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Abstract
Human-Computer Interaction has been shown to
lead to improvements in machine learning systems
by boosting model performance, accelerating learn-
ing and building user confidence. In this work, we
aim to alleviate the expectation that human annota-
tors adapt to the constraints imposed by traditional
labels by allowing for extra flexibility in the form
that supervision information is collected. For this,
we propose a human-machine learning interface for
binary classification tasks which enables human an-
notators to utilise counterfactual examples to com-
plement standard binary labels as annotations for a
dataset. Finally we discuss the challenges in future
extensions of this work.

1 Introduction
While the field of Artificial intelligence (AI) research has un-
doubtedly made remarkable progress in recent years, it is im-
portant to recognize that this expansion does not necessar-
ily imply a proportionate step towards a form of AI that has
ability to understand, learn, and apply knowledge across var-
ious domains. Instead, we are witnessing the proliferation of
specialized tools; each designed to tackle specific tasks with
remarkable proficiency, often with a high associated cost.

For example, Large Language Models (LLMs) excel in
their designated domains [Wei et al., 2022], but their excep-
tional performance is often reliant on the availability of large
datasets [Devlin et al., 2019] and their capabilities are of-
ten limited when confronted with unfamiliar or unforeseen
challenges [Collins et al., 2022]. In this paper we ask if the
reliance on large amounts of data and poor model generali-
sation can be alleviated through human-machine interaction,
and propose an interface that enables human annotators to
evaluate model behaviour and increase the complexity of in-
dividual annotations where required.

Many recent approaches in human-in-the-loop (HITL) ma-
chine learning have focused on providing post-hoc explana-
tions for the decisions generated by complex machine learn-
ing models [Wang et al., 2021; Kurzendorfer et al., 2017]. By
integrating these explanations into the pipeline, researchers
aim to empower humans to detect the presence of spurious
correlations. Such correlations often imply biases present in

the training data, which in turn presents a need for more in-
telligent data selection. Active learning typically engages hu-
mans in the annotation process to strategically choose sam-
ples that will most effectively improve the model’s perfor-
mance [Ren et al., 2022], usually selected to reduce a form
of uncertainty [Prince, 2004], mitigating the need for large
datasets. However, solely relying on labels for supervision
information may be too inflexible for some tasks and may
under-utilise the skills of the annotators. The field of Ma-
chine Teaching provides flexibility by allowing humans to se-
lect groups of samples that effectively describe concepts and
patterns [Zhu, 2015]. Recent work combines active learning
and machine teaching to automatically generate the minimum
viable dataset to learn a concept, and then apply an active
learning approach to refine this initial prototype [Mosqueira-
Rey et al., 2021].

Human involvement in the learning pipeline is not only re-
stricted to data selection. Humans can provide feedback on
the explanations produced by models e.g. by adjusting deci-
sion boundaries for a 3D segmentation task [Kurzendorfer et
al., 2017] according to human input, or to augment training
examples. Kaushik et al. create a new dataset of counter-
factual pairs[Kaushik et al., 2020]; a counterfactual is usu-
ally defined as a point belonging to the other class which is
closest to the current instance. Kaushik et al. generate mini-
mally different counterfactuals by employing human annota-
tors to change film reviews from positive to negative and vice
versa while avoiding any unnecessary changes. They demon-
strate that models trained with a mixture of original data and
human-generated counterfactuals produce robust models that
improve generalisation for a sentiment classification task on
the IMDB dataset.

We consider the case where a human expert is familiar with
the problem, but no additional data can be generated. Relax-
ing the method employed by Kaushik, we enable the annota-
tor to indicate the direction from an observation along which
we expect a counterfactual observation. Through the addition
of these annotations, we allow a human annotator to influence
the decision boundary of a model during training, without the
need for additional data.

2 Methodology
We demonstrate our approach on a simple synthetic example
for which a human expert can provide valuable insights. We
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Figure 1: A typical machine learning pipeline contrasted with our proposed method.

describe an interface between human and machine learning
system to enable evaluations and machine-intelligible anno-
tations and adapt the training process to learn from these an-
notations. This extension of the traditional ML pipeline is
illustrated in Figure 1.

2.1 Learning Task
We propose 2-dimensional binary classification with separa-
ble clusters conforming to typical shapes. As the classes are
clearly separable, given any observation, a change in classifi-
cation can be achieved through a simple translation. Problems
of this nature are readily solvable for any human observer,
who could consider any instance and indicate whether a pos-
itive or negative shift in the either direction would lead to a
change in class.

In traditional supervised learning for classification, we as-
sume a dataset of pairs {xi, yi}, where xi ∈ Rn and yi is
the target class label [Hastie et al., 2009]. Here, let us con-
sider instead that we have access to doublets of the form
of an example xi and any number of user-defined direction
vectors di ∈ Rn, along each of which we expect to in-
tersect the decision boundary. This can be summarised as
{xi,Ki = {dj,dj+1, ...,dk}} where k is the cardinality of
the set of counterfactuals defined for any given example in
the dataset, 0 ≤ k < ∞.

We can define multiple counterfactual directions from one
observation, and can repeat this process for any number of
observations. A human observer can pause training at any
point, and add more counterfactual directions for any obser-
vations. Subsequently, model training is resumed, and this
process can be repeated indefinitely.

2.2 Human-Machine Learning Interface
This annotation scheme defined in Section 2.1 requires a
graphical user interface, which we illustrate in Figure 2.
The ‘Data’ section of the interface enables a user to change
datasets and experiment with different quantities of observa-
tions. The control buttons (top middle) of the GUI enable
the user to start and stop training, and save and delete model
performance data.

The center of the console presents the user with a visualisa-
tion of the dataset and the test accuracy of the current model
and any saved model. The accuracy plots enable an evaluation

using a standard measure, as well as comparison of the train-
ing for different saved models. The ‘current’ accuracy curve
in our example shows the ongoing training effort, with the
other series representing previous attempts which have been
saved and renamed by the user. Experiments can be added or
removed for comparison to allow for experimentation of su-
pervision procedures and multiple human tests at once. Final
accuracies are presented in a table on the right hand side of
the interface and can be saved to allow for further analysis.

Under the results we present a live view of the model deci-
sion boundaries as they shift during training relative to the la-
belled training examples (solid) and the test examples (trans-
parent). By observing how the parameter adaptations are af-
fecting the predictive capabilities of the model across multi-
ple iterations, it is possible to draw conclusions about whether
the model is effectively and efficiently learning the correct so-
lution. This evaluation, combined with the model accuracy,
provides a deeper insight into the learning process. This also
allows the user to see in which areas the model is incorrect,
and correct it by providing additional counterfactual direc-
tions.

The annotation toolbox (lower left) enables a human expert
to select any point and generate arrows to indicate counterfac-
tual directions. Existing vectors are shown in black, while the
vector being generated is highlighted in green. These vectors,
K, must be intelligible to the machine learning pipeline to be
used for learning.

2.3 Leveraging Annotations in Learning
After defining the counterfactual directions in K, we make
the simplifying assumption that the gradient of our predic-
tive model for our given class should be negative along these
vectors, to indicate a change in probability. For example,
as we move from an observation within the distribution of
Class 0 towards the region of Class 1, we expect our proba-
bility of being in Class 0 to be decreasing. This component
is highly domain-specific; any form of annotation could re-
place this function, provided the annotation is generated in a
form which can be interpreted by an accompanying loss func-
tion. The interface is designed such that adapting the annota-
tion toolbox to use a different form of supervision is straight
forward. In our demonstration, we satisfy this requirement
by developing a novel loss function component which checks



Figure 2: Our Graphical User Interface (GUI) which enables learning from human expert annotations. The current annotation is represented
by a green arrow, with prior annotations represented in black. The annotation toolbox (bottom left) enables the annotator to define the
direction d for a selected data point which will lead to a counterfactual observation. The inspection console (bottom-centre) consists of
the dataset and the model predicted probabilities across the feature space. The evaluation console (top-centre) enables comparisons across
different experiments. This example shows the test accuracy for a control dataset with no annotations and a labelled set which features the
counterfactuals directions shown in the inspection console. In both cases the dataset is limited to 9 observations.

the model decision surface and rewards negative gradients in
alignment with the human-generated directions.

Loss Function
We propose that the gradient of our model f(x) should be
aligned with the a human-generated direction di i.e. since
the direction is counterfactual, the prediction probability yi
should decrease in this direction. We define a function that
aligns the gradients of our model with the direction the human
provided, where the sign of the gradient in the given direction
is defined as

sdi
= sign(∇di

f(xi)), (1)
where ∇di

f(xi) = di · ∇f(xi) is the gradient of the model
in the direction of di with respect to input xi, f(xi) is the
predicted probability for xi belonging to class 0, and the sign
function is approximated with tanh (c∇dif(xi)) where we
set c = 20 to create a very steep function. We define our loss
function as

Ld =
1

Nd

Nd∑
i=1

|(2yi − 1)sdi
+ 1| (2)

where Nd is the number of examples in the training set for
which we have labelled directions. This function is 0 when
the gradient of f(x) is in agreement with the human direction,
and 2 otherwise.

We assume an Empirical Risk Minimisation approach with
binary cross entropy loss as a baseline (for which a deriva-
tion and additional theory is provided by [Goodfellow et al.,
2016]).

3 Demonstration
The interface is available for download from GitHub1 with
installation instructions and a user manual contained in the
README.md file.

3.1 Extension to NLP Domain
We are able to generate direction vectors between observa-
tion and counterfactual and utilise these direction vectors for
a high-dimensional problem by replicating the counterfactual
experiments on the IMDB dataset[Kaushik et al., 2020] and
utilising our novel loss function. This raises questions around
the minimum number of counterfactual observations which
can adequately improve model training, for which the user in-
terface may be useful. This would either require some form of
active learning component to select those film reviews which
are misclassified with the greatest amount of error, or dimen-
sionality reduction which would allow exploration of the fea-
ture space in two dimensions.

1https://github.com/jmerskine1/interactive gradients.git

https://github.com/jmerskine1/interactive_gradients.git
https://github.com/jmerskine1/interactive_gradients.git
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