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Abstract

Complex Gaussian quadrature rules for oscillatory integral transforms have the
advantage that they can achieve optimal asymptotic order. However, their existence
for Hankel transform can only be guaranteed when the order of the transform belongs
to [0, 1/2]. In this paper we consider the construction of generalized Gauss-Radau
quadrature rules for Hankel transform. We show that, if adding certain value and
derivative information at the left endpoint, then complex generalized Gauss-Radau
quadrature rules for Hankel transform of integer order can be constructed with
theoretical guarantees. Orthogonal polynomials that are closely related to such
quadrature rules are investigated and their existence for even degrees is proved.
Numerical experiments are presented to confirm our findings.

Keywords: Hankel transform, generalized Gauss-Radau quadrature, Abel limit,
asymptotic error estimate

AMS classifications: 65R10, 65D32

1 Introduction

Hankel transform of the form

(Hνf)(ω) :=

∫ ∞

0
f(x)Jν(ωx) dx, (1.1)

where Jν(x) is the Bessel function of the first kind of order ν and ω is the frequency of
oscillations, appears in many physical problems, e.g. the propagation of optical, acoustic
and electromagnetic fields and electromagnetic geophysics (see, e.g., [4, 18, 20]). Closed
form of this transform is rarely available and numerical methods are generally required.
However, conventional numerical methods for the integral (1.1) are quite expensive due
to the oscillatory and possibly slowly decaying behaviors of the integrand.
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The evaluation of the Hankel transform has received considerable attention due to its
practical importance and several methods have been developed, such as the digital linear
filter (DLF) method [3, 8], the integration, summation and extrapolation (ISE) method
[14, 15, 16], complex Gaussian quadrature rules [1, 21]. Among these methods, the DLF
and ISE methods have their own disadvantages that the former requires samples on an
exponential grid and the latter requires the evaluation of the zeros of Jν(x). Complex
Gaussian quadrature rules are of particular interest due to the appealing advantage that
their accuracy improves rapidly as ω increases. Specifically, Wong in [21] considered the
construction of complex Gaussian quadrature rules for Hankel transforms of the form

∫ ∞

0
xµf(x)H(s)

ν (x) dx, s = 1, 2,

whereH
(s)
ν (x) are the Hankel functions and µ±ν > −1. By rotating the integration path

to the imaginary axis such that the integrand is non-oscillatory and decays exponentially,
Wong constructed some complex Gaussian quadrature rules for the above transforms.
However, when extending Wong’s method to the transform (1.1), the resulting integrand
will involve a nonintegrable singularity at the origin for ν ≥ 1. More recently, Asheim
and Huybrechs in [1] studied the construction of complex Gaussian quadrature rule for
the Hankel transform (1.1) as well as Fourier and Airy transforms. Their key idea is
to construct Gaussian quadrature rules with respect to the oscillatory weight function
directly. Taking the Hankel transform (1.1) for example, they introduced the sequence
of monic polynomials {Pn}∞n=0 that are orthogonal with respect to Jν(x) on (0,∞), i.e.,

∫ ∞

0
Pn(x)x

kJν(x)dx = 0, k = 0, . . . , n− 1, (1.2)

and the above improper integrals are defined in terms of their Abel limits (see subsection
2.2). Since Jν(x) is a sign-changing function, the existence and uniqueness of the poly-
nomials Pn(x) cannot be guaranteed. Once the polynomials exist, Gaussian quadrature
rule for the Hankel transform (1.1) can be derived immediately by using a simple scaling.
A remarkable advantage of such rules is that they have the optimal asymptotic order,
i.e., their error decays at the fastest algebraic rate as ω → ∞ among all quadrature rules
using the same number of points. In the special case ν = 0, it was shown in [1, Theorem
3.5] that the zeros of Pn(x) with even n are located on the imaginary axis. For ν > 0,
based on numerical calculations for ν = 1/2, 1, 3/2, 2, it was observed that the zeros of
Pn(x) tend to cluster near the vertical line ℜ(z) = νπ/2 as n→ ∞ (see Figure 1 for more
detailed observations). More recently, this observation was proved in [6] for ν ∈ [0, 1/2]
by using the steepest descent method for the Riemann-Hilbert problem of Pn(x).

In this work, we consider the construction of complex generalized Gauss-Radau
quadrature rules for the Hankel transform (1.1) of integer order and the key motivation
of this study is to construct some Gaussian quadrature rules with theoretical guarantees.
We begin by giving conditions for rotating the integration path of oscillatory integral
transforms, including Hankel and Fourier transforms, in the right-half plane under their
Abel limits. We then show that, if adding certain value and derivative information of
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f(x) at the left endpoint, complex Gaussian quadrature rules for the Hankel transform
(1.1) of integer order can be constructed with guaranteed existence. Since such rules
involve the value and derivative information of f(x) at the left endpoint and their nodes
all lie on the imaginary axis, we refer to them as complex generalized Gauss-Radau
quadrature rules. Except for existence, another appealing advantage of the proposed
rules is that they also achieve the optimal asymptotic order. On the other hand, let µ

be a nonnegative integer and let {P (µ,ν)
n }∞n=0 be the sequence of monic polynomials that

are orthogonal with respect to the weight xµJν(x) on (0,∞), i.e.,

∫ ∞

0
P (µ,ν)
n (x)xk+µJν(x) dx = 0, k = 0, . . . , n − 1. (1.3)

It is easily seen that such polynomials include the polynomials in (1.2) as a special case
and their existence cannot be guaranteed since the weight xµJν(x) is also a sign-changing
function. Unexpectedly, we prove that, if both ν and µ−ν are nonnegative integers, such
polynomials exist for all degrees when µ−ν is even and for only even degrees when µ−ν
is odd. Moreover, in these cases where the polynomials exist, their zeros are located on
the imaginary axis and symmetric with respect to the real axis. These results provide
a theoretical rationale for the proposed complex generalized Gauss-Radau quadrature
rules.

The rest of this paper is organized as follows. In the next section, we review some
basic properties of generalized Gauss-Radau quadrature rules and the regularization
of improper Riemann integrals. In section 3, we construct complex generalized Gauss-
Radau quadrature rules for the Hankel transform of integer order and study the existence
of orthogonal polynomials that are closely related to such quadrature rules. In section
4, we extend the discussion to the Hankel transform of fractional order and Fourier sine
transform and give an application to oscillatory Hilbert transform. Finally, we give some
conclusions in section 5.

2 Preliminaries

We introduce some basics of generalized Gauss-Radau quadrature rules and the regu-
larization of improper Riemann integrals. Throughout the paper, we denote by Pn the
space of polynomials of degree at most n, i.e., Pn = span{1, x, . . . , xn}, and by N0 the
set of nonnegative integers. Moreover, we denote by K a generic positive constant.

2.1 Generalized Gauss-Radau quadrature rule

In this subsection we review some basic properties of generalized Gauss-Radau quadra-
ture rule. Consider the following integral

I(f) =

∫ b

a
w(x)f(x) dx, (2.1)
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where w(x) is a weight function on (a, b) and f is a smooth function. Let r ∈ N, if the
left endpoint and its consecutive derivatives up to an order r− 1 are prescribed, then an
interpolatory quadrature rule can be constructed as

QGR
n,r (f) =

r−1∑

j=0

wa
j f

(j)(a) +

n∑

j=1

wjf(xj). (2.2)

If the nodes {xj}nj=1 and the weights {wa
j }r−1

j=0 ∪{wj}nj=1 in (2.2) are chosen to maximize

the degree of exactness, i.e., (I − QGR
n,r )(f) = 0 for f ∈ P2n+r−1, then the quadrature

rule (2.2) is known as a generalized Gauss-Radau quadrature rule∗.
Generalized Gauss-Radau quadrature rule has received certain attention in the past

two decades and it is now known that the nodes {xj}nj=1 are located in (a, b) and the

weights {wa
j }r−1

j=0 ∪ {wj}nj=1 are all positive (see, e.g., [9, 11, 13]). In the following we
briefly describe the implementation of the generalized Gauss-Radau quadrature rule.
Let {ψk}∞k=0 be the sequence of monic polynomials that are orthogonal with respect to
the new weight function wr(x) = w(x)(x − a)r on (a, b) and

∫ b

a
wr(x)ψk(x)ψj(x)dx = γkδk,j,

where δk,j is the Kronecker delta and γk > 0. Moreover, let {xGj , wG
j }nj=1 denote the

nodes and weights of an n-point Gaussian quadrature with respect to the weight wr(x)
on (a, b), i.e., ∫ b

a
wr(x)f(x)dx =

n∑

j=1

wG
j f(x

G
j ), ∀f ∈ P2n−1. (2.3)

From [10, Theorem 3.9] we know that

xj = xGj , wj =
wG
j

(xj − a)r
, j = 1, 2, . . . , n,

and thus the interior nodes and weights of QGR
n,r (f), i.e., {xj}nj=1 ∪ {wj}nj=1, can be

calculated from the nodes and weights of the Gaussian quadrature rule (2.3). As for
the boundary weights of QGR

n,r (f), i.e., {wa
j }r−1

j=0, setting f(x) = (x − a)i−1ψ2
n(x) with

i = 1, 2, . . . , r in (2.2) gives




a11 a12 · · · a1r
a22 · · · a2r

. . .
...
arr







wa
0

wa
1
...

wa
r−1


 =




b1
b2
...
br


 ,

∗Strictly speaking, the rule QGR
n,r (f) is referred to as a Gauss-Radau quadrature rule when r = 1

and a generalized Gauss-Radau quadrature rule when r ≥ 2. Here, we refer to QGR
n,r(f) as a generalized

Gauss-Radau quadrature rule for all r ≥ 1 for the sake of simplicity.
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where

aij =
[
(x− a)i−1ψ2

n(x)
](j−1)

x=a
, bi =

∫ b

a
ω(x)(x− a)i−1ψ2

n(x) dx.

Therefore, the boundary weights can be derived by solving the above upper triangular
system. Note that the diagonal entries {aii}ri=1 will be extremely small for large n and
this may result in an underflow problem. However, this issue may be circumvented by
rescaling the monic polynomials {ψn} appropriately (see [11]).

2.2 Regularization of improper Riemann integrals

In this subsection we introduce the regualrization of improper Riemann integrals. For
the improper Riemann integral

∫∞
0 f(x) dx, its Abel limit is defined by [22, Chapter 4]

lim
s→0+

∫ ∞

0
f(x)e−sx dx. (2.4)

When the improper Riemann integral exists, e.g., f is absolutely integrable on (0,∞),
then the Abel limit is simply the improper integral itself. However, the importance of
the Abel limit is that it may exist for certain divergent integrals that do not exist in the
classical sense. Typical examples include the following two integrals

∫ ∞

0
xµeiωx dx =

Γ(µ+ 1)

ωµ+1
e(µ+1)πi/2, (2.5)

and ∫ ∞

0
xµJν(ωx) dx =

2µΓ((ν + µ+ 1)/2)

ωµ+1Γ((ν − µ+ 1)/2)
, (2.6)

where Γ(z) is the gamma function and ℜ(µ) > −1 for (2.5) and ℜ(µ+ν) > −1 for (2.6).
Note that (2.5) and (2.6) play an important role in studying the asymptotic behaviors
of Fourier and Hankel transforms (see, e.g., [22, Chapter 4]). Moreover, (2.6) was also
used in [1] to compute the Gaussian quadrature rule with respect to the weight function
Jν(x) on (0,∞).

Below we state the first main result of this work, which gives conditions on the
rotation of integration path of Fourier and Hankel transforms in the right-half plane. In
the remainder of this paper, all improper integrals are defined using their Abel limits.

Theorem 2.1. If f is analytic in the right half-plane and |f(z)| ≤ K|z|σ for some σ ∈ R,

then for ℜ(µ) > −1,
∫ ∞

0
f(x)xµeiωx dx = e(µ+1)πi/2

∫ ∞

0
f(ix)xµe−ωx dx, (2.7)

and for ℜ(µ± ν) > −1,
∫ ∞

0
f(x)xµJν(ωx) dx =

∫ ∞

0
f̂(ix)xµKν(ωx) dx, (2.8)

where f̂(x) = (e(µ−ν)πi/2f(x) + e(ν−µ)πi/2f(−x))/π and Kν(z) is the modified Bessel

function of the second kind.
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Proof. We only sketch the proof of (2.8) and the proof of (2.7) is similar. Let Cε with
ε > 0 denote the circle of radius ε in the first quadrant and let Cλ with λ > ε denote the
circle of radius λ in the first quadrant. For s > 0, by the identity [17, Equation (10.27.9)],
i.e., iπJν(z) = e−νπi/2Kν(−iz)− eνπi/2Kν(iz) for | arg(z)| ≤ π/2, we have

∫ λ

ε
e−sxf(x)xµJν(ωx) dx =

e−νπi/2

iπ

∫ λ

ε
e−sxf(x)xµKν(−iωx) dx

− eνπi/2

iπ

∫ λ

ε
e−sxf(x)xµKν(iωx) dx. (2.9)

For the first integral on the right-hand side, by Cauchy’s theorem, we know that

∫ λ

ε
e−sxf(x)xµKν(−iωx) dx =

(∫

Cε

−
∫

Cλ

)
e−szf(z)zµKν(−iωz) dz

+ e(µ+1)πi/2

∫ λ

ε
e−isxf(ix)xµKν(ωx) dx, (2.10)

where the contours are taken in the counterclockwise direction. From [17, Chapter 10]
we know that K−ν(z) = Kν(z), and Kν(z) = O(z−ν) for ℜ(ν) > 0 and K0(z) = O(ln z)
as z → 0. In the case of ℜ(ν) = 0 and ν 6= 0, Kν(z) = O(1) as z → 0. Hence,

∣∣∣∣
∫

Cε

e−szf(z)zµKν(−iωz) dz

∣∣∣∣ =





O(εℜ(µ+1−ν)), ℜ(ν) > 0,

O(εℜ(µ+1) ln ε), ℜ(ν) = 0, ℑ(ν) = 0,

O(εℜ(µ+1)), ℜ(ν) = 0, ℑ(ν) 6= 0,

O(εℜ(µ+1+ν)), ℜ(ν) < 0,

and therefore the contour integral on the left-hand side vanishes as ε → 0+. Moreover,
parametrizing Cλ by z = λeiθ with 0 ≤ θ ≤ π/2 and using [17, Equation (10.25.3)], we
have

∣∣∣∣
∫

Cλ

e−szf(z)zµKν(−iωz) dz

∣∣∣∣ ≤ Kλµ+σ+1

∫ π/2

0
e−sλ cos θ|Kν(−iωλeiθ)|dθ

≤ Kλµ+σ+1/2

∫ π/2

0
e−λ(s cos θ+ω sin θ) dθ,

≤ Kλµ+σ+1/2e−λs,

where we have used the fact that the maximum of the integrand in the second inequality
is attained at θ = 0 for ω ≥ s > 0. Therefore, the contour integral on the left-hand side
vanishes as λ→ ∞. Letting ε→ 0+ and λ→ ∞ in (2.10), we obtain

∫ ∞

0
e−sxf(x)xµKν(−iωx) dx = e(µ+1)πi/2

∫ ∞

0
e−isxf(ix)xµKν(ωx) dx.
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and similarly,
∫ ∞

0
e−sxf(x)xµKν(iωx) dx = e−(µ+1)πi/2

∫ ∞

0
eisxf(−ix)xµKν(ωx) dx.

Combining the above two equations with (2.9) and letting s→ 0+ gives (2.8). This ends
the proof.

We have the following remarks to Theorem 2.1.

Remark 2.2. Both (2.5) and (2.6) can also be simply derived by setting f(x) = 1 in
Theorem 2.1. Note that the condition in (2.8) is more restrictive than the condition in
(2.6), which implies that the condition ℜ(µ± ν) > −1 in (2.8) might be relaxed.

Remark 2.3. Equation (2.8) was actually used in [1, Theorem 3.5] to construct Gaussian
quadrature rule with respect to J0(x) on (0,∞) with the requirement that f is analytic
in the right half-plane and suitably decaying at infinity. However, the validity of this
requirement was not proved therein.

3 Complex generalized Gauss-Radau quadrature rules for

Hankel transform of integer order

In this section, we consider the construction of complex generalized Gauss-Radau quadra-
ture rules for the Hankel transform (1.1) of integer order, i.e., ν ∈ Z. Note that
J−ν(z) = (−1)νJν(z), it is enough to consider the case ν ∈ N0.

Let µ ∈ N0 and µ ≥ ν and let

wµ,ν(x) =
Kν(

√
x)

2

{
x(µ−1)/2, µ− ν even,

xµ/2, µ− ν odd,
(3.1)

be the weight function on (0,∞). Let {φn}∞n=0 denote the sequence of monic polynomials
that are orthogonal with respect to the weight wµ,ν(x) and

∫ ∞

0
wµ,ν(x)φn(x)φm(x) dx =

{
0, n 6= m,

τn, n = m.
(3.2)

The n-point Gaussian quadrature rule with respect to wµ,ν(x) is

∫ ∞

0
wµ,ν(x)f(x) dx =

n∑

j=1

wjf(xj), ∀f ∈ P2n−1, (3.3)

where {xj}nj=1 are the zeros of φn(x) and wj = τn−1/(φn
′(xj)φn−1(xj)). By the proper-

ties of orthogonal polynomials and Gaussian quadrature rules, we know that xj ∈ (0,∞)
and wj > 0 for j = 1, . . . , n.

Below we state the second main result of this work, which gives complex generalized
Gauss-Radau quadrature rules for the Hankel transform (1.1) of integer order.
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Theorem 3.1. Let {xj , wj}nj=1 be the nodes and weights of the Gaussian quadrature

defined in (3.3) and suppose that f is analytic in the right half-plane and |f(z)| ≤ K|z|σ
for some σ ∈ R. Then, a quadrature rule for the Hankel transform (1.1) is given by

(QHI
2n,µf)(ω) =

1

ω




µ−1∑

k=0

ŵ0
k

ωk
f (k)(x̂0) +

2n∑

j=1

ŵjf

(
x̂j
ω

)
 , (3.4)

where {x̂j}2nj=1 = {±i
√
xj}nj=1 and x̂0 = 0, and

{ŵj}2nj=1 =

{
exp

(
∓νπi

2

)
wjx

−κ/2
j

π

}n

j=1

,

and for k = 0, . . . , µ − 1,

ŵ0
k =

1

k!


2k

Γ((ν + k + 1)/2)

Γ((ν − k + 1)/2)
− 2

π
cos

(
(k − ν)π

2

) n∑

j=1

wjx
(k−κ)/2
j


 ,

and κ = µ when µ−ν is even and κ = µ+1 when µ−ν is odd. Moreover, the quadrature

rule (3.4) is exact for f ∈ P4n+µ−1 when µ − ν is even and for f ∈ P4n+µ when µ − ν
is odd.

Proof. Let Tµ denote the Taylor expansion of f of degree µ−1 at x̂0 = 0. It follows that

(Hνf)(ω) =

∫ ∞

0
Tµ(x)Jν(ωx) dx+

∫ ∞

0
Rµ(x)x

µJν(ωx) dx,

where Rµ(x) = (f(x) − Tµ(x))/xµ. For the first integral on the right-hand side, using
(2.6) we have

∫ ∞

0
Tµ(x)Jν(ωx) dx =

µ−1∑

k=0

f (k)(x̂0)

k!

∫ ∞

0
xkJν(ωx) dx =

µ−1∑

k=0

f (k)(x̂0)2
k

k!ωk+1

Γ((ν + k + 1)/2)

Γ((ν − k + 1)/2)
.

For the second integral, using Theorem 2.1 we have

∫ ∞

0
Rµ(x)x

µJν(ωx) dx =

∫ ∞

0
R̂µ(ix)x

µKν(ωx) dx,

where R̂µ(x) = (e(µ−ν)iπ/2Rµ(x) + e(ν−µ)iπ/2Rµ(−x))/π. It is easily verified that R̂µ(x)
is an even function when µ − ν is even and is an odd function when µ − ν is odd. By
the parity of R̂µ(x) and using the transformation x 7→ √

x/ω to the integral on the

8



right-hand side yields

∫ ∞

0
Rµ(x)x

µJν(ωx) dx =
1

ωµ+1





∫ ∞

0
R̂µ

(
i
√
x

ω

)
wµ,ν(x) dx, µ− ν even,

∫ ∞

0

1√
x
R̂µ

(
i
√
x

ω

)
wµ,ν(x) dx, µ− ν odd,

≈ 1

ωµ+1





n∑

j=1

wjR̂µ

(
i
√
xj

ω

)
, µ− ν even,

n∑

j=1

wj√
xj

R̂µ

(
i
√
xj

ω

)
, µ− ν odd,

(3.5)

where we have used the n-point Gausssian quadrature rule in (3.3) to evaluate the
integrals in the first line. Combining all the above results and after some simplification
gives the quadrature rule (3.4). Moreover, the Gaussian quadrature rule in (3.5) is exact
for R̂µ ∈ P4n−2 when µ− ν is even and for R̂µ ∈ P4n−1 when µ− ν is odd.

Finally, we show the exactness of the quadrature rule (3.4). When µ− ν is even, by
the Taylor expansion of f , we get

Rµ(x) =

∞∑

j=0

f (j+µ)(0)

(j + µ)!
xj ⇒ R̂µ(x) =

2

π
e(µ−ν)πi/2

∞∑

j=0

f (2j+µ)(0)

(2j + µ)!
x2j .

Recall that the quadrature rule in (3.5) is exact for R̂µ ∈ P4n−2, we therefore deduce
that the quadrature rule (3.4) is exact for f ∈ P4n+µ−1. When µ − ν is odd, it can be
shown in a similar way that the quadrature rule (3.4) is exact for f ∈ P4n+µ. This ends
the proof.

Some remarks on Theorem 3.1 are in order.

Remark 3.2. When ν is an even integer, the weights {ŵj}2nj=1 are all real and the weights
corresponding to the nodes {i√xj}nj=1 are the same as the weights corresponding to

{−i
√
xj}nj=1. When ν is an odd integer, then the weights {ŵj}2nj=1 are all purely imagi-

nary and the weights corresponding to {i√xj}nj=1 are the negative values of the weights
corresponding to {−i

√
xj}nj=1.

Remark 3.3. When µ = ν = 0, the nodes and weights of the quadrature rule (QHI
2n,µf)(ω)

are {x̂j}2nj=1 = {±i
√
xj}nj=1 and {ŵj}2nj=1 = {wj/π}nj=1 ∪ {wj/π}nj=1, and {xj , wj}nj=1

are the nodes and weights of the n-point Gaussian quadrature rule with respect to
w0,0(x) = x−1/2K0(

√
x)/2 on (0,∞). In this case, the rule (QHI

2n,µf)(ω) is exactly the

Gaussian quadrature rule derived in [1, Theorem 3.5] (Note that wj/π in {ŵj}2nj=1 was
mistakenly written as wj/2 in [1, Theorem 3.5]).

Remark 3.4. If f(x) is even and ν is an odd integer or if f(x) is odd and ν is an even
integer, then from Remark 3.2 we can deduce that the second sum on the right hand
side of (3.4) vanishes and thus the quadrature rule (QHI

2n,µf)(ω) can be simplified.
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Asymptotic error estimates of the quadrature rule (3.4) are given below.

Theorem 3.5. Under the assumptions of Theorem 3.1, we have

(Hνf)(ω)− (QHI
2n,µf)(ω) =





O(ω−4n−µ−1), µ− ν even,

O(ω−4n−µ−2), µ− ν odd,
ω → ∞. (3.6)

Proof. Note that the rule (QHI
2n,µf)(ω) is exact for f ∈ P4n+µ−1 when µ−ν is even and for

f ∈ P4n+µ when µ− ν is odd, the asymptotic error estimates (3.6) follows immediately
from [1, Lemma 1.6].

Remark 3.6. For the rules (QHI
2n,µf)(ω) with µ = ν+2k−1 and µ = ν+2k and k ≥ 1, it

is easily verified that their nodes {x̂j}2nj=1 and weights {ŵj}2nj=1 are the same. Moreover,

direct calculation shows that ŵ0
ν+2j−1 = 0 for j ≥ 1, and therefore the boundary weights

{ŵ0
j }ν+2k−2

j=0 for these two rules are also the same. We conclude that the rules (QHI
2n,µf)(ω)

with µ = ν + 2k − 1 and µ = ν + 2k and k ≥ 1 are always the same and this explains
why their asymptotic error estimates in (3.6) are the same.

Remark 3.7. Since the exactness of the rule (QHI
2n,µf)(ω) is maximized, we conclude that

it achieves the optimal asymptotic order in the sense that their error decays at the fastest
algebraic rate with respect to ω−1.

From Theorem 3.1 we see that the nodes of the generalized Gauss-Radau quadrature
rule can be derived from the nodes of the Gaussian quadrature rule in (3.3). This implies
the existence of the polynomials defined in (1.3) for even degrees. Below we state a more
general result, which gives the polynomials of all degrees when µ−ν is even. When µ−ν
is odd, however, the polynomials exist only for even degrees.

Theorem 3.8. Let µ ∈ N0 and µ ≥ ν and let {φn}∞n=0 be the polynomials defined in

(3.2). When µ− ν is even, then for each n ≥ 0,

P
(µ,ν)
2n (x) = (−1)nφn(−x2), (3.7)

and

P
(µ,ν)
2n+1(x) =

(−1)n+1

x

(
φn+1(−x2)−

φn+1(0)

φn(0)
φn(−x2)

)
. (3.8)

When µ− ν is odd, then (3.7) still holds, but P
(µ,ν)
2n+1(x) does not exist.

Proof. We first consider the case when µ−ν is even. We only consider the proof of (3.7),

since the proof of (3.8) is similar. For any s ∈ P2n−1, by the definition of P
(µ,ν)
2n (x),

∫ ∞

0
P

(µ,ν)
2n (x)s(x)xµJν(x) dx = 0.

10



For the integral on the left-hand side, let Ψ(x) = P
(µ,ν)
2n (x)s(x) and using Theorem 2.1

we have
∫ ∞

0
Ψ(x)xµJν(x) dx =

e(µ−ν)iπ/2

π

∫ ∞

0
[Ψ(ix) + Ψ(−ix)] xµKν(x) dx

=
e(µ−ν)iπ/2

π

∫ ∞

0

[
Ψ(i

√
x) + Ψ(−i

√
x)
]
wµ,ν(x) dx,

where we have used the transformation x 7→ √
x in the last equality. If we set s(x) =

x2k+1, where k = 0, . . . , n− 1, then
∫ ∞

0

[√
x
(
P

(µ,ν)
2n (i

√
x)− P

(µ,ν)
2n (−i

√
x)
)]
xkwµ,ν(x) dx = 0.

Note that the term inside the square brackets is a polynomial of degree n and is orthog-
onal to all polynomial of lower degree with respect to wµ,ν(x), we can deduce that

√
x
(
P

(µ,ν)
2n (i

√
x)− P

(µ,ν)
2n (−i

√
x)
)
= λφn(x),

where λ is a constant. Setting x = 0 and noting that φn(0) 6= 0, we obtain λ = 0, and

thus P
(µ,ν)
2n (x) is even. If we set s(x) = x2k, where k = 0, . . . , n− 1, then

∫ ∞

0

[
P

(µ,ν)
2n (i

√
x) + P

(µ,ν)
2n (−i

√
x)
]
xkwµ,ν(x) dx = 0.

Note that the term inside the square brackets is a polynomial of degree n and is orthog-
onal to all polynomial of lower degree with respect to wµ,ν(x), we can deduce that

P
(µ,ν)
2n (i

√
x) + P

(µ,ν)
2n (−i

√
x) = 2(−1)nφn(x).

Recall that P
(µ,ν)
2n (x) is even, it follows that P

(µ,ν)
2n (x) = (−1)nφn(−x2). This proves the

case where µ− ν is even.
When µ− ν is odd, (3.7) follows by similar arguments as above. Now we show that

P
(µ,ν)
2n+1(x) do not exist. By similar arguments as above we find that

∫ ∞

0

[
P

(µ,ν)
2n+1(i

√
x)− P

(µ,ν)
2n+1(−i

√
x)√

x

]
xkwµ,ν(x) dx = 0,

where k = 0, . . . , n. Note that the term inside the square brackets is a polynomial of

degree n, we deduce that P
(µ,ν)
2n+1(x) is an even function. However, this is impossible since

its leading term is x2n+1. We conclude that P
(µ,ν)
2n+1(x) does not exist and this ends the

proof.

Remark 3.9. When µ − ν is even, then P
(µ,ν)
n (x) always exists and is an even function

when n is even and is an odd function when n is odd. When µ−ν is odd, then P
(µ,ν)
n (x)

exists only for even n and is an even function in this case. Moreover, in these cases

that P
(µ,ν)
n (x) exists, its zeros are all located on the imaginary axis and symmetric with

respect to the real axis.
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Remark 3.10. It is known that orthogonal polynomials can also be expressed in terms
of the associated Hankel determinant [10, Chapter 2]. In fact, when µ − ν is odd, it is

easily checked that the Hankel determinant associated with P
(µ,ν)
n (x) vanishes for odd

n, which also confirms the nonexistence of the polynomials with odd degrees.

When implementing (QHI
2n,µf)(ω), one needs to calculate the Gaussian quadrature

rule defined in (3.3). By [17, Equation (10.43.19)] we know that the moments of wµ,ν(x)
can be written explicitly as

∫ ∞

0
xkwµ,ν(x) dx =





Γ

(
k +

µ− ν + 1

2

)
Γ

(
k +

µ+ ν + 1

2

)
22k+µ−1, µ− ν even,

Γ

(
k +

µ− ν + 2

2

)
Γ

(
k +

µ+ ν + 2

2

)
22k+µ, µ− ν odd,

and the monic polynomials {φn}∞n=1 can be calculated by the Gram–Schmidt orthogo-
nalization procedure. For example, explicit expressions of φ1 and φ2 are given below:

φ1(x) =

{
x− (µ + 1)2 + ν2, µ− ν even,

x− (µ + 2)2 + ν2, µ− ν odd,
(3.9)

and

φ2(x) =

{
x2 − 2bµ,νx+ cµ,ν , µ− ν even,

x2 − 2bµ+1,νx+ cµ+1,ν , µ− ν odd,
(3.10)

where bµ,ν and cµ,ν are given by

bµ,ν =
(µ+ 3)(µ − ν + 3)(µ + ν + 3)

µ+ 2
,

cµ,ν =
(µ+ 4)(µ − ν + 3)(µ + ν + 3)(µ − ν + 1)(µ + ν + 1)

µ+ 2
.

Consequently, the nodes and weights of the Gaussian quadrature rule (3.3) for n = 1, 2
can be calculated immediately using the above expressions.

In Figure 1 we display the zeros of P
(µ,ν)
n (x) for four integer values of ν and we

consider two choices of µ: µ = 0 and µ = ν, which correspond respectively to the nodes
of the Gaussian quadrature rule in [1] and the generalized Gauss-Radau quadrature rule
in Theorem 3.1. For µ = 0, Figure 1 shows that the zeros tend to cluster along the vertical
line ℜ(z) = νπ/2 for ν = 1, 2, but ℜ(z) = (ν − 2)π/2 for ν = 4, 5. Note that the vertical
line ℜ(z) = νπ/2 was observed in [1] based on numerical calculations for ν = 1/2, 1, 3/2, 2
and was further proved in [6] for ν ∈ [0, 1/2]. However, our calculations suggest that
there are transitions in the asymptotic distribution of the zeros and the vertical line
becomes ℜ(z) = (ν − 2)π/2 for ν ∈ [3, 7] and will change further for larger ν. On the
other hand, we observe from Figure 1 that the nodes of the generalized Gauss-Radau
quadrature rule are always located on the imaginary axis, as expected from Theorems
3.1 and 3.8.

12



Figure 1: The nodes of the Gaussian qaudrature rule (blue) and the generalized Gauss-
Radau quadrature rule (red) with µ = ν. Top row shows n = 16 for ν = 1 (left) and ν = 2
(right) and bottom row shows n = 36 for ν = 4 (left) and ν = 5 (right). The vertical
lines in the top row are ℜ(z) = νπ/2 and in the bottom row are ℜ(z) = (ν − 2)π/2.

In the following we display several examples to demonstrate the performance of the
rule (QHI

2n,µf)(ω). In Figures 2 and 3 we plot the absolute errors of (QHI
2n,µf)(ω) as a

function of ω for n = 1 and n = 2, respectively. For each ν, we consider several different
values of µ. We see that the errors of (QHI

2n,µf)(ω) decay at the rate O(ω−4n−µ−1) when

µ − ν is even and the rate O(ω−4n−µ−2) when µ − ν is odd, which are consistent with
our error estimates in Theorem 3.5.

Finally, we mention an interesting superconvergence phenomenon of (QHI
2n,µf)(ω) in

certain special situations. In Figure 4 we display the absolute error of the rule as a

13
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Figure 2: Absolute errors of (QHI
2n,µf)(ω) with n = 1 as a function of ω for ν = 1 (left)

and ν = 2 (right). Here f(x) = e−x (top) and f(x) = 1/(1 + x)2 (bottom), we choose
different values of µ and the solid lines indicate the predicted rates O(ω−4n−µ−1) when
µ− ν is even and O(ω−4n−µ−2) when µ− ν is odd.

function of ω for f(x) = e−x2

and ν = 2 and the absolute and relative errors of the rule
for ν = 3 and we choose µ = ν in our calculations. We see that (QHI

2n,µf)(ω) converges
at the predicted rate when ν is even, but at a much faster rate when ν is odd. In fact,
by [12, Equation (6.618,1)] we know for ν > −1 that

∫ ∞

0
e−x2

Jν(ωx) dx =

√
π

2
exp

(
−ω

2

8

)
I ν

2

(
ω2

8

)
,

where Iν(z) is the modified Bessel function. When ν is odd, using the above closed form
and noting that f(x) is even, we find after some elementary calculations that the conver-
gence rate of (QHI

2n,µf)(ω) is O(e−ω2

/ω) as ω → ∞, which explains the superconvergence
phenomenon displayed in Figure 4.
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Figure 3: Absolute errors of (QHI
2n,µf)(ω) with n = 2 as a function of ω for ν = 1 (left)

and ν = 2 (right). Here f(x) = e−x (top) and f(x) = 1/(1 + x)2 (bottom), we choose
different values of µ and the solid lines indicate the predicted rates O(ω−4n−µ−1) when
µ− ν is even and O(ω−4n−µ−2) when µ− ν is odd.

4 Extensions and applications

In this section, we extend our discussion to Hankel transform of fractional order and
Fourier sine transform. An application to oscillatory Hilbert transform is also presented.

4.1 Hankel transform of fractional order

In this subsection we consider the Hankel transform of fractional order, i.e., ν > −1
and ν /∈ N0. It is natural to ask if a generalized Gauss-Radau quadrature rule can be
constructed by following the same procedure as in Theorem 3.1. In the following, we
will prove a negative result and show that, although a complex quadrature rule can still
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Figure 4: Absolute errors of (QHI
2n,µf)(ω) as a function of ω for n = 1, ν = 2 (left) and

absolute and relative errors of (QHI
2n,µf)(ω) for n = 1, ν = 3 (right). Here f(x) = e−x2

,

µ = ν and the solid lines indicate the predicted rates O(ω−4n−µ−1).

be constructed, it will not be a generalized Gauss-radau quadrature rule anymore.
Let w̃µ,ν(x) = xµKν(x), where µ ∈ N0 when ν ∈ (−1, 0) and µ ∈ N0 and µ > ν − 1

when ν > 0, be the weight function on (0,∞). The Gaussian quadrature rule is defined
by ∫ ∞

0
w̃µ,ν(x)f(x) dx =

n∑

j=1

wjf(xj), ∀f ∈ P2n−1. (4.1)

Our result is stated as follows.

Theorem 4.1. Let {xj , wj}nj=1 be the nodes and weights of the Gaussian quadrature

rule in (4.1) and suppose that f is analytic in the right half-plane and |f(z)| ≤ K|z|σ for

some σ ∈ R. Then, a quadrature rule for (Hνf)(ω) is given by

(QHF
2n,µf)(ω) =

1

ω




µ−1∑

k=0

ŵ0
k

ωk
f (k)(x̂0) +

2n∑

j=1

ŵjf

(
x̂j
ω

)
 , (4.2)

where the nodes and weights are defined by

{x̂j}2nj=1 =
{
± ixj

}n

j=1
, {ŵj}2nj=1 =

{
exp

(
∓νπi

2

)
wjx

−µ
j

π

}n

j=1

,

and x̂0 = 0 and for k = 0, . . . , µ − 1,

ŵ0
k =

1

k!


2k

Γ((ν + k + 1)/2)

Γ((ν − k + 1)/2)
− 2

π
cos

(
(k − ν)π

2

) n∑

j=1

wjx
k−µ
j


 .

Moreover, the quadrature rule (4.2) is exact for f ∈ P2n+µ−1.
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Proof. Following a line similar to the proof of Theorem 3.1, we have

(Hνf)(ω) =

∫ ∞

0
Tµ(x)Jν(ωx) dx+

∫ ∞

0
Rµ(x)x

µJν(ωx) dx,

and the first integral on the right-hand side can be evaluated by (2.6). For the second
integral, using Theorem 2.1 we have

∫ ∞

0
Rµ(x)x

µJν(ωx)dx =

∫ ∞

0
R̂µ(ix)x

µKν(ωx)dx,

where R̂µ(x) = (e(µ−ν)iπ/2Rµ(x) + e(ν−µ)iπ/2Rµ(−x))/π. Note that R̂µ(x) is no longer
an even or odd function since µ ∈ N0 and ν /∈ Z. In this case, we evaluate the integral
on the right-hand by the Gaussian quadrature rule (4.1):

∫ ∞

0
R̂µ(ix)x

µKν(ωx)dx =
1

ωµ+1

∫ ∞

0
R̂µ

(
ix

ω

)
w̃µ,ν(x)dx ≈ 1

ωµ+1

n∑

j=1

wjR̂µ

(
ixj
ω

)
.

This gives the quadrature rule (4.2). Note that the quadrature rule in the last step is
exact for R̂µ ∈ P2n−1, it is easily verified that the rule (4.2) is exact for f ∈ P2n+µ−1.
This ends the proof.

Remark 4.2. Note that the quadrature rule (4.2) is exact only for f ∈ P2n+µ−1, it is not a
generalized Gauss-Radau quadrature rule anymore. Moreover, combining the exactness
and [1, Lemma 1.6] gives the asymptotic error estimate

(Hνf)(ω)− (QHF
2n,µf)(ω) = O(ω−2n−µ−1), ω → ∞. (4.3)

Why we fail to construct generalized Gauss-Radau quadrature rules when following
the same procedure as in Theorem 3.1? To identify the problem, we plot in Figure 5

the zeros of P
(µ,ν)
n (x) for ν = 3/2, 7/2 and µ = 1, 2. We see that the zeros of P

(µ,ν)
n (x)

tend to cluster along the vertical line ℜ(z) = (ν − µ)π/2, but not the imaginary axis.
For the rule (4.2), note that its nodes are all located on the imaginary axis, and hence it
is not a generalized Gauss-Radau quadrature rule. In fact, if we construct a generalized
Gauss-Radau quadrature rule with respect to the weight Jν(x) on (0,∞), i.e.,

∫ ∞

0
f(x)Jν(x) dx =

µ−1∑

k=0

ŵ0
kf

(k)(x̂0) +

2n∑

j=1

ŵjf(x̂j), ∀f ∈ P4n+µ−1, (4.4)

where {x̂j}2nj=1 are the zeros of P
(µ,ν)
2n (x), then a generalized Gauss-Radau quadrature

rule for the Hankel transform (Hνf)(ω) follows immediately by using a simple scaling.

However, the existence of the polynomial P
(µ,ν)
2n (x) cannot be guaranteed.
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Figure 5: The zeros of P
(µ,ν)
n (x) for µ = 1 (left) and µ = 2 (right). Here n = 24, ν = 3/2

(blue) and ν = 7/2 (red) and the vertical lines are ℜ(z) = (ν − µ)π/2.

4.2 Fourier sine transform

In this subsection, we extend the construction of generalized Gauss-Radau quadrature
rules to Fourier sine transform of the forms

(Fsf)(ω) :=

∫ ∞

0
f(x) sin(ωx)dx. (4.5)

Let wsin(x) = x⌊(µ−1)/2⌋+1/2e−
√
x/2, where µ ∈ N0, be the weight function on (0,∞) and

let {xj , wj}nj=1 be the nodes and weights of the n-point Gaussian quadrature rule with
respect to wsin(x) on (0,∞), i.e.,

∫ ∞

0
wsin(x)f(x) dx =

n∑

j=1

wjf(xj), ∀f ∈ P2n−1. (4.6)

It is evident that xj ∈ (0,∞) and wj > 0 for all j = 1, . . . , n. The complex generalized
gauss-Radau quadrature rule for Fourier sine transform is stated in the following result.

Theorem 4.3. Let {xj , wj}nj=1 be the nodes and weights of the Gaussian quadrature

rule in (4.6) and suppose that f is analytic in the right half-plane and |f(z)| ≤ K|z|σ for

some σ ∈ R. Then, a quadrature rule for (Fsf)(ω) is given by

(QFS
2n,µf)(ω) =

1

ω




µ−1∑

k=0

ŵ0
k

ωk
f (k)(x̂0) +

2n∑

j=1

ŵjf

(
x̂j
ω

)
 , (4.7)

where the nodes and weights are defined by

{x̂j}2nj=1 = {±i
√
xj}nj=1, {ŵj}2nj=1 =

{wj

2
x
−⌊(µ−1)/2⌋−1
j

}⋃ {wj

2
x
−⌊(µ−1)/2⌋−1
j

}n

j=1
,
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and x̂0 = 0 and

ŵ0
k = cos

(
kπ

2

)
1− 1

k!

n∑

j=1

wjx
k/2−⌊(µ−1)/2⌋−1
j


 .

Moreover, the quadrature rule (4.7) is exact for f ∈ P4n+2⌊(µ−1)/2⌋+1.

Proof. The proof is similar to that of Theorem 3.1. Let Tµ(x) denote the Taylor expan-
sion of f(x) of degree µ − 1 at x̂0 = 0 and let Rµ(x) = (f(x) − Tµ(x))/xµ. It follows
that

(Fsf)(ω) =

∫ ∞

0
Tµ(x) sin(ωx) dx+

∫ ∞

0
Rµ(x)x

µ sin(ωx) dx.

For the first integral on the right-hand side, using (2.5) we have

∫ ∞

0
Tµ(x) sin(ωx) dx =

µ−1∑

k=0

f (k)(0)

k!

∫ ∞

0
xk sin(ωx) dx =

µ−1∑

k=0

f (k)(0)

ωk+1
cos

(
kπ

2

)
.

For the second integral on the right-hand side, by Euler’s formula and Theorem 2.1 we
have ∫ ∞

0
Rµ(x)x

µ sin(ωx) dx =

∫ ∞

0
R̂µ(ix)x

µe−ωx dx,

where R̂µ(x) = (eµπi/2Rµ(x) + e−µπi/2Rµ(−x))/2. Note that R̂µ(x) is an even function
when µ is an even integer and is an odd function when µ is an odd integer. Using the
transformation x→ √

x/ω to the integral on the right side of the above equation gives

∫ ∞

0
Rµ(x)x

µ sin(ωx) dx =
1

ωµ+1





∫ ∞

0
R̂µ

(
i
√
x

ω

)
wsin(x) dx, µ even,

∫ ∞

0

1√
x
R̂µ

(
i
√
x

ω

)
wsin(x) dx, µ odd.

The quadrature rule (4.7) follows by evaluating the integrals on the right-hand side with
the Gaussian quadrature rule (4.6). Finally, the exactness of the rule (4.7) follows from
the exactness of the Gaussian quadrature rule (4.6) and the Taylor expansion of R̂µ(x).
This ends the proof.

Remark 4.4. Note that the weights {ŵj}2nj=1 are positive and ŵ
0
k = 0 for odd k. Moreover,

the rule (QFS
2n,µf)(ω) is exact for f ∈ P4n+µ−1 when µ is even and for f ∈ P4n+µ when

µ is odd, and its asymptotic error estimate is

(Fsf)(ω)− (QFS
2n,µf)(ω) = O(ω−4n−2⌊(µ−1)/2⌋−3), ω → ∞. (4.8)

Remark 4.5. For Fourier cosine transform of the form

(Fcf)(ω) :=

∫ ∞

0
f(x) cos(ωx)dx, (4.9)
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Figure 6: Absolute errors of the rule (QFS
2n,µf)(ω) for (Fsf)(ω) as a function of ω with

n = 1 and µ = 2 for f(x) = e−x (left) and f(x) = 1/(1 + x)2 (right). The red lines show
the error estimate O(ω−7).

the generalized Gauss-Radau quadrature rule can be constructed in a similar way. Let
wcos(x) = x⌊µ/2⌋e−

√
x/2 be the weight function on (0,∞) and let {xj , wj}nj=1 be the nodes

and weights of an n-point Gaussian quadrature rule with respect to wcos(x). Then the
generalized Gauss-Radau quadrature rule for (Fcf)(ω) is given by

(QFC
2n,µf)(ω) =

1

ω




µ−1∑

k=0

ŵ0
k

ωk
f (k)(x̂0) +

2n∑

j=1

ŵjf

(
x̂j
ω

)
 , (4.10)

where the nodes and weights are defined by

{x̂j}2nj=1 = {±i
√
xj}nj=1, {ŵj}2nj=1 =

{
±i
wj

2
x
−⌊µ/2⌋−1/2
j

}n

j=1
,

and x̂0 = 0 and

ŵ0
k = sin

(
kπ

2

)
−1 +

1

k!

n∑

j=1

wjx
k/2−⌊µ/2⌋−1/2
j


 .

Moreover, the quadrature rule (4.10) is exact for f ∈ P4n+2⌊µ/2⌋ and it has the asymptotic

error estimate O(ω−4n−2⌊µ/2⌋−2) as ω → ∞. We omit the proof since it is similar to that
of Theorem 4.3.

In Figure 6 we display the absolute errors of the rule (QFS
2n,µf)(ω) as a function of ω

for f(x) = e−x and f(x) = 1/(1 + x)2. As expected, we see that the errors decay at the
rate O(ω−4n−2⌊(µ−1)/2⌋−3) as ω → ∞.
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4.3 Oscillatory Hilbert transforms

Oscillatory Hilbert transforms have received growing attention in the last decade (see,
e.g., [19, 24]). Consider the following oscillatory integral transform

(Hνf)(ω, τ) := −
∫ ∞

0

f(x)

x− τ
Jν(ωx) dx, (4.11)

where τ > 0 and the bar indicates the Cauchy principal value. To construct efficient
methods for such transform, the main difficulties are that the integrand is oscillatory
and has a singularity of Cauchy-type.

In the following we pesent a practical method for computing this transform. By the
singularity subtraction technique, we have

(Hνf)(ω, τ) :=

∫ ∞

0

f(x)− f(τ)

x− τ
Jν(ωx) dx+ f(τ)−

∫ ∞

0

Jν(ωx)

x− τ
dx. (4.12)

For the last integral, it can be expressed by the Struve or Meijer G-functions (see, e.g.,
[19, 24]) and their evaluations can be performed by most modern software, e.g., Maple
and Matlab. As for the first integral on the right-hand side of (4.12), it can be evaluated
directly by using the generalized Gauss-Radau quadrature rule in Theorem 3.1 when
ν ∈ Z and the quadrature rule in Theorem 4.1 otherwise. When the singularity τ is
not close to zero, an obvious advantage of using these quadrature rules is that they can
avoid the loss of accuracy due to cancellation since their nodes all lie on the imaginary
axis.

To show the performance of the above proposed method, we consider the test func-
tions f(x) = e−x and f(x) = 1/(1 + (1 + x)2), the orders ν = 0, 1 and the singularities
τ = 1, 5. We evaluate the first integral on the right-hand side of (4.12) by the rule
(QHI

2n,µf)(ω) with n = 1 and the second integral by [19, Corollary 4.2]†

−
∫ ∞

0

J0(ωx)

x− τ
dx = −π

2

[
H0(ωτ) + Y0(ωτ)

]
,

−
∫ ∞

0

J1(ωx)

x− τ
dx =

π

2

[
H−1(ωτ)− Y1(ωτ)

]
− 1

ωτ
,

(4.13)

where Hν(z) is the Struve function and Yν(z) is the Bessel function of the second kind.
For each ν, we choose µ = ν and µ = ν + 1. Since the errors of computing the inte-
grals (4.13) can be ignored, the error of the proposed method comes only from the rule
(QHI

2n,µf)(ω) and thus it decays at the rate O(ω−4n−µ−1) when µ−ν is even and the rate

O(ω−4n−µ−2) when µ−ν is odd. Figure 7 plots the results and we see that the proposed
method converge at expected rates.

†We point out that [19, Equation (4.8)] is correct for ν = 0, but is wrong for ν = 1 since the integral
in [19, Equation (4.2)] will involve a nonintegrable singularity when setting f(t) = 1. However, by setting
f(t) = t in [19, Equation (4.2)], it is not difficult to derived the correct result given here.
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Figure 7: Absolute errors as a function of ω for ν = 0 (left) and ν = 1 (right). Top row
shows f(x) = e−x and τ = 5 and bottom row shows f(x) = 1/(1 + (1 + x)2) and τ = 1
and the solid lines indicate the predicted rates.

5 Conclusion

In this paper, we have studied the construction of complex generalized Gauss-Radau
quadrature rules for Hankel transform of integer order. We have shown that, by adding
certain value and derivative information at the left endpoint, complex generalized Gauss-
Radau quadrature rules can be constructed with guaranteed existence and the nodes are
located on the imaginary axis. Except for existence, these rules also have the advantage
that they have optimal asymptotic order. Motivated by this finding, we further studied
the existence of the polynomials that are orthogonal with respect to the oscillatory
weight function xµJν(x) on (0,∞). When both ν and µ − ν are nonnegative integers,
we proved that the polynomials always exist for all degrees if µ − ν is even, but exist
only for even degrees if µ − ν is odd. Moreover, in these cases where the polynomials
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exist, their zeros are located on the imaginary axis and symmetric with respect to the
real axis.

Gaussian quadrature rules for highly oscillatory integrals have received increasing
attention in recent years due to the fact that they can achieve optimal asymptotic order
[1, 2, 7, 23]. A key issue of such rules is that the existence of the orthogonal polynomials
with respect to the oscillatory weight function cannot be guaranteed and the proofs are
generally quite challenging (see, e.g., [5, 6, 7]). The findings of the present study give
a sequence of such polynomials with guaranteed existence, which provide a theoretical
rationale for the proposed quadrature rules for Hankel transform of integer order.
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