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Abstract

Test-time adaptation (TTA) has emerged as a promising
solution to address performance decay due to unforeseen dis-
tribution shifts between training and test data. While recent
TTA methods excel in adapting to test data variations, such
adaptability exposes a model to vulnerability against ma-
licious examples. Indeed, previous studies have uncovered
security vulnerabilities within TTA even when a small propor-
tion of the test batch is maliciously manipulated. In response
to the emerging threat, we propose median batch normal-
ization (MedBN), leveraging the robustness of the median
for statistics estimation within the batch normalization layer
during test-time inference. Our method is algorithm-agnostic,
thus allowing seamless integration with existing TTA frame-
works. Our experimental results on benchmark datasets, in-
cluding CIFARIO-C, CIFARI100-C, and ImageNet-C, con-
sistently demonstrate that MedBN outperforms existing ap-
proaches in maintaining robust performance across different
attack scenarios, encompassing both instant and cumulative
attacks. Through extensive experiments, we show that our
approach sustains the performance even in the absence of at-
tacks, achieving a practical balance between robustness and
performance. Our code is available at https://github.com/ml-
postech/MedBN-robust-test-time-adaptation.

1. Introduction

Deep neural networks (DNNs) have shown noticeable
advances in benchmarks across diverse recognition tasks,
assuming virtually no distribution shift between training and
test data. However, distribution shifts are inevitable in prac-
tice mainly due to time-varying environments (e.g., lighting
variations and changing weather conditions), and severely
degenerate the model performance [25, 3 1]. It is infeasible
to forecast and prepare for every potential test domain in
advance. In response, test-time adaptation (TTA) has been
extensively studied [0, 14, 20,21,40,51, 53], where TTA
aims at adapting a pre-trained model to test data, which is
unlabeled and from latent domain, in an online manner.
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Figure 1. An illustrative example of the vulnerability of mean in
a batch normalization layer to manipulation by malicious sample
(left), contrasted with the robustness of median such manipulation
(right), when dealing with malicious samples within the batch.

The major advantage of TTA stems from leveraging the
statistics of the test batch. A prominent technique is to use
test batch statistics in each batch normalization (BN) layer
[37,44] before adjusting model parameters. Hence, it is
crucial to reliably estimate the test batch statistics and make
necessary adjustments. Most of the recent advances have
focused on robust estimations of the test batch statistics
in a variety of scenarios, including continual distribution
shifts [53], small test batches [30, 3 1], temporally correlated
stream of test data [19], and out-of-distribution test data [20],
where the exponential moving averaging (EMA) [20, 59]
or interpolating source and test statistics [29, 34, 54] are
proposed for robust statistics estimation.

Despite such efforts to build robust TTA methods, re-
cent works [ 1, 54] have revealed the vulnerability of TTA
methods that use the test batch statistics. By injecting small
portions of malicious samples into the test batch, an adver-
sary can easily manipulate the test batch statistics and also
predictions on other (benign) samples, constituting a data
poisoning attack. As we cannot presume the distribution of
test samples in the real world, verifying the robustness of
TTA methods against the data poisoning attack is essential
since it can be considered as a worst-case study. Although the
initial studies have proposed heuristics to partially address
the vulnerability, it still remains a potential threat, posing a
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challenge even to state-of-the-art TTA methods.

This paper examines the potential vulnerabilities of ex-
isting TTA methods to data poisoning attacks through both
theoretical (Section 5.2) and empirical (Section 6) investiga-
tions, including the state-of-the-art techniques [20,39,40,52].
Our theoretical analysis reveals that relying on the mean of
test batch statistics creates a loophole that adversaries can
exploit. This arises because the mean can be easily manipu-
lated by even a single malicious sample, whereas the median
proves to be robust against manipulation by a number of
malicious samples, as illustrated in Figure 1. Furthermore,
despite the integration of various modules for enhancing
TTA robustness, our experiments show that state-of-the-art
methods exhibit notable vulnerabilities to malicious samples.

Consequently, to address the adversarial risks in BN up-
dates, we propose Median Batch Normalization (MedBN)
method that uses the median for estimating test batch statis-
tics. Our approach stands out compared to existing defenses
[11,54], as the model not only maintains model performance
but also successfully defends against data poisoning attacks.
Given the substantial vulnerability of state-of-the-art TTA
methods [20, 39,40, 52] to malicious samples, we demon-
strate that integrating MedBN into each method consistently
improves robustness against malicious samples.

Our main contributions are summarized as follows:

* Inspired by a theoretical analysis comparing mean and
median, we propose MedBN, a simple and effective
robust batch normalization method, which uses the me-
dian instead of the mean to estimate the batch statistics.
We note that our method effortlessly integrates into
existing TTA methods without additional training.

* Our experiments show that even sophisticated TTA
methods are susceptible to data poisoning attacks, de-
spite extensive efforts to enhance the robustness of
TTA. This vulnerability arises from relying on the mean
for estimation, which creates a potential loophole ex-
ploitable by adversaries.

* The robustness of the proposed MedBN is empirically
justified by evaluating it over three standard bench-
marks for TTA, seven TTA methods, and four different
attack scenarios. Notably, MedBN outperforms compar-
ing methods in robustness under attacks by a significant
margin in all considered cases.

2. Related Works

Robust test-time adaptation methods. TTA methods have
evolved to ensure robust performance under various scenar-
ios in practice, including a single distribution shift in data
distribution [52], continual distribution shifts [53], small
batches of test data [30,31], test data with temporal correla-
tions [19], and out-of-distribution test data [20]. While sig-
nificant efforts have been devoted to robustifying TTA meth-

ods, their robustness against malicious samples at test time
has been relatively under-explored. Recent works [1 1, 54]
have introduced data poisoning attack methods that generate
malicious samples to sabotage TTA and demonstrated the
vulnerability of a few TTA baselines [21,33,37,43,52]. In
this work, we properly investigate the robustness of various
state-of-the-art TTA methods against data poisoning attacks
and also present a simple yet effective defense mechanism,
which can be effortlessly added to most TTA methods.

Data poisoning attacks and defense mechanisms. There
has been an extensive line of work on data poisoning at-
tacks and defenses, but existing defense mechanisms are not
applicable to TTA scenarios. For instance, adversarial train-
ing [ 18], a representative method, necessitates access to the
training process, making it impractical for TTA where such
access is unavailable. While some studies have proposed de-
fense mechanisms specifically for data poisoning attacks in
TTA [54], our experiments in Section 6 demonstrate that their
effectiveness is limited. In contrast, our proposed method
not only outperforms these defenses but also seamlessly in-
tegrates with any prior TTA methods. Additional discussion
on related works is presented in Appendix D.

3. Preliminary

Let X be a sample space, and ) be a label space. Let
Dye = {(z;, yi)}ie[Nsm] C X x ) be the training dataset
of Ny labeled samples and Xiess = {2 }ic(n,) € X be the
test dataset of Neq unlabeled test samples. A model f(-; 6)
of parameters 6 is pre-trained on Dy, while it predicts a
label y € Y given a test sample x € X in the presence of
unknown domain shift. Depending on the context, a model
f can output a distribution over labels.

TTA adjusts parameters while processing test data batch
by batch where a test batch at time ¢ is denoted by B! C Xeq.
To address the domain shift, TTA methods that involve the
adaptation of BN layers focus on adjusting BN layers, e.g.,
statistics and affine parameters of BN layers.

Batch normalization layers [28]. Noting that adapting pa-
rameters of BN layers is effective for TTA [20,21,40,51],
we describe the procedure of a BN layer converting input
2z € RBXCXHXW (4 normalized 2/ € REXCXHXW where
B, C, H,and W are the dimensions of batch, channel, height,
and width, respectively. The normalization is performed
channel-wisely with estimated BN statistics (fi.,52) and
learnable affine parameters (3., .) as follows:

Zbchw — ﬂc
\Ve2+e

where ¢ is a small positive constant to avoid divided-by-zero.
In the training, the BN statistics (i, 52) are typically esti-
mated by the EMA of the mean and variance of batches from

source dataset Dy, denoted by pig. and afm, respectively.
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Then, for every test batch Bt, a traditional BN layer uses the
same statistics jisc and o2, for fi. and 2.

TTA with batch normalization. To tackle distribution shifts
of test samples, a standard approach is TeBN [37] that esti-
mates the test BN statistics (j.., 02) for (fic, 52) as follows:

He = mean {Zbchw}bhw , and (2
02 = mean {(zbchw - “C)Q}bhw , 3)

where z is the input to the BN layer given test batch B! and
we denote mean{z;};,cz = %‘ > icr % is the average of
z;’s over ¢ € Z. TENT [52] modulates the affine parame-
ters (e, B.) in the BN layer (1) using TeBN by minimizing
the entropy of model predictions on test samples. This sim-
ple strategy achieves excellent performance for distribution
shifts and is commonly employed in TTA with adapted BN
layers [20,21,40,51]. However, it poses an adversarial risk
because it adapts the test samples before making predictions,
potentially including malicious samples. Section 4 describes
our problem on TTA with malicious samples, followed by
our method in Section 5. A detailed explanation of the vul-
nerability of TeBN is provided in Section 5.2, and a compre-
hensive analysis of the vulnerabilities in the state-of-the-art
TTA methods with BN is presented in Section 6.

4. Problem Formulation

We have a batch B? C X, at time ¢, part of which can
be maliciously manipulated. We denote the malicious set by
Bt ., and the benign set by B{,, such that B* = B. U BL,,.
We denote a tuple of labels of B* as Y* C Y (and Vi,
is similarly defined). For simplicity, we denote a batch of
labeled samples by Z¢, i.e., Zt is B! with corresponding
labels in V* (and Z{,, is similarly defined).

Our objective is to find a performant TTA method that is
robust to malicious samples [;’fnal, which can be maliciously
generated by solving the following bi-level optimization:

Bltnal = arg max Lagack (f (-5 é(Bt))v yt) ) 4
Bt

‘mal

where 0(B") is updated parameters via the TTA method, i.c.,
0(B') = argmin, Lrra(Bt;6), and Lo is an attack ob-
jective function. For the attack objective, we consider both
targeted attacks and indiscriminate attacks, as used in [54].
Solving bi-level optimization exactly is computationally ex-
pensive. However, TTA methods only perform a single-step
update on 6 for each Bt, so we can approximate 0 as 0, as
done in [54]. A detailed description of the attack algorithm
and examples of malicious samples are presented in Ap-
pendix A and M, respectively. We confirm that TTA methods
are vulnerable to these attacks. The detailed vulnerability of
TTA methods can be found in Section 6. In the following,
we consider two different attack types used to find [;’fnal.

Normalization Transformation
z—f1
z —> Z —> -2 —> 7
V6? +¢ — v-Z+p
Batch Normalization MedBN (Ours)
i < mean {z} i <« med {z}

6% « mean {(z — 1)?} 6% « mean {(z — 0)?}

Figure 2. An overview of MedBN. (Top) TTA methods adapted
with BN layers normalize the features (z) by estimating normaliza-
tion statistics /2 and 62, and optimize transformation parameters -y
and (. (Bottom) In contrast to conventional BN, which computes
the statistics based on the mean of inputs, our proposed MedBN
utilizes the median value for estimating the statistics, /i and 52,

Targeted attack. The goal of a targeted attack is to manip-
ulate B, fed into the TTA method such that the adapted
model predicts a targeted label yfarget on a targeted sample
Tyreer € Bley as follows:

target
Brtnal = arngnaX _‘CCE(f(xttargel; é(Bt))7 yttarget) NS

mal
where Lcg is the cross-entropy loss.

Indiscriminate attack. The objective of an indiscriminate
attack is to degrade the performance of benign samples By,
by manipulating B, as follows:

BArtnal = arg fIlaX Z ECE(f(Ia é(Bt))ay) . (6)

Bmal (xjy)ezrf

en

Adversary’s knowledge. We mainly consider a white box
attack scenario where an adversary possesses knowledge of
a pre-trained model, a TTA algorithm (including defense
mechanism), a batch, and even the labels of samples in the
batch. Our study against such a mighty adversary can be
interpreted as a worst-case analysis, while we also consider
more practicable (yet milder) attack scenarios with limited
adversaries’ knowledge and adaptive attack which obfuscates
defense mechanisms in Appendix B.

5. Methodology

We propose our robust TTA method, Median Batch Nor-
malization (MedBN), followed by its robustness analysis.

5.1. Median Batch Normalization (MedBN)

Test statistics calculated by mean can be contaminated
by data poisoning attacks, as demonstrated by Theorem 1
in the following section, which in turn, disrupt the model’s
adaptation and lead to incorrect predictions. To mitigate the
effect of malicious samples, we propose a simple approach,
called Median Batch Normalization (MedBN). MedBN uses
the median instead of the mean for the standardization (1) as
follows, i.e., (1., p?) instead of (p., 02) for (fic, 52):

Te = med {Zbchw}bhw ; and (7

p? = mean{ (Zpchw — Me)* Yohw » (3)



where med{A} :=min{fa € A: |{zr € d:a >z} > %}
for a set A C R. Here, MedBN standardizes an input z
using (1, p?). Our method is surprisingly effective for the
defense against attacks with negligible degradation of model
performance. Also, its simplicity allows for easy integration
within any existing TTA methods that adjust BN layers.
Note that p. takes the mean of the squared deviations
(Zbehw — Me)?’s, we can instead take the median of the devi-
ations, which corresponds to the median absolute deviation
(MAD), as a part of further robustifying the estimation of
BN statistics. According to our study, the use of MAD shows
strong defense but a substantial performance drop. Hence,
we choose the mean of the squared deviations (zpchw —nc)2 ’S
for our method, see Appendix H for results using MAD.

5.2. lllustrative analysis: mean vs. median

The main idea of our method is to replace the use of
means with that of medians when computing BN statistics.
We provide an illustrative analysis comparing the robustness
of using median instead of mean.

Theorem 1 Consider a set of n numbers B = {x; e R:i €
[n]} and 1 < m < n where the first m numbers are possibly
manipulated by adversaries. Let By = {x; : i € [m]}, and
Bben =B \ Bmal~

(i) The mean can be arbitrarily manipulated by a single
malicious sample, i.e., for any 1 < m < n,

sup |mean (B U Bpen) — mean(Byen)| =00 . (9)
Binal

(ii) The median is robust against malicious samples unless
they are not the majority, i.e., forany 1 < m < n/2,

sup |med(Buma U Byen) — med(Byen)| < 00, and  (10)
Bmal

sBup |med(Bmal U Bren) — mean(Bpen)| < 00 . (11)
'mal

The first part of Theorem 1 implies the risk of using mean
in the presence of malicious samples. In particular, it says
that just a single malicious sample can arbitrarily manipulate
the estimation of mean statistics. However, as the second
part of Theorem | suggests, such an arbitrary manipulation
by malicious samples is not possible unless the attacker
modifies more than half of the batch. It is noteworthy that
the robustness of the median for scalars in Theorem 1 can
be extended for coordinate-wise or geometric median for
vectors as well. We provide this extension in Appendix G.

Proof of Theorem 1. For the first part of the vulnerability
of mean (9), we consider a specific choice of B/, consisting
of m-many (mean(Bype,) + L)’s for L € R. Then, we have

%up |mean(Ba U Bpen) — mean(Bhpey )|
'mal

> |mean (B, U Byen) — mean(Bpey )| = %L , (12

where the last equality is from the choice of B/, such that

n - mean(B.,,; U Byen)
= (n —m) - mean(Bypen) + m - mean(Bpen) + mL . (13)

This directly leads to (9) as the choice of L is arbitrary.

For the second part on the robustness of median, we focus
on (10) as the proof of (11) follows similarly. For (10), let
k = med(Bia U Byen). If & € Bpen, it is trivial. If k € B,
given that 1 < m < n/2, it follows that min(Bpe,) <
k < max(Bpen). Then, [med(Bma U Bpen) — med(Bpen)| <
MAaXy /By, [T — 2’| < 00. Therefore, this shows (10) and
completes the proof of Theorem 1.

6. Vulnerability of Existing TTA Methods
against Attacks

In this section, we delve into the effectiveness of TTA
methods against malicious samples. For stabilizing adap-
tation to test data, many TTA methods propose a variety
of modules, including screening out samples to remove
noisy ones, optimizing model weights to resist large and
noisy gradients, and employing exponential moving averages
(EMA) for stable updates of batch normalization statistics.
Hence, we study the influence of these TTA modules against
malicious samples across three schemes: (i) filtering, (ii)
sharpness-aware learning, and (iii) EMA.

Filtering scheme. Several research works [20,39,40] have
proposed the use of filtering modules. The purpose of these
modules is to eliminate noisy samples from the adaptation
process, based on evaluating the entropy or softmax predic-
tions of model outputs, e.g., screening out samples with high
entropy [39,40] or low confidence [20]. By filtering out these
potentially problematic samples, the model can be more sta-
bly adapted to test data. To identify the malicious samples
filtered out by the module using entropy or softmax confi-
dence, we observe the distribution of malicious samples in
the entropy-gradient space in two attack scenarios: targeted
and indiscriminate attacks with 100 attack steps, a batch size
of 200, and 40 malicious samples in each batch. As illus-
trated in Figure 3a and Figure 3b, malicious samples tend to
be clustered with low entropy values, making it challenging
to exclude the malicious samples. To verify this finding, we
investigate the proportion of malicious samples actually fil-
tered out by ETA [39] and SoTTA [20]. ETA filters samples
with high entropy, i.e., f(z;0")log f(x;6%), while SOTTA
screens out samples with low softmax confidence of model
outputs, i.e., max;c [ (ef (0% / 25:1 ef @9 where ¢ de-
notes the number of classes. As shown in Figure 3c, we ob-
serve that malicious samples still exist in the filtered batch (at
least 15% of the filtered batch are malicious samples). Con-
sidering that malicious samples constitute 20% of the batch,
these results demonstrate that entropy or softmax confidence-
based filtering mechanisms are unable to completely remove
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Figure 3. Analysis of vulnerability of existing TTA Methods against attacks. Figure 3a and Figure 3b represent the relation between entropy
and gradient norm of benign and malicious samples in targeted attack and indiscriminate attack, respectively. Figure 3c illustrates the
proportion of malicious samples B,,4; among the total remaining samples after filtering over the type of corruption, considering an initial
condition where 20% of the samples in the batch were malicious. All experiments are performed on CIFAR10-C dataset with Gaussian noise,
using a ResNet26, at the highest severity of distribution shift, i.e., level 5.

all malicious samples and allow a high percentage of mali-
cious samples to pass through.

Sharpness-aware learning scheme. Sharpness-aware learn-
ing [40], following Sharpness-Aware Minimization (SAM)
[17], focuses on the stability of model parameters by guid-
ing them towards a flat minimum in the loss surface. This
approach is based on the understanding that a flat minimum
is more desirable for model robustness, especially in the
presence of noisy or large gradients. However, as shown in
Figure 3a and Figure 3b, the gradient norm of the malicious
samples, indicated by the x-axis, is concentrated in regions
with small gradients. This indicates that the SAM does not
make the model to be robust against malicious samples.

Exponential moving averages (EMA) scheme. Exponential
Moving Averages (EMA) scheme controls the statistics of
BN layers, starting with the source statistics (jts and 02,)
from the training phase [46,50]. This differs from approaches
like TeBN, which solely rely on test batch statistics. The
EMA scheme is defined as follows:

o = ofig—1 + (1 —a)puy (14)
62 =a6?  +(1-a)o?, (15)

where g = pise, 08 = 02, and a € [0,1] is a momen-
tum parameter. Leveraging a larger proportion (« > 0.5)
of previous statistics (¢ — 1) can mitigate the influence of
malicious samples but there exists potential performance
degradation of the model to target distribution. Conversely,
utilizing a larger proportion (o < 0.5) of current statistics
(t) allows for adaptation to the target distribution, but it
compromises the robustness against malicious samples. This
presents that there is a trade-off requiring strategic consider-
ation for choosing .

7. Experiments

In this section, we provide the results of experimental
evaluations of MedBN. A detailed description of the exper-
imental setup is presented in Section 7.1. The results on

various attack scenarios for both image classification and
semantic segmentation are presented in Section 7.2 and 7.3,
respectively. We investigate the reasons behind the robust-
ness of MedBN against in Section 7.4. Lastly, Section 7.5
presents an ablation study of hyper-parameters such as the
number of malicious samples and the test batch size. More
details of the experiments are provided in Appendix C.

7.1. Experimental setup

Datasets and model architectures. We evaluate our
approach using three major benchmarks for TTA [25]:
CIFAR10-C, CIFAR100-C, and ImageNet-C, which repre-
sent perturbed versions of the original CIFAR10, CIFAR100,
and ImageNet datasets, respectively. We use ResNet-26 [24]
for CIFAR10-C and CIFAR100-C experiments, and ResNet-
50 [24] for ImageNet-C experiments. The models are pre-
trained on clean CIFAR10, CIFAR100, and ImageNet train-
ing sets from [13], respectively, and then evaluated on the
aforementioned corrupted test sets. We additionally demon-
strate the effectiveness of MedBN for various model archi-
tectures in Appendix E.

Test-time adaptation baselines. We consider seven TTA
methods as baselines, that update batch statistics or the affine
parameters of BN layers. Test-time normalization (TeBN)
[37] updates BN statistics for each test batch. TENT [52]
updates the affine parameters in BN layers using entropy
minimization. Efficient anti-forgetting test-time adaptation
(EATA) [39] improves a sample-efficient entropy minimiza-
tion and Fisher regularizer to prevent knowledge loss from
pre-trained model. ETA denotes EATA without Fisher regu-
larization. Sharpness-aware and reliable optimization (SAR)
[40] with BN layers and screening-out test-time adaptation
(SoTTA) [20] leverage sample filtering and sharpness-aware
minimization [17] to reduce the negative effects caused by
large gradients. Source-initialized exponential moving aver-
age (SEMA) [20,46,50,59] manages BN layers’ statistics
using EMA with the source statistics from the training phase



Table 1. Attack Success Rate (%) of the targeted and instant attack scenario. See Table 15 in Appendix J for a comprehensive comparison in
ASRs over different corruptions. The rightmost column refer the error rates for TeBN without attacks. See Table 19 in Appendix L for the

error rates without attacks of all methods.

\ \ Method | m=0

Dataset | - B/m | Normalization “r s\ TENT ETA SAR SoTTA sEMA mDIA | TeBN (ER %)
CIFARIO.C | 200740 | BatchNorm | 8391 7236 7507 7742 2147 1818 3391 14.92
(20%) | MedBN (Ours) | 19.16 18.36 18.00 18.04 7.82 867  8.76 15.19
CIFAR100.C | 200740 | BawchNorm | 9178 7929 7996 81.64 7.60 871  16.62 40.08
(20%) | MedBN (Ours) | 280 418 302 302 258 160  2.00 40.77
ImazeNe.C | 200720 | BatchNorm | 97.78 9147 9449 6453 1529 1102 32.18 66.62
g (10%) | MedBN (Ours) | 0.36 044 044 044 080 027 107 69.55

Table 2. Error Rate (%) of the indiscriminate and instant attack scenario. See Table 16 in Appendix J for a comprehensive comparison in ERs
over different corruptions. The rightmost column refer the error rates for TeBN without attacks. See Table 19 in Appendix L for the error

rates without attacks of all methods.

‘ ‘ ‘ Method ‘ m=0

Dataset \ B/m | Normalization "z.pN™"TENT ETA SAR SoTTA sEMA mDIA | TeBN (ER %)
CIEARIO.C | 200740 | BachNomm | 3102 2813 2742 2756 2040 2165 2796 14.92
(20%) | MedBN (Ours) | 22.34 2030 1981 19.60 1649 17.77 19.06 15.19
CIFARI00.C | 200740 | BachNomm | 5980 5510 5445 5640 4833 4689 5543 40.08
(20%) | MedBN (Ours) | 4855 4696 4659 4800 4538 4335 4784 | 4077
ImseNerC | 200720 | BachNomm | 8146 7282 7415 7774 6605 7321 778 66.62
8 (10%) | MedBN (Ours) | 69.74  68.01 6847 69.54 6422 7022 6924 |  69.55

Table 3. Attack Success Rate (%) of the targeted and cumulative attack scenario on CIFAR10-C and Error Rate (%) of the indiscriminate and
cumulative attack scenario on CIFAR10-C. See Table 17 and Table 18 in Appendix K over different corruptions and other TTA benchmarks.

\ \ \ Method | m=0
Objective | Dataset —\ B/m | Normalization  “p p\""TENT EATA SAR SoTTA sEMA mDIA | TeBN (ER %)
Targeted CIFAR10-C 200/ 40 BatchNorm 84.04 74.18 75.73 76.80  21.16 16.13  34.09 14.92
Attack (20%) | MedBN (Ours) | 19.20 18.80 21.02 8.76 8.13 8.89 19.06 15.19
Indisctiminate CIFAR10-C 200/ 40 BatchNorm 3530 3570 3530 3125 26.10 28.79 32.05 14.92
Attack (20%) | MedBN (Ours) | 27.22 25.84 26.84 24.29 2252 25.62 23.96 15.19
as the initial value in (14) and (15). We use o = 0.8 for sta- tacks, we utilize the metric of Attack Success Rate

ble update. Lastly, mitigating Distribution Invading Attacks
(mDIA) [54] interpolates source statistics and test batch
statistics in BN layers, except terminal BN layers.

Attack scenarios. We consider four different attack scenar-
ios over two purposes of attacks and two frequencies of
attacks. In particular, fargeted and indiscriminate attacks
are two purposes of attacks as outlined in Section 4. For
each purpose of attack, we additionally consider two types
of attack: an instant attack and a cumulative attack. In the
instant attack scenario, the attacker injects a set of malicious
data into the ¢-th batch after adapting to the previous (¢ — 1)
benign batches [54]. On the other hand, the cumulative at-
tack scenario involves an attack across all batches, from the
first batch up to T'-th batch, where 7' is the total number of
batches. For the number of malicious samples m per batch,
we use 40, 40, and 20 for CIFAR10-C, CIFAR100-C, and
ImageNet-C, respectively, out of 200 samples in a batch.

Evaluation metrics. For the evaluation of targeted at-

(ASR), i.e., % 51 ) 1(f (€figei 02) = Yhuger)- The perfor-
mance of indiscriminate attacks is assessed through the
Error Rate (ER) on benign samples after the attack, i.e.,
% Zle @ Z(way)ezﬁen 1(f(x;6:) # y). For each pur-
pose of attack, f(-; ét) is an adapted model after each attack
using Zt. Note that in the instant attack scenario at time ¢,
the model f (-, f;_1) is updated until (¢t — 1) via TTA without
any attacks. Finally, to measure the model’s performance
under a normal TTA setup, we use the standard TTA metric,
i.e., the ER on benign samples without attacks (i.e., m = 0).

7.2. Main results

We demonstrate the efficacy of our method used with
seven different TTA algorithms and evaluate three TTA
benchmarks under four different attack scenarios.

The instant attack scenario. Table | and Table 2 demon-
strate the effectiveness of MedBN for targeted attacks and
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Figure 5. L1 distance for measuring the amount of perturbation by malicious samples.

indiscriminate attacks, respectively, under the instant attack
scenario. By simply integrating MedBN into TTA methods
with BN layers, it demonstrates significant robustness against
malicious samples, i.e., the lower attack success rates under
targeted attacks and lower error rates under indiscriminate at-
tacks over all cases, but also achieves minimal performance
degradation without attacks.

In Table 1 for targeted attacks, the ASRs of all TTA meth-
ods are consistently less than 20% for CIFAR10-C, 10%
for CIFAR100-C, and 1% for ImageNet-C. While SoTTA
and EMA inherently possess defensive capabilities with the
use of batch statistics EMA, integrating MedBN further en-
hances the robustness, yielding the lowest ASRs compared
to other methods assessed in this study. In Table 2 for indis-
criminate attacks, the results across all TTA methods indicate
that MedBN shows reduced error rates as high as approxi-
mately 9% in CIFAR10-C, 11% in CIFAR100-C, and 12%
in ImageNet-C. As in targeted attacks, it is noteworthy that
while SOTTA and sEMA naturally provide some defense
with standard BN layers, incorporating MedBN substantially
enhances this protection, leading to the lowest error rates
observed in all studied methods.

The cumulative attack scenario. The efficiency of MedBN
is indicated in Table 3 under the cumulative attack sce-
nario including targeted attacks and indiscriminate attacks
on CIFAR10-C. The results on other datasets can be found in
Appendix K. Unlike an instant attack, which involves inject-
ing malicious data into a single batch after adapting to previ-
ous benign batches, a cumulative attack spreads across all
batches. Integrating malicious samples consistently through-
out the entire dataset can significantly degrade the model,
depending on the attacker’s goals. Particularly, cumulative
attacks have a more pronounced impact in indiscriminate
scenarios, where the performance reductions from earlier at-
tacks can accumulate. Even in the cumulative attack scenario,
MedBN shows lower ASRs in the targeted attack scenario
and lower ERs in the indiscriminate attack scenario.

7.3. Experiments on semantic segmentation

We expand our experiments to incorporate a semantic
segmentation task, examining two instant attack objectives:
a targeted attack on segmentation, which aims to manip-
ulate the prediction for a targeted pixel within an image,
and an indiscriminate attack on segmentation, intending to



disturb predictions on all the benign samples. Each batch
comprises one malicious image and the others benign image
with a batch size of 3. Table 4 shows that MedBN effectively
defends against both attack scenarios while preserving the
mean Intersection over Union (mloU) on benign images.
Additional experimental details are provided in Appendix C.

Table 4. Attack Sucess Rate (%) in instant targeted attack on seg-
mentation and mloU (%) on the benign images in instant indiscrim-
inate attack on segmentation using TeBN to adapt the model trained
on Cityscapes [12] for SYNTHIA [42].

Objective ‘ Normalization ‘ TeBN ‘ mloU (%) (m = 0)
Targeted Attack ‘ BatchNorm 69.17 25.43
(ASR |) MedBN (Ours) | 0.00 24.24
Indiscriminate Attack ‘ BatchNorm 17.11 25.43
(mlIoU 1) MedBN (Ours) | 21.55 24.24

7.4. Why is MedBN robust against attacks?

We investigate how MedBN counteracts the effects of
malicious samples. First, we plot the t-SNE of features for
each block before going through BN layers during the adap-
tation using TeBN on Gaussian corruptions in CIFAR10-C.
The t-SNE for all BN layers can be found in Appendix I.
In Figure 4a, except for the early layers, malicious sam-
ples become outliers compared to benign ones. Therefore,
as demonstrated in Theorem 1, the mean is exposed to be
contaminated by these malicious samples and results in the
misbehavior of the model. However, when we plot the same
t-SNE for MedBN layers, we observe that the malicious
samples are closed from the benign samples as shown in Fig-
ure 4b, i.e., the effect of malicious samples is significantly
mitigated. For the early layers that capture low-level fea-
tures [3,41,60], the features of malicious samples are close
to those of benign samples, since the malicious samples are
generated by adding the imperceptible noise, making them
similar to the benign samples. However, for deeper layers,
the malicious samples tend to go distant from the benign
samples to mislead the model. Secondly, to verify the robust-
ness of MedBN, we measure the L; distance ||t — fiven]|1
and || — Nven||1> |0 — Oben||1 and ||p — pven||1- As shown in
Figure 5, as the layer gets deeper, the influence of perturba-
tion by malicious samples is smaller for MedBN statistics
than BN statistics. These results align with Theorem 1 and
the results of t-SNE for BN and MedBN.

7.5. Ablation studies

We perform ablation studies on four distint cases, using
CIFAR10-C and CIFAR100-C datasets in targeted and indis-
criminate attack scenarios, varying malicious samples and
test batch size. Our focus is on evaluating the TeBN method,
as it addresses the vulnerabilities related to robustly estimat-
ing BN statistics while excluding learnable parameters.

The number of malicious samples. We investigate the ro-
bustness of the MedBN against various ratios of malicious
samples with batch size of 200. Across various malicious
ratios, MedBN is consistently robust under targeted attacks
in CIFAR10-C (Table 5). The remaining three cases with
results are provided in Appendix F.

Table 5. Attack Success Rate (%) of targeted and instant attack for
different numbers of malicious samples with batch size of 200.

\ \ # of Malicious Samples (1)
Dataset ‘ Normalization ‘ 10 20 20 60 30

BatchNorm 21.60 42.00 84.00 96.67 99.47
MedBN (Ours) | 7.07 10.27 19.20 26.80 38.27

CIFAR10-C

Test batch size. We explore the effect of different batch sizes.
In all cases, the ratio of malicious samples is about 20%. For
targeted attacks in CIFAR10-C (Table 6), MedBN achieves
significantly lower ASR than BN at all batch sizes. Note that
as the batch size gets smaller, a successful attack gets more
difficult because there is less malicious data. The results for
the remaining three cases are included in Appendix F.

Table 6. Attack Success Rate (%) of targeted and instant attack for
different batch size B with a consistent 20% of malicious samples.

| Batch-size (B)

Dataset ‘ Normalization ‘ 200 128 o4 3 16
BatchNorm | 8391 8776 8484 8387 8460
CIFARI0-C ‘ MedBN (Ours) | 1916 20.51 17.83 20.19 29.14

8. Conclusion

We provide a comprehensive study disclosing potential
threats of existing TTA methods mainly due to their vul-
nerable estimation of BN statistics despite the remarkable
advances in TTA. Hence, we propose MedBN, an simple yet
effective robust batch normalization method against mali-
cious samples, which can be effortlessly combined with most
of the existing TTA methods if BN layers are being adapted.
Our comprehensive experiments demonstrate the robustness
and general applicability of MedBN. In particular, we show
that applying MedBN to other methods results in significant
performance improvements, implying that MedBN helps at-
tain outstanding robustness. For example, applying MedBN
to SOTTA (one of the state-of-the-art) shows the best robust-
ness across all benchmarks. We believe that our work can
provide a general robust batch normalization for future work.
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A. Implementation Details of Distribution Invading Attack

In our study, we use the Distribution Invading Attack (DIA) in [54], with a detailed description found in Algorithm 1.
Specifically, the test batch B undergoes an update process as outlined in Line 5. Notice that, unlike the general method of
using mean, our approach utilizes median calculations as per (7) for these BN statistics. For models with BN layers, executing
Line 6 is optional. TTA methods typically perform a single-step update using TTA loss Lrta on @ for each BY, allowing us
to estimate 6 to be approximately equal to 6. In Line 7, the perturbation d;_ is updated through projected gradient descent
(PGD) [36], where the projection II. is used to clip §; within the constraint €. This process ensures that the images remain
valid within the [0, 1] range. L,.cx is replaced by adversary’s objectives: targeted attack or indiscriminate attack in Section 4.
After N-steps PGD, we get the optimal malicious samples Bt , = Bt + dy.

Algorithm 1: Distribution Invading Attack [54]

1: Input: Model f(+; 0) of parameters § which include BN statistics (fi., 2), test batch Bt = Bt U Bf,, attime ¢, a
targeted label yfarget on a targeted sample xfmget € Bt,,. learning rate n of TTA update, learning rate « of attack, the
number of attack steps N, constraint €, and perturbation d.

. Output: Perturbed malicious samples B!, = Bl + dn

:fori=1,2,...,N do:

B+ (Bfna] + 6i—1) U Blﬁen

(fre; 67) < (jie(B"),62(B"))

(Optional) § < 6 — n - OLrTA(BY) /00

0; <+ Ha((si—l — Q- Sign(véz,lﬁattack(f(' ; Q(Bt))))

: end for

. return B! = Bt + 8y

mal mal

As we mentioned in Section 4, we discuss the attack objectives L.k for two types of attacks: targeted attack and
indiscriminate. The targeted attack involves an adversarial input B, to make the model misclassify a specific sample xfarge[ to

incorrect label Yiuger, formulated as: B, = arg max; —Lee(f (Thargets 0(Bt)), Yfarger)- On the other hand, the objective of

indiscriminate attack is to reduce the model’s accuracy on all benign data by manipulating the adversarial input Bﬁml, given by:
Bl = arg maxpe Z(I,y)ez;en Leg(f(x;0(B")), y)-

B. Extended Attack Scenarios

The required knowledge of the white-box attack is excessive but not unattainable. Nevertheless, it is crucial to explore
more feasible attacks with constrained knowledge of the adversary. Therefore, we consider two additional attack scenarios:
the semi-white box attack scenario, in which the adversary has constrained knowledge, and the adaptive attack, in which the
adversary adapts its adversarial objective to obfuscate defense mechanisms.

Semi-white-box attack. We construct a semi-white-box attack that generates malicious samples using only the initial model
parameters, while the system continues to adapt its parameters. This approach is more feasible but weaker than the white-box
attack. As indicated in Table 7, the malicious samples generated by the semi-white-box attacker are comparably toxic to those
from the white-box attacker in an instant attack scenario, and our method demonstrates robustness against such attacks.

Adaptive attack. Since the adversary is aware of defense mechanisms, it can adapt its adversarial objective to obfuscate them.
To verify the robustness of our method against such an adaptive attack, we implement it with an additional regularization term,
|med(Bma) — med(Bpen)|, Which ensures alignment between the median of malicious samples and that of benign samples.
However, as shown in Table 7, the adaptive attack is weaker than the white-box attack, and our method (MedBN) is still robust
against such adaptive attacks.

Table 7. Attack Success Rate (%) of targeted attack with TENT.

Attack Method ‘ White-box ‘ Semi-white-box ‘ Adaptive white-box

BatchNorm 72.36 53.73 31.87
MedBN (Ours) 18.36 11.20 7.47




C. Experiment Details

Datasets. Three major benchmarks for TTA [25] CIFAR10-C, CIFAR100-C, and ImageNet-C. These benchmarks are designed
to measure the robustness of networks in classification tasks. Each dataset includes 15 types of corruption and 5 levels of
severity. Our evaluation concentrates on the most severe level 5 of corruption. The CIFAR10-C and CIFAR100-C datasets
contain 10,000 test images with 10 and 100 classes, respectively, and the ImageNet-C dataset contains 5,000 test images with
1,000 classes for each type of corruption.

Implementation details. In all experiments, we adapt the Adam optimizer with a learning rate of 0.001 and no weight decay.
For SAR and SoTTA, we use the SAM optimizer with the Adam optimizer. We follow the baseline papers or official codes to
set the hyper-parameters for each TTA method. For data poisoning attacks, we follow the experimental setting of unconstrained
attack in [54], which is the most threatening attack. Specifically, we use attack steps of 100 with an attacking optimization rate
« of 1/255, the initial perturbation dqg of 0.5, and the perturbation constraint & of 1.0.

Details on semantic segmentation task. Our experimental setup aligns with prior works [9,34] on semantic segmentation. We
utilize DeepLabv3+ [7] with ResNet-101 backbone pre-trained on the Cityscapes training set [ | 2] and evaluate its performance
on the validation set of SYNTHIA [42]. In evaluating targeted attack within the segmentation task, we adopt the metric of
Attack Success Rate (ASR), akin to image classification. The performance of indiscriminate attacks is evaluated through the
mean Intersection over Union (mloU) on benign samples after the attack.

D. Extended Related Works

Test-time adaptation (TTA). TTA has been studied to address the issue of distribution shift between source and target
domains during the online testing phase, without altering training phase. TTA methods can be broadly categorized into three
groups on the specific parameters they update within a model: (i) fully-updated TTA; update all parameters of the model, (ii)
BN-updated TTA; update only BN parameters of the model, and (iii) meta-updated TTA; update meta networks attached with
frozen pre-trained model. Several studies [0, 10, 14,35, 53] have improved performance by updating entire model parameters,
which may be impractical when the available memory sizes are limited. The majority of fully-updated TTA methods adopt
the mean-teacher framework, which largely relies on pseudo-labeling of a more reliable teacher model. The stability of
mean-teacher frameworks in changing environments is attributed to their use of an exponential moving average with various
loss functions, such as symmetric cross-entropy.

Since fully-updated TTA methods encompass BN-updated TTA approaches, TTA typically involves adapting pre-trained
models that include BN layers [28], which often struggle with domain shifts at test time due to their reliance on training
statistics optimized for the training distribution. Prior methods in TTA [37,44] have indicated that adapting BN statistics can
effectively mitigate distributional shifts. Moreover, recent TTA approaches [20, 34,40] have primarily focused on utilizing
normalization statistics directly from the current test input, often in conjunction with self-training techniques, such as entropy
minimization [39, 52, 61]. Meanwhile, in addition to works [4,27,57] focusing on memory efficiency, [47] proposes an
architecture that is efficient in terms of memory. This design combines frozen original networks with newly proposed meta
networks, requiring an initial warm-up using source data. To address the adversarial risks in TTA methods if BN layers are
being adapted, we propose MedBN method that can be integrated into any existing TTA methods if BN layers are being
adapted and demonstrate a theoretical analysis of our method. When MedBN is integrated into these methods, they consistently
demonstrate robustness against malicious samples.

Data poisoning attacks and defenses. Data poisoning attacks involve injecting poisoned samples into a dataset, causing
the model trained with the poisoned dataset to produce inaccurate results at test time. These attacks pose threats to various
machine learning algorithms [2, 5, 38, 45]. Furthermore, recently, [11,54] suggest the risks of data poisoning attacks in the
test-time adaptation process, wherein TTA methods adapt the model at test time.

For defense against data poisoning attacks, [48] removes outliers by approximating the upper bounds of loss. This method
requires the assumption that the dataset is large enough to approximate the loss. However, for test-time adaptation, the number
of test data is insufficient to concentrate statistics of loss, and there are no labels for the test data, which means that this
approach is not suitable for adaptation during the test phase. [ 18] demonstrates that adversarial training is an effective defense
method for data poisoning attacks, enhancing the robustness of models in the training phase. However, in test-time adaptation,
access to the training process is restricted, primarily due to privacy concerns related to the training data and the substantial
computational resources required for training. Additionally, adversarial training leads to performance degradation in test data.
Due to the aforementioned limitations, adversarial training is infeasible in this context. To address the above limitations of
existing defenses, we propose a robust batch normalization method that is not only simple and effective but also universally



applicable across any existing TTA methods if BN layers are being adapted.

Median aggregation for robust distributed learning. The abundance of collected data has led to the emergence of distributed
learning frameworks. In such systems, several data owners or workers collaborate to construct a global model, typically
employing the widely used distributed stochastic gradient descent (SGD) algorithm with a central server. This server iteratively
updates the model parameter estimated by aggregating the stochastic gradients calculated by the workers. However, this
algorithm is susceptible to misbehaving workers, referred to as Byzantine in [32], that may send arbitrarily deceptive gradients to
the server, potentially disrupting the learning process [1,49,56]. To address these issues, extensive researches [8,15,22,23,55,58]
have been dedicated to robustly aggregating gradients regardless of Byzantine behavior. Among a wide range of aggregation
methods, the median is widely used for robust aggregation and its effectiveness has been verified: [8] employs the geometric
median for robust aggregation, [55] uses the mean around the median, and [58] utilizes coordinate-wise median. In terms of
robust aggregation, the median can also be applied to robustly aggregate batch statistics against malicious samples. To the
best of our knowledge, we are the first to use the median for robustly aggregating batch statistics to defend against malicious
samples.

E. Effectiveness of MedBN across Different Model Architectures

In the main text, we have focused on ResNet-26. Beyond ResNet-26, our study includes two additional architectures, which
are commonly used in TTA: WideResNet-28 (WRN-28) for CIFAR10-C, as referenced in the RobustBench benchmark [13],
and ResNext-29 for CIFAR100-C from [26]. Table 8 demonstrates the efficacy of MedBN across various architectures over
both attack instant scenarios, indicating that MedBN is independent of specific architectural designs, i.e., architecture-agnostic.

Table 8. Effectiveness of MedBN across various model architectures. We use the batch size of 200 with 40 malicious samples.

‘ ‘ ‘ ‘ Method ‘ m =0
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F. Extended Ablation Study Cases

In this section, we present detailed results of the three additional cases in our ablation studies, which were not included in
Section 7.5. Each case explores different combinations of datasets and attack scenarios, providing further insights into the
robustness of our method.

The number of malicious samples. We investigate MedBN’s robustness against different ratios of malicious samples using a
batch size of 200. In the instant attack scenario, MedBN demonstrates robustness across all malicious ratios, performing well
under both targeted attacks (Table 9) and indiscriminate attacks (Table 10).

Table 9. Attack Success Rate (%) of targeted and instant attack for different numbers of malicious samples m with batch size of 200.

# of Malicious Samples (m)

Dataset ‘ Normalization ‘ 10 20 20 0 ”
BatchNorm 21.60 42.00 84.00 96.67 99.47
CIFARIO-C ‘ Ours (MedBN) | 7.07 10.27 19.20 26.80 38.27
CIFAR100-C ‘ BatchNorm 16.80 42.13 92.00 99.73 99.87

Ours (MedBN) | 1.73  2.00 293 3.60 4.27




Table 10. Error Rate (%) of indiscriminate and instant attack for different number of malicious samples m with batch size of 200.

# of Malicious Samples (1m)

Dataset ‘ Normalization ‘ 10 20 40 60 30
BatchNorm 19.07 2298 31.02 40.14 50.52
CIFARI0-C ‘ Ours (MedBN) | 16.42 18.00 22.34 28.00 34.24
CIFAR100-C ‘ BatchNorm 4535 50.03 59.84 69.21 78.99

Ours (MedBN) | 43.31 44.38 4858 53.86 61.44

Test batch size. We assess the effect of varying batch sizes with a fixed ratio of malicious smaples around 20%. In the case
of targeted attacks, MedBN consistently achieves significantly lower ASR compared to BN across all batch sizes (refer to
Table 11. Similarty, in the case of indiscriminate attacks, MedBN consistently outperforms BN with lower error rates across all
tested batch sizes (refer to Table 12).

Table 11. Attack Success Rate (%) of targeted and instant attack for different batch size B with a consistent 20% of malicious samples.

‘ Batch-size (B)

Dataset ‘ Normalization ‘ 200 128 64 32 16
BatchNorm 83.91 87.76 84.84 83.87 84.60
CIFARI0-C ‘ MedBN (Ours) | 19.16 20.51 17.83 20.19 29.14
CIFAR100-C ‘ BatchNorm 91.78 88.44 89.43 9046 9047

MedBN (Ours) | 2.80 4.72 5.01 820 12.65

Table 12. Error Rate (%) of indiscriminate and instant attack for different batch size B with a consistent 20% of malicious samples.

‘ ‘ Batch-size (B)
Dataset ‘ Normalization ‘ 200 128 64 0 16

BatchNorm 31.02 33.14 3501 40.67 49.85
MedBN (Ours) | 22.34 23.83 2478 28.58 34.81

BatchNorm 59.80 6235 67.07 73.73 83.08
MedBN (Ours) | 48.55 49.86 52.88 58.80 67.63

CIFAR10-C ‘

CIFAR100-C ‘

G. Extension of Theorem 1

In this appendix, we extend Theorem 1 for multi-dimensional vectors. For median of multi-dimensional vectors, we consider
coordinate-wise median (cwmed) and geometric median (geomed). The coordinate-wise median is the median along each
dimension. The geometric median is a vector that minimizes the sum of the distances to vectors in B = {x; € R® : i € [n]}
with a set of n numbers, which is defined as follows:

geomed(B) = arg min Z |z — 2|2 - (16)

zER4 z,€EB
Note that cwmed is a solution of arg min,cpa >, 5 12 — =41

Theorem 2 (Extension of Theorem 1) Consider a set of n numbers B = {z; € R® : i € [n]} and 1 < m < n where the
first m numbers are possibly manipulated by adversaries. Let By = {x; : i € [m]}, and Byen = B\ Bma-
(i) The mean can be arbitrarily manipulated by a single malicious sample, i.e., forany 1 < m < n,

%1:5 |lmean(Bpa U Bhen) — mean(Bpen)||2 = oo . 17
(ii) The cwmed or geomed are robust against malicious samples unless they are not the majority, i.e., forany 1 < m < n/2.
For the simplicity, we denote the med instead of cwmed or geomed,

%LEI) [lmed(Bmal U Bren) — med(Boen)||2 < 00, and (18)

sup ||med(Bma U Boen) — mean(Bypen)||2 < oo . (19)

'mal



Proof of Theorem 2. First, we prove the vulnerability of mean (17). The k-th coodrinate of |mean(By, U
Boen) — mean(Bypey)|| is mean(Bma U Boen)r — mean(Byen)r. Then, [mean(Bpay U Bpen) — mean(Boen)|| =

\/ Zgzl |mean(Bma U Boen ) — mean(Byeq )1 |2. Consequently, by (9), the equation (17) holds.
For the second part on the robustness of the median, particularly for the cwmed, we can demonstrate (18) and (19) by using
(11) and (10), similar to the proof of (17). Regarding the geomed, we can use Lemma 9 in [16],

1
max ||z; — med(Bpen)|l2 < 00 . (20)

1— m?2 2 j € Bpen
(n—m)?

Therefore, by (20), the equation (18) holds. Similarly, we can demonstrate the (19).

Hmed(Bmal U Bben) — med(Bben)Hg =

Remarks. In contrast to cwmed, calculating geomed is computationally expensive as it necessitates an optimization
procedure. Therefore, although geomed can be considered for robust batch normalization, it is challenging to apply it to the
neural network, which generally operates with high dimensional features.

H. Discussion on Median Absolute Deviation (MAD)

We further explore the feasibility of using Median Absolute Deviation (MAD) as an alternative to the mean of squared
deviations (zpchw — nC)Q, used in our MedBN. The MAD is calculated as the median of the absolute deviations from the
median of data, formulated as:

med (‘zbchw - 776|)bhw . (21)
As discussed in Section 5.1, p.. typically computes the mean of squared deviations (2pchw — 7¢)? » opting for MAD presents

an alternative method. Our findings reveal that while adopting MAD enhances defense capabilities, specifically in the targeted
attack, it also results in a notable decrease in performance, particularly over ImageNet-C, as detailed in Table 13.

Table 13. Comparison of BatchNorm, MedBN (our method), and MAD in terms of Attack Success Rate (%) for the targeted and instant
attack scenario and Error Rate (%) for the indiscriminate and instant attack scenario using TeBN. This table also includes Error Rate (%) on
benign samples without attack as per TTA benchmarks.

Dataset CIFAR10-C ‘ CIFAR100-C ImageNet-C
m/ B 40/ 200 ‘ 40 /200 20 /200
.. . ER (%) ER (%) ER (%)
Objective Normalization wlo Attack ASR (%) ‘ w/o Attack ASR (%) wlo Attack ASR (%)
Tarceted BatchNorm 14.92 83.90 ‘ 40.08 91.78 66.62 97.78
Atfack Ours (MedBN) 15.19 19.16 40.77 2.80 69.55 0.36
MAD 18.40 2.93 ‘ 46.13 0.13 85.08 0.27
.. . ER (%) ER (%) ER (%)
Objective Normalization wlo Attack ER (%) ‘ w/o Attack ER (%) wlo Attack ER (%)
Indiscriminate BatchNorm 14.92 31.02 ‘ 40.08 59.80 66.62 81.46
Attack Ours (MedBN) 15.19 22.34 40.77 48.55 69.55 69.74
MAD 18.40 23.46 ‘ 46.13 53.41 85.08 84.99

I. Comprehensive Analysis of Malicious Samples on Every BN Layers

For analyzing the effect of MedBN, we plot the t-SNE of features before going through BN layers. For evaluation, we
use Gaussian corruptions in CIFAR10-C with ResNet26 and TeBN for the adaptation method. The attack is implemented for
targeted and instant attack scenario and we use € = 1 for the attack. Figure 8a shows that for the deeper layer, the malicious
samples tend to be clustered and distant from the benign samples to mislead the output of the model.



Additional analysis with constrained c. We conduct a comparative analysis of BN and MedBN under the same setup,
except for using a constrained & value of 8/255. Table 14 shows that the reduced ¢ leads a lower ASR compared to € = 1,
indicating a weaker attack. Moreover, our methods outperforms in both cases, with ¢ = 1 and € = 8/255. We plot the Ly
distance as outlined in Section 7.4. Figure 6 and Figure 7 show that MedBN statistics is less influenced by malicious samples
than BN statistics. Comparing the early layers (specifically, in bnl) between attack with € = 1 (the left of the Figure 6) and
attack with e = 8/255 (the right of the Figure 6), we can observe that a smaller € value leads to reduced perturbations in the
early layers. In other words, as the weaker attack, the perturbation for early layers is reduced.

Additionally, we visualize t-SNE of all layers and €’s in Figure 8 and Figure 9. In contrast to BN layers in € = 1 (Figure 8a),
BN layers in ¢ = 8/255 (Figure 9a) shows that malicious samples tend to be clustered and become more distant from benign
samples at deeper layers than under € = 1, indicating a weakened attack. However, as shown in MedBN layers ine = 1
(Figure 8b), MedBN layers in ¢ = 8/255 (Figure 9b) demonstrates that MedBN effectively mitigates the malicious samples to
not be outlier against the benign samples, i.e., malicious samples are closed from the benign samples.

Table 14. Attack Success Rate (%) of targeted and instant attacks for different € by using TeBN.

‘ ‘ value of €
Dataset ‘ Normalization W

BatchNorm 58.00 8391

CIFAR10-C
MedBN (Ours) | 16.13 19.16

0.007
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Figure 6. L1 distance for measuring the amount of perturbation ||g — fien||1 and ||77 — 7ven||1 by malicious samples across various layers,
with e = 1 on the left and e = 8/255 on the right.
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Figure 7. L1 distance for measuring the amount of perturbation ||c — open||1 and ||p — pren||1 by malicious samples across various layers,
with € = 1 on the left and £ = 8/255 on the right.
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(a) t-SNE visualization of all BN layers (¢ = 1).
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(b) t-SNE visualization of all MedBN layers (¢ = 1).

Figure 8. t-SNE visualization of all BN layers (Figure 8a) and all MedBN layers (Figure 8b) with € = 1. In Figure 8a, for deeper layers, the
features of malicious samples tend to be distant from benign samples to mislead the outputs of model. However, when we apply MedBN,
Figure 8b demonstrates that malicious samples are closed to benign samples, i.e. the effect of malicious samples is significantly mitigated.
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(a) t-SNE visualization of all BN layers (¢ = 8/255).
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(b) t-SNE visualization of all MedBN layers (¢ = 8/255).

Figure 9. t-SNE visualization of all BN layers (Figure 9a) and all MedBN layers (Figure 9b) with & = 8/255. For the early layers, the
features of malicious samples tend to be more close to those of benign samples as the ¢ is reduced. For deeper layers, similar to Figure 8a,
the malicious samples tend to move away from the benign samples to mislead the model. However, when we apply the MedBN, the impact
of malicious samples is significantly mitigated as shown in Figure 9b.



J. Comprehensive Results of Instant Attack Scenario

We provide detailed results of instant and targeted attack scenario in Table 15 and instant and indiscriminate attack scenario
in Table 16 across all types of corruptions in the TTA benchmark datasets.

Table 15. Extended analysis of Attack Success Rate (%) for targeted and instant attack scenario over all types of corruption (detailed version
of Table 1).

| | Noise Blur Weather Digital
‘ Method ‘Gauss. Shot  Impul. Defoc. Glass Motion Zoom Snow Frost Fog  Brit. Contr. Elastic Pixel. JPEG  Avg.

TeBN 82.00 90.00 9133  76.67 94.00 82.67 80.00 82.00 84.00 89.33 7333 92.00 86.00 77.33 78.00 83.91
+MedBN | 26.00 2333 22.00 16.00 28.67 16.00 14.67 21.33 16.00 16.67 12.00 16.67 21.33 10.67 26.00 19.16
TENT 7333 7800 7733 5733 7600 6733 68.67 72.67 7133 72.67 6733 82.67 7467 70.00 76.00 72.36
+MedBN | 23.33 18.67 1933 16.00  30.67 16.00 14.00 16.67 12.67 14.67 14.00 1933 21.33 16.67 22.00 18.36
ETA 70.67  80.67 82,67 7133 80.00 74.67 7533 7133 76.00 8133 56.67 88.00 76.67 66.67 74.00 75.007
g +MedBN | 24.67 22.00 21.33 14.67 26.00 14.67 12.00 20.00 12.00 18.00 10.67 16.00 20.00 14.67 23.33 18.00
= SAR 7400  78.67 82.67 6933  86.00 80.67 7733 7533 76.00 7733 66.67 86.67 8333 72.67 74.67 7742
< +MedBN | 24.00 24.00 17.33 1533  28.00 14.00 1133 17.33 14.00 14.67 14.67 16.67 1933 16.00 24.00 18.04
o SoTTA 2533  20.67 30.00 20.00 2400 2200 1533 2133 1733 18.67 22.67 18.00 22.67 2133 22.67 21.47
+MedBN | 7.33 16.67  10.67 6.67 6.67 3.33 6.00 8.00 533 6.00 4.00 8.00 1200 6.67 10.00 7.82
sEMA 24.67 2533 2333 14.00  24.67 1333 1400 20.00 12.00 12.67 14.67 12.67 1933 16.00 26.00 18.18
+MedBN | 14.00 14.00 14.67 2.00 12.00 6.00 400 8.00 6.00 10.00 4.00 6.00 9.33 2.00 18.00 8.67
mDIA 4400 3400 52.67 2400 5200 28.67 26.00 2533 20.00 34.00 22.00 36.00 42.00 34.00 34.00 3391
+MedBN | 12.00 14.00 16.00 2.00 10.00 6.00 400 800 4.00 10.00 4.00 8.00 12.00 333 18.00 8.76
TeBN 96.00  96.00 98.00 7733 91.33 88.67 86.67 98.00 98.67 99.33 9400 98.00 88.00 83.33 8333 91.78
+MedBN | 2.67 2.00 2.00 2.00 5.33 2.00 2.00 2.67 200 4.00 4.00 2.67 4.00 2.67  2.00 2.80
TENT 78.67  84.67 7333 8133 7333 81.33 6533 74.67 78.67 88.67 80.67 9200 8400 84.00 68.67 79.29
+MedBN | 3.33 4.00 4.00 4.00 6.67 3.33 4.67 467 200 6.67 4.67 4.67 4.67 333 2.00 4.18
ETA 78.00  80.67 8133  84.67 7400 78.00 71.33 7733 84.00 92.00 72.67 90.67 84.67 76.67 73.33 79.96
g +MedBN | 2.00 3.33 2.00 4.00 5.33 3.33 333 200 2.00 6.00 333 2.00 2.67 2.00 2.00 3.02
= SAR 86.00 8333 86.00 74.67 78.67 76.00  70.67 81.33 8533 9333 76.00 96.67 7933 86.00 7133 81.64
E‘t +MedBN | 2.00 2.00 2.00 4.00 7.33 1.33 400 200 133 6.00 4.00 2.00 3.33 2,67 133 3.02
% SoTTA 6.67 10.00 7.33 7.33 12.67 8.00 5.33 8.67 6.67 867 4.00 7.33 10.00 333  8.00 7.60
+MedBN | 2.00 2.00 3.33 2.00 4.67 2.00 200 200 133 133 4.00 3.33 4.00 2.67  2.00 2.58
sEMA 10.00  14.67 10.00 8.00 9.33 8.67 400 533 1133 10.00 6.67 8.00 9.33 6.00 9.33 8.71
+MedBN | 2.00 2.00 2.00 2.00 4.00 2.00 0.00 0.00 0.00 0.00 4.00 2.00 2.00 2.00 0.00 1.60
mDIA 15.33 18.00  22.00 14.00 14.00 16.00  12.00 16.00 18.00 24.00 10.00 24.00 16.00 12.00 18.00 16.62
+MedBN | 2.00 4.00 6.00 2.00 4.00 0.00 200 200 0.00 0.00 4.00 2.00 2.00 0.00  0.00 2.00
TeBN 100.00  100.00 100.00 100.00 100.00 100.00 96.00 97.33 94.67 98.67 98.67 100.00 100.00 89.33 92.00 97.78
+MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133 0.00 0.00 4.00 0.00 0.00  0.00 0.36
TENT 89.33  84.00 88.00 96.00 94.67 96.00  92.00 96.00 94.67 96.00 90.67 100.00 94.67 80.00 80.00 91.47
+MedBN | 0.00 1.33 0.00 0.00 0.00 0.00 1.33  0.00 0.00 0.00 0.00 4.00 0.00 0.00  0.00 0.44
ETA 100.00  100.00 100.00  96.00 100.00  96.00  90.67 92.00 88.00 98.67 96.00 100.00 97.33 77.33 8533 94.49
&) +MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 2,67 0.00 0.00 0.00 0.00 4.00 0.00 0.00  0.00 0.44
> SAR 66.67  66.67 66.67 66.67  66.67 66.67 6533 64.00 60.00 66.67 6400 68.00 66.67 5333 60.00 64.53
go +MedBN | 0.00 0.00 0.00 1.33 0.00 0.00 000 000 133 0.00 0.00 2.67 0.00 1.33  0.00 0.44
£ SoTTA 4.00 533 8.00 26.67 14.67 20.00 18.67 14.67 30.67 16.00 12.00 18.67 13.33 16.00 10.67 1529
+MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 133 2,67 4.00 0.00 0.00 4.00 0.00 0.00  0.00 0.80
sEMA 0.00 8.00 0.00 16.00 8.00 20.00 16.00 800 1733 2400 4.00 17.33 8.00 12.00  6.67 11.02
+MedBN | 0.00 0.00 0.00 4.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.27
mDIA 24.00 22.67 3200 3733  26.67 36.00 36.00 2533 4533 4000 26.67 5733 28.00 2133 2400 32.18
+MedBN | 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 4.00  0.00 1.07




Table 16. Extended analysis of Error Rate (%) of indiscriminate and instant attack scenario over all types of corruption (detailed version of
Table 2).

| | Noise Blur Weather Digital
‘ Method ‘Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog  Brit. Contr. Elastic Pixel. JPEG Avg.

TeBN 3574 3437 4560 2388 3795 2786 20.62 29.76 26.83 40.62 20.82 30.97 3295 23.65 3370 31.02
+MedBN | 26.60 25.15 35.01 17.23 27.51 2037 1475 21.00 1836 28.19 14.24 20.22 2493 16.82 24.74 22.34
TENT 3220 30.72 4039 23.05 3492 2591 20.62 2691 2564 2847 2066 2690 3142 2393 30.14 28.13
+MedBN | 24.12 2296 3231 1578 27.08 17.99 14.59 19.07 17.05 20.22 13.87 18.04 23.88 15.23 2230 20.30

ETA 30.67 30.05 38.84 2244 3410 2515 20.76 2646 2542 2799 2050 26.09 30.65 22.67 2946 2742

g +MedBN | 2342 2193 31.02 15.04 2637 17.62 1420 18.37 1693 20.13 13.60 17.78 23.12 14.89 22.70 19.81
= SAR 3224 3030 3930 22,18 3352 2544 20.08 2571 25.18 2938 20.16 27.57 3020 2233 29.85 27.56
= +MedBN | 23.36 21.73 30.87 1496 2514 1745 13.84 18.20 16.61 20.24 13.57 18.25 22.86 15.01 21.90 19.60
) SoTTA 2549 2351 3312 1512 26.87 17.30 13.53 19.09 17.34 2023 1427 17.56 2370 1523 23.62 20.40
+MedBN | 21.37 19.78 2950 11.15 2323 13.67 10.01 1500 14.15 1490 10.66 13.06 19.17 1214 19.52 16.49
sEMA 2722 25.65 3732 1440 2790 1843 12.09 2028 17.76 26.50 13.11 1935 23.60 15.08 26.01 21.65
+MedBN | 23.68 22.09 33.07 11.00 23.16 14.42 918 16.32 14.10 20.85 10.58 14.73 1932 1235 21.76 17.77
mDIA 38.78 3739 5060 16.82 3420 2357 1423 2299 1996 3850 13.61 3623 27.04 18.00 27.43 27.96
+MedBN | 26.26 2526 34.70 12.03 2490 15.97 9.60 16.60 13.69 2220 9.86 20.53 19.72 13.25 21.37 19.06
TeBN 66.56 6576 7397 49.61 6498 5507 4574 5985 5730 71.08 50.01 64.44 60.07 49.70 6291 59.80
+MedBN | 54.39 54.82 6347 3926 53.64 4344 36.08 48.36 4571 58.51 39.71 50.15 4933 40.22 51.15 48.55
TENT 60.80 5945 66.79 47.84 6047 51.82 4531 5578 5521 58.65 47.08 54.01 5722 4824 57.75 55.10
+MedBN | 53.77 5226 60.89 39.68 53.47 4224 37.10 46.99 4595 49.69 3882 4533 48.19 40.08 49.99 46.96

ETA 60.50 5890 67.04 4727 60.60 5097 44.07 5427 5483 57.19 4633 54.64 56.07 4823 5580 54.45

g +MedBN | 53.38 5240 61.82 3934 5252 42.05 36.35 45.77 45.05 49.99 38.04 44.60 48.07 39.76 49.78 46.59
= SAR 63.51 61.82 69.44 4843 61.60 52.69 4633 5521 5538 59.57 4831 57.58 57.68 4899 5949 56.40
St‘ +MedBN | 55.16 53.88 63.38 3998 5359 4299 3649 4742 4659 5234 3922 46.52 4995 41.02 5151 48.00
% SoTTA 5494 5419 6348 40.10 5422 4414 3849 48.03 48.08 5045 3936 46.16 50.12 41.85 5131 4833
+MedBN | 53.52 51.94 61.14 3724 5132 40.71 3523 4516 44.68 46.67 37.09 40.82 47.57 38,51 49.05 4538
SEMA 5350 5280 63.03 37.82 51.65 41.65 3407 4685 4391 5624 3794 4758 47.00 3732 52.04 46.89
+MedBN | 50.87 51.05 59.57 33.60 48.07 37.50 3090 4295 40.52 5224 34.01 42.28 43.89 34.51 4830 4335
mDIA 6490 63.06 72.89 43.07 59.61 4940 3827 50.80 4832 72.11 4045 7757 5247 4445 54.01 5543
+MedBN | 59.93 57.65 67.90 36.14 5296 40.41 3292 4447 41.89 56.29 3497 5740 4585 39.03 49.77 47.84
TeBN 9696 9446 9652 9347 9350 8597 7593 8093 83.13 69.50 4999 96.58 7021 63.28 7145 81.46
+MedBN | 86.31 8525 8536 83.69 8472 7556 6433 6846 69.99 52.80 3725 77.99 60.00 52.70 61.63 69.74
TENT 86.54 84.05 86.24 86.71 86.08 77.19 66.77 69.92 7490 60.79 46.15 89.35 60.77 5525 61.64 72.82
+MedBN | 84.87 83.07 84.07 8248 8339 7350 62.07 66.89 6889 51.07 3586 77.04 57.18 50.36 59.44 68.01

ETA 90.81 88.00 90.76  88.37 87.61 7750 67.86 71.07 75.13 61.63 46.11 8750 6145 55.63 62.79 74.15

8 +MedBN | 85.90 84.41 84.86 8299 8392 7437 62.18 6647 68.69 51.73 3598 77.03 57.88 51.08 59.63 68.47
> SAR 95.42 9274 9483 9215 91.16 8232 7215 7573 7179 6324 4652 9292 6496 5824 6593 77.74
En +MedBN | 86.00 85.09 85.73 84.02 8479 7492 6399 68.24 6981 52.65 36.76 78.36 59.10 52.29 61.29 69.54
£ SoTTA 78.69 78.14 7930 80.96 80.99 7053 60.11 6337 68.14 5259 3932 7796 5530 4995 5541 66.05
+MedBN | 80.41 81.56 80.16 78.65 79.72 69.13 57.18 61.41 6541 4827 3453 72.69 53.19 47.10 53.84 64.22
sEMA 86.24 86.50 85.62 87.26 8736 7884 68.13 72.04 7437 5949 4189 86.65 62.88 55.81 65.12 73.21
+MedBN | 86.44 87.33 8573 84.87 84.66 7585 64.19 68.71 69.62 53.84 3690 81.81 58.58 5339 6142 70.22
mDIA 9377 9277 9322 8722 8750 8057 7380 7739 76.65 67.41 4381 90.10 6574 61.76 67.51 77.28
+MedBN | 87.92 86.90 86.56 79.84 8154 7344 6499 68.14 67.81 5244 3658 78.04 58.99 5519 60.15 69.24




K. Comprehensive Results of Cumulative Attack Scenario

We provide detailed results of cumulative and targeted attack scenarios in Table 17 and cumulative and indiscriminate attack
scenarios in Table 18 across all types of corruptions in the TTA benchmark datasets. The averaged results across all trials
are presented in Table 3. Within the scope of the cumulative attack scenario, we use EATA instead of ETA. EATA includes a
Fisher regularizer that limits substantial change to important parameters, offering benefits in the cumulative scenario.

Table 17. Attack Success Rate (%) of the targeted and cumulative attack scenario over all types of corruptions (full version of Table 3).

| | Noise Blur Weather Digital
‘ Method ‘Gauss. Shot  Impul. Defoc. Glass Motion Zoom Snow  Frost Fog Brit.  Contr.  Elastic Pixel. JPEG Avg.

TeBN 82.67 90.00 90.67  76.00  94.67 82.67 78.67 82.67 84.67 88.67 7467 9200 8733 76.67 78.67 84.04
+MedBN | 26.00 24.00 22.00 16.00 28.67 16.00 1533 20.67 16.00 16.67 12.00 17.33 20.67 10.67 26.00 19.20
TENT 70.67  76.67 76.67  66.67  84.67 72.00  70.67 70.00 72.00 76.00 62.00 84.67 8133 74.00 74.67 74.18
+MedBN | 22.67 24.67 1933 1533 27.33 1533  16.67 20.00 14.67 18.00 12.67 19.33 20.00 14.00 22.00 18.80
EATA 70.67  80.00 8133  74.00 8533 74.67  74.67 72.00 70.67 7733 67.33 81.33 80.00 68.00 78.67 75.73

g +MedBN | 26.67 2333 20.67 18.00 30.00 22.00 19.33 18.00 15.33 20.00 16.67 20.00 24.67 18.00 22.67 21.02
= SAR 72.67 78.00  80.00 70.00 82.00 74.00 78.00 72.67 76.00 8333 68.67 86.00 84.67 7333 72.67 76.80
< +MedBN | 25.33 2333  20.00 1533  26.00 16.67 10.00 20.00 14.67 14.67 1533 18.00 22.67 1533 24.67 18.80
o SoTTA 24.67 2267 2600 16.00 24.67 18.67 18.00 23.33 16.00 20.67 16.67 18.67 24.67 22.67 2400 21.16
+MedBN | 10.67 16.00  12.00 6.67 8.00 3.33 6.00 11.33 6.00 5.33 6.00 8.00 10.67 733 14.00 8.76
sEMA 26.67 2333 18.67 12.00  26.67 1400 12.67 12.67 10.00 12.00 8.67 14.67 18.00 10.67 2133 16.13
+MedBN | 11.33  14.00 14.00 2.00 13.33 5.33 400 8.00 6.00 8.00 4.00 8.00 8.00 2.00 1400 8.13
mDIA 4400 3467 52.67 2400 5200 30.00 26.00 24.67 20.00 34.67 22.67 36.00 42.00 34.00 34.00 34.09
+MedBN | 12.00 14.00 16.00 2.00 10.00 6.00 400 8.00 4.00 10.00 4.00 8.00 1200 4.00 1933 8.89
TeBN 96.00  96.00 98.00 76.67  90.00 87.33  84.67 98.67 97.33 9933 9333 98.00 88.00 8400 8333 91.38
+MedBN | 2.00 2.00 2.00 2.00 6.00 2.00 2.00 2.00 2.00 4.00 4.00 2.67 4.00 200 2.00 271
TENT 7133 7533  68.67 7400 7200 7933 68.00 77.33 7733 78.67 7400 90.00 74.00 72.67 63.33 74.40
+MedBN | 2.00 2.00 2.67 4.67 4.00 4.00 4.67 333 2.00 4.67 4.67 4.00 4.67 2,67 200 347
EATA 81.33  78.00 80.00 72.67 7533 7333  66.00 78.67 82.00 8333 68.67 89.33 70.00 68.67 6333 75.38

g +MedBN | 2.67 2.00 0.00 3.33 4.67 2.00 400 400 133 2.00 3.33 3.33 3.33 400 133 276
= SAR 84.00 86.00 86.00 82.67 7533 78.00 7333 84.67 86.00 92.67 7533 9267 7733 8133 7267 81.87
E‘E +MedBN | 2.67 3.33 2.00 5.33 5.33 2.67 333 133 2.00 6.00 3.33 2.67 3.33 333 200 324
% SoTTA 6.67 8.67 10.00 6.67 10.67 6.00 6.67 667 933 11.33  4.00 9.33 8.00 467 6.00 7.64
+MedBN | 2.00 2.67 2.00 2.67 4.00 4.00 200 267 133 2.00 3.33 3.33 4.67 200 200 271
sEMA 10.67 14.67 10.00 4.00 10.00 7.33 6.00 600 8.67 8.00 6.67 6.67 10.67  6.00 8.67 827
+MedBN | 2.00 2.00 2.00 0.67 2.00 0.00 0.00 0.00 2.00 2.00 2.00 2.00 2.00 0.00 0.00 1.24
mDIA 15.33 18.00  22.00 13.33 14.00 1733 12.00 16.00 18.00 24.00 10.00 24.00 16.00 12.00 17.33 16.62
+MedBN | 2.00 4.00 6.00 2.00 4.00 0.00 200 333 0.00 0.00 4.00 4.00 2.00 0.00 0.00 222
TeBN 100.00  100.00 100.00 100.00 100.00 100.00 96.00 96.00 94.67 100.00 97.33 100.00 100.00 88.00 92.00 97.60
+MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.27
TENT 84.00 78.67 81.33  88.00  84.00 84.00 8533 81.33 84.00 9467 8400 9733 9467 60.00 7333 83.64
+MedBN | 0.00 0.00 0.00 0.00 1.33 0.00 1.33  0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 044
EATA 100.00  98.67 100.00 96.00  98.67 92.00 89.33 9333 88.00 9333 88.00 100.00 96.00 69.33 82.67 92.36

&’ +MedBN | 0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 1.33 0.00 0.00 4.00 0.00 0.00 0.00 0.44
> SAR 100.00  100.00 100.00 100.00 100.00 100.00 96.00 97.33 92.00 100.00 96.00 100.00 100.00 80.00 92.00 96.89
% +MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
E SoTTA 5.33 8.00 6.67 21.33 22,67 18.67 17.33 13.33 28.00 16.00 12.00 21.33 10.67 21.33 13.33 15.73
+MedBN | 0.00 0.00 0.00 2.67 0.00 0.00 133 267 267 0.00 0.00 2.67 0.00 0.00 0.00 0.80
sEMA 8.00 17.33 12.00 18.67 8.00 21.33  16.00 8.00 16.00 24.00 4.00 8.00 8.00 13.33  14.67 13.16
+MedBN | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mDIA 3333  26.67 40.00 32.00 33.33 3333  40.00 16.00 44.00 38.67 20.00 57.33 2133 17.33 20.00 31.56
+MedBN | 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 4.00 0.00 1.07




Table 18. Error Rate (%) of the indiscriminate and cumulative attack scenario over all types of corruptions (full version of Table 3).

| | Noise Blur Weather Digital
‘ Method ‘Gauss. Shot  Impul. Defoc. Glass Motion Zoom Snow Frost Fog  Brit. Contr. Elastic Pixel. JPEG Avg.
TeBN 35.65 3444 4567 2377 3792 2774 20.58 29.86 26.85 40.66 20.77 31.01 3296 23.65 33.69 35.30
+MedBN | 26.76 25.07 35.02 17.18 27.58 20.34 1470 20.88 18.40 28.25 14.17 20.25 25.00 16.74 24.76 27.22
TENT 3479 32,67 4780 2572 38.49 2937 23.07 2947 2887 32.61 2332 2933 3445 2552 3477 3570
+MedBN | 24.86 23.29 3499 1510 27.88 17.85 1380 1831 17.71 22.18 1398 19.67 24.33 1546 2299 25.84
EATA 35.84 33.09 46.68 2461 3932 27.88 2251 29.11 27.64 31.70 2347 2850 3594 2510 34.02 3530
Q | +MedBN | 26.52 24.66 3586 1572 27.53 20.50 17.15 1923 1731 21.63 14.96 22.56 2534 16.00 24.16 26.84
E SAR 30.83 29.07 3836 21.62 3322 2434 2032 2523 24.15 2722 19.87 2509 29.88 21.57 2877 31.25
g +MedBN | 23.00 21.20 3092 14.52 2493 16.82 1327 1756 16.17 19.33 13.10 17.38 22.72 14.55 21.88 24.29
D | SoTTA 2535 2459 3417 1547 2835 17.77 1432 1952 17.75 2134 1469 1955 2392 1627 2371 26.10
+MedBN | 22.52 2042 3098 11.61 2332 1395 1094 16.18 14.52 15.87 11.04 15.85 19.84 13.28 20.00 22.52
sEMA 29.10 2745 3919 1751 2948 2045 14.63 2225 1896 3203 1515 2396 2552 1820 27.08 28.79
+MedBN | 2535 2349 3390 1497 25.62 1851 1331 19.12 16.77 26.26 12.47 18.20 23.09 14.97 23.64 25.62
mDIA 38.67 3737 50.68 1676 3420 2358 1422 23.04 20.04 3855 13.62 36.19 2699 18.03 27.40 32.05
+MedBN | 26.32 25.20 34.67 12.00 24.84 16.00 9.56 16.62 13.64 22.11 9.87 20.54 19.69 13.24 21.36 23.96
TeBN 59.67 5849 6126 4236 5596 4935 39.85 5124 4882 5946 4540 59.62 50.70 45.82 52.61 52.04
+MedBN | 43.64 45.12 5297 30.25 4435 3225 2877 37.01 3322 49.61 31.11 40.82 40.94 30.05 38.15 38.55
TENT 57.07 5494 6390 41.09 5635 4432 40.18 S51.72 4954 5425 4206 53.19 50.77 4194 49.65 50.06
+MedBN | 43.82 40.33 47.09 30.12 46.18 33.86 2949 37.36 39.50 42.25 28.74 37.73 3641 33.17 38.60 37.64
EATA 5249 50.88 60.00 39.29 53.75 4407 39.09 4635 47.17 5190 39.11 4840 4891 40.27 51.11 4752
g +MedBN | 40.62 41.12 4830 31.75 41.37 3150 2692 3545 34.81 40.87 2843 38.06 3945 31.39 4091 36.73
= SAR 51.39 5032 5506 40.06 5130 4136 3646 4392 47.64 5051 39.70 4507 4644 39.18 47.05 45.70
Sé +MedBN | 42.29 4147 4793 27.83 4045 3324 2526 3555 3515 4226 29.75 39.21 36.61 29.75 41.14 36.53
% SoTTA 44.10 4292 50.09 2853 4343 3478 2947 41.13 3885 4248 27.67 4034 38.16 3275 3837 3821
+MedBN | 41.07 38.67 45.63 2671 37.17 29.54 25.07 3397 3490 3385 27.05 3243 3552 29.23 36.71 33.84
sEMA 4195 4495 4757 2843 4633 3559 2893 3675 37.20 4640 2937 4228 37.73 2875 4143 3824
+MedBN | 36.40 39.76 46.11 27.47 40.11 2985 2590 3325 3149 43.04 2756 3648 35.65 27.17 36.34 34.44
mDIA 5212 52.81 6054 3740 5035 41.74 29.54 40.60 39.53 64.64 29.67 7237 4361 3701 41.84 4625
+MedBN | 4533 4247 5333 2742 4130 3027 2597 3296 3194 4351 2466 5098 32.61 30.66 35.82 36.62
TeBN 97.10 9453 9650 9342 9336 86.07 76.11 8095 8320 69.33 50.19 96.64 6992 63.12 7159 8147
+MedBN | 86.18 85.34 8522 83.63 84.72 7552 6436 6840 69.96 52.86 3736 77.96 59.88 52.73 6142 69.70
TENT 8581 85.02 8558 86.80 86.71 7739 65.66 71.18 74.67 5831 4358 90.76 60.86 53.75 60.09 72.41
+MedBN | 84.72 83.66 83.88 82.21 8355 7488 6196 6628 68.89 50.84 36.43 76.70 57.30 5040 59.96 68.11
EATA 95.64 9259 9410 9044 9120 8029 6827 7444 7641 6184 44.06 91.86 62.01 5425 63.00 76.03
8 +MedBN | 8545 84.16 84.89 8279 83.64 7459 6171 6632 68.85 51.13 3581 76.21 57.08 50.96 59.61 68.21
> SAR 96.27 9321 9561 9190 90.68 81.10 7097 7460 77.28 6292 4645 9322 6424 57.85 6552 77.46
Qo;n +MedBN | 86.36 85.60 85.58 83.55 84.67 7550 6393 68.05 7022 52.67 3693 78.27 58.96 52.05 61.13 69.56
E SoTTA 81.20 80.61 81.10 8195 83.69 71.89 6156 6508 68.78 5328 39.38 77.87 56.13 5047 5633 67.29
+MedBN | 82.59 81.93 8149 7826 79.83 69.16 5751 61.71 6497 48.00 3470 7145 53.00 46.96 53.94 64.37
sEMA 88.99 87.84 8890 8824 8835 8055 70.83 7497 7628 6330 44.18 86.87 6504 5749 6637 75.21
+MedBN | 89.27 87.18 8741 84.06 84.59 7555 6447 69.00 69.98 5385 3789 79.76 59.85 53.29 61.88 70.54
mDIA 9383 9273 9324 87.04 8759 8050 7373 7739 76.62 6727 4372 90.02 6567 61.64 6753 7724
+MedBN | 87.90 86.92 86.53 79.83 81.59 7344 65.02 68.13 67.81 5241 36.44 78.04 5890 5515 60.13 69.22




L. Error Rates without Attacks

To evaluate the performance of the model under a normal TTA setup, we utilize ER on benign samples without attacks in
Table 19. It provides an understanding of how the model behaves in a non-adversarial environment, i.e., the model’s baseline
effectiveness, establishing a fundamental metric for comparison against scenarios involving attacks.

Table 19. Error Rate (%) on benign samples without attacks.

‘ ‘ ‘ Method
ER(%) | B/m | Nomalization \"r.p\" TENT ETA SAR SoTTA sEMA mDIA

CIFAR10-C 200/ 40 BatchNorm 1492 13.68 13.14 1328 13.73 1487 1531
(20%) | Ours (MedBN) | 15.19 14.12 13.67 1335 14.06 15.14 15.20

CIFAR 100-C 200/ 40 BatchNorm 40.08 3774 3744 3930 4122 39.72 41.72
(20%) | Ours (MedBN) | 40.77 39.66 39.62 4132 4226 4047 41.79

ImaceNet-C 200/20 BatchNorm 66.62 61.08 59.13 62.13 6087 6835 66.62
g (10%) | Ours (MedBN) | 69.55 6838 6620 66.65 6439 70.18 68.27

M. Examples of Malicious Samples

(a) Visualization of benign samples.

e d
P

(b) Visualization of malicious samples (¢ = 8/255).

Figure 10. Visualization of test samples from CIFAR10-C benchmark with Gaussian noise and severity level 5. Malicious samples are hardly
distinguished from benign samples.



