
Learning a Formally Verified Control Barrier Function
in Stochastic Environment

Manan Tayal1, Hongchao Zhang2, Pushpak Jagtap1, Andrew Clark2, Shishir Kolathaya1

Abstract— Safety is a fundamental requirement of control
systems. Control Barrier Functions (CBFs) are proposed to
ensure the safety of the control system by constructing safety
filters or synthesizing control inputs. However, the safety
guarantee and performance of safe controllers rely on the
construction of valid CBFs. Inspired by universal approximata-
bility, CBFs are represented by neural networks, known as
neural CBFs (NCBFs). This paper presents an algorithm for
synthesizing formally verified continuous-time neural Control
Barrier Functions in stochastic environments in a single step.
The proposed training process ensures efficacy across the
entire state space with only a finite number of data points by
constructing a sample-based learning framework for Stochastic
Neural CBFs (SNCBFs). Our methodology eliminates the need
for post hoc verification by enforcing Lipschitz bounds on the
neural network, its Jacobian, and Hessian terms. We demon-
strate the effectiveness of our approach through case studies
on the inverted pendulum system and obstacle avoidance in
autonomous driving, showcasing larger safe regions compared
to baseline methods.

Index Terms— control barrier function, data driven controls,
stochastic environments, neural networks

I. INTRODUCTION

In the rapidly evolving landscape of control theory, en-
suring safety in real-world applications has emerged as a
paramount concern. With the pervasive integration of au-
tomated systems such as self-driving cars, the ability to
guarantee their safety becomes increasingly critical. Current
methods, including traditional optimal control approaches
and Hamilton-Jacobi reachability analysis, have been instru-
mental in addressing safety requirements by casting them
as constraints or generating safe controls offline. However,
the scalability limitations of these methods, coupled with
the challenge of swift reactions in complex environments,
underscore the need for alternative approaches to safety
assurance. With the rise in popularity of learning-based meth-
ods in control synthesis, learning-based methods have also
been used to synthesize controllers for safety-critical tasks.
However, most learning-based methods require a significant
amount of unsafe interactions to learn a safe controller, which
might be costly or impossible to obtain.

One promising avenue in addressing safety concerns is
through the utilization of Control Barrier Functions (CBFs)
[1]. CBFs serve as a practical method for synthesizing safe
control for control affine systems [2] [3] as well as stochastic

1Cyber-Physical Systems, Indian Institute of Science (IISc), Bengaluru.
{manantayal, pushpak, shishirk}@iisc.ac.in .

2 Electrical & Systems Engineering, Washington University in St. Louis.
{hongchao, andrewclark}@wustl.edu .

control systems [4], [5]. By formulating controllers through
Quadratic Programs (QPs), solvable at high frequencies with
modern optimization solvers, CBFs have found applications
in various safety-critical tasks, including adaptive cruise
control [1], aerial maneuvers [6], [7] and legged locomo-
tion [3], [8]. In these applications, the performance and safety
guarantees depend on the CBF that is used. While control
synthesis techniques such as sum-of-squares [9], [10] have
been used to construct polynomial control barrier functions,
they have been limited to systems with low-dimensional state
spaces.

In recent years, the emergence of neural network-based
barrier function (NCBF) synthesis has garnered considerable
attention due to the universal approximation property of neu-
ral networks. A variety of methods have been proposed for
training NCBFs, including learning from expert demonstra-
tions [11], SMT-based techniques [12]–[15], mixed-integer
programs [16], and nonlinear programs [17]. Loss functions
for training NCBFs were proposed in [18]–[22], while [23]
synthesizes CBFs by learning a value function of a nominal
policy and demonstrating that the maximum-over-time cost
serves as a CBF. In these existing works, the trained CBFs
must be verified as a postprocessing step and recomputed if
verification fails, resulting in a potentially time-consuming
trial-and-error process.

More recently, a data-driven approach for training NCBFs
was proposed in [24]. The proposed training process also
bounds the Lipschitz constant of the trained NCBF. By ex-
ploiting these Lipschitz bounds, the safety of the continuous
state space can be verified using only a discrete set of sample
points. This approach, however, only considers discrete-
time deterministic systems. In a continuous-time setting, the
safety guarantees also depend on the Lie derivative of the
NCBF, and hence Lipschitz bounds on the NCBF alone are
insufficient to guarantee safety. Moreover, the abovemen-
tioned works on NCBFs do not consider the presence of
stochastic system noise, making formally verifiable synthesis
of stochastic NCBFs an open research problem.

In this paper, we propose an algorithm to synthesize a
formally verified continuous-time neural CBF in stochastic
environments in a single step. We construct a sample-based
learning framework to train Stochastic Neural CBF (SNCBF)
and prove the trained SNCBF ensuring efficacy across the
entire state space with only a finite number of data points.
To summarize, this paper makes the following contributions.

• We propose a training framework to synthesize provably
correct Control Barrier Functions (CBFs) parameterized
as neural networks for continuous-time, stochastic sys-

ar
X

iv
:2

40
3.

19
33

2v
1

 [
cs

.R
O

]
 2

8
M

ar
 2

02
4

tems, eliminating any need for post hoc verification.
• Our methodology establishes completeness guarantees

by deriving a validity condition, ensuring efficacy across
the entire state space with only a finite number of data
points. We train the network by enforcing Lipschitz
bounds on the neural network, its Jacobian and (trace
of) Hessian terms.

• We evaluate our approach using two case studies,
namely, the inverted pendulum system and the obstacle
avoidance of an autonomous driving system. We show
that our training framework successfully constructs an
SNCBF to differentiate safe and unsafe regions. We
demonstrate our proposed method ensures a larger safe
region compared with the baseline method in [22].

The rest of this paper is organized as follows. Prelim-
inaries explaining the concept of control barrier functions
(CBFs) and safety filter designs are introduced in Section II.
Problem formulation is discussed in Section III. The method
proposed to synthesize the CBFs using neural networks, the
construction of loss functions and the algorithm to train it,
are discussed in Section IV. The simulation results will be
discussed in Section V. Finally, we present our conclusion
in Section VI.

II. PRELIMINARIES

In this section, we will formally introduce Control Barrier
Functions (CBFs) and their importance for real-time safety-
critical control.

A. Notations

We first present the definitions of class-K and extended
class-K functions. A continuous function κ : [0, d) →
[0,∞) for some d > 0 is said to belong to class-K if
it is strictly increasing and κ(0) = 0. Here, d is allowed
to be ∞. The same function can extended to the interval
κ : (−b, d) → (−∞,∞) with b > 0 (which is also allowed
to be ∞), in this case we call it the extended class-K
function. Given a square matrix A, the trace representing the
sum of its diagonal elements is denoted by tr(A), and the
determinant is denoted by det(A). Given a function ϕ(x),
we represent the derivative and double derivative of ϕ(x)
with respect to the input x as ϕ′(x) and ϕ′′(x), respectively.
If m = [m1, . . . ,mn]

T ∈ Rn is a n × 1 matrix, then

diag(m) =

m1 . . . 0
...

. . .
...

0 . . . mn

.

B. System Description

We consider a continuous time stochastic control system
with state x(t) ∈ X ⊆ Rn and input u(t) ∈ U ⊆ Rm at time
t ≥ 0. The state dynamics is described by the stochastic
differential equation as:

dx(t) =
(
f(x(t)) + g(x(t))u(t)

)
dt+ σ dW (t), (1)

where functions f : Rn → Rn and g : Rn → Rn×m
are locally Lipschitz, σ ∈ Rn×n, W is an n-dimensional
Brownian motion.

Consider a set C defined as the super-level set of a
continuously differentiable function h : X ⊆ Rn → R
yielding,

C = {x ∈ X ⊂ Rn : h(x) ≥ 0} (2)
X − C = {x ∈ X ⊂ Rn : h(x) < 0}. (3)

We further let the interior and boundary of C be Int (C) =
{x ∈ X ⊂ Rn : h(x) > 0} and ∂C = {x ∈ X ⊂ Rn :
h(x) = 0}, respectively.

We define a Lipschitz continuous control policy µ : Rn →
Rm to be a mapping from the sequence of states x(t) to a
control input u(t) at each time t. The safety of a controlled
system is defined as follows.

Definition 1 (Safety): A set C ⊆ X ⊆ Rn is positive
invariant under dynamics (1) and control policy µ if x(0) ∈ C
and u(t) = µ(x(t)) ∀t ≥ 0 imply that x(t) ∈ C for all t ≥ 0.
If C is positive invariant, then the system satisfies the safety
constraint with respect to C.

C. Control Barrier Functions (CBFs)

The control policy needs to guarantee the robot satisfies a
safety constraint, which is specified as the positive invariance
of a given safety region C. The Control Barrier Function
(CBF) are widely used to synthesize a control policy with
positive invariance guarantees. We next present the definition
of CBFs as discussed in [3] for nonstochastic systems.

Definition 2 (Control barrier function (CBF)): Given a
control-affine system ẋ = f(x) + g(x)u, the set C defined
by (2), with ∂h

∂x (x) ̸= 0 for all x ∈ ∂C, the function h is
called the control barrier function (CBF) defined on the set
X , if there exists an extended class-K function κ such that
for all x ∈ X :

sup
u∈U

Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x,u)

+κ (h(x))

≥0, (4)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x) are the Lie
derivatives.

By [2] and [3], we have that any Lipschitz continuous
control law µ(x) satisfying the inequality: ḣ + κ(h) ≥ 0
ensures safety of C if x(0) ∈ C, and asymptotic convergence
to C if x(0) is outside of C.

We next present the safety lemma to ensure the safety of
continuous-time stochastic systems.

Lemma 1 ([5]): The set C ⊂ Rn be a set defined on
the super-level set of a continuously differentiable function
h : X ⊂ Rn → R. The function h defined on the set X is a
CBF for stochastic system in (1), if there exists an extended
class-K function κ such that for all x ∈ X :

sup
u∈U

[
Lfh(x) + Lgh(x)u+

1

2
tr

(
σ⊺ ∂

2h(x)

∂x2
σ

)
+ κ (h(x))

]
≥0.

(5)

D. Controller Synthesis for Real-time Safety

Having described the CBF and its associated formal
results, we now discuss its Quadratic Programming (QP)
formulation. CBFs are typically regarded as safety filters
which take the desired input (reference controller input)
uref (x, t) and modify this input in a minimal way:

u∗(x, t) = min
u∈U⊆Rm

∥u− uref (x, t)∥2

s.t. Lfh(x) + Lgh(x)u+
1

2
tr

(
σ⊺ ∂

2h(x)

∂x2
σ

)
+ κ (h(x)) ≥ 0.

(6)

This is called the Control Barrier Function based Quadratic
Program (CBF-QP).

III. PROBLEM FORMULATION

In this section, we begin by formally defining the problem
of synthesis of CBF in a stochastic environment and high-
lighting the challenges associated with its direct solution.
Subsequently, we propose a reformulation of the problem
and derive the conditions, that provide formal guarantees on
the correctness of the solution over the entire state set despite
using finitely many data samples.

To leverage the universal approximation property of neu-
ral networks, we represent the Stochastic Control Barrier
Function with a feed-forward neural network. Denoted as
h̃(x | θ), where θ signifies the trainable parameters of the
neural network, this representation is termed the Stochastic
Neural CBF (SNCBF). Due to the absence of an SNCBF,
we lack access to the safe set C. Hence, we start with initial
safe and unsafe sets Xs ⊆ C and Xu ⊆ X − C, respectively,
such that any trajectory starting in Xs never enters Xu. We
next formulate the problem.

Problem 1: Given a continuous-time stochastic control
system defined as (1), state set X , initial safe and unsafe
sets Xs and Xu, respectively, the objective is to devise an
algorithm to synthesize SNCBF h̃(x | θ) using a Lipschitz
continuous controller u such that

h̃(x | θ) ≥ 0,∀x ∈ Xs,
h̃(x | θ) < 0,∀x ∈ Xu,

∂h̃ (x | θ)
∂x

(f(x) + g(x)u(x)) +
1

2
tr

(
σ⊺ ∂

2h̃ (x | θ)
∂x2

σ

)
+ κ

(
h̃ (x | θ)

)
≥ 0,∀x ∈ X . (7)

In order to enforce conditions (7) in Problem 1, we
first cast our problem as the following robust optimization
problem (ROP):

ROP :

min
ψ

ψ

s.t. max (qk(x)) ≤ ψ, k ∈ {1, 2, 3}
∀x ∈ X , ψ ∈ R,

(8)

where

q1(x) =
(
−h̃(x | θ)

)
1Xs

,

q2(x) =
(
h̃(x | θ) + δ

)
1Xu

,

q3(x) =−
∂h̃ (x | θ)

∂x
(f(x) + g(x)u(x))

− 1

2
tr

(
σ⊺ ∂

2h̃ (x | θ)
∂x2

σ

)
− κ

(
h̃ (x | θ)

)
,

(9)

where δ is a small positive value to ensure the strict inequal-
ity. If the optimal solution of the ROP (ψ∗

ROP) ≤ 0, then the
conditions (7) are satisfied and the SNCBF is valid.

However, the proposed ROP in (8) has infinitely many
constraints since the state of the system in a continuous set.
This motivates us to employ data-driven approaches and the
scenario optimization program of ROP. Given ϵ̄, suppose we
sample N data points: xi ∈ X , i ∈ {1, . . . , N}, such that
∥x− xi∥ ≤ ϵ̄. Instead of solving the ROP in (8), we employ
the following scenario optimization problem (SOP):

SOP :

min
ψ

ψ

s.t. q1 (xi) ≤ ψ,∀xi ∈ S,
q2 (xi) ≤ ψ,∀xi ∈ U ,
q3 (xi) ≤ ψ,∀xi ∈ D,
ψ ∈ R, i ∈ {1, . . . , N},

(10)

where qk(x), k ∈ {1, 2, 3} are defined as in (9). The data
sets S,U and D corresponding to points sampled from the
initial safe set Xs ⊆ C, initial unsafe set Xu ⊆ X − C, and
state set X , respectively.

Given the finite number of data samples xi, and consid-
ering SOP as a linear program in relation to the decision
variable ψ, it becomes feasible to find a solution for the
SOP. Let us denote the optimal solution of the SOP as ψ∗.
We now derive conditions under which the SNCBF h̃(x | θ)
satisfies conditions (7). The following theorem shows that
solving (8) can be achieved by finding a solution to (10).

Theorem 1: Consider a continuous time stochastic control
system (1), and initial safe and unsafe sets Xs ⊆ X and
Xu ⊆ X , respectively. Let h̃(x | θ) be the neural network-
based CBF with trainable parameters θ. For the SOP (10)
constructed by utilizing N samples, let ψ∗ be the optimal
value, with the assumption that functions qk(x), k ∈ {1, 2, 3}
in equation (9) are Lipschitz continuous. Then h̃(x | θ) is a
valid SCBF, i.e., it satisfies conditions (7), if the following
condition holds:

Lmaxϵ̄+ ψ∗ ≤ 0, (11)

where Lmax is maximum of the Lipschitz constants of
qk(x), k ∈ {1, 2, 3} in (9).

Proof: For any x and any k ∈ {1, 2, 3}, we know that:

qk(x) = qk(x)− qk(xi) + qk(xi)

≤ Lk ∥x− xi∥+ ψ∗

≤ Lk ϵ̄+ ψ∗ ≤ Lmaxϵ̄+ ψ∗ ≤ 0.

Hence, if qk(x), k ∈ {1, 2, 3} satisfies condition (11), then
the h̃(x | θ) is a valid CBF, satisfying conditions (7).

Hence, the original Problem 1 can be efficiently addressed
by solving the problem reformulated as follows.

Problem 2: Given a continuous-time stochastic control
system defined as (1) and the data sets S,U and D, the
objective is to devise an algorithm to synthesize SNCBF
h̃(x | θ) and consequently, SNCBF−QP based controller
u, such that they satisfy the conditions required in SOP (10)
(functions qk(x) ≤ ψ∗, k ∈ {1, 2, 3} in equation (9)) and ψ∗

satisfies condition (11).

IV. METHOD

In this section, we propose an algorithmic approach to
solve the problem formulated in Section III. The structure
of this section is as follows. We first present the method to
synthesize SNCBF to solve Problem 2 and then demonstrate
the training process.

A. Synthesis of SNCBF

Following the problem formulation in Section III, we now
describe the construction of suitable loss functions for the
training SNCBF h̃(x | θ) such that its minimization leads
to the solution of Problem 2. As described in the previous
section, SNCBF is a feed-forward neural network, with
trainable weight parameters θ. To address the aforementioned
problem, it is imperative to compute ∂h̃(x|θ)

∂x and tr(∂
2h̃(x|θ))
∂x2 .

This necessitates the selection of a neural network with a
smooth activation function, thereby facilitating the derivation
of smooth Jacobian and Hessian values upon differentiation.
Interested readers are directed to [25], which analytically
computes the Jacobian and Hessian using the chain rule.

Now, let us consider the following loss functions satisfying
the conditions required by SOP (10) over the training data
sets S,U ,D as follows:

L1(θ) =
1

N

∑
xi∈S

max (0, q1(xi)− ψ) ,

L2(θ) =
1

N

∑
xi∈U

max (0, q2(xi)− ψ) ,

L3(θ) =
1

N

∑
xi∈D

max (0, q3(xi)− ψ)

(12)

with L1 representing the loss for safe states, L2 representing
the loss for unsafe states and L3 representing the loss for lie
derivative conditions over the entire state set, respectively.
Using the terms defined above, the loss function is given by

Lθ(θ) = L1 + λ1L2 + λ2L3, (13)

with λ1, λ2 ∈ R+weighting the importance of the individual
loss terms.

To ensure the fulfillment of the assumptions in Theorem
1, it is imperative to verify the Lipschitz boundedness of
the functions qk(x), where k ∈ {1, 2, 3}. This necessi-
tates the Lipschitz boundedness of h̃(x | θ), ∂h̃(xi|θ)

∂x ,
and tr(σ⊺ ∂

2h̃(xi|θ)
∂x2 σ), with corresponding Lipschitz bounds

denoted as Lh, Ldh, and Ld2h, respectively. To train neural
networks with Lipschitz bounds, we have the following
lemma:

Lemma 2 ([26]): Suppose fθ is a l-layered feed-forward
neural network with θ as a trainable parameter, then a
certificate for L-Lipschitz continuity of the neural network
is given by the semi-definite constraint M(θ,Λ) :=[

A
B

]T [
2αβΛ −(α+ β)Λ

−(α+ β)Λ 2Λ

] [
A
B

]

+

L2I 0 0 0
0 0 0 0
0 0 0 −θTl
0 0 −θl I

 ⪰ 0,

where

A =

θ0 . . . 0 0
...

. . .
...

...
0 . . . θl−1 0

 , B =
[
0 I

]
,

(θ0, . . . θl) are the weights of the neural network, Λ ∈ Dn+,
i = 1, . . . , l and α and β are the minimum and maximum
slopes of the activation functions, respectively.

Remark 1: For a single-layer case, the matrix M reduces
to:

M(θ,Λ) =

L2I + 2αβθT0 Λθ0 −(α+ β)θT0 Λ 0
−(α+ β)Λθ0 2Λ −θ1

0 −θ1 I

 ⪰ 0.

The lemma above addresses the certification of the L-
Lipschitz bound for a neural network. However, our scenario
necessitates ensuring not only the Lipschitz boundedness
of the SNCBF h̃, but also of ∂h̃(xi|θ)

∂x and σ⊺ ∂
2h̃(xi|θ)
∂x2 σ.

Therefore, we must explore the relationship between the
network weights and the semi-definite matrix M to guarantee
the boundedness of the aforementioned terms. To address this
issue, we introduce the following theorem.

Theorem 2: Consider a 1-layered feedforward neural net-
work fθ, with output dimension 1 × 1, where θ represents
the trainable weight parameters. Let y denote the output of
the neural network, x denote the input of the neural network,
θi, i ∈ 0, 1, denote the weight parameters of each layer with
θ = {θ0, θ1} and ϕ denote the activation. The certificate
for L-Lipschitz continuity of the derivative of the neural
network (∂y∂x) is given by Mϕ̂(θ̂,Λ) ⪰ 0, where ϕ̂ = ϕ′

and θ̂ = (θ0, θ̂1), θ̂1 is defined as:

θ̂1 = θT0 diag(θ1). (14)

Similarly, the certificate for the L-Lipschitz continuity of
tr(σT ∂

2yl
∂x2 σ) is expressed as Mϕ̄(θ̄,Λ) ⪰ 0, where ϕ̄ = ϕ′′

and θ̄ = (θ0, θ̄1) and θ̄1 is defined as:

θ̄1 =
[∑r

j=0 σ
2
j θ
j1
1 θ

1j
0 . . .

∑r
j=0 σ

2
j θ
jn
1 θpj0 .

]
(15)

Proof: The proof can be found in the Appendix.
We address a constrained optimization problem aiming

to minimize loss L (fθ) subject to M j(θ,Λ) ⪰ 0 for
j = 0, . . . , p, where fθ is a given neural network. By

employing a log-det barrier function, we convert this into
an unconstrained optimization problem:

min
θ,Λ
L (fθ) + LM (θ,Λ),

where LM (θ,Λ) = −
∑q
j=0 ρj log det (M j(θ,Λ)) and ρj >

0 are barrier parameters. Ensuring that the loss function
LM (θ,Λ) ≤ 0, guarantees that the linear matrix inequalities
M j(θ,Λ) ⪰ 0, j = 1, . . . , p hold true. Let us consider
the loss functions characterizing the satisfaction of Lipschitz
bound as

LM (θ,Λ, Λ̂, Λ̄) = −cl1 log det(M1(θ,Λ))

− cl2 log det(M2(θ̂, Λ̂))− cl3 log det(M3(θ̄, Λ̄)),
(16)

where cl1 , cl2 , cl3 are positive weight coefficients for the sub-
loss functions, M1,M2,M3 are the semi-definite matrices
corresponding to the Lipschitz bounds Lh, Ldh, Ld2h respec-
tively, Λ, Λ̂, Λ̄ are trainable parameters and θ, θ̂, θ̄ are the
weights mentioned in Theorem 2.

Finally, let us consider the following loss function to
satisfy validity condition (11):

Lv(ψ) = max (0, Lmaxϵ̄+ ψ) , (17)

where Lmax is maximum of the Lipschitz constants
of qk(x), k ∈ {1, 2, 3} in (9), or Lmax =
max (Lh, Lh + LdhLx + Ld2h).

B. Training with Safety Guarantee

Algorithm 1 Learning Formally Verified Stochastic Neural
Control Barrier Functions
Require: Data Sets: S,U ,D, Dynamics: f, g, σ, Lipschitz

Bounds: Lh, Ldh, Lx, Ld2h
Initialise(θ, ψ,Λ,Λ′,Λ′′)
xi ← sample(S,U ,D)
Lmax ← Lh, Ldh, Lx, Ld2h
while Lθ > 0 or LM ̸≤ 0 or Lv > 0 do

h̃← θ
ui ← SNCBF−QP(h̃, f, g, σ, xi, ψ) ▷ From eq. (18)
Lθ ← (h̃, f, g, σ, xi, ui, ψ) ▷ From eq. (13)
θ ← Learn(Lθ, θ)
LM ← (θ,Λ,Λ′,Λ′′) ▷ From eq. (16)
θ,Λ,Λ′,Λ′′ ← Learn(LM)
Lv ← (Lmax, ψ) ▷ From eq. (17)
ψ ← Learn(Lv)

end while

The overall training procedure is as follows. We first fix
all the hyper-parameters required for the training, including
ϵ̄,Lh,Ldh,Ld2h, λ1, λ2, cl1 , cl2 , cl3 , and the maximum num-
ber of epochs considered. At each time step, the controller
intakes the current state x and reference control input uref(x).
The basic idea is to construct safe control input by filtering
out unsafe actions based on the condition derived from
learned SNCBF. Specifically, the controller minimizes the
modification on the control input u compared to uref such that

the SNCBF safety condition holds by solving SNCBF−QP
defined as follows.

min
u∈U
∥u− uref (x)∥

s.t.
∂h̃ (xi | θ)

∂x
(f(xi) + g(xi)u) +

1

2
tr

(
σ⊺ ∂

2h̃ (xi | θ)
∂x2

σ

)
≥ −κ(h̃(xi)). (18)

Finally, the control action u can be used in computing loss
functions in the next iteration. The training data sets are ran-
domly shuffled into several batches, and the loss is calculated
for each batch at a time. Then, using a stochastic gradient
descent algorithm, e.g., ADAM, the trainable parameters
θ,Λ, Λ̂, Λ̄ and ψ are updated. This procedure is repeated
until the network converges or if a predefined maximum
episode number is reached. For our proposed approach, all
of the learning is done offline in a simulation environment.
After the learning process converges, the SNCBF-QP based
controller u can then be deployed to the intended system.
The overall algorithm is summarised in Algorithm 1

We next present the following theorem that provides
formal guarantees of safety for the continuous time stochastic
control system by utilizing the trained SNCBF h̃(x | θ).

Theorem 3: Consider a continuous time stochastic control
system (1), and safe and unsafe sets Xs ⊆ X and Xu ⊆ X ,
respectively. Let h̃(x | θ) be the trained SNCBF, such that
Lθ = 0, LM ≤ 0 and Lv = 0. Then, the control action
u obtained by solving the SNCBF−QP (18), makes the
system safe.

Proof: When LM ≤ 0, it indicates that the Lipschitz
bound on the SNCBF h̃, ∂h̃(xi|θ)

∂x , and σ⊺ ∂
2h̃(xi|θ)
∂x2 σ is

satisfied. Consequently, we can compute Lmax, which is nec-
essary to validate the conditions outlined in (11).Moreover,
when Lv = 0, it signifies the fulfillment of the validity con-
ditions (11), leading to the determination of an optimal ϕ∗.
Similarly, Lθ = 0 denotes the satisfaction of the conditions
stipulated in SOP (10) (functions qk(x) ≤ ψ∗, k ∈ 1, 2, 3 in
equation (9)). Consequently, all the conditions outlined in (7)
are met, resulting in the formal verification of the SNCBF
and ensuring the safety of the system through the controller
u derived by solving the SNCBF-QP.

V. SIMULATIONS

In this section, we assess the efficacy of our proposed
methodology through two distinct case studies: the inverted
pendulum model and the obstacle avoidance of an au-
tonomous mobile robot [27]. Both case studies are conducted
on a computing platform equipped with an Intel i7-12700H
CPU, 32GB RAM, and NVIDIA GeForce RTX 3090 GPU.
For the class K function in the CBF inequality (5), we chose
κ(h) = γh, where γ = 1.

(a) (b) (c)

Fig. 1: This figure presents the experimental results on the inverted pendulum system. Fig. 1a visualizes of h̃ (x | θ) over
X . Blue and red regions denote the safe region (h̃ ≥ −ψ∗) and the unsafe region (h̃ < ψ∗), respectively. The initial safety
region boundary and unsafe region boundary is denoted by black boxes. We observe that the boundary of trained SNCBF
(black dots) successfully separate the unsafe and safe region. Fig. 1b shows the 3D plot of h̃ (x | θ) over X . We observe that
the safe region is greater than zero while unsafe region has negative function value. Fig. 1c presents trajectories initiating
inside the safe set following SNCBF-QP, following different reference controllers

A. Inverted Pendulum

We consider a continuous time stochastic inverted pendu-
lum dynamics given as follows:

d

[
θ

θ̇

]
=

([
θ̇

g
l sin(θ)

]
+

[
0
1
ml2

]
u

)
dt+ σ dWt,

(19)

where θ ∈ R denotes the angle, θ̇ ∈ R denotes the angular
velocity, u ∈ R denotes the controller, m denotes the
mass and l denotes the length of the pendulum. We let
the mass m = 1kg, length l = 10m and the disturbance
σ = diag(0.1, 0.1). The inverted pendulum operate in a state
space given as X =

[
−π4 ,

π
4

]2
. The system is required to

stay in a limited safe stable region. The initial safe region is
given as Xs =

[
− π

15 ,
π
15

]2
and the unsafe region is given as

Xu = X\
[
−π6 ,

π
6

]2
.

We train the SNCBF, assuming knowledge of the model.
The SNCBF h̃ consists of one hidden layer of 20 neurons,
with Softplus activation function (log(1 + exp(x)).

We set the training hyper-parameters to ϵ̄ = 0.00016,
Lh = 0.01, Ldh = 0.4 and Ld2h = 2 yielding Lmax =
2.4. We perform the training to simultaneously minimize
the loss functions Lθ,LM , and Lv . The training algorithm
then converges to obtain the SNCBF h̃ (x | θ) with ψ∗ =
−0.00042. Thus, using Theorem 1, we can verify that the
SNCBF thus obtained is valid, thus ensuring safety.

Visualizations of the trained SNCBF are presented in both
2D with sample points (Fig. 1a) and in 3D function value
heat map (Fig. 1b). These visualizations demonstrate the
successful separation of the initial safety region boundary
from the unsafe region boundary. We validate our SNCBF-
QP based safe controller on an inverted pendulum model
on PyBullet. Fig 1c shows the trajectories initiating inside
the safe set (with different reference controllers) and never
leaving the safe set, thus validating our approach.

8m reaction
12m reaction
Unsafe Region

6m reaction

Fig. 2: Proposed safe control comparison among different
reaction distance. We let the vehicle to adjust its orientation
to maneuver in its lane. We show three trajectories to
demonstrate our proposed SNCBF-based controller under
different initial state, namely, 6, 8 and 12 meter away
from the pedestrian, respectively. Three trajectories of the
vehicle under control shows our proposed method succeeds
in maneuvering the vehicle to avoid the pedestrian.

B. Obstacle Avoidance

We consider an autonomous mobile robot navigating on a
road following the dynamics [28] given below

d

 x1
x2
ψ

 =

 v cosψ
v sinψ

0

+

 0
0
1

u
 dt+ σ dWt

(20)

where [x1, x2, ψ]
T ∈ X ⊆ R3 is the state consisting of

the location (x1, x2) of the robot and its orientation ψ,
with v representing the robot’s speed and u controlling its
orientation. We set the speed v = 1 and the disturbance
σ = diag(0.1, 0.1, 0.1).

The mobile robot is required to stay on the road while
avoiding pedestrians sharing the field of activities. The
unicycle operates in a state space given as X = [−2, 2]3. The
initial safe region is given as Xs = X\[−1.5, 1.5]2× [−2, 2]
and the unsafe region is given as Xu = [−0.2, 0.2]2×[−2, 2].

We train the SNCBF, assuming knowledge of the model
with the same architecture as before (one hidden layer of 20
neurons, with Softplus activation function (log(1+exp(x))).
The training hyper-parameters are set to ϵ̄ = 0.01, Lh = 1,

Fig. 3: The left and right figures show the unsafe region and
the zero-level sets of the SNCBF h̃ trained by baseline and
the proposed method, respectively. Both zero-level sets (in
yellow) do not overlap with the unsafe region in red color.
The SNCBF trained by the baseline ensures a guaranteed safe
subset over the state space with the ratio 11.8% only, whereas
the proposed method ensures a guaranteed safe subset with
a ratio up to 77.6%.

Ldh = 1 and Ld2h = 2 resulting in Lmax = 4. We perform
the training to simultaneously minimize the loss functions
Lθ,LM , and Lv . The training algorithm then converges to
obtain the SNCBF h̃ (x | θ) along with ψ∗ = −0.04002.

We validate our safe control in the CARLA simulation
environment, in which the vehicle maneuvers its orientation
to conduct obstacle avoidance. If the control policy guides
the vehicle to another lane with no obstacle ahead, then it
switches to a baseline autonomous driving algorithm. The
trajectory of the vehicle is shown in Fig. 2. We show the
trajectory of the proposed SNCBF-based safe control in
different reaction distances, namely, 6, 8, and 12 meters,
respectively. All three trajectories of the vehicle under con-
trol show our proposed method succeeds in maneuvering the
vehicle to avoid the pedestrian.

We next compare our proposed method with SNCBF
trained with baseline proposed in [22] assuming given func-
tion h(x). The synthesized SNCBF are visualized in 3. We
observe that the synthesized SNCBF h̃ successfully separates
the safe and the unsafe region, since both zero-level sets (in
yellow) do not overlap with the unsafe region in red color.
We also found that the proposed method ensures a larger
subset compared with the baseline. The baseline ensures that
11.8% of the state space is safe, while the proposed method
ensures that 77.6% of the state space is safe.

VI. CONCLUSIONS

In this paper, we proposed an algorithmic approach to
learn a valid continuous-time neural CBF with formal guar-
antees in a stochastic environment. We constructed a sample-
based training framework to train SNCBF and proved that the
efficacy of learned SNCBF by enforcing Lipschitz bounds
on the neural network, its Jacobian and (trace of) Hessian
terms. We further derived the sufficient condition for the
safety of SNCBF-based system. The effectiveness of our
proposed approach was demonstrated using the simulation
study on inverted pendulum and obstacle avoidance. As a part
of future work, we plan to extend this framework to account

for unknown dynamics and control bounds. We also plan to
improve the algorithm in order to iterate on the improving
the size of the safe region and making the learnt CBF less
conservative. We also plan to perform hardware experiments
on robotic systems.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
6271–6278.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2017.

[3] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 18th European control conference (ECC). IEEE, 2019, pp. 3420–
3431.

[4] P. Jagtap, S. Soudjani, and M. Zamani, “Formal synthesis of stochastic
systems via control barrier certificates,” IEEE Transactions on Auto-
matic Control, vol. 66, no. 7, pp. 3097–3110, 2020.

[5] A. Clark, “Verification and synthesis of control barrier functions,” in
2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 6105–6112.

[6] G. Wu and K. Sreenath, “Safety-critical control of a planar quadrotor,”
in 2016 American Control Conference (ACC), 2016, pp. 2252–2258.

[7] M. Tayal and S. Kolathaya, “Control barrier functions in dynamic uavs
for kinematic obstacle avoidance: a collision cone approach,” arXiv
preprint arXiv:2303.15871, 2023.

[8] Q. Nguyen and K. Sreenath, “Safety-critical control for dy-
namical bipedal walking with precise footstep placement,” IFAC-
PapersOnLine, vol. 48, no. 27, pp. 147–154, 2015.

[9] A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares
techniques for systems analysis,” in Proceedings of the 2005, American
Control Conference, 2005., 2005, pp. 2686–2700 vol. 4.

[10] U. Topcu, A. Packard, and P. Seiler, “Local stability analysis using
simulations and sum-of-squares programming,” Automatica, vol. 44,
no. 10, pp. 2669–2675, 2008.

[11] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas,
S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” in 2020 59th IEEE Conference on Decision and
Control (CDC), 2020, pp. 3717–3724.

[12] H. Zhao, X. Zeng, T. Chen, and Z. Liu, “Synthesizing barrier certifi-
cates using neural networks,” in Proceedings of the 23rd international
conference on hybrid systems: Computation and control, 2020, pp.
1–11.

[13] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo,
“Fossil: A software tool for the formal synthesis of Lyapunov functions
and barrier certificates using neural networks,” in Proceedings of the
24th International Conference on Hybrid Systems: Computation and
Control, 2021, pp. 1–11.

[14] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis
of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5,
no. 3, pp. 773–778, 2020.

[15] A. Peruffo, D. Ahmed, and A. Abate, “Automated and formal synthesis
of neural barrier certificates for dynamical models,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer
International Publishing, 2021, pp. 370–388.

[16] Q. Zhao, X. Chen, Z. Zhao, Y. Zhang, E. Tang, and X. Li, “Verifying
neural network controlled systems using neural networks,” in 25th
ACM International Conference on Hybrid Systems: Computation and
Control, 2022, pp. 1–11.

[17] H. Zhang, J. Wu, Y. Vorobeychik, and A. Clark, “Exact verification
of relu neural control barrier functions,” in Advances in Neural
Information Processing Systems, A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates,
Inc., 2023, pp. 5685–5705.

[18] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using
robust neural Lyapunov-barrier functions,” in Conference on Robot
Learning. PMLR, 2022, pp. 1724–1735.

[19] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural Lyapunov, barrier, and contraction methods for
robotics and control,” IEEE Transactions on Robotics, 2023.

[20] S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with
neural control barrier functions,” in Conference on Robot Learning.
PMLR, 2023, pp. 1970–1980.

[21] B. Dai, P. Krishnamurthy, and F. Khorrami, “Learning a better control
barrier function,” in 2022 IEEE 61st Conference on Decision and
Control (CDC), 2022, pp. 945–950.

[22] H. Zhang, L. Niu, A. Clark, and R. Poovendran, “Fault tolerant neural
control barrier functions for robotic systems under sensor faults and
attacks,” arXiv preprint arXiv:2402.18677, 2024.

[23] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and
C. Fan, “How to train your neural control barrier function: Learning
safety filters for complex input-constrained systems,” arXiv preprint
arXiv:2310.15478, 2023.

[24] M. Anand and M. Zamani, “Formally verified neural network control
barrier certificates for unknown systems,” IFAC-PapersOnLine, vol. 56,
no. 2, pp. 2431–2436, 2023.

[25] M. Lutter, C. Ritter, and J. Peters, “Deep lagrangian networks: Using
physics as model prior for deep learning,” in International Conference
on Learning Representations, 2019.

[26] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training
robust neural networks using lipschitz bounds,” IEEE Control Systems
Letters, vol. 6, pp. 121–126, 2021.

[27] A. J. Barry, A. Majumdar, and R. Tedrake, “Safety verification of reac-
tive controllers for UAV flight in cluttered environments using barrier
certificates,” in 2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012, pp. 484–490.

[28] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

APPENDIX I
PROOF OF THEOREM 2

Proof: Consider the dimension of the input (x) is r×1,
the dimension of final weight (θ1) is 1×p, the dimension of
pre-final weight (θ0) is p× q and the dimension of pre-final
bias (b0) is p× 1. Let us start by analytically differentiating
the neural network:

y = θ1ϕ(θ0x+ b0)

∂y

∂x
= θ1diag(ϕ

′)θ0

(Here, ϕ′ = ϕ′(θ0x+ b0))

The dimension of ∂y
∂x is 1 × r, therefore, its transpose will

have the dimension of r × 1.

(
∂yl
∂x

)T = (θ1diag(ϕ
′)θ0)

T

= ((ϕ′)T diag(θ1)θ0)
T

(∵ αT diag(β) = βT diag(α), if α, β are same dim vectors)

= θT0 diag(θ1)︸ ︷︷ ︸
θ̂l

ϕ′(θ0x+ b0)

Now comparing this with the standard neural network we
observe that the derivative term (∂y∂x) is behaving like a neural
network with activation ϕ̂ = ϕ′l and weight parameters θ̂ =
(θ0, θ̂1) and θ̂1 is defined as:

θ̂1 = θT0 diag(θ1)

Therefore, the certificate for L-Lipschitz continuity of the
derivative term (∂y∂x) is given by Mϕ̂(θ̂,Λ) ⪰ 0.

Now, let us analytically calculate tr(σT ∂
2y
∂x2σ), where σ is

r × r diagonal matrix.

∂y

∂x
= θ̂1ϕ̂(θ0x+ b0)

σT
∂2y

∂x2
σ = σT (θ̂1diag(ϕ̂

′)θ0)σ

tr(σT
∂2y

∂x2
σ) = tr(σT (θ̂1diag(ϕ̂

′)θ0)σ)

=
[∑r

j=0 σ
2
j θ
j1
1 θ

1j
0 . . .

∑r
j=0 σ

2
j θ
jn
1 θpj0

]
︸ ︷︷ ︸

θ̄1

ϕ′′(θ0x+ b0)

Again, comparing this with the standard neural network we
observe that tr(σT ∂

2y
∂x2σ) is behaving like a neural network

with activation ϕ̄ = ϕ′′ and weight parameters θ̄ = (θ0, θ̄1)
and θ̂1 is defined as:

θ̄1 =
[∑r

j=0 σ
2
j θ
j1
1 θ

1j
0 . . .

∑r
j=0 σ

2
j θ
jn
1 θpj0

]
Therefore, the certificate for L-Lipschitz continuity of the

tr(σT ∂
2y
∂x2σ) term is given by Mϕ̄(θ̄,Λ) ⪰ 0.

	Introduction
	Preliminaries
	Notations
	System Description
	Control Barrier Functions (CBFs)
	Controller Synthesis for Real-time Safety

	Problem Formulation
	Method
	Synthesis of SNCBF
	Training with Safety Guarantee

	Simulations
	Inverted Pendulum
	Obstacle Avoidance

	Conclusions
	References
	Appendix I: Proof of Theorem 2

