cj is generated uniquely

from the initial conditions – the state x at time t = 0. The following mapping holds for jth-order
approximations of natural trajectories:

(x, t) ∈ {D × T } ⊆ {RN × R≥0} ←→ cj ∈ C(N) ⊆ RKj (7)

If we choose a state vector and time from the left side of Eq. (7), we will have sampled a trajectory
evolving in time at that particular time. That trajectory will have its own unique initial conditions
x(0) at the epoch time. On the right is a corresponding stationary state parameterized by an
ordered collection of monomials of initial conditions, e.g. components of x(0). The mapping from
right to left is simply Eq. (6). The inverse mapping also exists and is unique – but it isn’t analytic.

Let C(N)
ε denote the compact sub-domain within C(N) that, given any specified t ∈ T and

cj ∈ C(N)
ε , generates a corresponding x within the domain of validity D at that time t. In general

the validity of our methods can be understood to hold only in the localized context that all points

cj of interest for a problem are contained in a C(N)
ε corresponding to a sufficiently low ε that the

approximations are adequate for a given application. This then is easy to verify if, when computing

and constructing Ψj , we develop also an approximation of its region of validity C(N)
ε .

Subject to the true nonlinear dynamics with vector field f(x, t) + B(x, t)u, we seek the in-
duced variations ċj such that the true solution can still be represented using our finite functional
expansion, i.e. such that Eq. (6) still holds, but now the constants are forced to vary:

x(t) = Ψj(t)cj(t) (8)

In this manner the induced variations in cj are analogous, for example, to the induced variations
in the classical two-body orbit element description under the influence of control or some other

6

perturbations. This “osculating” description is similar to a method by which Gauss’ variational
equations in can be derived, and the following relationship must hold:

ẋ(t) =
∂x(t)

∂t
+
∂x(t)

∂cj
ċj = f(x, t) +B(x, t)u (9a)

ẋ(t) = Ψ̇j(t)cj + Ψj(t)ċj = f(x, t) +B(x, t)u (9b)

Within a region of convergence, the term Ψ̇jcj approximates the natural flow of the dynamics,
f(x, t), with an accuracy that improves with higher orders j, thus the below approximation is
obtained after the cancellation of the similar terms:

Ψj(t)ċj ≈ B(x, t)u (10)

The error in this expression generally grows with time t and distance from the reference (i.e. ∥x∥),
and shrinks with order j. Recall that infinitesimal variations δcj lie in the tangent space TcjC(N),
thus the following is equivalent to Eq. (10):

Ψj(t)
∂cj
∂c1

ċ1 ≈ B(x, t)u (11)

Note that
∂cj
∂c1

is also simply a function of monomials in components of x(0) up to order j − 1. For

systems of interest to us, the product Ψj(t)
∂cj
∂c1

can be easily shown to be generally invertible, thus we
obtain the following variational equations (dropping the “≈” notation but with the understanding
that they are approximations):

ċ1 =

(
Ψj(t)

∂cj
∂c1

)−1

B(x, t)u (12a)

ċj =
∂cj
∂c1

(
Ψj(t)

∂cj
∂c1

)−1

B(x, t)u (12b)

These equations represent our original dynamical system of Eq. (1) in terms of coordinates that
are stationary in the absence of control – either via a minimal representation, c1, or an associated
overparameterized representation cj , which can easily be computed from c1. Within the region of
convergence of all relevant expansions, as the order j is increased, these equations better approxi-
mate the variation of osculating initial conditions for some controlled system (e.g. as discussed in
Section 2.1).

2.4 Kinematics and Dynamics

Because the monomial coordinates are stationary in the absence of control, any motion of
cj ∈ C(N) only occurs when control is active. While the preceding developments are valid for any
state representation of x (i.e. any choice of coordinates), here we examine the implications for a sys-
tem specifically parameterized with Cartesian position and velocity coordinates x(t) = (r⊤,v⊤)⊤.
Consider first the example of continuous control u(t). The controlled dynamics are given by the
equations below, differentiating Eq. (6):

ṙ = Ψ̇r,jcj + Ψr,j ċj (13a)

v̇ = Ψ̇v,jcj + Ψv,j ċj (13b)

7

where Ψr,j denotes the top N/2 (position-associated) rows of Ψj , and Ψv,j the bottom N/2 (velocity-
associated) rows. The following kinematic identity must be satisfied, noting that by definition of
our choice of coordinates x, the nonlinear fundamental solutions satisfy Ψv,j(t) = Ψ̇r,j(t):

ṙ = v = Ψv,jcj

= Ψ̇r,jcj
(14)

From this we obtain the below constraint on admissible directions of ċj ∈ TcjC(N):

Ψr,j ċj = 0 (15)

Then, denoting the natural acceleration a and the control acceleration ac = BL(x, t)u where BL is
the bottom N/2 rows of control matrix B (and furthermore BL = I3×3 in the general 3D Cartesian
case), we obtain also the following relationship from Eq. (13) after noting a = Ψ̇v,jcj :

ac = Ψv,j ċj (16)

Note that Eq. (16) can also be obtained directly from Eqs. (11) and (12) upon substitution of the
correct form for B(x, t).

For the case of impulsive maneuvers ∆v(ti) occuring at various discrete times, the impulsive
analogs of the above constraints are:

Ψr,j(ti) (cj(ti)− cj(ti−1)) = 0 (17a)

∆v(ti) = Ψv,j(ti) (cj(ti)− cj(ti−1)) (17b)

Thus the kinematics and dynamics are encoded as fundamental path constraints on admissible
paths of cj on C(N). Furthermore the cost paid to move in C(N), i.e. the delta-V, is a simple linear
function of the jump in the monomial states. Note that alternate choice of working coordinates
for x simply results in a different linear relationship in the form of Eq. (17), as long as the non-
linear transformation to Cartesian coordinates admits a regular Taylor series expansion. Lastly, as

previously stated, if we already have an idea of our domain of validity C(N)
ε within C(N), to ensure

accuracy of any methods that use this representation, we can simply check that all cj(ti) ∈ C(N)
ε .

This is much easier than the alternative test of ensuring that (x, t) ∈ D×T for all states and times
of interest.

3 Applications

3.1 Spacecraft trajectory optimization

Consider the optimization of nonlinear spacecraft trajectories composed of (1) impulsive maneu-
vers, and (2) coast arcs between maneuvers. The monomial coordinates, being effectively constant
in the absence of control, are naturally well-suited for posing this trajectory optimization problem
as a path-planning problem. We focus on a simple unconstrained delta-V optimal nonlinear control
example. We note however that by the linear relationship between x and cj , constraints on the
states x(ti) at times ti (and even constraints on control-free drifts x(τi), for times τi ≥ ti with
u(τi) = 0) are easily inherited by the monomial coordinates cj(ti) as well.

The transcription between monomial coordinates cj ∈ C(N) and the trajectory x(t) is depicted
in an example 4-burn solution in Figure 2. Note the monomial state is stationary in the absence

8

Figure 2: Trajectory Optimization as Path Planning on C(N)

of maneuvers and it is constrained to lie on C(N), but is otherwise unconstrained, with all nodes
free to assume their respective locations such that the overall minimizing path is obtained. We
explore two optimization schemes – minimizing J =

∑
i ∥∆v(ti)∥2 (i.e. “energy-minimizing”) and

also J =
∑

i ∥∆v(ti)∥ (minimizing delta-V). We differentiate between them by their exponent “P”,
2 or 1. The former is parsed explicitly in this work, whereas the objective function for the latter is
implemented via CVXPY parsing.

3.1.1 Problem formulation

The unconstrained fixed-time optimization problem with impulsive maneuvers is given below:

minimize
K∑
i=1

∥∆v(ti)∥P

subject to

x(t0) = x0

x(t+K) = xf

x(t−i+1) = φ
(
x(t+i), ti+1, ti

)
r(t+i) = r(t−i)

(18)

where we explore P = 1, 2, and both yield a convex problem. The trajectory is split into up to K+1
different points, corresponding to an initial condition plus K times where maneuvers are allowed.
For K ≫ N , the optimal solution will generally have ∆v(ti) = 0 for many discretized times ti. The
expression φ(x(t1), t2, t1) denotes the flow of the state x(t) from t1 to t2, and t−i and t+i denote the
time ti at the instants before and after a maneuver ∆v(ti). The first two conditions in Eq. (18)
are simple boundary conditions based on prescribed initial and final states of the trajectory. The
third condition is a requirement that the state between maneuvers obey the flow of the natural
dynamics. The fourth is a continuity condition requiring that the position is unchanged during an
instantaneous maneuver.

We seek to rewrite the problem of Eq. (18) in terms of the monomial coordinates. To do this,
we exploit a few useful properties. Recall the following mapping from monomial coordinates to the
instantaneous state at some time t:

x(t) = Ψj(t, t0)cj (19)

Given an instantaneous maneuver ∆v(ti), the corresponding ∆cj(ti) = cj(ti)−cj(ti−1) must satisfy
the following for a Ψj partitioned row-wise into Ψr,j (top N/2 rows - corresponding to position

9

states) and Ψv,j (bottom N/2 rows - velocity states):

∆cj(ti) ∈ ker (Ψr,j(ti, t0)) (20a)

∆v(ti) = Ψv,j(ti, t0)∆cj(ti) (20b)

cj(ti−1) + ∆cj(ti) ∈ C(N) (20c)

The first constraint is that the position is not changed by the impulsive maneuver. The second
constraint is true by definition of the fundamental solution matrix Ψj in Cartesian coordinates.
The third constraint states that regardless of the change induced in cj , the new monomial state
must still be on the manifold C(N). We can now rewrite the problem of Eq. (18):

minimize
K∑
i=1

∥Ψv,j(ti) (cj(ti)− cj(ti−1)) ∥P

subject to

cj(t0) = cj,start
cj(tK) = cj,goal

cj(ti)− cj(ti−1) ∈ ker (Ψr,j(ti))

cj(ti) ∈ C(N), ∀i ≥ 1

(21)

The problem is reduced to choosing reasonable discrete steps ∆cj(ti), i = 1, 2, . . . ,K, achieving the
desired path from cj,start at t0 to cj,goal at tf , while minimizing the above cost. This is intended as
a simple example, but in general any constraints on the state x(t) are inherited by constraints on
the (linearly related) cj .

For this optimal path-planning problem, we write out a vector of (preliminary) decision variables

as X̃ =
(
cj(t1)

⊤, cj(t2)
⊤, . . . , cj(tk)⊤

)⊤
. The cost function of the problem given by Eq. (21) can be

shown to be quadratic in X̃, and the first two constraints are clearly linear. The third constraint is
also linear, written simply as Ψr,j(ti)∆cj(ti) = 0. The only non-convex part of the problem given
by Eq. (21) is the final constraint that the decision variables lie on the manifold C(N). For this
non-convexity we propose a successive convex programming problem.

3.1.2 Successive convex programming

Figure 3 conceptually depicts a trajectory, in terms of 5 distinct points in the monomial coordi-
nates, resulting from 4 impulsive maneuvers. In the vicinity of any of the points in the trajectory
shown in Figure 3, we can linearly approximate local variations in cj to lie in the tangent space as
below:

δcj(ti) ≈
∂cj
∂c1

∣∣∣∣
cj(ti)

δc1(ti) ∈ Tcj(ti)C
(N) (22)

The key to a successive convex programming (SCP) implementation of the problem given by Eq. (21)
is to make use of this local tangent plane approximation, and also to choose our free variables for
the convex problem as the δc1(ti), with the nominal cj(ti) chosen from a prior iteration (or, for
iteration 1, from the initial guess of the trajectory). Thus X̃ = (δc1(t1)

⊤, δc1(t2)
⊤, . . . , δc1(tK)⊤)⊤,

10

Figure 3: Successive Convexification via Monomial Coordinates on C(N)

and transforming Eq. (21), the resulting convex sub-problem is given below:

minimize

∥∥∥Ψv,j(t1)
(
c
′
j(t1) +

∂cj
∂c1

∣∣∣
1
δc1(t1)− cj(t0)

)∥∥∥P + w
(∑K

i=1 ∥si∥
2 + ∥send∥2

)
+
∑K

i=2

∥∥∥∥Ψv,j(ti)

(
c
′
j(ti) +

∂cj
∂c1

∣∣∣
i
δc1(ti)− c

′
j(ti−1)− ∂cj

∂c1

∣∣∣
i−1

δc1(ti−1)

)∥∥∥∥P

subject to

Ψj(tk)
(
c
′
j(tK) +

∂cj
∂c1

∣∣∣
K
δc1(tK)

)
+ send = xgoal(tK)

Ψr,j(t1)
(
c
′
j(t1) +

∂cj
∂c1

∣∣∣
1
δc1(t1)− cj(t0)

)
+ s1 = 0

Ψr,j(ti+1)

(
c
′
j(ti+1)− c

′
j(ti) +

∂cj
∂c1

∣∣∣
i+1

δc1(ti+1)− ∂cj
∂c1

∣∣∣
i
δc1(ti)

)
+ si+1 = 0, i = 1:K − 1

(23)

Note the careful parsing of expressions involving cj(t0), which is fixed in this example and is not
part of the decision variables. The ()

′
denotes terms from the solution to the prior iteration,

about which the current iteration is expanded. Furthermore
∂cj
∂c1

∣∣∣
i

is a shorthand for
∂cj
∂c1

∣∣∣
c
′
j(ti)

.

The enumerated slack variables si are introduced to prevent artificial infeasibility of the convex
sub-problem, with a scalar weight w > 0 to specify the degree of penalization of slack terms (the
converged solution must satisfy si = 0). These slack variables can be physically interpreted as the
positional defect constraints in the trajectory. There is also an additional slack variable send related
to the satisfaction of the first listed linear constraint, which is a constraint on the end state, and
is similarly penalized. For performance reasons, it is best for the problem states to be rendered
non-dimensional, or for the last N/2 components of send to be rescaled to have the same positional
“units” as the si slack variables. In this manner an SCP iteration will not be biased to over/under
penalize any components send in comparison to the other si.

Between iterations, it is necessary to project the solution to the convex sub-problem (which exists
in the union of the tangent planes of points c

′
j(ti) ∀ i) back onto the manifold. The most obvious

(and computationally easiest) way is to compute for each update +δc1(ti) the new cj(ti) given by
c
′
1(ti) + δc1(ti), e.g. using the equation for cj , which will have some analytic form – Eq. (4) was

our earlier example.

Because the tangent-plane approximations of variations δcj are only locally valid, we must ad-

11

ditionally impose some kind of trust region constraint preventing the sub-problem from obtaining
variations δc1(ti) that are too large. We impose a norm constraint on X̃ to do this:

∥X̃∥ ≤ d (24)

We can set a fixed trust-region radius d, or alternatively we can update this via a proper trust-region
update method such as the one outlined in (Hofmann et al., 2022).

The sub-problem defined by Eq. (23) can be resolved for P = 2 in the form below:

minimize X⊤PX + q⊤X

subject to
AX = b
∥MX∥ ≤ d

(25)

For this formulation, we first augment the preliminary decision variables X̃ with slack variables
S = (s⊤1 , s

⊤
2 , . . . s

⊤
K , s

⊤
end)⊤ to form X = (X̃⊤,S⊤)⊤, which is of length

(
3
2K + 1

)
N for assumed

even N . Because we only want to constrain X̃, the form of M is simple:

M =
[
INK×NK 0NK×N(K

2
+1)

]
(26)

Because all constraints in Eq. (23) are linear and fairly simple, it is easy to construct A and b. The
form of P and q however requires some algebra and will be provided.

While it does not influence the convex sub-problem, we must compute the part of the cost J in
Eq. (23) that is not a function of the decision variables of a given iteration – this part of the cost
is denoted J

′
, reusing the prime notation to denote this as the total cost predicted from the prior

iteration:

J
′

=
K∑
i=i

c
′⊤
j (ti)Oic

′
j(ti)− 2c

′⊤
j (ti)Oic

′
j(ti−1) + c

′⊤
j (ti−1)Oic

′
j(ti−1) (27a)

Oi = Ψ⊤
v,j(ti)Ψv,j(ti) (27b)

Thus the solution to Eq. (25) provides the minimal admissible δJ = X⊤PX + q⊤X yielding total
cost J (q) ≈ J (q−1) +δJ (q) for iteration q. In reality, after iteration q, the nonlinear projection of the
linear step yields the true J (q) after a procedure of (1) nonlinearly updating all c

′
j(ti), (2) setting

all δc1(ti) = 0 in Eq. (23), then (3) using that to compute the true values of all slack variables,
which are simply the true defects in the constraint equations after the nonlinear projection. From
this info, we can compute the actual increment in cost δJ . As mentioned previously, we can take
advantage of the information provided by the disparity between the predicted (linear) δJ and the
actual (nonlinear) value. The two quantities are given below:

δJ
(q)
predict = X⊤PX + q⊤X (28a)

δJ
(q)
actual = J (q) − J (q−1) (28b)

where P , q are computed using information from iteration q − 1.

We now define the matrix P and vector q by sequential accounting instead of explicitly writing the
large matrices. In this manner, they are initialized as zeros with the correct size, and consideration

12

of each successive cost term in Eq. (23) adds a corresponding part to the matrices whose form is
to be defined.

P = P0 +
∑

δP, P0 = 0L×L (29a)

q = q0 +
∑

δq, q0 = 0L×1 (29b)

L =

(
3

2
K + 1

)
N (29c)

Starting with P , the first (t1), second (slack-associated), and third (indexed) cost terms of Eq. (23)
produce the following contributions to P :

δP1 =

[
C⊤
1 O1C1 0N×(L−N)

0(L−N)×N 0(L−N)×(L−N)

]
(30a)

C1 =
∂cj
∂c1

∣∣∣∣
c
′
j(t1)

, O1 = Ψ⊤
v,j(t1)Ψv,j(t1) (30b)

δP2 =

[
0NK×NK 0NK×LS

0LS×NK wILS×LS

]
(31a)

LS = L−KN = N

(
K

2
+ 1

)
(31b)

δP3,i =


0A×A 0A×N 0A×N 0A×B

0N×A C⊤
i−1OiCi−1 −C⊤

i−1OiCi 0N×B

0N×A −C⊤
i OiCi−1 C⊤

i OiCi 0N×B
0B×A 0B×N 0B×N 0B×B

 (32a)

Ci =
∂cj
∂c1

∣∣∣∣
c
′
j(ti)

, Oi = Ψ⊤
v,j(ti)Ψv,j(ti) (32b)

A = N(i− 2), B = L−Ni, i = 2:K (32c)

where the δP3,i is added for every applicable index i. Now q is defined similarly for the first (t1)
and third (indexed) cost terms:

δq1 =

[
2
(
c
′
j(t1)− cj(t0)

)⊤
O1C1 01×L−N

]⊤
(33)

δq2,i =

[
01×A −2

(
c
′
j(ti)− c

′
j(ti−1)

)⊤
OiCi−1 2

(
c
′
j(ti)− c

′
j(ti−1)

)⊤
OiCi 01×B

]⊤
, i = 2:K

(34)

Beyond the nonlinear projection, the only other nonlinear calculations needed for the setup of

Eq. (23) between iterations are (1) the analytic re-computation of all
∂cj
∂c1

∣∣∣
i

Jacobians and (2) the

computation of any needed norms. This simple implementation liberates the details of dynamics
from the problem representation. The converged solution is guaranteed to retain the full accuracy
of the jth-order fundamental solution expansion because it serves as our transcription scheme.Note
that the only non-convexity in this problem formulation necessitating the SCP is the requirement
that the overparameterized monomial states lie on the non-Euclidean constraint surface C(N).

13

4 Examples

In this section, we showcase the potential use of the developments in this paper for an example
application from space vehicle guidance. We hope to establish both practical and theoretical interest
in this overparameterized monomial formulation.

4.1 Nonlinear spacecraft rendezvous in LEO – Two-stage guidance

Before showing results with an SCP implementation, we demonstrate a two-stage guidance
scheme (linear predictor, nonlinear corrector) for rapid generation of trajectories that are both
fuel-efficient and dynamically feasible. The methods in this paper can be applied in practically any
dynamical environment, but we first consider the classical rendezvous equations with a target in
a simple circular Earth orbit. Using the framework in this paper, we demonstrate the following
convenient two-stage guidance strategy:

Stage 1: Compute a low-fidelity solution using the simplified linear model. This can be
done using several state-of-the-art approaches, but we choose a convex optimization-based
approach that poses the problem as a second-order cone problem (SOCP).

Stage 2: Rapid nonlinear correction, to accommodate for nonlinearity effects, as well as
any desired perturbative effects (e.g. J2 or target orbit eccentricity). This is done by lever-
aging computation of the high-fidelity fundamental solution matrix Ψj(t) and the analytic
expression for the monomial vector cj at desired order of nonlinearity j.

The nonlinear fundamental solutions data necessary for Stage 2 can be computed in advance and
stored on a spacecraft’s guidance computer. With this approach, implementation of Stage 2 is
reduced to the use of pre-programmed analytic functions, data lookup, and manageable linear alge-
bra. In settings where many trajectories need to be computed and characterized, pre-computation
of the nonlinear fundamental solution data is substantially computationally liberating. For weakly
nonlinear cases, this scheme extends the reach of linearized guidance solutions for a small delta-V
penalty. For more strongly nonlinear cases, it provides a convenient feasible (but sub-optimal)
initial guess for the SCP solver.

4.1.1 Stage 1

First, a suitable linearized rendezvous guidance scheme is defined. The nonlinear dynamics under
consideration are those of relative motion in the vicinity of a simple circular Keplerian orbit. This
problem is parameterized by the nonlinear equations below for LVLH relative position r = (x, y, z)⊤

and velocity v = (ẋ, ẏ, ż) (Schaub and Junkins, 2018):

ẍ− 2nẏ − xn2 − µ

R2
= − µ

r3
(R+ x) (35a)

ÿ + 2nẋ− yn2 = − µ

r3
y (35b)

z̈ = − µ

r3
z (35c)

where R is the circular target orbit radius, r =
√

(R+ x)2 + y2 + z2 is the chaser’s instantaneous
orbit radius, and velocities are measured with respect to the target-centered LVLH frame. In the
vicinity of the target spacecraft, Eq. (35) linearizes to the popular Clohessy-Wiltshire (CW) model

14

(Clohessy and Wiltshire, 1960):

ẍ = 2nẏ + 3n2x (36a)

ÿ = − 2nẋ (36b)

z̈ = − n2z (36c)

This linearized model admits a simple analytic solution, given below in a special modal form adapted
from Burnett and Schaub (2022) but suited to our notation:

x(t) = Ψ̂(t)ĉ1 (37)

ĉ1 =



y0 − 2
n ẋ0

−6x0 − 3
n ẏ0

3x0 + 2
n ẏ0

1
n ẋ0
z0
2

1
2n ż0

 (38)

V = [v1 v2 . . . v6]

=



0 −2/3 −1/2 0 0 0
1 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 −n/2 0 0
0 n n 0 0 0
0 0 0 0 0 n


(39)

ψ̂1 = v1 (40a)

ψ̂2(t) = v1nt+ v2 (40b)

ψ̂3(t) = 2 (v3 cosnt− v4 sinnt) (40c)

ψ̂4(t) = − 2 (v3 sinnt+ v4 cosnt) (40d)

ψ̂5(t) = − 2 (v5 cosnt+ v6 sinnt) (40e)

ψ̂6(t) = 2 (v6 cosnt− v5 sinnt) (40f)

The ĉ1 is a trivial linear transformation of the initial conditions c1 = x(0), i.e. we can write the
relationship ĉ1 = Lc1, where the constant matrix L is known. This facilitates a factorization of
the linear problem into projections along a geometrically intuitive functional basis, in lieu of the
columns of the STM which are not as intuitive or convenient (Burnett and Schaub, 2022).

The algorithm for solving for a (linearized) optimal impulsive maneuver sequence, minimizing
J =

∑k
i=1 ∆v(ti) at discrete times ti ⊆ [t0, t1, . . . tf], is given below for the unperturbed problem

(see e.g. Burnett and Schaub (2022) and Guffanti and D’Amico (2018) and references therein):

1. Solve the following second-order cone program for the optimal value η∗ corresponding to the
desired change in the linear modal state ∆c∗ = ĉ1,goal − ĉ1(t0):

maximize J̃ = η⊤∆c∗

subject to ∥Bc(tq)
⊤η∥ ≤ 1 ∀ tq ∈ [t0, t1, . . . , tf]

(41)

where Bc(tq) = Ψ̂−1(tq)Bx with classical linearized control matrix Bx = [03×3, I3×3]
⊤.

15

2. Determine all times ti ⊆ [t0, t1, . . . , tf] for which |∥Bc(ti)
⊤η∗∥−1| < ϵ for some small tolerance

ϵ. This will yield a k-maneuver sequence, with k ≤ N , for which the ith impulse is directed
along the unit vector:

ûi = Bc(ti)
⊤η∗ (42)

3. The set of delta-V maneuver magnitudes {∆vi} needs to satisfy the linear system of equations:

k∑
i=1

Bc(ti)ûi ·∆vi = ∆c∗ (43)

The conditions of optimality require that we reject any solutions with any ∆vi < 0, and additionally
there are some post-processing steps that we can devise to greatly improve the stability and accuracy
of this method. These details are discussed in the Appendix B. The solution of this lightweight
algorithm will consist of the following:

1. A sequence of (linear) monomial states c1(τi) at k + 1 times τi ∈ T .

2. A list of critical times T = [t0, tb1 , tb2 , . . . , tbk], where τ0 = t0 is the initial time and τi = tbi
is the ith burn time. With this notation, c1(t0) represents the epoch state before the control
action of the first burn at tbi ≥ t0 is taken.

3. A table of k associated nonzero delta-V vectors.

The outputs of any other guidance algorithm based on linearization and the impulsive maneuver
assumptions (see e.g. Berning Jr. et al. (2023) for a recent example of linearized guidance incor-
porating the practical constraint of passive safety) can also be easily put into this form. Note the
use of lower-case “k” instead of “K” from Section 3.1 because for this example each increment of
the index is by definition a (nonzero) maneuver.

4.1.2 Stage 2

This scheme is a rapid high-fidelity correction to the solution of Stage 1 which preserves the
burn times tbi ∈ Tb and controllable maneuver positions r(tbi), while altering the magnitude and
direction of the delta-Vs ∆v(tbi). The result is a guidance solution compatible with the dynamics
parameterized by a given nonlinear fundamental solution representation Ψj(t) and associated over-
parameterized monomial set cj . The solution is trustworthy if the nonlinear fundamental solution
parameterization Ψj(t) is accurate for the flight environment and domain under consideration.

For this scheme simple Newton-style correction is sufficient. We define a free variable vector
X in terms of the (first-order) monomials c1(tbi), and a constraint vector F (X), which is driven
to zero as the satisfactory X∗ is obtained. This function is linear in the higher-order monomial
representation cj(tbi) and nonlinear in the c1(tbi). We demonstrate now the form of X and F (X):

X =
(
c1(tb1)⊤, c1(tb2)⊤, c1(tb3)⊤, . . . , c1(tbk)⊤

)⊤
(44)

16

F (X) =



Ψr,j(τ2)cj(τ2)− rG(τ2)
Ψr,j(τ3)cj(τ3)− rG(τ3)

...
Ψr,j(τk)cj(τk)− rG(τk)

Ψr,j(τ1)cj(τ1)−Ψr,j(τ1)cj(τ0)
Ψr,j(τ2) (cj(τ2)− cj(τ1))
Ψr,j(τ3) (cj(τ3)− cj(τ2))

...
Ψr,j(τk) (cj(τk)− cj(τk−1))

Ψv,j(τk)cj(τk)− vG(τk)



(45)

where the nonlinear mapping from c1(τi) (and hence from X) to cj(τi) is analytic and straightfor-
ward – recall the discussion in Section 2.2. The first set of constraints (above the dashed line) are
enforcing that all controllable maneuver locations match the corresponding maneuver location from
the guidance solution of Stage 1, rG(τi). Because the first maneuver location is not controllable,
it is omitted from these constraints. Note that if τk < tf , xG(τk) (the state immediately after at
the kth and final burn) is related to the goal final condition x(tf) simply by the natural dynamics
mapping x(τk) = ψ−1(x(tf), tf , τk). The second set of constraints, between dashed lines, enforce
the kinematic constraint that changes in the monomial states at burn nodes (implicitly the result
of impulsive maneuvers) should not instantaneously change the position. Note that the very first
one is written differently to emphasize that cj(τ0) is uncontrollable and thus does not appear in
the free variables X. Lastly, the final listed constraint in F (X) is enforcing that the final goal
velocity, immediately after the kth and final burn, is achieved.

The constraint Jacobian, G(X) = ∂
∂X (F (X)), is computed analytically, and its derivation from

Eq. (45) is straightforward:

G(X) =



0N
2
×N Ψr,j(τ2)Cj,2 0N

2
×N 0N

2
×N . . . 0N

2
×N 0N

2
×N

0N
2
×N 0N

2
×N Ψr,j(τ3)Cj,3 0N

2
×N . . . 0N

2
×N 0N

2
×N

...
0N

2
×N 0N

2
×N 0N

2
×N 0N

2
×N . . . 0N

2
×N Ψr,j(τk)Cj,k

Ψr,j(τ1)Cj,1 0N
2
×N 0N

2
×N 0N

2
×N . . . 0N

2
×N 0N

2
×N

−Ψr,j(τ2)Cj,1 Ψr,j(τ2)Cj,2 0N
2
×N 0N

2
×N . . . 0N

2
×N 0N

2
×N

0N
2
×N −Ψr,j(τ3)Cj,2 Ψr,j(τ3)Cj,3 0N

2
×N . . . 0N

2
×N 0N

2
×N

...
0N

2
×N 0N

2
×N 0N

2
×N 0N

2
×N . . . −Ψr,j(τk)Cj,k−1 Ψr,j(τk)Cj,k

0N
2
×N 0N

2
×N 0N

2
×N 0N

2
×N . . . 0N

2
×N Ψv,j(τk)Cj,k


(46)

where Cj,i =
∂cj
∂c1

∣∣∣
c1(τi)

which can be computed analytically by exploiting the known monomial

structure of the cj . This kN ×kN matrix is full rank for our problem of interest. Thus the Newton
step can be assessed as below:

δX = −γG−1F (X), 0 < γ ≤ 1 (47)

The proper γ can, if needed, be chosen by evaluating the error norm of F (X + δX) for a pre-
determined sequence of γ, i.e. in a line-search, because of the extremely low overhead in computing

17

F (X). For our examples, the simple choice γ = 1 was always sufficient. This linear problem is
initialized by constructing X(0) (i.e. the 0th iteration) directly from the c1(τi) outputs from Stage 1
of guidance. In this particular example, because Stage 1 solves for a sequence of modified constants
ĉ1(τi), to construct X(0) each must first be linearly mapped to the initial guess of the corresponding
c1(τi). This is accomplished by the following equation:

c1(τi) = Ψ−1
1 (τi)Ψ̂(τi)ĉ1(τi) (48)

In this manner, the influence of any desired perturbations not modeled in Stage 1 can be introduced
by ensuring their linear effects are accounted for in Ψ1. Because there is no need for any complicated
numerics in the analytic computations of Eqs. (46) and (47), Stage 2 is extremely rapid. In our
experience, the total time taken by all needed successive corrections of Stage 2 are much faster
than the small SOCP solved by stage 1.

We now apply the aforementioned procedure to an example short-range low-Earth orbit (LEO)
rendezvous and proximity operations scenario. For this example, a linearized rendezvous trajectory
is generated which requires correction for the nonlinear dynamics of relative motion in low-Earth
orbit. The problem details are provided in Table 1. Also included in that table are the runtime
details for generation of the nonlinear fundamental solutions via the numerical propagation of
the STTs. Note that in lieu of using numerically propagated STTs, for this particular problem
there exist analytic nonlinear expansions in literature. In particular, exact nonlinear expansions
suitable for computing Ψj(t) up to order j = 3 can be found (in normalized form) in Butcher et al.
(2016). See also Butcher et al. (2017) and Willis et al. (2019b) and also references therein. Such
analytic solutions unburden onboard algorithms from the task of pre-computing STTs to render
the nonlinear fundamental solutions. More details can be found in Appendix A.

Table 1: Parameters for Rendezvous Example 1

Parameter Values

Target spacecraft LEO orbit, a = 6378 km, e = 0, T ≈ 1.4 hrs
Control interval t0 = 0.1T , tf = 2.3T , discretized into 220 times
Relative state, t = 0 x(0) = [−1266.6,−12000, 1000, 0, 2.9748, 0] (units: m, m/s)
Relative state, tf x(tf) = [−589.6, 383.2,−1825.9, 2.3747, 1.4617,−1.3499]
STT info Duration: 2.3T . Discretization: 230 times. Size: 474 kb

Compute time (order): 129s (3), 6.69s (2), 0.747s (1)
Linear guidance Burn indices: [0, 93, 142, 201, 219]. Delta-V: 2.336 m/s. Runtime: 0.108s
Stage 2 guidance Delta-V: 2.353 m/s. Runtime: 0.0119s

Figure 4 gives the nominal guidance solution produced by Stage 1, propagated with the linearized
dynamics assumed therein (in this case, the CW dynamics). This is generated on a 2023 MacBook
Pro (M2 chip) in Python 3, using CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018) with ECOS

(Domahidi et al., 2013) to solve the SOCP in ∼0.1s. After a sequence of 5 burns, the goal state
is achieved: entry onto a tilted target-centered relative orbit. This linearized guidance solution
requires a maneuver sequence with a total delta-V of 2.336 m/s. In subsequent figures the nominal
linear guidance solution appears as a gray curve.

To produce Figure 5, the original Stage 1 guidance solution (nominal delta-Vs applied at pre-
planned times) is followed in an open-loop fashion subject to the nonlinear dynamics, with no
allowance for corrective maneuvers – yielding the orange curve. The goal state is clearly not

18

Figure 4: Nominal linear guidance trajectory, linearized dynamics (rendezvous ex. 1)

achieved. This illustrates a well-known limitation of using linearized dynamics for rendezvous guid-
ance: the nominal trajectories predicted by linearization will have to be corrected for accuracy in
a high-fidelity model. There are various means of doing this, such as refinement via successive con-
vexification, post-processing with sequential Lambert targeting (restricted to two-body problems),
or correction via multiple-shooting schemes. These come at some non-trivial computational cost
that must be paid each time a new trajectory is devised.

Figure 5: Executed open-loop linear guidance, nonlinear dynamics (rendezvous ex. 1)

In Figure 6, we show the results of Stage 2. This correction is achieved in ∼0.01s with 2 iterations
of the Newton solver scheme (∼0.005s per iteration) – making use of analytic monomial expressions
and the pre-saved Ψj(t) evaluated at the critical times. The resulting nominal trajectory is again
simulated in open-loop with the nonlinear dynamics, but now satisfies the final conditions to a high
degree of accuracy (0.37% error in final along-track position, < 0.1% error in all other states).

In our tests, we find that this two-stage guidance scheme is quite stable, even when the linearized
initial guess (Stage 1) is highly erroneous. One more LEO example with the two-stage guidance
scheme serves as a nice illustration of this. We consider a rendezvous from an initial along-track
offset of 75 km – well beyond the range of validity of the CW problem (especially in its Cartesian
instead of curvilinear representation). The problem details for this example are provided in Table 2,

19

Figure 6: Executed open-loop nonlinear guidance, nonlinear dynamics (rendezvous ex. 1)

and we reuse the same Ψj(t) computed for the prior example. Figure 7 gives the open-loop execution
of the delta-Vs predicted by linearized guidance solution with the nonlinear orbital dynamics, which
completely fails to reach the target point, due to the long range extending beyond the linear regime.

Table 2: Parameters for Rendezvous Example 2

Parameter Values

Target spacecraft LEO orbit, a = 6378 km, e = 0, T ≈ 1.4 hrs
Control interval t0 = 0.1T , tf = 2.3T , discretized into 220 points
Relative state, t = 0 x(0) = [−9000,−75000, 1000, 0, 17.353, 0] (units: m, m/s)
Relative state, tf x(tf) = [0, 500, 0, 0, 0, 0]
STT info Reused from Example 1
Linear guidance Burn indices: [17, 62, 117, 163, 215]. Delta-V: 5.112 m/s. Runtime: 0.105s

Open-loop error: > 30 km range, trajectory failed
Stage 2 guidance Delta-V: 8.124 m/s. Runtime: 0.018s. Open-loop tf error: 1.06 km, 6.5 cm/s

Figure 7: Executed open-loop linear guidance, nonlinear dynamics (rendezvous ex. 2)

Figure 8 shows the open-loop result achieved using the delta-Vs predicted by Stage 2 guidance,
which converged in 3 Newton steps, with a total time of ∼0.018 seconds to compute the correction
in Python 3. The result is a dramatic improvement on the linearized guidance solution, rendering
a reasonable reference trajectory, achieving a sub-km error in the targeting of the final along-track
point in open-loop execution. The residual error can easily be accommodated with a small correction
to the penultimate burn. This small error however illustrates the important point that the guidance
solutions produced by Stage 2 will only be as accurate as the nonlinear solution expansions Ψj(t)
that were used to generate them. In this case, at 75 km of range and 2.2 target orbit periods of

20

total duration, the linearized CW model is totally invalid but the third-order expansion is starting
to show only some error.

Figure 8: Executed open-loop two-stage guidance, nonlinear dynamics (rendezvous ex. 2)

4.2 Nonlinear spacecraft rendezvous in LEO – Successive convexification-based
optimal guidance

Now we provide a simple demonstration of the successive convexification scheme introduced in
Section 3.1. For this example we consider a new LEO rendezvous case whose details are provided in
Table 3. This example combines long-range along-track separation with some out-of-plane motion
which must be regulated to achieve a final stationary along-track state with 1.5 km offset from the
target spacecraft. As before, we first compute a linearized guidance solution (Stage 1) and then a
nonlinear guidance solution (now via the SCP scheme). The linearized guidance solution, and its
failed open-loop execution, are depicted in Figure 9. This solution is computed in ∼0.05 s.

Table 3: Parameters for Rendezvous Example 3a (Min. sum of delta-V squared, P = 2)

Parameter Values

Target spacecraft LEO orbit, a = 6378 km, e = 0, T ≈ 1.4 hrs
Control interval t0 = 0.1T , tf = 1.1T , discretized into 4 points (burn times fixed)
Relative state, t = 0 x(0) = [−3666.7,−62000,−4000,−1.239, 7.437, 2.479] (units: m, m/s)
Relative state, tf x(tf) = [0, 1500, 0, 0, 0, 0]
STT info Reused from Example 1
Linear guidance Burn indices: [0, 12, 64, 99]. Delta-V: 10.04 m/s. Runtime: 0.052s

Open-loop error: >10 km range, trajectory failed
SCP guidance Delta-V: 10.82 m/s. Runtime: 0.1s. Open-loop tf error: 0.0529 km, 6.0 cm/s
SCP parameters Fixed trust region, d = 3. Slack var. penalty weight w = 20. Method: ECOS

Convergence condition: ∥X̃∥ < 10−4, No. iterations needed: 5

Figure 9: Executed open-loop linear guidance, nonlinear dynamics (rendezvous ex. 3a)

21

Figure 10 gives the nonlinear guidance solution obtained via the SCP framework, minimizing
sum of delta-V norm squared, thus P = 2, where the burn nodes and delta-V vectors are allowed
to change via implementation of the scheme discussed in Section 3.1. To facilitate the most rapid
solution we inherit the optimal burn times of the linearized guidance solution, which minimizes
the dimensionality of decision variables (although the SCP framework allows for the times to be
optimized as well). The SCP solution, which is generated using the linearized guidance solution as
an initial guess, converges in 5 iterations in a total runtime of ∼0.1 s, with a runtime per iteration of
∼0.02 s. The total solve time (linear SOCP + nonlinear SCP) to generate this nonlinear guidance
solution was thus ∼ 0.15 s. The resulting guidance solution requires 10.82 m/s of total delta-V,
compared to the linearized prediction of 10 m/s, and a two-stage guidance requirement of 11.2
m/s. Figures 11 and 12 give the norm of the (non-slack) free variables, ∥X̃∥, and the total cost

Figure 10: Executed open-loop SCP-based guidance, nonlinear dynamics (rendezvous ex. 3a)

J vs. iteration number. The steady drop in the norm of the free variables per iteration, as
well as decreasing cost, correspond with our expectations of nominal behavior of the SCP scheme
converging to a feasible minimum. For this problem, the norm of the vector of slack variables, ∥S∥,
never exceeded 10−6.

Figure 11: SCP norm of non-slack free vars. vs. iter no. (rendezvous ex. 3a)

For this same problem, we also compute via SCP the P = 1 delta-V minimizing solution, and
in addition we allow for the burn times to be selected from 100 candidate discretization points.
The details for the new solver scheme are given in Table 4. The final SCP solution still has only
4 maneuvers, but the timing of the inner two is shifted slightly. The other discretization times
are automatically identified (as a by-product of the geometrically optimal path on C(N)) to be
sub-optimal burn times, so the optimal result gives only 4 non-null jumps in the cj(ti) across the
100 discretizations of the path. Note the increase in runtime to 2.5s as a result of the twenty-five

22

0 1 2 3 4 5

Iteration number

10−3

10−1

101

O
b

je
ct

iv
e

fu
n
ct

io
n
,
J

Figure 12: SCP total cost vs. iter no. (rendezvous ex. 3a)

fold expansion of the dimensionality of free variables for this example. The nominal delta-V is also
slightly reduced. Figure 13 gives the new guidance solution, with the SCP solution in purple, the
discretization of the problem shown by the gray dots (showing only 50 of the 100 points for clarity),
and the selected burn nodes shown as red dots.

Table 4: Parameters for Rendezvous Example 3b (Min. sum of delta-V, P = 1)

Parameter Values

Target spacecraft LEO orbit, a = 6378 km, e = 0, T ≈ 1.4 hrs
Control interval t0 = 0.1T , tf = 1.1T , discretized into 100 points (burn times free)
Linear vs. SCP Burn indices: Linear, [0, 12, 64, 99]. SCP solution, [0, 13, 65, 99]
SCP guidance Delta-V: 10.73 m/s. Runtime: 2.5s. Open-loop tf error: 0.108 km, 14.6 cm/s
SCP parameters Fixed trust region, d = 10. Slack var. penalty weight w = 5. Method: ECOS

Convergence condition: ∥X̃∥ < 10−4, No. iterations needed: 6

Figure 13: Executed open-loop SCP-based guidance, nonlinear dynamics (rendezvous ex. 3b)

All guidance examples in this paper were generated using the same pre-computed third order
nonlinear expansion, and represent a small sample of the trade space that can be explored leveraging
that same data. The two-stage nonlinear guidance and SCP-based nonlinear guidance implemen-
tations all perform without the need for any real-time numerical integration, and their robustness
to starting with a poor linearization-based initial guess is encouraging and interesting. Both offer
nonlinear correction in a comparable amount of time that was required to generate the linearized
initial guess, but of course the SCP-based implementation comes with the added delta-V minimiz-
ing benefit. Note that our implementation in Python is not optimized for speed but for proof of

23

concept, and a CVXPYgen implementation of the SCP could potentially improve performance by
removing significant overhead from successive CVXPY calls (Schaller et al., 2022).

5 Conclusions

This paper introduces a method of rapid guidance for nonlinear systems leveraging overparame-
terized monomial coordinates and fundamental solution expansions. By this methodology, trajec-
tory optimization problems can be solved with very low real-time computational footprint. The
solutions inherit the accuracy of the nonlinear fundamental solution expansions encoded by the
the special nonlinear fundamental solution matrix Ψj(t). We devise a simple two-stage (linear
predict, nonlinear correct) approach and a simple successive convexification scheme to demonstrate
the usefulness of the methodology. The spacecraft relative motion and rendezvous problem (and
relatedly, orbit regulation) are particularly well-suited for this approach because the reference tra-
jectory needed for the nonlinear solution expansions is clear: the target spacecraft orbit. We present
several examples where our methodology is used to rapidly compute guidance solutions that are
effective when propagated in a numerical model of nonlinear problem dynamics. In general, like
linear methods, this method is still only “locally” valid, though admitting a much larger region
of validity than linearization. For this reason, application to more general orbit transfer problems
requires the computation of reasonable reference trajectories for the transfer, which are not al-
ways clear. It’s also worth noting that, depending on order of nonlinearity j, the time to compute
the fundamental solutions numerically can be non-negligible. We envision a GNC implementation
where these solutions are computed hours, days, or more in advance of when needed in a mission. In
the context of our chosen example problem of spacecraft rendezvous, incorporation of the analytic
fundamental solution expansions (in lieu of our numerically computed expansions) keeps the total
computational footprint extremely low (solve times of O(1s) or shorter for our examples).

This is an early showcasing of a new methodology, so the opportunities for future work are signif-
icant. First, it is possible to extend this work to trajectory optimization problems with continuous
thrust, the kinematic constraints of which were already outlined. Incorporating path constraints is
straightforwardly inherited from more traditional implementations into our methodology because
the relationship between the instantaneous state vector (or functions of the state vector) and its
overparameterized monomial expression is linear. There are some other future developments which
require more theoretical work. First, the error analysis outlined in this paper for problems tran-
scribed in C(N) can and should be extended so that formal guarantees on performance can be made.
In this work, we merely provide early arguments towards that end, rooted in the fact that the fea-
sible region for accurate use of our method is static. In reality this feasible region can be described
in RN because the cj are functionally generated from c1. Relatedly, more advanced methods for
sizing the trust region(s) should be explored, and indeed the trust region can be chosen to ensure
the guidance solution remains in the region of validity of its predictions. Extending this framework
to accommodate stochasticity is also desirable for robust onboard applications. There is a path
forward to this, because the nonlinear fundamental solutions can also be expanded in terms of
uncertain parameters.

Acknowledgements

This work was performed as part of the Marie Sk lodowska-Curie Actions (MSCA) Postdoctoral
Fellowship, and funded by the European Commission. It is further made possible by technical

24

and administrative support from the hosting organization: Department of Aerospace Science and
Technology (DAER), Politecnico di Milano, Italy.

6 Code and Data Availability

Data and links to code to reproduce select examples from this paper will be made available via the
open-access digital repository Zenodo at https://zenodo.org/communities/faast-msca/about

as part of the MSCA project “Facilitating Autonomy in Astrodynamics for Spacecraft Technology”.

References

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting sys-
tem for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.
doi:10.1080/23307706.2017.1397554.

Andrew W. Berning Jr., Ethan R. Burnett, and Stefan Bieniawski. Chance-constrained, drift-safe
guidance for spacecraft rendezvous. In AAS Rocky Mountain Guidance, Navigation, and Control
Conference. American Astronautical Society, 2023. doi:10.48550/arXiv.2401.11077.

Martin Berz. Chapter 2 - Differential Algebraic Techniques. In Peter Hawkes, editor, Modern Map
Methods in Particle Beam Physics, volume 108 of Advances in Imaging and Electron Physics,
pages 81–117. Elsevier, 1999. doi:10.1016/S1076-5670(08)70228-3.

Spencer Boone and Jay McMahon. Orbital Guidance Using Higher-Order State Transition Tensors.
Journal of Guidance, Control, and Dynamics, 44(3):493–504, 2021. doi:10.2514/1.G005493.

Spencer Boone and Jay McMahon. Directional State Transition Tensors for Capturing Dominant
Nonlinear Effects in Orbital Dynamics. Journal of Guidance, Control, and Dynamics, 46(3):
431–442, March 2023. doi:10.2514/1.G006910.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

E. R. Burnett, E. A. Butcher, A. J. Sinclair, and T. A. Lovell. Linearized Relative Orbital Motion
Model About an Oblate Body Without Averaging, AAS 18-218. Advances in the Astronautical
Sciences, 167(AAS 18-218):691–710, 2018.

Ethan R. Burnett and Hanspeter Schaub. Spacecraft relative motion dynamics and control using
fundamental modal solution constants. Journal of Guidance, Control, and Dynamics, 45(10):
1786–1799, 2022. doi:10.2514/1.G006603.

Eric A. Butcher, T. Alan Lovell, and Andrew Harris. Third order cartesian relative motion pertur-
bation solutions for slightly eccentric chief orbits. In AAS/AIAA Spaceflight Mechanics Meeting,
volume 158, pages 3435 – 3454, 2016. URL https://www.scopus.com/inward/record.uri?

eid=2-s2.0-85007356529&partnerID=40&md5=d2756042f95ce0dc7988721b36b77d3c.

Eric A. Butcher, Ethan R. Burnett, and T. Alan Lovell. Comparison of Relative Orbital Mo-
tion Perturbation Solutions in Cartesian and Spherical Coordinates. In AAS/AIAA Spaceflight
Mechanics Meeting, number AAS 17-202. American Astronautical Society, 2017.

S. Casotto. The Equations of Relative Motion in the Orbital Reference Frame. Celestial Mechanics
and Dynamical Astronomy, 124(3):215–234, 2016. doi:10.1007/s10569-015-9660-1.

25

https://zenodo.org/communities/faast-msca/about
https://doi.org/10.1080/23307706.2017.1397554
https://doi.org/10.48550/arXiv.2401.11077
https://doi.org/10.1016/S1076-5670(08)70228-3
https://doi.org/10.2514/1.G005493
https://doi.org/10.2514/1.G006910
https://doi.org/10.2514/1.G006603
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007356529&partnerID=40&md5=d2756042f95ce0dc7988721b36b77d3c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007356529&partnerID=40&md5=d2756042f95ce0dc7988721b36b77d3c
https://doi.org/10.1007/s10569-015-9660-1

W. H. Clohessy and R. S. Wiltshire. Terminal Guidance System for Satellite Rendezvous. Journal
of the Aerospace Sciences, 27(9):653–658, Sept. 1960. doi:10.2514/8.8704.

Gianfranco Di Domenico, Eleonora Andreis, Andrea Morelli, Gianmario Merisio, Vittorio Franzese,
Carmine Giordano, Alessandro Morselli, Paolo Panicucci, Fabio Ferrari, and Francesco Topputo.
Toward Self-Driving Interplanetary CubeSats: the ERC-Funded Project EXTREMA. In Inter-
national Astronautical Congress, number IAC-21,D4,1,1,x65902, 2021.

P. Di Lizia, R. Armellin, A. Morselli, and F. Bernelli-Zazzera. High order optimal feedback control
of space trajectories with bounded control. Acta Astronautica, 94(1):383–394, 2014. ISSN 0094-
5765. doi:10.1016/j.actaastro.2013.02.011.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language
for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.
doi:10.48550/arXiv.1603.00943.

Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver for embedded systems.
pages 3071–3076, 07 2013. doi:10.23919/ECC.2013.6669541.

E. Gilbert and G. Harasty. A class of fixed-time fuel-optimal impulsive control problems and an
efficient algorithm for their solution. IEEE Transactions on Automatic Control, 16(1):1–11, 1971.
doi:10.1109/TAC.1971.1099656.

A. Giorgilli and M. Sansottera. Methods of algebraic manipulation in perturbation the-
ory. Workshop Series of the Asociacion Argentina de Astronomia, 3:147–183, January 2011.
doi:10.48550/arXiv.1303.7398.

Cristian Greco, Marilena Di Carlo, Massimiliano Vasile, and Richard Epenoy. Direct multiple
shooting transcription with polynomial algebra for optimal control problems under uncertainty.
Acta Astronautica, 170:224–234, 2020. doi:10.1016/j.actaastro.2019.12.010.

Tommaso Guffanti and Simone D’Amico. Integration constants as state variables for op-
timal path planning. In 2018 European Control Conference (ECC), pages 1–6, 2018.
doi:10.23919/ECC.2018.8550448.

E. J. Hinch. Perturbation Methods. Cambridge University Press, Cambridge, England, 1991.
doi:10.1017/CBO9781139172189.

Christian Hofmann and Francesco Topputo. Rapid Low-Thrust Trajectory Optimization in Deep
Space Based on Convex Programming. Journal of Guidance, Control, and Dynamics, 44(7):
1379–1388, 2021. doi:10.2514/1.G005839.

Christian Hofmann, Andrea C. Morelli, and Francesco Topputo. On the Performance of Discretiza-
tion and Trust-Region Methods for On-Board Convex Low-Thrust Trajectory Optimization. Num-
ber 1892. American Institute of Aeronautics and Astronautics, 2022. doi:10.2514/6.2022-1892.

Christian Hofmann, Andrea C. Morelli, and Francesco Topputo. Performance assessment of convex
low-thrust trajectory optimization methods. Journal of Spacecraft and Rockets, 60(1):299–314,
2023. doi:10.2514/1.A35461.

Dario Izzo, Francesco Biscani, Carlos Sánchez, Jörg Müller, and Mike Heddes. darioizzo/audi:
Update to the new obake API and tbb API (v1.9.2). Zenodo, June 2022.

Àngel Jorba. A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds

26

https://doi.org/10.2514/8.8704
https://doi.org/10.1016/j.actaastro.2013.02.011
https://doi.org/10.48550/arXiv.1603.00943
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1109/TAC.1971.1099656
https://doi.org/10.48550/arXiv.1303.7398
https://doi.org/10.1016/j.actaastro.2019.12.010
https://doi.org/10.23919/ECC.2018.8550448
https://doi.org/10.1017/CBO9781139172189
https://doi.org/10.2514/1.G005839
https://doi.org/10.2514/6.2022-1892
https://doi.org/10.2514/1.A35461

and First Integrals of Hamiltonian Systems. Experimental Mathematics, 8(2):155–195, 1999.
doi:10.1080/10586458.1999.10504397.

Matthew Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collo-
cation. SIAM Review, 59(4):849–904, 2017. doi:10.1137/16M1062569.

E. B. Lee and L. Markus. Foundations of Optimal Control Theory. Wiley, New York, 1967.

Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behçet Açıkmeşe. Successive Convexification of
Non-Convex Optimal Control Problems with State Constraints. IFAC-PapersOnLine, 50(1):
4063–4069, 2017. ISSN 2405-8963. doi:10.1016/j.ifacol.2017.08.789. 20th IFAC World Congress.

Andrea Carlo Morelli, Christian Hofmann, and Francesco Topputo. Robust Low-Thrust Trajectory
Optimization Using Convex Programming and a Homotopic Approach. IEEE Transactions on
Aerospace and Electronic Systems, 58(3):2103–2116, 2022. doi:10.1109/TAES.2021.3128869.

A.H. Nayfeh. Perturbation Methods. Wiley, 2000. doi:10.1002/9783527617609.

Kenshiro Oguri. Successive Convexification with Feasibility Guarantee via Augmented Lagrangian
for Non-Convex Optimal Control Problems. In 2023 62nd IEEE Conference on Decision and
Control (CDC), pages 3296–3302, 2023. doi:10.1109/CDC49753.2023.10383462.

Kenshiro Oguri and Jay W. McMahon. Robust Spacecraft Guidance Around Small Bodies Under
Uncertainty: Stochastic Optimal Control Approach. Journal of Guidance, Control, and Dynam-
ics, 44(7):1295–1313, 2021. doi:10.2514/1.G005426.

Ryan S. Park and Daniel J. Scheeres. Nonlinear Mapping of Gaussian Statistics: Theory and
Applications to Spacecraft Trajectory Design. Journal of Guidance, Control, and Dynamics, 29
(6):1367–1375, 2006. doi:10.2514/1.20177.

John Prussing. Primer Vector Theory and Applications, chapter 2, pages 16–36. Cambridge Uni-
versity Press, 08 2010. ISBN 9780521518505. doi:10.1017/CBO9780511778025.003.

Christopher W. T. Roscoe, Jason J. Westphal, Jacob D. Griesbach, and Hanspeter Schaub. For-
mation establishment and reconfiguration using differential elements in J2-perturbed orbits. In
2014 IEEE Aerospace Conference, pages 1–19, 2014. doi:10.1109/AERO.2014.6836272.

Maximilian Schaller, Goran Banjac, Steven Diamond, Akshay Agrawal, Bartolomeo Stellato, and
Stephen Boyd. Embedded Code Generation With CVXPY. IEEE Control Systems Letters, 6:
2653–2658, 2022. doi:10.1109/LCSYS.2022.3173209.

Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. AIAA Education
Series, Reston, VA, 4th edition, 2018. doi:10.2514/4.105210.

Joseph A. Starek, Behçet Açıkmeşe, Issa A. Nesnas, and Marco Pavone. Spacecraft Autonomy
Challenges for Next-Generation Space Missions, pages 1–48. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. ISBN 978-3-662-47694-9. doi:10.1007/978-3-662-47694-9 1.

M. Valli, R. Armellin, P. Di Lizia, and M. R. Lavagna. Nonlinear Mapping of Uncertain-
ties in Celestial Mechanics. Journal of Guidance, Control, and Dynamics, 36(1):48–63, 2013.
doi:10.2514/1.58068.

Zhenbo Wang and Michael J. Grant. Minimum-fuel low-thrust transfers for spacecraft: A convex
approach. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2274–2290, 2018.
doi:10.1109/TAES.2018.2812558.

27

https://doi.org/10.1080/10586458.1999.10504397
https://doi.org/10.1137/16M1062569
https://doi.org/10.1016/j.ifacol.2017.08.789
https://doi.org/10.1109/TAES.2021.3128869
https://doi.org/10.1002/9783527617609
https://doi.org/10.1109/CDC49753.2023.10383462
https://doi.org/10.2514/1.G005426
https://doi.org/10.2514/1.20177
https://doi.org/10.1017/CBO9780511778025.003
https://doi.org/10.1109/AERO.2014.6836272
https://doi.org/10.1109/LCSYS.2022.3173209
https://doi.org/10.2514/4.105210
https://doi.org/10.1007/978-3-662-47694-9_1
https://doi.org/10.2514/1.58068
https://doi.org/10.1109/TAES.2018.2812558

Matthew Willis, Kyle T. Alfriend, and Simone D’Amico. Second-order solution for relative motion
on eccentric orbits in curvilinear coordinates. In AAS/AIAA Astrodynamics Specialist Confer-
ence, number AAS 19-810. American Astronautical Society, 2019a.

Matthew Willis, T. Alan Lovell, and Simone D’Amico. Second-Order Analytical Solution for Rel-
ative Motion on Arbitrarily Eccentric Orbits. In AAS/AIAA Spaceflight Mechanics Meeting,
number 19-364 in Advances in the Astronautical Sciences. Univelt, January 2019b.

Wolfram Research, Inc. Mathematica, Version 13.3, 2023. URL https://www.wolfram.com/

mathematica. Champaign, IL, 2024.

A Generating and Formatting the Mixed Monomials and the Non-
linear Fundamental Solution Expansions

A.1 Computerized generation and manipulation of monomial representations

To implement our methodology, one needs a well-ordered and unambiguous way of constructing
and manipulating monomial sequences. We use a positional power representation of monomials
and we represent sequences of monomials in 2D arrays. The easiest way to explain this is with a
full end-to-end example, but Giorgilli and Sansottera (2011) and Jorba (1999) give more context
on similar techniques. Here we drop the initial condition notation “xi(0)j” in favor of the more
compact xji . Consider a 3-state system with states x1, x2, x3. The array representation of the
monomial xa1x

b
2x

c
3 for integer powers a, b, c ≥ 0 is [a, b, c]. These are stacked row-wise to reproduce

sequences of monomials as needed. For example, we represent c1 = x = (x1, x2, x3)
⊤ as the

following array:

arr (c1) =

1 0 0
0 1 0
0 0 1

 (49)

The following functional code snippet constructs all rows of a desired arr (cj) for a system with N
states by initializing arr (c1) and then, order-by-order, appending the array representation (itself
row-by-row) for higher-order terms up to and including nonlinearity order j. We take the array rep-
resentation of a prior order (“base block”) and generate all unique monomial power permutations
for a new order (“newblock”), then step to the next order with base block ← newblock.

import numpy as np
Ident i ty N = np . i d e n t i t y (N, dtype=‘ int ’)
Kj = compute Kj (N, j)

Create ar r (c1) :
c v e c a r r a y = np . i d e n t i t y (N, dtype=‘ int ’)

Extend c v e c a r r a y to c r e a t e a r r (c j) :
ba se b lock = c v e c a r r a y [0 :N, 0 :N] # I n i t i a l i z e
k prev = base b lock . shape [0] # No . rows o f base b lock
f o r idx0 in range (j −1): # This order

f o r idx1 in range (N) : # This s t a t e
term mult = Ident i ty N [idx1 , :]
f o r idx2 in range (k prev) : # Which row o f base b lock ?

new row = base b lock [idx2 , :] + term mult # Make candidate

28

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

i f idx1 == 0 and idx2 == 0 :
newblock = new row . astype (‘ int ’) # I n i t i a l i z e b lock

e l s e :
i f not (new row . t o l i s t () in newblock . t o l i s t ()) :

newblock = np . row stack ([newblock , new row])
c v e c a r r a y = np . row stack ([c vec a r ray , newblock]) # New order done
base b lock = newblock # Step
k prev = base b lock . shape [0]

As an example output, we provide explicitly the third-order array representation of cj for the
case of N = j = 3 below, with sub-blocks of orders 1, 2, and 3 partitioned for clarity:

arr (c3) =



1 0 0
0 1 0
0 0 1

2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

3 0 0
2 1 0
2 0 1
1 2 0
1 1 1
1 0 2
0 3 0
0 2 1
0 1 2
0 0 3



(50)

where e.g. the fourth row (first second-order component) is x21, the eighth row is x2x3, and the
eleventh is x21x2. Note that for nonlinearities of order q, it can be shown that the resultant sub-block
will have the following number of terms:

dim (sub-block q) =

(
N + q − 1

q

)
(51)

Adding up the number of rows of all sub-blocks to the max order j, we recover Eq. (3).

With a computerized array representation of cj , the column-wise arrangement of all fundamental
solutions to make Ψj is also specified. We defer the reader to our code for any more details in that

regard. We now briefly discuss how the Jacobians Cj =
∂cj
∂c1

are computed in a computerized
fashion leveraging the array representation of cj . This Jacobian should be of size Kj ×N and will
be composed completely of monomials and scalars. To compute the elements of this it’s easy to
differentiate a row of arr(cj) with respect to a state by removing a one from the entry corresponding
to the state being differentiated, and retaining the prior power as the new multiplying coefficient.
For example, ∂

∂x3
(1× [1, 0, 2]) = 2× [1, 0, 1], and ∂

∂x3
(1× [1, 1, 0]) = 0× [1, 1,−1]. In this manner

derivatives on the monomials are reduced to simple array operations.

29

A.2 Computing the nonlinear fundamental solution expansion from STTs

This is the first method for constructing Ψj(t). Park and Scheeres (2006) introduces the state
transition tensors (STTs) as a generalization of the more familiar state transition matrix. They
map initial deviations of a system to deviations at some time t, and are characterized by the scalar
expansions below, borrowing their notation:

δxi(t) =
m∑
p=1

1

p!
Φi,k1...kpδx

0
k1 . . . δx

0
kp , i = 1 : N (52a)

δẋi(t) =

m∑
p=1

1

p!
f∗i,k1...kpδx

0
k1 . . . δx

0
kp (52b)

δẋi(t) =

m∑
p=1

1

p!
Φ̇i,k1...kpδx

0
k1 . . . δx

0
kp (52c)

where summation convention is used, with kj ∈ {1, . . . , N}, and subscripts kj denote the kj
th

component of the state vector:

Φi,k1...kp =
∂pxi

∂x0k1 . . . ∂x
0
kp

(53)

f∗i,k1...kp =
∂pfi

∂x0k1 . . . ∂x
0
kp

∣∣∣∣∣
∗

(54)

The STTs have their own unique order-dependent dynamics. Park and Scheeres (2006) presents
the dynamics for the STTs again element-by-element, up to fourth order. We compute them this
way, getting the necessary Jacobian terms of Eq. (54) (necessary for STT numerical integration)
via automatic differentiation.

This STT representation is fundamentally redundant, e.g. the 3rd-order STT components asso-
ciated with δx01δx

0
2δx

0
1, δx

0
1δx

0
1δx

0
2, δx

0
2δx

0
1δx

0
1 . . . are all equal yet appear individually within the

STT structure. We compute a fundamental solution from its associated STT terms as below:

ψi,O(xq) =
R
q!

Φi,k1...kq (55)

where i =1:N denotes the ith component (row) of the fundamental solution, O(xq) denotes some
particular column of Ψj associated with the order-q STT component of interest, and R is the
number of repeats of the relevant STT term – for example, for N = 2, j = 2, and ψi,x1(0)x2(0), we
compute R = 2 because we have two repeated STTs, Φi,1·2 = Φi,2·1. Lastly recall that the ordering
of the columns of Ψj corresponds to the ordering of the corresponding monomials in cj .

A.3 Computing the nonlinear fundamental solution expansions analytically

Now we discuss a second method for constructing Ψj(t). The spacecraft relative motion problem,
our example in this work, is extremely well-studied in literature due to its historical significance and
enduring importance in spaceflight. For this problem there has been an enormous amount of past
work to develop completely analytic nonlinear approximations of the solution of the satellite relative
motion equations. These can be adopted directly to replace the numerically computed nonlinear
functions used in this work. Here we provide a brief discussion about how such solutions can be
derived. These “solutions” approximate, via low-order series expansion in the initial states, the

30

true behavior of the nonlinear differential equations of spacecraft relative motion given by Casotto
(2016). Typically these are obtained by perturbation methods (Nayfeh, 2000; Hinch, 1991), most
typically a straightforward expansion. Here we preview such a methodology briefly with a shortened
discussion of how the second-order analytic STTs are derived (Butcher et al., 2016). In general,
the state can be expanded in a perturbation series:

x(τ) = x1(τ) + εx2(τ) + ε2x3(τ) + . . . (56)

where ε is a small parameter, τ = nt, and typically the states are rendered in a non-dimensional
form. The function x1(τ) is the solution to the unperturbed linearized (CW) dynamics, and the
subsequent functions correct for nonlinearities in the dynamics, and possibly also target orbit
eccentricity.

First, the dimensionless CW equations are solved to obtain x1(τ). Then, we perform a nonlinear
expansion of the nonlinear equations of relative motion (see e.g. Schaub and Junkins (2018) for
Keplerian or Casotto (2016) for non-Keplerian) up to a desired order in the states, then substitute
the expansion of Eq. (56) into the dynamics. The dynamics are then parsed order-by-order starting
with the unperturbed linear problem O(ε0) and continuing to all other powers of ε. From the
O(ε1) part, the model equations are rearranged into a form below separating all perturbations up
to second-order in the states (constituting F2) from the dimensionless Clohessy-Wiltshire (CW)
ODE equations:  x′′2 − 2y′2 − 3x2

y′′2 + 2x′2
z′′2 + z2

 = F2

(
τ, x1, y1, z1, x

′
1, y

′
1, z

′
1

)
(57)

The solutions to these equations can be found using symbolic software to evaluate the following
inverse Laplace transform: x2 (τ)

y2 (τ)
z2 (τ)

 = L−1


s2 − 3 −2s 0

2s s2 0
0 0 s2 + 1

−1

L (F2 (τ))

 (58)

The inverted matrix is the transfer matrix of the CW system, and F2 (τ) is obtained by substituting
the normalized CW solution into all states in the right side of Eq. (57). The velocity states x

′
2(τ),

y
′
2(τ), z

′
2(τ) are then obtained by simple symbolic differentiation of the solutions above.

For the analytic version of the third-order nonlinear solutions that we numerically computed
to build Ψj , in local Cartesian coordinates, consult Butcher et al. (2016). Note their solution is
trigonometrically sorted for compactness instead of in terms of the monomials. Butcher et al. (2017)
explores a similar approach in both Cartesian coordinates and curvilinear coordinates, which offer
greater accuracy because they better accommodate the natural curvature of the orbit geometry.
These solutions also apply corrections for nonzero target orbit eccentricity, which improves their
fidelity in a true flight setting. Note that the eccentricity-linear part of the curvilinear solutions
are derived from an equation which contains an error, which is addressed in the Appendix of Willis
et al. (2019a). That work also derives its own curvilinear solutions and provides a nice discussion
of other analytic solutions in literature for this problem. Note that for long-duration problems, it
becomes necessary to account for non-Keplerian perturbations such as J2 (Burnett et al., 2018).
The problem of deriving nonlinear analytic solutions to this problem presents a higher degree of
difficulty than the Keplerian case. The appealing possibilities in use of these solutions in guidance
applications (particularly if they’re time-explicit), as demonstrated by this paper, might breathe
new life into the academic efforts for their derivation.

31

A.4 Connections to Differential Algebra

It’s well-known that the STTs and Differential Algebra (DA) can be used to provide the same
information about the nonlinear expansions in the vicinity of a reference. Thus DA constitutes a
third method for building Ψj(t). Indeed, we have tested this, computing Ψj using Pyaudi (Izzo
et al., 2022), which offers speed advantages over the STTs. That is the first and most obvious
connection of this work to DA. However in our literature review we’ve noted deeper connections
of our work to the DA framework, particularly upon reading in Berz (1999) the map methods for
use in particle beam physics. Here we highlight some of these connections, in anticipation of future
work where our developments may be further commensurated with the formalisms of DA. For this
discussion we borrow and synthesize Berz’ notation where needed. We defer the unfamiliar reader
to their thorough introduction to DA so as not to risk the confusion from a compressed summary.

First we note that our Kj-dimensional space C(N) (facilitated by the jth-order nonlinear expan-
sion) is directly related to the vector space jDN . In particular, let dk = [xk] denote the higher-order
differential structure induced by a jth-order expansion of the kth element of coordinates x ∈ RN .
Then the Taylor expansion Tf of some function f can be expanded into the vector space jDN :

[f] = [Tf] =
∑

q1+...+qN≤j

αq1,...,qN · d
q1
1 . . . dqNN (59)

Berz computes, via consideration of the tuples q1, . . . , qN , that the dimensionality of jDN is as
follows:

dim (jDN) =

(
N + j
N

)
(60)

We observe the following similarity, where C(N) ⊆ RKj , and Kj is given by our Eq. (3):

dim (jDN) = Kj + 1 (61)

The difference here is that jDN , as a differential algebra, contains the “Real” component (the
reference point about which the nonlinear expansion occurs) by definition, but C(N) does not. In
other words, elements of 1D1 are always of the form (r0, r1) where r0 is the reference point and r1
is the (first-order) differential. The notation “Real” differentiates numbers of the form (1, 0) from
their “not real” differential quantity d = (0, 1), which in this analogy plays a similar role to the
imaginary unit i.

Other differences between C(N) and jDN are as follows. First, in our operations on C(N) we
consider real projections along the differential part of the vector space i.e. jDN − {0}, whereas
the DA framework hierarchically distinguishes between the “Real” component and the differentials,
and then also among different orders of the differentials themselves. Second, as an algebra, jDN

is always defined with dimensionality Kj + 1, whereas our formulation allows for the reduction of
dimensionality of cj and Ψj by exclusion of monomials whose corresponding fundamental solutions
ψi are zero. Indeed we can even exclude components whenever their corresponding ψi is negligible
from the perspective of satisfying a total error requirement in the representation x = Ψjcj . We
don’t do that in this work, but we could, and the recent STT-based guidance work of Boone and
McMahon (2023) makes such a truncation implicitly.

B Stable Linearized Guidance Solution Algorithm

Here we discuss some considerations of how the linearized rendezvous guidance briefly described
in Section 4.1 can be made as numerically efficient and robust as possible. First, it is best to

32

contextualize the solution to the SOCP in the more familiar context of optimal control theory,
which provides a more intuitive interpretation than the standard geometric descriptions of e.g. Lee
and Markus (1967) and Gilbert and Harasty (1971). To do this, we highlight a connection of the
SOCP to standard primer vector theory (Prussing, 2010) applied specifically to the relative motion
problem. Following the notation of Casotto (2016), the general equations of relative motion in the
LVLH frame are given below:

ẋ =

(
ṙ
v̇

)
=

[
03×3 I3×3

H K

](
r
v

)
+

(
0
aû

)
(62)

for thrust direction û, hence a(t) ≥ 0 always. We seek to minimize the total delta-V, which is the
integral of the control acceleration:

J =

∫ tf

t0

a(t)dt (63)

We construct the Hamiltonian with the position and velocity co-states written separately:

H = a+ λ⊤
r v + λ⊤

v (Hr +Kv + aû) (64)

The Hamiltonian is instantaneously minimized by the choice of control direction û = p(t)/p(t)
where p(t) = −λv. This analysis holds for continuous control and also applies to the limit case of
impulsive control e.g. as a(tbi) → ∞ at some burn time(s) tbi with a(t) = 0 otherwise. Applying
the first-order conditions of optimality,

λ̇r = −H⊤λv (65a)

λ̇v = − λr −K⊤λv (65b)

Making use of Eq. (65) and the identity ṗ = λr + K⊤λv, the following independent differential
equation is obtained for the primer vector:

p̈ =
(
H⊤ − K̇⊤

)
p−K⊤ṗ (66)

This holds regardless of the form of the linearized dynamics, e.g. regardless of the form of the
H and K matrices in Casotto’s formulation. In the classical continuous thrust formulation, the
norm of the primer vector p(t) is used as a switching function, with optimal thrusting times only
occurring when p(t) > 1. In the impulsive thrust case, which is a limit case of the continuous thrust
problem, the optimal firing times happen only when p(t) = 1.

For the impulsive problem, the conditions of an optimal firing sequence are as follows. First,
we require the existence of a primer vector p(t) satisfying Eq. (66). Furthermore the magnitude
p(t) ≤ 1 at all times, with optimal maneuver times located at times with p(t) = 1, and ṗ · p = 0
at interior impulses (e.g. not first and last), with the thrust always directed along û(t) = p(t)/p(t)
and never anti-parallel. It can be shown that the solution p(ti) = Bc(ti)

⊤η from the Stage 1 SOCP
satisfies Eq. (66), even though the optimal control problem is defined in continuous time but the
SOCP is set up in discretized time. The optimal discretized firing times predicted by the norm
of p(ti) = Bc(ti)

⊤η equaling unity will only approximate the truly optimal firing times (which in
general occur between sampled discretized times). This will manifest in general as small overshoots
p(t) > 1 of the p(t) numerically propagated from p(t0) = Bc(t0)

⊤η, at local maxima of p(t) which
will appear in the vicinity of the SOCP-predicted firing times where ∥p(ti)∥ = 1. See Roscoe
et al. (2014) and references therein for a practical discussion of this overshoot phenomenon and

33

its mitigation (though their work does not make use of the SOCP formulation). It is possible to
leverage the overshoots (which are explicitly violations of an equality constraint of optimality) to
differentially correct (e.g. in a simple Newton scheme) the η from the SOCP to obtain the true
optimal η∗. In this manner the size of the SOCP specified by Stage 1 can be made fairly small
(with a coarse discretization) and subsequently differentially corrected to rapidly obtain the true
linearly optimal solution. In this work, because we are interested in feasible (and possibly optimal)
solutions for the nonlinear dynamics, given the stability of our methods to a poor initial guess (e.g.
a poor solution to Stage 1 linearized guidance), this correction scheme was not retained.

There is however another numerical detail of Stage 1 guidance that absolutely requires consider-
ation to generate reasonable solutions: how to determine unambiguously the firing times predicted
by the SOCP? From the discretized solution to the SOCP, it is necessary to identify possible points
where p(t) is numerically sufficiently close to 1. In general, we require a k-burn candidate solution
with k ≤ 6, but based on a given tolerance ϵ for |p(t) − 1| < ϵ, there will often be more than
6 candidate points distributed among k intervals. To demonstrate this we revisit now the linear
solution to the final example in Section 4.2. The p(t) generated by the SOCP solution is plotted
in Figure 14 with the proper burn times as red dots and all other possible burn points marked
with a black ×. In this case p(t) ≈ 1 at four distinct intervals in time, so k = 4. A candidate

0.2 0.4 0.6 0.8 1.0

t/T

0.6

0.8

1.0

p
(t

)

Figure 14: Linearized Guidance primer vector norm and burn times (Example 3)

solution (a choice of up to k ≤ 6 points from the k intervals where p(t) gets sufficiently close to
1) is not guaranteed to satisfy Eq. (43) because ∆c∗ has 6 quantities and we fire k times, so the
linear problem is therefore underdetermined when k < 6. Thus, the resultant linearized guidance
solution resulting from a general candidate solution is not guaranteed to achieve its goal. We re-
quire a scheme that identifies all possible burn times from the SOCP solution, creates reasonable
candidate solutions, and tests them based on conditions of optimality and how closely they achieve
∆c∗, keeping only the best (or least bad) guidance solution. We summarize such a scheme with the
following algorithm for a set of possible burn time indices I, composed of indices i corresponding
to all ti for which |p(ti)− 1| < ϵ:

1: procedure Solution Sort(I,η, p(ti);Bc(ti) ∀ti ∈ I, ∆c∗) ▷ Get best solution I∗ ⊆ I
2: G ← sort groups(I, P) ▷ Sort neighboring indices in I into k groups of ≤ P points each
3: Ω← G1 × . . .× Gk ▷ Construct the Cartesian product Ω of all points in the k groups
4: q=1
5: while q ≤ (number of combos in Ω) do ▷ Check all combinations in Ω
6: Sq ← make candidate(Ω[q], Bc(ti) ∀ti ∈ Ω[q]) ▷ Create candidate solution Sq
7: eq ← get error(Sq,∆c∗) ▷ Compute (linearized) error metric in achieving ∆c∗ (float)
8: aq ← assess accuracy(Sq, tol) ▷ Check if error eq < tol (Boolean)
9: Oq ← check optimality(Sq) ▷ Check optimality conditions, e.g. all ∆vi > 0 (Boolean)

34

10: ∆vq ← compute delta v(Sq) ▷ Total delta-V for this candidate
11: q++
12: end while
13: if ∃q | (aq = True) & (Oq = True) then ▷ We have acceptable candidates
14: qbest = q | (aq = True) & (Oq = True) & ∆vq is min of all acceptable q
15: else ▷ We don’t have acceptable candidates
16: if ∄q | (aq = True) then ▷ None of the candidates meet error tol
17: qbest = q | eq is min of all ▷ Pick least erroneous
18: else ▷ Some solutions meet error tol but none meet optimality conds.
19: qbest = q | ∆vq is min of all ▷ Pick least expensive
20: end if
21: end if
22: return Sqbest , Ω[qbest] ▷ Return the details of best solution
23: end procedure

We find that this routine is extremely stable, with negligible runtime for reasonable choices of
primer vector tolerance ϵ and max points per group P . For clarity we now apply it with all possible
burn indices in the linearized guidance solution from Example 3. For this example, ϵ = 5 × 10−3,
P = 2, and tol = 10−3. For this problem the control interval is discretized into 100 times, thus
i ∈ [0, 99]. The possible burn time indices I, down-selected groups G, and combinations Ω are given
below:

I = [0, 9, 10, 11, 12, 13, 14, 63, 64, 65, 66, 99] (67a)

G = {{0} , {11, 12} , {64, 65} , {99}} (67b)

Ω = {{0, 11, 64, 99} , {0, 11, 65, 99} , {0, 12, 64, 99} , {0, 12, 65, 99}} (67c)

From this set of points, SOLUTION SORT keeps the candidate solution parameterized by {0, 12, 64, 99}.

35

	Introduction
	Theory
	Osculating Initial Conditions
	Overparameterized Representation
	Variation of Parameters
	Kinematics and Dynamics

	Applications
	Spacecraft trajectory optimization
	Problem formulation
	Successive convex programming

	Examples
	Nonlinear spacecraft rendezvous in LEO – Two-stage guidance
	Stage 1
	Stage 2

	Nonlinear spacecraft rendezvous in LEO – Successive convexification-based optimal guidance

	Conclusions
	Code and Data Availability
	Generating and Formatting the Mixed Monomials and the Nonlinear Fundamental Solution Expansions
	Computerized generation and manipulation of monomial representations
	Computing the nonlinear fundamental solution expansion from STTs
	Computing the nonlinear fundamental solution expansions analytically
	Connections to Differential Algebra

	Stable Linearized Guidance Solution Algorithm

