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THE GREEN’S FUNCTION OF POLYHARMONIC OPERATORS

WITH DIVERGING COEFFICIENTS: CONSTRUCTION AND

SHARP ASYMPTOTICS.

LORENZO CARLETTI

Abstract. We show existence, uniqueness and positivity for the Green’s func-
tion of the operator (∆g + α)k in a closed Riemannian manifold (M,g), of
dimension n > 2k, k ∈ N, k ≥ 1, with Laplace-Beltrami operator ∆g =
− divg(∇·), and where α > 0. We are interested in the case where α is large
: We prove pointwise estimates with explicit dependence on α for the Green’s
function and its derivatives. We highlight a region of exponential decay for
the Green’s function away from the diagonal, for large α.

1. Introduction and statement of the result

Let (M, g) be a smooth connected Riemannian manifold of dimension n, compact
and without boundary. Let k ≥ 1 be an integer, we assume that n > 2k. Let α > 0
be a fixed real number, we consider the elliptic partial differential operator of order
2k, (∆g + α)k in M , where we define ∆g := − divg(∇·) the Laplace-Beltrami
operator. In this article, relying on the method presented by F. Robert in [22],
we construct the Green’s function for (∆g + α)k in M . We show uniqueness and
positivity, as well as sharp pointwise asymptotics. The main goal of this paper is
to obtain asymptotics that explicitly depend on α to understand the behavior of
the Green’s function when α is large.

One of the first instances of the construction of a Green’s function for a poly-
harmonic operator is found in [3], where the fundamental solution for (−∆)k on a
ball of Rn with Dirichlet-type boundary conditions is computed. This is also the
first example of a positive Green’s function for a poly-harmonic operator. Indeed,
the question of positivity is highly non-trivial for higher order operators, since the
maximum principle no longer holds in general. For instance, see [8, 14] for re-
sults on this matter. Estimates on the Green’s function have also been studied
for polyharmonic problems on the Euclidean space, and sharp bounds from below
and above can be obtained, see for instance [4, 12]. Note that in all the previous
references, the boundary conditions play an important role and, in the estimates,
an explicit dependence on the distance to the boundary is often involved. In the
case of this article, these considerations will not be included since we work on a
closed manifold. It is also worth mentioning that there exists an extensive liter-
ature for the construction of Green’s functions for standard operators of second
order on common domains of Rn, in particular in R

2, R3. See for instance [5] for
an undergraduate-level textbook on the matter.
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2 LORENZO CARLETTI

Polyharmonic operators on manifolds have been studied because of their connec-
tions with the so-called prescribed Q-curvature equations. These equations involve
a special family of conformally invariant operators, called GJMS operators [11],
for which a Green’s function was investigated in [20]. Green’s functions for GJMS
operators have proven fundamental to obtain existence results for the prescribed
Q-curvature equations, we refer to [23] for the conformal Laplacian, see also [19]
and the references therein for higher-order Q-curvature equations. Moreover, the
operator (∆g +α)k can be seen as a toy-model for the GJMS operator of order 2k,
which, on an Einstein manifold, can be written as a product of k operators of the
form ∆g + cj (see [6]).

In this paper, we study the operator (∆g + α)k, with α > 0, in M . Our main
motivation to consider these specific operators comes from their importance in the
study of the optimal constant for the critical Sobolev embeddings. We refer to
[17] in the case k = 1 and [15] for the biharmonic case k = 2, where the operator
(∆g+α)

k, as α→ ∞, naturally appears in a contradiction argument. In this work,
we follow the iterative approach of [22], and obtain sharp pointwise estimates that
explicitly depend on α. The present article provides technical results that will be
used in future works. Operators of the form (∆g + α)k also naturally appear in
other contexts, see for instance [7, 21] where concentration phenomena for critical
nonlinear equations are investigated.

For any p ≥ 1 and l ∈ N, let us define the norms

‖u‖pHl,p(M) :=

l
∑

m=0

∥

∥

∥
∆m/2

g u
∥

∥

∥

p

Lp(M)
,

where we write
∣

∣

∣
∆

m/2
g u

∣

∣

∣
:=

{

∣

∣∆i
gu
∣

∣ if m = 2i is even,
∣

∣∇∆i
gu
∣

∣

g
if m = 2i+ 1 is odd

. Let us also define

the Sobolev space Hl,p(M) as the closure of C∞(M) in Lp(M) with respect to the
norm ‖·‖Hl,p . We write Hk(M) for the Hilbert space Hk(M) = Hk,2(M), for k ≥ 1
integer.

Observe that, for α > 0, the operator (∆g + α)k is coercive, since if α ≥ 1,

‖u‖2Hk(M) =

k
∑

l=1

∫

M

∣

∣

∣
∆l/2

g u
∣

∣

∣

2

dvg

≤
k
∑

l=1

(

k
l

)

αk−l

∫

M

∣

∣

∣
∆l/2

g u
∣

∣

∣

2

dvg =
〈

(∆g + α)ku, u
〉

H−k,Hk ,

and if α < 1

‖u‖2Hk(M) ≤ 1
αk

〈

(∆g + α)ku, u
〉

H−k,Hk .

If ϕ ∈ C∞(M), the existence and uniqueness of a solution u ∈ C∞(M) to the linear
equation

(1.1) (∆g + α)ku = ϕ on M

follows from the coercivity of the operator, and from standard elliptic theory. See for
instance [9] for standard existence and regularity results in the case k = 1, which
can be iterated in the case of our operator. This allows us to define a Green’s
function for this operator.
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Definition 1.1 (Green’s function). Let α > 0, k ≥ 1 and n > 2k, and let (M, g) be
a connected compact Riemannian manifold of dimension n, without boundary, with
Laplace-Beltrami operator ∆g = − divg(∇·). A Green’s function for the operator
(∆g+α)

k in M is a function G :M ×M \{(x, x) : x ∈M} → R such that, writing
Gx(y) := G(x, y) for all x 6= y in M , we have Gx ∈ L1(M) for all x ∈ M , and for
all ϕ ∈ C∞(M) and all x ∈M ,

∫

M

Gx(∆g + α)kϕdvg = ϕ(x).

This is equivalent to saying that (∆g + α)kGx = δx in the distributional sense on
M , where δx is the Dirac’s delta distribution centered at x ∈M .

We are interested in explicit α-dependent estimates on the function and its
derivatives, in particular as α gets large. Our main result is the following The-
orem. Note that a closed Riemannian manifold has a positive injectivity radius,
ig > 0.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold, of dimension n ≥ 3,
let k ≥ 1 with n > 2k, and α > 0. The operator (∆g + α)k in M has a unique

Green’s function Gg,α, which is positive, symmetric, and is in C∞(M×M \{(x, x) :
x ∈M}). Moreover, there exists α0 ≥ 1 such that we have the following :

• There is a constant C > 0 such that for all α ≥ α0 and all x 6= y in M
with

√
αdg(x, y) ≤ 1, we have

(1.2) Gg,α(x, y) = cn,k dg(x, y)
2k−n

(1 + ηα(x, y))

with

|ηα(x, y)| ≤ C











√
α dg(x, y) n = 2k + 1

αdg(x, y)
2(
1 + |log√α dg(x, y)|

)

n = 2k + 2

αdg(x, y)
2 n ≥ 2k + 3

,

and where cn,k is an explicit positive constant given by (2.1) below.

• For all 0 < ε < 1, there is a constant Cε > 0 such that for all α ≥ α0 and

all x, y ∈M with
√
αdg(x, y) ≥ 1,

Gg,α(x, y) ≤ Cε

{

dg(x, y)
2k−n

e−(1−ε)
√
αdg(x,y) if dg(x, y) < ig/2

e−(1−ε)
√
αig/2 if dg(x, y) ≥ ig/2.

This Theorem highlights that when dg(x, y) is small in comparison to 1/
√
α,

the Green’s function for (∆g + α)k in M behaves to first order as the Green’s
function for the poly-Laplacian in R

n, (−∆)k, up to a remainder term on which we
prove explicit bounds. On the other hand, when dg(x, y) ≥ 1/

√
α, we obtain an

exponential decay. In particular, any region of M situated at a fixed distance from
a given point x ∈M will lie in this regime as α becomes large. Note also that most
of the construction of the Green’s function does not rely on the fact that α ≥ α0.
It is only at α → ∞, however, that exponential estimates at finite distance are of
interest.

Green’s function for polyharmonic operators of order 2k in n-dimensional do-
mains or manifolds, with n > 2k, and with bounded coefficients, have been known
to satisfy estimates of the following type: There exists C > 0 such that

|G(x, y)| ≤ Cdg(x, y)
2k−n
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for all x 6= y (see [8, Section 4], [22]). Theorem 1.1 improves these estimates for the
specific polyharmonic operator (∆g + α)k in M , as α → ∞. A new contribution
of this work is the derivation of estimates on the decay of Gg,α which are explicit
in the lower-order term’s coefficient. This dependence in α draws parallel to the
well-known behavior of the Helmholtz kernel for the operator −∆− λ2 in R

3 (see
for instance [5]).

The article is structured as follows. In Section 2, we construct a fundamental
solution in R

n for (−∆+α)k, and prove precise estimates using a modified Giraud’s
Lemma which is proved in the Appendix A. Section 3 is devoted to the proof
of Theorem 1.1. Based on the method of Robert [22], we iteratively construct
an approximation of the Green’s function in M preserving the estimates of the
Euclidean case. We then conclude the proof of the Theorem thanks to a self-
improving argument that allows to estimate the remainder term. Moreover, we
show estimates on the derivatives of the Green’s function, in Proposition 3.9 below.

Remark 1.1 (Notational conventions).

(1) We work on a manifold with fixed metric g. In the following, unless specified
otherwise, all constants only depend on (M, g), n, k, they are denoted C,
and their explicit value can vary from line to line, sometimes even in the
same line.

(2) Let f : X × Y → R be a function, we will write, for any fixed x ∈ X ,
fx : Y → R with fx(y) := f(x, y).

(3) We will write Bx(R) for the ball of center x and radius R > 0, either in
M or in the Euclidean space R

n, without distinction. We also define the
diagonal set Diag := {(x, y) : x = y} either in M or in R

n, the ambient
space will always be clear from context.

2. The Green’s function for (−∆+ α)k in R
n

In this Section, we prove uniqueness and pointwise bounds for the Green’s func-
tion of the elliptic polyharmonic operator (−∆+ α)k in the Euclidean space R

n.

2.1. Green’s function of the poly-Laplacian in R
n. We start by gathering

basic results for the fundamental solution of the poly-Laplacian operator (−∆)k in
R

n. Here, we let ∆ =
∑n

i=1 ∂
2
i be the Laplace operator in the Euclidean space.

Fix an integer k ≥ 1, and n > 2k, then define

(2.1) cn,k =
1

4kπn/2(k − 1)!
Γ

(

n− 2k

2

)

,

where Γ(t) is the well-known Gamma function. This constant cn,k is chosen such
that

(2.2) H(k)(x, y) = cn,k
1

|x− y|n−2k

is a fundamental solution for the poly-Laplacian operator (−∆)k in R
n, see [8,

Section 2.6]. This means in particular that

(−∆)kH(k)
x = 0 in the weak sense on R

n \ {0}.
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2.2. Construction and uniqueness. Fix α > 0, the purpose this Section is to
show the existence and study the behavior of the Green’s function for (−∆+α)k in
R

n. In particular, we are interested in its dependence on the coefficient α > 0. We
start by observing that the Green’s functions for different values of α are related
by a simple scaling property. Then, we obtain an exact expression for the Green’s
function of the operator −∆ + 1. In a second step, we will use properties of the
convolutions of distributions to retrieve expressions for the polyharmonic operators
(−∆+ α)k, k ≥ 1. Finally, we use a modified version of Giraud’s Lemma, proved
in A.1, to obtain sharp pointwise bounds on the Green’s function.

Definition 2.1. Fix k ≥ 1, n > 2k and α > 0, we say that H
(k)
α (x, y) is a

fundamental solution for the polyharmonic operator (−∆ + α)k in R
n if for all

x ∈ R
n, H

(k)
α;x ∈ L1

loc(R
n) and

∫

Rn

H(k)
α (x, y)(−∆+ α)kϕ(y) dy = ϕ(x) for all ϕ ∈ C∞

c (Rn).

Remark 2.1. It is straightforward to compute that H
(k)
1 (x, y) is a fundamental

solution for the operator (−∆+ 1)k in R
n if and only if

(2.3) H(k)
α (x, y) := α

n−2k
2 H

(k)
1 (

√
αx,

√
αy)

is a fundamental solution for the operator (−∆+ α)k in R
n.

With this observation, we only study the Green’s function for (−∆ + 1)k in a
first step, and then retrieve the general case α > 0 using relation (2.3).

Recall the definition of the Bessel function of the second kind of order ν > 0,
Kν(r), which is singular at the origin, and solution to the second order ordinary
differential equation

u′′(r) +
1

r
u′(r)−

(

1 +
ν2

r2

)

u(r) = 0 on R
+ \ {0}.

These are well-known functions with explicit behavior (see [1]).

Proposition 2.1. Fix n ≥ 3, then

H1(x, y) := (2π)−
n
2 |x− y|−

n−2
2 Kn−2

2
(|x− y|)

is a fundamental solution for the operator (−∆+ 1) in R
n.

Proof. Start by observing that, thanks to the asymptotics for Kν found in [1], we
have the following :

• When |x− y| ≪ 1,

(2.4)

H1(x, y) =
π−n

2

4
Γ

(

n− 2

2

)

|x− y|−(n−2)
(1 + o(1))

=
1

(n− 2)ωn−1
|x− y|2−n

(1 + o(1))

∂

∂yi
H1(x, y) =

1

ωn−1

(xi − yi)

|x− y|n (1 + o(1))

⇔ |∇H1| (x, y) =
1

ωn−1
|x− y|1−n (1 + o(1));
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• When |x− y| ≫ 1,

(2.5)
H1(x, y) =

(2π)−
n−1
2

2
|x− y|−

n−1
2 e−|x−y|(1 + o(|x− y|−1

))

|∇H1| (x, y) =
(2π)−

n−1
2

2
|x− y|−

n−1
2 e−|x−y|(1 + o(|x− y|−1

)).

We now show that

(2.6) (−∆+ 1)H1;x(y) = 0 for all y 6= x.

By the expression of H1, we write r = |x− y| and define

H(r) := H1(x, y) = (2π)−
n
2 r−

n−2
2 Kn−2

2
(r).

Using the expression of the Laplacian in spherical coordinates on R
n, (2.6) re-writes

as
d2

dr2
H(r) +

n− 1

r

d

dr
H(r) −H(r) = 0.

Now H(r) satisfies this last equation for r > 0, by the definition of the Bessel
function of the second kind Kn−2

2
(r). Thus, we conclude that H1 solves (2.6) for

all x 6= y.
For the second part of the proof, take ϕ ∈ C∞

c (Rn), we show that for all x ∈ R
n

∫

Rn

H1;x(y)(−∆+ 1)ϕ(y) dy = ϕ(x).

We have

(2.7)

∫

Rn

(−∆ϕ+ ϕ)H1;x dy = lim
δ→0

∫

B0(δ)c
(−∆ϕ+ ϕ)H1;x dy

= lim
δ→0

[

a(δ) + b(δ) + c(δ)
]

,

where

a(δ) :=

∫

Bx(δ)c
(−∆H1;x +H1;x)ϕdy = 0

since H1;x satisfies (2.6) on R
n \ {x}, and with (2.4),

(2.8)

b(δ) :=

∫

∂Bx(δ)

H1;x∂νϕdσ(y) ∼ δ−(n−2)δn−1 = O(δ),

c(δ) := −
∫

∂Bx(δ)

∂νH1;xϕdσ(y) =
π− n

2

2
Γ
(n

2

)

ωn−1 ϕ(x) + o(1)

as δ → 0. Using the expression for the surface area of the sphere, we get
∫

Rn

(−∆ϕ+ ϕ)H1 dy = ϕ(x).

We can conclude that H1(x, y) is a fundamental solution for the operator (−∆+1)
on R

n. �

Remark 2.2. We additionally observe that, for |x− y| ≪ 1, the Green’s function
H1 and its gradient are equal to first order to the standard Green’s function for the
Laplacian in R

n and its gradient, respectively. Moreover,H1 ∈ C∞(Rn×R
n\Diag)

only depends on |x− y|.
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The following result is technical and establishes improved bounds for fundamen-
tal solutions.

Lemma 2.2. Let u ∈ C2k(Rn \ {0}) be a function satisfying (−∆+ 1)ku = 0 on

R
n \ {0}, and such that there exist C > 0, ρ ∈ R, with

|u(x)| ≤
{

C |x|2k−n
if 0 < |x| ≤ 1

C |x|ρ e−|x| if |x| ≥ 1
.

Then for l = 0, . . . 2k, there is Cl > 0 such that

∣

∣∇lu(x)
∣

∣ ≤ Cl

{

|x|−(n−2k+l)
0 < |x| ≤ 1

|x|ρ e−|x| |x| ≥ 1
.

Proof. Let x 6= 0 be fixed. Notice that there is C > 0 such that tρe−t ≤ Ct2k−n for
all t ≥ 1, so that

(2.9) |u(x)| ≤ C |x|2k−n ∀ x 6= 0.

When |x| ≤ 2, define v(y) = u(|x| y) on a ball B x
|x|

(1/2) 6∋ 0, and write λ = |x|2 6= 0.

We compute

(−∆+ λ)kv(y) = |x|2k
(

(−∆+ 1)ku
)

(|x| y) = 0 ∀ y ∈ B x
|x|

(1/2).

By standard elliptic theory, since λ ≤ 4, there is C > 0 independent of x such that
v ∈ C2k(B x

|x|
(1/4)), and for all y ∈ B x

|x|
(1/4)

(2.10)

∣

∣∇lv(y)
∣

∣ ≤ C
(

∥

∥(−∆+ λ)kv
∥

∥

L∞(B x
|x|

(1/2))
+ ‖v‖L∞(B x

|x|
(1/2))

)

= C sup
z∈B x

|x|
(1/2)

|u(|x| z)| ≤ sup
z∈B x

|x|
(1/2)

C

||x| z|n−2k
≤ C

|x|n−2k

using (2.9), and since |z| ≥ 1/2 for all z ∈ B x
|x|

(1/2). Now,

∣

∣∇lv(y)
∣

∣ = |x|l
∣

∣∇lu
∣

∣ (|x| y),
we evaluate inequality (2.10) at y = x

|x| ∈ B x
|x|

(1/4) to obtain

∣

∣∇lu
∣

∣ (x) ≤ C

|x|n−2k+l
∀ |x| ≤ 2.

On the other hand, when |x| > 2, we use elliptic theory for u on a ball Bx(1) ⊂
R

n \ B0(1). This shows that there is C > 0 independent of x such that for all
y ∈ Bx(1/2),

∣

∣∇lu
∣

∣ (y) ≤ C
(

∥

∥(−∆+ λ)ku
∥

∥

L∞Bx(1)
+ ‖v‖L∞(Bx(1))

)

≤ C sup
z∈Bx(1)

|z|ρ e−|z|,

where this last inequality follows from the assumption on u. Observe that, when

|x| ≥ 2, |x|
2 ≤ |y| ≤ 3|x|

2 and |y| ≥ |x| − 1 for all y ∈ Bx(1), so that no matter if ρ is
positive or negative,

∣

∣∇lu
∣

∣ (y) ≤ C |x|ρ e−|x|.

Evaluating this inequality at y = x ∈ Bx(ε) gives the result for |x| > 2.
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For the intermediate values 1 ≤ |x| ≤ 2, the two regimes coincide, up to a
constant. The first part of the proof gives

∣

∣∇lu
∣

∣ (x) ≤ C

|x|n−2k+l
.

But now for l = 0, . . . 2k, we have C1, C2 independent of x such that, if 1 ≤ |x| ≤ 2,

|x|−(n−2k+l) ≤ C1

C1 ≤ |x|ρ e−|x| ≤ C2

,

and we conclude. �

Definition 2.2. Fix k ≥ 1 and n > 2k, we define the space Hk, of all functions
u ∈ C2k(Rn × R

n \Diag) such that the following holds.

• There exists C > 0 such that |u(x, y)| ≤ C |x− y|−(n−2k)
when |x− y| ≤ 1;

• For all p ≥ 1, there is Cp > 0 such that for l = 0, . . . 2k,

∣

∣∇lu(x, y)
∣

∣ ≤ Cp |x− y|−p
when |x− y| ≥ 1.

Lemma 2.3. There is a unique fundamental solution of (−∆ + 1)k in R
n in the

class Hk.

Remark 2.3. Note that with this result, the function H1 : Rn × R
n \ Diag → R

defined in Proposition 2.1 is the unique fundamental solution of the operator −∆+1
in R

n in the class H1.

Proof. Let x ∈ R
n, and H, H̃ ∈ Hk be two fundamental solutions for (−∆+ 1)k in

R
n. Define fx(y) := H(x, y)− H̃(x, y). Then fx ∈ C2k(Rn \ {x}) with

(1) |fx(y)| ≤ C |x− y|2k−n
when |x− y| ≤ 1;

(2)
∣

∣∇lfx
∣

∣ ≤ Cp |x− y|−p
for all p, when |x− y| ≥ 1, and for l = 0, . . . 2k;

(3) fx satisfies (−∆+ 1)kfx = 0 in the weak sense on R
n.

We start by proving that the singularity of fx at x is removable. Note that
fx ∈ Lp(Bx(1)) for all 1 ≤ p < n

n−2k . Elliptic theory gives that fx ∈ H2k,p(Bx(1/2))
and there is C > 0 independent of x such that

‖fx‖H2k,p(Bx(1/2))
≤ C

(

‖fx‖Lp(Bx(1))
+
∥

∥(−∆+ 1)kfx
∥

∥

Lp(Bx(1))

)

= C ‖fx‖Lp(Bx(1))
.

Iterating, and by elliptic theory, we similarly find that fx ∈ Hl,p(Bx(1/2)) for any
l ≥ 0. By Sobolev embeddings, using a big enough l in the previous argument, then
fx ∈ C0,δ(Bx(1/4)) for some δ > 0. We conclude that fx has no singularity at 0,
and fx ∈ C2k(Rn) satisfies

(2.11) (−∆+ 1)kfx = 0 on R
n in the classical sense.

Using the decay of fx at infinity, we have fx ∈ Lp(Rn) for all p ≥ 1. Fix R > 0,
and take χR a cutoff function supported in Bx(R) such that χR ≡ 1 on Bx(R/2).
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We compute

(−∆+ 1)k(χRfx) =

k
∑

l=0

(

k
l

)

(

χR(−∆)lfx +O
(

2l
∑

m=1

|∇mχR|
∣

∣∇2l−mfx
∣

∣

))

= O
(

k
∑

l=0

2l
∑

m=1

|∇mχR|
∣

∣∇2l−mfx
∣

∣

)

with (2.11). Testing this equation against χRfx ∈ C∞
c (Rn), we have by integration

by parts on the left-hand side, for all p > 1 and R > 2,
∫

Rn

k
∑

l=0

(

k
l

)

∣

∣

∣
(−∆)l/2(χRfx)

∣

∣

∣

2

dy ≤ C

k
∑

l=0

2l
∑

m=1

∫

Rn

|∇mχR|
∣

∣∇2l−mfx
∣

∣χR |fx| dy

≤ Cp

∫

Bx(R)\Bx(R/2)

|x− y|−p
dy

where the latter follows from the decay of fx at infinity. Now |x− y|−p ∈ L1(Rn \
Bx(1)) for p > n, and thus the right-hand side vanishes as R → ∞ provided we
choose a fixed p > n. On the other hand since all the terms in the left-hand side
are positive,

‖fx‖Hk(Rn) ≤
∫

Rn

k
∑

l=0

(

k
l

)

∣

∣

∣
(−∆)l/2fx

∣

∣

∣

2

dy

≤ lim inf
R→∞

∫

Rn

k
∑

l=0

(

k
l

)

∣

∣

∣
(−∆)l/2(χRfx)

∣

∣

∣

2

dy = 0

by Fatou’s Lemma. Thus f = 0 everywhere in R
n. �

Remark 2.4. With the same strategy of proof as in the previous Lemma 2.3, we
can show the following. The function H(k)(x, y) defined in (2.2) is the unique
fundamental solution for the poly-Laplacian operator (−∆)k in R

n in the class of
functions u ∈ C2k(Rn × R

n \Diag) such that there exists C > 0 and

|u(x, y)| ≤ C |x− y|2k−n ∀x 6= y.

Remark 2.5. A fundamental solution h for (−∆+ 1)k is always smooth away from
its singularity: Let h be a distribution that satisfies

(−∆+ 1)khx = 0 weakly on R
n \ {x}.

Now for all Ω ⊂ R
n such that x 6∈ Ω, h satisfies

(−∆+ 1)khx = 0 weakly on Ω

and by elliptic theory we can conclude hx ∈ C∞(U) for an open set U ⊂⊂ Ω. This
gives in turn hx ∈ C∞(Rn \ {x}).

We have everything we need to construct the Green’s function of (−∆+ α)k in

R
n and describe its exact behavior. Define H

(1)
1 := H1 and for k ≥ 1, iteratively

(2.12) H
(k+1)
1 (x, y) := H

(k)
1 ∗H(1)

1 (x, y) =

∫

Rn

H
(k)
1 (x, z)H

(1)
1 (z, y) dz,

which is well-defined provided 2k + 2 < n, as easily seen by iteratively applying
Giraud’s Lemma (see Lemma A.1 below).
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Theorem 2.4. Fix k ≥ 1, n > 2k, and α > 0, then

H(k)
α (x, y) := α

n−2k
2 H

(k)
1 (

√
αx,

√
αy)

is the unique Green’s function for (−∆+ α)k in R
n in the class Hk defined in 2.2,

where H
(k)
1 is as defined in (2.12). Moreover, there exists C > 0 independent of

α > 0 such that for all x 6= y,

(2.13) H(k)
α (x, y) ≤

{

C |x− y|2k−n
when

√
α |x− y| ≤ 1

Cαk n−3
4 |x− y|

(k−2)n+k

2 e−
√
α|x−y| when

√
α |x− y| ≥ 1

.

Finally, the Green’s function is radial, H
(k)
α (x, y) only depends on |x− y|.

Proof. We begin by showing that H
(k)
α is a fundamental solution for the operator

(−∆+α)k in R
n. We then get explicit α-dependent estimates for H

(k)
α , and deduce

its uniqueness.

Since n > 2k, H
(l)
1 is defined for all l = 1, . . . k. We prove the first statement by

induction. First, H
(1)
1 (x, y) = H1(x, y) is a Green’s function for −∆+ 1 in R

n as

we showed in Proposition 2.1. Assume that we have proven that H
(l)
1 is a Green’s

function for some 1 ≤ l ≤ k − 1. Then let ϕ ∈ C∞
c (Rn), we have

(2.14)

∫

Rn

H
(l+1)
1;x (y)(−∆+ 1)l+1ϕ(y)dy

=

∫

Rn

(
∫

Rn

H
(l)
1 (x, z)H

(1)
1 (z, y)dz

)

(−∆+ 1)l+1ϕ(y)dy

=

∫

Rn

H
(l)
1;x(z)

(
∫

Rn

H
(1)
1;z (y)(−∆+ 1)

[

(−∆+ 1)lϕ
]

(y)dy

)

dz

=

∫

Rn

H
(l)
1;x(z)(−∆+ 1)lϕ(z)dz

= ϕ(x),

where the last line is the induction assumption. Now using (2.3), we obtain that

H
(k)
α (x, y) = α

n−2k
2 H

(k)
1 (

√
αx,

√
αy) is a Green’s function for (−∆+ α)k in R

n.

To prove pointwise estimates on H
(k)
1 (x, y), we use an exponential version of

the so-called Giraud’s Lemma, whose standard proof can be found in [10]. We
prove this result in appendix A in the generalized setting of a manifold, following

a similar reasoning. With the behavior of H
(1)
1 in (2.4), (2.5), and Lemma A.1, we

get iteratively for l = 1, . . . k,

H
(l)
1 (u, v) ≤

{

C |u− v|2l−n
when |u− v| ≤ 1

C |u− v|−ln−1
2 +(l−1)n

e−|u−v| when |u− v| ≥ 1.

We then observe that H
(k)
1 ∈ Hk using Lemma 2.2, it is thus the only Green’s

function in this class by Lemma 2.3. Similarly, by relation (2.3), we conclude that

H
(k)
α is the unique Green’s function for (−∆ + α)k in R

n in the class Hk. The
previous estimates now become

H(k)
α (x, y) ≤

{

C |x− y|2k−n √
α |x− y| ≤ 1

Cαk n−3
4 |x− y|

n(k−2)+k

2 e−
√
α|x−y| √

α |x− y| ≥ 1.
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Finally, this Green’s function inherits its symmetry from fact that H
(1)
1 only

depends on |x− y| and that the convolution of two radial functions is itself radial.
�

Note that the exponent (k−2)n+k
2 in (2.13) becomes positive for k ≥ 2.

2.3. Refined asymptotics. We now prove more precise pointwise estimates on

the Green’s function H
(k)
α and its derivatives. When

√
α |x− y| is small, we show

that H
(k)
α and its first 2k − 1 derivatives are equal to first order to the standard

Green’s function for the poly-Laplacian in R
n and its derivatives, respectively.

Proposition 2.5. Fix k ≥ 1, n > 2k and α > 0. Then H
(k)
α ∈ C∞(Rn×R

n\Diag),
where H

(k)
α is defined in Theorem 2.4, and for all l = 0, . . . 2k, there exists Cl > 0

independent of α such that for all x 6= y in R
n,

∣

∣

∣
∇lH(k)

α;x(y)
∣

∣

∣
≤
{

Cl |x− y|−(n−2k+l) √
α |x− y| ≤ 1

Cl α
k n−3

4 + l
2 |x− y|

(k−2)n+k

2 e−
√
α|x−y| √

α |x− y| ≥ 1.

Proof. The first part H
(k)
α ∈ C∞(Rn×R

n \Diag) comes from the Remark 2.5. The
estimates for l ≥ 1 are then a direct consequence of Lemma 2.2. For l = 1, . . . 2k
we have
∣

∣

∣
∇lH(k)

α;x(y)
∣

∣

∣
=α

n−2k
2 α

l
2

(

∇lH
(k)

1;
√
αx

)

(
√
αy)

≤Clα
n−2k

2 + l
2

{

(√
α |x− y|

)−(n−2k+l) √
α |x− y| ≤ 1

(√
α |x− y|

)

(k−2)n+k

2 e−
√
α|x−y| √

α |x− y| ≥ 1

= Cl

{

|x− y|−(n−2k+l) √
α |x− y| ≤ 1

αk n−3
4 + l

2 |x− y|
(k−2)n+k

2 e−
√
α|x−y| √

α |x− y| ≥ 1
.

�

We now prove precise estimates for the behavior of H
(k)
α , when

√
α |x− y| is

small. To simplify the notation, define

(2.15) η(t) =











t when n = 2k + 1

t2
(

1 + |log t|
)

when n = 2k + 2

t2 when n ≥ 2k + 3

, for 0 < t ≤ 1.

Proposition 2.6. Fix k ≥ 1, n > 2k, α > 0, and let H
(k)
α be the unique Green’s

function in Hk for the operator (−∆+ α)k in R
n. Then, when

√
α |x− y| ≤ 1,

H(k)
α (x, y) = cn,k |x− y|2k−n (

1 +O
(

η(
√
α |x− y|)

))

,

where η is defined in (2.15) and cn,k is the constant in (2.1).

Remark 2.6. Here and in the following, the notation f(x, y) = O(u(x, y)), for a
positive function u, is used to mean that there is a constant C > 0, independent of
α, such that for all x, y,

|f(x, y)|
u(x, y)

≤ C.
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Proof. We begin by defining Rα := H
(k)
α − H

(k)
0 , where we write H

(k)
0 (x, y) =

cn,k |x− y|2k−n the Green’s function for (−∆)k in R
n. Now, we compute

(2.16)

(−∆)kRα,x = (−∆+ α)kH(k)
α;x − (−∆)kH

(k)
0,x −

k−1
∑

l=0

(

k
l

)

αk−l(−∆)lH(k)
α;x

= −
k−1
∑

l=0

(

k
l

)

αk−l(−∆)lH(k)
α;x

in the distributional sense on R
n. Let hα(x, y) := −∑k−1

l=0

(

k
l

)

αk−l(−∆)lH
(k)
α;x(y),

straightforward computations with (2.13) then show that

(2.17) |hα(x, y)| ≤ C

{

α |x− y|−(n−2) √
α |x− y| ≤ 1

αk n+1
4 |x− y|

n(k−2)+k

2 e−
√
α|x−y| √

α |x− y| ≥ 1.
.

We now claim that, for all y 6= x,

(2.18) Rα(x, y) =

∫

Rn

hα(x, z) cn,k |y − z|2k−n
dz.

This follows from the fact that first,

|Rα(x, y)| ≤
∣

∣

∣
H(k)

α (x, y)
∣

∣

∣
+
∣

∣

∣
H

(k)
0 (x, y)

∣

∣

∣
≤ C |x− y|2k−n ∀ x 6= y.

Moreover, the right-hand side of (2.18) defines a function in L1
loc(R

n),

Z(x, y) :=

∫

Rn

hα,x(z) cn,k |y − z|2k−n
dz,

which satisfies (−∆)kZx = hα,x in the distributional sense on R
n. By Remark 2.4,

we conclude that for all x 6= y in R
n, Rα(x, y) = Z(x, y). We now have, by Lemma

A.1 together with (2.17), when
√
α |x− y| ≤ 1,

|Rα(x, y)| ≤















Cα |x− y|−(n−2k−2) when 2k + 2 < n

Cα
(

1 +
∣

∣log
√
α |x− y|

∣

∣

)

when 2k + 2 = n

Cα
1
2 when 2k + 1 = n

,

where the constant C > 0 does not depend on α > 0. Finally, coming back to

H
(k)
α = H

(k)
0 +Rα, we have the conclusion. �

We obtain similar pointwise estimates for the derivatives of H
(k)
α . The next

Corollary shows that the estimates in Proposition 2.6 can be differentiated.

Corollary 2.7. Fix k ≥ 1, n > 2k, α > 0, and let H
(k)
α the unique Green’s function

in Hk for the operator (−∆+ α)k in R
n. For l = 1, . . . 2k − 1, there exists Cl > 0

independent of α such that for all x 6= y with
√
α |x− y| ≤ 1,

∣

∣

∣
∇l
(

|x− y|n−2k H(k)
α;x(y)

)∣

∣

∣
≤ Cl |x− y|−l η(

√
α |x− y|),

where η is defined in (2.15).

Proof. With notations from the previous proof of Proposition 2.6, we have

|x− y|n−2k
H(k)

α;x(y) = cn,k + |x− y|n−2k
Rα,x(y),
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and thus for l ≥ 1,

(2.19)
∣

∣

∣
∇l
(

|x− y|n−2k H(k)
α;x(y)

)∣

∣

∣
=
∣

∣

∣
∇l
(

|x− y|n−2k Rα,x(y)
)∣

∣

∣
.

To estimate the derivatives of Rα, we go back to (2.18): Since l ≤ 2k − 1, we can
differentiate under the integral sign, and we obtain

∇lRα,x(y) =

∫

Rn

hα(x, z)∇l
(y)H

(k)
0 (y, z) dz.

By Proposition 2.5, and since l < 2k, we can use as before Lemma A.1 to estimate
the derivatives of Rα,x when |x− y| ≤ 1/

√
α :

• When n− 2k = 1, we have to consider several cases. For l = 1 we get
∣

∣∇(y)Rα,x(y)
∣

∣ ≤ Cα
(

1 +
∣

∣log
√
α |x− y|

∣

∣

)

,

and for 2 ≤ l ≤ 2k − 1,
∣

∣

∣
∇l

(y)Rα,x(y)
∣

∣

∣
≤ Cα |x− y|1−l

.

• When n− 2k ≥ 2, we obtain for all 1 ≤ l ≤ 2k − 1,
∣

∣

∣
∇l

(y)Rα,x(y)
∣

∣

∣
≤ Cα |x− y|−(n−2k−2+l)

.

By (2.19) and by Leibniz’s formula, we now have, for l = 1, . . . 2k − 1

∣

∣

∣
∇l
(

|x− y|n−2k
H(k)

α;x(y)
)∣

∣

∣
≤ C

l
∑

m=0

|x− y|n−2k−m ∣
∣∇l−mRα,x(y)

∣

∣

≤















C
√
α |x− y|1−l

when n− 2k = 1

Cα |x− y|2−l (
1 +

∣

∣log
√
α |x− y|

∣

∣

)

when n− 2k = 2

Cα |x− y|2−l when n− 2k ≥ 3

.

�

3. Extending the construction to a Riemannian manifold

In this Section we construct the Green’s function for (∆g + α)k on a manifold
M . We follow the construction from Robert [22]. We prove uniqueness, positivity,
as well as estimates that explicitly depend on α. In the following, we will always
consider (M, g) to be a compact Riemannian manifold without boundary, of dimen-
sion n > 2k and with injectivity radius ig > 0. We write ∆ξ = −∆ the standard
Laplacian on R

n, and ∆g := − divg(∇·) for the Laplace-Beltrami operator in M .
The notation Bx(R) will represent a ball of radius R > 0 and center x either in R

n

or on the manifold, depending on the context.
Theorem 1.1 is proved in several steps. We first define an approximate funda-

mental solution for (∆g+α)
k in M which is modelled on the Euclidean fundamental

solution of (−∆+α)k. It satisfies the equation (∆g+α)
kGx = δx up to error terms.

We then iteratively improve the precision of these terms until we obtain a bounded
error, which is finally controlled in subsection 3.3. Subsequently, we prove bounds
on the derivatives of the Green’s function of the same kind as Proposition 2.5 and
Corollary 2.7. We finish this section with a remark on the mass of the operator
(∆g + α)k when the dimension of the manifold n = 2k + 1.

We start with an observation.
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Lemma 3.1. Let α > 0, if G is a Green’s function for the operator (∆g + α)k in

M , as defined in Definition 1.1, then it is unique.

Proof. Start by noting that, by the same arguments as in Remark 2.5, any Green’s
function for (∆g+α)

k is smooth away from its singularity, so thatGx ∈ C∞(M\{x})
for any x ∈M .

Let G̃ be another Green’s function for (∆g + α)k in M . Take ϕ ∈ C∞(M), and
define u ∈ C∞ the unique solution to the equation

(∆g + α)ku = ϕ on M .

We then have, for all x ∈M ,














u(x) =

∫

M

G(x, y)ϕ(y) dvg(y)

u(x) =

∫

M

G̃(x, y)ϕ(y) dvg(y)

.

For all x ∈M , ϕ ∈ C∞(M), we have obtained
∫

M

(

G(x, y)− G̃(x, y)
)

ϕ(x) dvg = u(x)− u(x) = 0.

Thus, we can conclude that Gx(y) = G̃x(y) for almost every y ∈ M , and by

continuity Gx(y) = G̃x(y) on M \ {x}. �

3.1. Step 1: An approximate fundamental solution. We start the proof of

Theorem 1.1 by pulling back the function H
(k)
α onto the manifold. Fix k ≥ 1,

n > 2k, and let 0 < τ0 < ig/2 that will be chosen later. Let χ ∈ C∞(R) be a cut-off
function with 0 ≤ χ ≤ 1, such that χ(t) ≡ 1 on [0, τ0/2) and χ(t) ≡ 0 on (τ0,+∞).
We define

(3.1) G̃α(x, y) := χ(dg(x, y))H
(k)
α (0, exp−1

x (y))

for all x 6= y in M , where H
(k)
α is defined in Theorem 2.4. This function only

depends on dg(x, y).
Assume that α is large enough so that 1/

√
α < τ0/2. Using Theorem 2.4 we

obtain

(3.2) G̃α(x, y) ≤
{

Cdg(x, y)
−(n−2k) √

αdg(x, y) ≤ 1

Cαk n−3
4 dg(x, y)

n(k−2)+k

2 e−
√
αdg(x,y)

√
αdg(x, y) ≥ 1

.

In particular, when
√
αdg(x, y) → 0, we have that

(3.3) G̃α(x, y) = cn,kdg(x, y)
2k−n (

1 +O
(

η(
√
αdg(x, y))

))

,

this function behaves to first order as a Riemannian version of the Green’s function
for the poly-Laplacian (−∆)k in R

n, where η is defined in (2.15).

The following Proposition estimates the error term between G̃α and a true fun-
damental solution in the distributional sense.

Proposition 3.2. Let τ0 < ig/2 and let G̃α be as defined in (3.1). There exist

α0 ≥ 1 and C > 0 such that, for all α ≥ α0 and x ∈M , there is lα,x ∈ C0(M \{x})
satisfying

(3.4)

∫

M

(∆g + α)kϕ G̃α;x dvg = ϕ(x) +

∫

M

ϕ(y) lα,x(y) dvg(y),
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for all ϕ ∈ C∞(M). The function lα,x is L1(M), has support in Bx(τ0), and

|lα,x(y)| ≤
{

Cdg(x, y)
−(n−2) √

αdg(x, y) ≤ 1

Cαk n+1
2 dg(x, y)

n(k−2)+k+4
2 e−

√
αdg(x,y)

√
αdg(x, y) ≥ 1

for all x 6= y in M .

Proof. We compute (∆g + α)kG̃α;x(y) and precisely estimate the error terms. Let
g̃ := exp∗x g, it is a metric on B0(τ0) ⊂ R

n with bounded geometry since τ0 < ig.
In particular, for f ∈ C2(Rn),

(3.5) ∆g̃f(u) = ∆ξf(u) +O(|u| |∇f(u)|) +O(|u|2
∣

∣∇2f(u)
∣

∣),

where u := exp−1
x (y) ∈ B0(τ0). Since G̃α(x, y) = χ(dg(x, y))H

(k)
α (0, exp−1

x (y)) is
supported in Bx(τ0), we can write, when x 6= y with dg(x, y) ≤ τ0,

∆gG̃α;x(y) = ∆g̃

(

H
(k)
α;0(u)χ(|u|)

) ∣

∣

∣

u=exp−1
x (y)

.

We observe that
(

H
(k)
α;0 χ(|·|)

)

∈ C∞(Rn \ {0}) is supported in B0(τ0). Now for

u 6= 0 such that |u| < τ0/2, using Proposition 2.5, we have
∣

∣

∣
∇l
(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣
=
∣

∣

∣
∇lH

(k)
α;0(u)

∣

∣

∣

≤ C

{

|u|−(n−2k+l) √
α |u| ≤ 1

αk n−3
4 + l

2 |u|
n(k−2)+k

2 e−
√
α|u| √

α |u| ≥ 1

for l = 0, . . . 2k. Take α0 such that 1/
√
α0 < τ0/2, then we have

√
α |u| ≥ 1 for all

|u| ≥ τ0/2, so that

∣

∣

∣
∇l
(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣
≤

l
∑

m=0

∣

∣∇l−mχ
∣

∣

∣

∣

∣
∇mH

(k)
α;0

∣

∣

∣

≤ Cαk n−3
4 + l

2 |u|
n(k−2)+k

2 e−
√
α|u|.

We have thus

(3.6)
∣

∣

∣
∇l
(

χ(|u|)H(k)
α;0(u)

)
∣

∣

∣
≤ C











|u|−(n−2k+l) √
α |u| ≤ 1

αk n−3
4 + l

2 |u|
n(k−2)+k

2 e−
√
α|u| √

α |u| ≥ 1

0 |u| > τ0

.

We now show that, for ϕ ∈ C∞(M),

(3.7)

∫

M

(∆g + α)kϕ G̃α;x dvg = ϕ(x) + lim
δ→0

∫

M\Bx(δ)

ϕ (∆g + α)kG̃α;x dvg.

Start by observing that since G̃α;x ∈ L1(M),
∫

M

(∆g + α)kϕ G̃α;x dvg = lim
δ→0

∫

M\Bx(δ)

(∆g + α)kϕ G̃α;x dvg

= lim
δ→0

[

k
∑

l=0

(

k
l

)

αk−l

∫

M\Bx(δ)

∆l
gϕ G̃α;x dvg

]

.
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Integration by parts gives, as in (2.7), for l = 1, . . . k,

(3.8)

∫

M\Bx(δ)

∆l
gϕ G̃α;x dvg =

∫

M\Bx(δ)

ϕ∆l
gG̃α;x dvg

+

l−1
∑

m=0

∫

∂Bx(δ)

∂ν∆
l−1−m
g ϕ∆m

g G̃α;xdσg

−
l−1
∑

m=0

∫

∂Bx(δ)

∆l−1−m
g ϕ∂ν∆

m
g G̃α;xdσg,

where ∂ν is the covariant derivative along the normal direction to ∂Bx(δ) in M .
Using (3.6), we obtain for l = 1, . . . k, m = 0, . . . l − 1,

(3.9)

∣

∣

∣

∣

∣

∫

∂Bx(δ)

∂ν∆
l−1−m
g ϕ∆m

g G̃α;xdσg

∣

∣

∣

∣

∣

≤ Cδ−n+2k−2m

∫

∂Bx(δ)

dσg = o(1)

as δ → 0. On the other hand, when l = k and m = k − 1, we compute

(3.10) −
∫

∂Bx(δ)

ϕ(y)∂ν∆
k−1
g G̃α;x(y)dσg(y)

= ϕ(x)

∫

∂Bx(δ)

−∂ν∆k−1
g G̃α;x(y)dσg(y) + o(1) as δ → 0

since ϕ is C∞(M). Using (3.5) iteratively, we have
∫

∂Bx(δ)

−∂ν∆k−1
g G̃α;x(y)dσg(y)

=

∫

∂B0(δ)

−∂ν
(

∆k−1
ξ H

(k)
α;0(u)

)

dσ +O
(

∫

∂B0(δ)

δ2
∣

∣

∣
∇2k−1H

(k)
α;0(u)

∣

∣

∣
dσ

)

+O
(

∫

∂B0(δ)

δ
∣

∣

∣
∇2k−2H

(k)
α;0(u)

∣

∣

∣
dσ

)

+O
(

2k−3
∑

m=2

∫

∂B0(δ)

∣

∣

∣
∇mH

(k)
α;0(u)

∣

∣

∣
dσ

)

=

∫

∂B0(δ)

−∂ν
(

∆k−1
ξ H

(k)
α;0(u)

)

dσ + o(1),

as δ → 0, estimating the terms with (3.6). Here in the right-hand side, ∂ν is now
the derivative normal to the sphere in the Euclidean space. Using Corollary 2.7,
one has

∫

∂B0(δ)

−∂ν
(

∆k−1
ξ H

(k)
α;0(u)

)

dσ =

∫

∂B0(δ)

−∂ν
(

∆k−1
ξ

cn,k

|u|n−2k

)

dσ + o(1),

and thus by definition of cn,k in (2.1), we obtain in the end

(3.11)

∫

∂Bx(δ)

−∂ν∆k−1
g G̃α;xdσg = 1 + o(1) when δ → 0.

Finally, all the remaining terms are estimated with (3.6),

(3.12)

∣

∣

∣

∣

∣

∫

∂B0(δ)

∆l−1−m
g ϕ∂ν∆

m
g G̃α;xdσg

∣

∣

∣

∣

∣

≤ Cδ2k−m−1 = o(1)
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as δ → 0, when m 6= k − 1, 1 ≤ l ≤ k. Coming back to (3.8), putting together
(3.10), (3.11) in (3.9), and with (3.12), we obtain (3.7). Note that all the terms

∆l
gG̃α;x are integrable by (3.6) except for the term ∆k

gG̃α;x which is only bounded

by dg(x, y)
−n

when dg(x, y) ≤ 1/
√
α.

Write lα,x(y) := (∆g + α)kG̃α;x(y) for all x 6= y, then lα,x ∈ C0(M \ {x}) with

support in Bx(τ0) by the definition of G̃α. Now for x 6= y such that dg(x, y) ≤ τ0,
write u := exp−1

x (y), and compute

(∆g + α)kG̃α;x(expx(u)) = (∆g̃ + α)k
(

χ(|u|)H(k)
α;0(u)

)

=

k
∑

l=0

(

k
l

)

αk−l

[

χ(|u|)∆l
ξH

(k)
α;0(u) +O

(

2l−2
∑

m=1

∣

∣

∣
∇m

(

χ(|u|)H(k)
α;0(u)

)
∣

∣

∣

)

+O
(

|u|
∣

∣

∣
∇2l−1

(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣

)

+O
(

|u|2
∣

∣

∣
∇2l

(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣

)

]

,

using again (3.5) iteratively. By (3.6) and since H
(k)
α is a fundamental solution for

the operator (∆ξ + α)k in R
n, we have when 0 < |u| ≤ 1/

√
α,

∣

∣

∣
(∆g + α)kG̃α;x(expx(u))

∣

∣

∣
=

k
∑

l=0

αk−l

[

O
(

|u|2
∣

∣

∣
∇2lH

(k)
α;0(u)

∣

∣

∣

)

+O
(

|u|
∣

∣

∣
∇2l−1H

(k)
α;0(u)

∣

∣

∣

)

+O
(

2l−2
∑

m=1

∣

∣

∣
∇mH

(k)
α;0(u)

∣

∣

∣

) ]

≤ C
k
∑

l=0

αk−l |u|2k−n−2l+2 ≤ |u|2−n .

Similarly, when
√
α |u| ≥ 1,

∣

∣

∣
(∆g + α)kG̃α;x(expx(u))

∣

∣

∣
≤ C

k
∑

l=0

αk−l |u|2 αk n−3
4 +l |u|

n(k−2)+k

2 e−
√
α|u|.

We have thus shown that, for x 6= y,

(3.13) |lα,x(y)| ≤ C











dg(x, y)
−(n−2) √

αdg(x, y) ≤ 1

αk n+1
4 dg(x, y)

(k−2)n+k+4
2 e−

√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ τ0

.

In particular, lα,x ∈ L1(M) so that (3.7) becomes
∫

M

(∆g + α)kϕ G̃α;x dvg = ϕ(x) +

∫

M

ϕ lα,x dvg

for all ϕ ∈ C∞(M). Note that k n+1
4 − (k−2)n+k+4

2 = n−2
2 , so that the two regimes

in (3.13) are of order α
n−2
2 when dg(x, y) ∼ 1/

√
α. �

3.2. Step 2: The induction step. In this step, we define a sequence of functions
to iteratively improve the estimates on the error term.
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Proposition 3.3. There exists N ∈ N, τ0 > 0, α0 ≥ 1 such that, for all α ≥ α0,

there is a function G̃∗
α ∈ C∞(M × M \ Diag) and for all x ∈ M , a function

γα,x ∈ C0(M) such that

(3.14)

∫

M

(∆g + α)kϕ(y)G̃∗
α(x, y) dvg(y) +

∫

M

γα,x(y)ϕ(y) dvg(y) = ϕ(x)

for all ϕ ∈ C∞(M). Moreover, both G̃∗
α;x and γα,x are supported in Bx(Nτ0), G̃

∗
α

satisfies

(3.15) G̃∗
α(x, y) = cn,kdg(x, y)

2k−n (
1 +O

(

η(
√
αdg(x, y))

))

for
√
αdg(x, y) ≤ 1, and there is a constant C > 0 independent of α ≥ α0 such that

writing pn,k := k(n+1)+4
2 N − n,

(3.16) |γα,x(y)| ≤ Cα−N+ n
2











1
√
αdg(x, y) ≤ 1

(
√
αdg(x, y))

pn,k e−
√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ Nτ0

,

for all x, y ∈M .

Proof. Fix τ0 > 0 such that τ0 < ig/(n+ 2), and take α0 ≥ 1 given by Proposition
3.2. We define, for all α ≥ α0 and all x 6= y in M ,

Γ1
α(x, y) := −lα,x(y)

Γi+1
α (x, y) :=

∫

M

Γi
α(x, z)Γ

1
α(z, y) dvg(z) ∀ i ≥ 2.

By the exponential version of Giraud’s Lemma, Lemma A.2, and by (3.13) we see
that, as long as 2i < n and iτ0 < ig, we have Γi

α,x ∈ L1(M), Γi
α ∈ C0(M ×M \

Diag), and

∣

∣Γi
α(x, y)

∣

∣ ≤ Ci











dg(x, y)
−(n−2i) √

αdg(x, y) ≤ 1

αkin+1
4 dg(x, y)

k(n+1)+4
2 i−ne−

√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ iτ0

.

Now take N =
⌊

n
2

⌋

+ 1 ∈ N, so that 2N > n. By the choice of τ0, we have

Nτ0 < ig/2. Lemma A.2 then shows that ΓN
α ∈ C0(M ×M) and that

(3.17)
∣

∣ΓN
α (x, y)

∣

∣

≤ C











α−N+n
2

√
αdg(x, y) ≤ 1

αkN n+1
4 dg(x, y)

k(n+1)+4
2 N−n

e−
√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ Nτ0

.

Let, for i = 1, . . .N − 1 and x 6= y,

(3.18) G̃i
α(x, y) :=

∫

M

Γi
α(x, z)G̃α(z, y) dvg(z).

If x 6= y are such that
√
αdg(x, y) ≤ 1, we again have by Lemma A.2

(3.19)
∣

∣

∣
G̃i

α(x, y)
∣

∣

∣
≤ Ci











dg(x, y)
−(n−2k−2i)

when 2k + 2i < n

1 + |log(√αdg(x, y))| if 2k + 2i = n

α− 2k+2i−n
2 when 2k + 2i > n

.
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While, if
√
αdg(x, y) ≥ 1, writing for simplicity

pi := k i(n+1)+n−3
4 and ρi :=

k(n+1)(i+1)−2n+4i
2(3.20)

satisfying 2pi − ρi = n− 2k − 2i, we have

(3.21)
∣

∣

∣
G̃i

α(x, y)
∣

∣

∣
≤ Ciα

pidg(x, y)
ρie−

√
αdg(x,y)

with G̃i
α(x, y) = 0 when dg(x, y) ≥ (i+ 1)τ0.

In some sense, the G̃i
α are successive error terms in the expression of the Green’s

function. Let us define for all x 6= y in M ,

(3.22) G̃∗
α(x, y) := G̃α(x, y) +

N−1
∑

i=1

G̃i
α(x, y).

Then we have, for all ϕ ∈ C∞(M) and x ∈ M , by Proposition 3.2 and since
Γ1
α,x = −lα,x,
∫

M

(∆g + α)kϕ(y)G̃∗
α(x, y) dvg(y)

=

∫

M

(∆g + α)kϕ G̃α;x dvg

+
N−1
∑

i=1

∫

M

∫

M

Γi
α(x, z)G̃α(z, y)(∆g + α)kϕ(y) dvg(z) dvg(y)

= ϕ(x) +

∫

M

lα,x(y)ϕ(y) dvg(y)

+
N−1
∑

i=1

∫

M

Γi
α(x, z)

(
∫

M

G̃α;z(∆g + α)kϕdvg

)

dvg(z)

= ϕ(x) +

∫

M

lα,x ϕdvg +

N−1
∑

i=1

∫

M

Γi
α(x, z)

[

ϕ(z) +

∫

M

lα,z ϕdvg

]

dvg(z)

= ϕ(x) −
∫

M

Γ1
α,xϕdvg +

N−1
∑

i=1

∫

M

Γi
α,xϕdvg

+

N−1
∑

i=1

∫

M

[
∫

M

Γi
α(x, z)lz(y) dvg(z)

]

ϕ(y) dvg(y)

= ϕ(x) −
∫

M

ΓN
α,xϕdvg

where we used Fubini twice and the definition of Γi+1
α .

We now let γα,x(y) := ΓN
α (x, y), then (3.14) follows, and γα,x ∈ C0(M) satisfies

(3.16) thanks to (3.17). Finally, for
√
αdg(x, y) ≤ 1, and again by Lemma A.2, we

have

(3.23)

∣

∣

∣

∣

∣

N−1
∑

i=1

G̃i
α(x, y)

∣

∣

∣

∣

∣

≤















Cα−1/2 if n− 2k = 1,

C
(

1 +
∣

∣log
√
αdg(x, y)

∣

∣

)

if n− 2k = 2,

Cdg(x, y)
−(n−2k−2)

if n− 2k ≥ 3,

= Cα−1dg(x, y)
−(n−2k)

η(
√
αdg(x, y)),
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recalling the definition (2.15) for η. This means that, with (3.3), we still have

G̃∗
α(x, y) = cn,kdg(x, y)

−(n−2k) (1 +O
(

η(
√
αdg(x, y))

))

when
√
αdg(x, y) ≤ 1. �

3.3. Step 3: Estimates on the remainder term. With Proposition 3.3, we
have modified the starting function G̃α to get closer to a real fundamental solution
to the operator (∆g + α)k in M . The remainder γα,x is now uniformly bounded in
α by (3.16) and continuous in M ×M .

Fix α ≥ α0 given by the Proposition 3.3, and x ∈M . We let uα,x be the unique
solution of

(3.24) (∆g + α)kuα,x = γα,x weakly in M ,

where γα,x = ΓN
α,x as in the proof of Proposition 3.3. Such uα,x exists and is unique

since (∆g + α)k is coercive for any α > 0, and since γα,x ∈ C0(M).

Remark 3.1. By standard elliptic theory and Sobolev’s embeddings, we have uα,x ∈
C2k−1,θ(M) for all θ ∈ (0, 1), with

(3.25) ‖uα,x‖Cl(M) ≤ Cl,α ‖γα,x‖C0(M) ≤ Cl,α l = 0, . . . 2k − 1

by (3.16). The constants Cl,α depend on α, but we want pointwise estimates on
uα,x and its derivatives with an explicit dependence in α, so that (3.25) is not
enough. In particular, in this step, we aim at recovering some exponential decay
for uα,x(y), when

√
αdg(x, y) ≥ 1.

Proposition 3.4. Let α ≥ α0 given by Proposition 3.3. For α ≥ α0 and x ∈ M ,

let G̃∗
α be as in (3.22), and let uα,x ∈ Hk(M) be the unique weak solution to (3.24).

Define

(3.26) Gg,α(x, y) := G̃∗
α(x, y) + uα,x(y)

for all x 6= y in M . Then Gg,α is a fundamental solution for the operator (∆g+α)
k

in M . Moreover, if f ∈ Lq(M) for some q > n/2k, and ũ ∈ Hk,q(M) solves

(∆g + α)kũ = f in M , then ũ ∈ C0(M) and we have the following representation

formula,

ũ(x) =

∫

M

Gg,α(x, z)f(z) dvg(z) for all x ∈M.

Proof. For the first part, go back to (3.14). For all ϕ ∈ C∞(M),

(3.27)

∫

M

(∆g + α)kϕ(y)Gg,α(x, y) dvg(y)

= ϕ(x) −
∫

M

γα,xϕdvg +

∫

M

uα,x(∆g + α)kϕdvg

= ϕ(x)

since uα,x is a weak solution to (3.24). By (3.15), and since uα,x is continuous in
M , we have Gg,α;x ∈ L1(M) and Gg,α is a fundamental solution for the operator
(∆g + α)k in M .

Now take f ∈ Lq(M), q > n/2k and ũ ∈ Hk(M) satisfying (∆g + α)kũ = f
weakly in M . Standard elliptic theory gives ũ ∈ H2k,q(M), and then with Sobolev’s
embeddings we have ũ ∈ C0,θ(M) for some θ ∈ (0, 1). Let (fm)m≥1 be a sequence of
functions in C∞(M) such that fm → f in Lq, and take ũm ∈ C∞(M) the respective
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solutions to (∆g+α)
kũm = fm. By elliptic estimates and Sobolev’s embedding, for

any fixed α ≥ 1, (ũm)m≥1 is a bounded sequence in C0,θ(M). Then, by compactness
of the inclusion C0,θ(M) ⊂ C0(M) and since the solution is unique, ũm → ũ in
C0(M) up to a subsequence. Since um ∈ C∞(M) we have, testing (3.27) against
um,

ũm(x) =

∫

M

Gg,α(x, y)fm(y) dvg(y).

And, for all x ∈ M , ũm(x) →m→∞ ũ(x). Finally, for all 1 ≤ p < n
n−2k , we have

Gg,α;x ∈ Lp(M) since G̃∗
α;x ∈ Lp(M) by (3.15) and uα,x ∈ C0(M) ⊂ Lp(M). Thus,

since fm → f in Lq(M), choosing 1 ≤ p < n
n−2k such that 1

p + 1
q = 1, Hölder’s

inequality implies that
∣

∣

∣

∣

∫

M

Gg,α(x, y)fm(y) dvg −
∫

M

Gg,α(x, y)f(y) dvg

∣

∣

∣

∣

≤ ‖Gg,α;x‖Lp(M) ‖fm − f‖Lq(M)

→ 0.

We have thus shown, for all x ∈M ,

ũ(x) =

∫

M

Gg,α(x, y)f(y) dvg(y).

�

Thanks to Proposition 3.4 and (3.24), there is a representation formula for uα,x
itself, given by

(3.28)

uα,x(y) =

∫

M

Gg,α(y, z)γα,x(z) dvg(z)

=

∫

M

G̃∗
α(y, z)γα,x(z) dvg(z) +

∫

M

uy(z)γα,x(z) dvg(z),

where G̃∗
α and γα,x are introduced in Proposition 3.3. We now use this formula

to self-improve the estimates on uα,x. We prove exponential decay on uα,x, when
α ≥ α0 is large enough. This is a striking difference with the case of operators with
bounded coefficients.

Proposition 3.5. There exists α0 ≥ 1 such that the following holds. For all

0 < ε < 1, there is a constant Cε > 0 such that for all α ≥ α0 and all x, y ∈M ,

(3.29) |uα,x(y)| ≤ Cεα
−k











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
α ig/2 dg(x, y) ≥ ig/2

,

where uα,x is the unique weak solution to (3.24).

Proof. We define, for all α ≥ 1 and 0 < ε < 1, a function Ψε,α ∈ L1(M ×M) as

(3.30) Ψε,α(x, y) =











e−(1−ε) √
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
α ig/2 dg(x, y) ≥ ig/2

.

We prove the Proposition by using the representation formula (3.28) for uα,x.
The first term is estimated with Lemma A.2, the estimates (3.19), (3.21) and (3.16)
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give

(3.31)

∣

∣

∣

∣

∫

M

G̃∗
α(y, z)γα,x(z) dvg(z)

∣

∣

∣

∣

≤ C



























α−N+n−2k
2

√
αdg(x, y) ≤ 1

N
∑

i=0

αp̃idg(x, y)
ρ̃ie−

√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ 2Nτ0

where

p̃i := k n+1
4 (N + i) + k n−3

4 and ρ̃i :=
k(n+1)(N+i+1)

2 + 2(N + i)− n,

with Nτ0 < ig/2 and N > n/2, N and τ0 are as defined in the proof of Proposition
3.3.

Fix any 0 < ε < 1 and x ∈M , there is a constant Cε > 0 independent of α and
x such that, for α large enough, we can write (3.31) as

(3.32)

∣

∣

∣

∣

∫

M

G̃∗
α(y, z)γα,x(z) dvg(z)

∣

∣

∣

∣

≤ Cεα
−N+n−2k

2











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

0 dg(x, y) ≥ 2τ

≤ Cεα
−N+n−2k

2 Ψε,α(x, y),

for all y ∈M . Note that, by integration by parts and the fact that ux solves (3.24),
one obtains

(3.33)

∫

M

uy(z)γα,x(z) dvg(z) =

∫

M

uy(z) (∆g + α)kux(z) dvg(z)

=

∫

M

(∆g + α)kuy(z)ux(z) dvg(z)

=

∫

M

γα,y(z)ux(z) dvg(z).

We now claim that uα,x = o(Ψε,α) in the sense that

∥

∥

∥

∥

uα,x(·)
Ψε,α(x, ·)

∥

∥

∥

∥

L∞(M)

→ 0 as α → ∞, when x ∈M is fixed.

For this, define for all α,

Υα,x :=

∥

∥

∥

∥

uα,x
Ψε,α(x, ·)

∥

∥

∥

∥

L∞(M)

and let yα ∈ M be such that
|uα,x(yα)|
Ψε,α(x,yα)

= Υα,x. We know Υα,x and yα exist since

uα,x, Ψε,α(x, ·) are continuous, and Ψε,α > 0 in M . Applying (3.28) at the point
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yα and using (3.32) and (3.33) we now have, for all α large enough,
(3.34)

|uα,x(yα)| ≤
∣

∣

∣

∣

∫

M

G̃∗
α(yα, z)γα,x(z) dvg(z)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

M

ux(z)γα,yα
(z) dvg(z)

∣

∣

∣

∣

≤ Cεα
−N+ n−2k

2 Ψε,α(x, yα) + Υα,x

∫

M

Ψε,α(x, z) |γα,yα
(z)| dvg(z).

Using the bounds (3.16) on γα,x and Lemma A.3 below, which is a modified version
of the exponential Giraud’s Lemma, we obtain that

(3.35)

∣

∣

∣

∣

∫

M

Ψε,α(x, z)γα,yα
(z) dvg(z)

∣

∣

∣

∣

≤ C′
εα

−NΨε,α(x, yα).

Going back to (3.34) and dividing by Ψε,α(x, yα) > 0, we have thus proven that

(3.36) Υα,x ≤ Cεα
−N+n−2k

2 + C′
εα

−NΥα,x,

with N > n/2 by definition of N . Hence, Υα,x → 0 for all x ∈M .
We have thus shown, sinceM is compact, that there exists α0 ≥ 0 and a constant

Cε > 0 independent of x such that for all α ≥ α0, x, y ∈M ,

(3.37) |uα,x(y)| ≤ Cε











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2.

We now use this estimate to compute again the second term of (3.28): Using Lemma
A.3 with (3.37), and with (3.32), we finally get

|uα,x(y)| ≤ Cεα
−k











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2,

since −N + n−2k
2 ≤ −k, which concludes the proof. �

Remark 3.2. The assumption α ≥ α0, with α0 large, is crucial to obtain (3.37) from
(3.36), and thus exponential decay for uα,x when

√
αdg(x, y) ≥ 1.

Remark 3.3. With our approach, we cannot expect to obtain the exact decay
e−

√
αdg(x,y) for uα,x when

√
αdg(x, y) ≥ 1. Successive convolutions in the second

term of the representation formula (3.28) add positive exponents of dg(x, y) that
we cannot get rid of, see Remark A.2. We are thus forced to reduce the exponential
decay of uα,x to e−(1−ε)

√
αdg(x,y). This is what allows us to obtain (3.35).

3.4. Step 4: End of the proof of Theorem 1.1. We can now proceed to con-
clude the proof of the main Theorem, putting the several pieces together.

Lemma 3.6. Fix α ≥ α0 and let Gg,α be the Green’s function for the operator

(∆g + α)k in M defined in Proposition 3.4. Then for all ε ∈ (0, 1), there exists

Cε > 0 such that for all x 6= y, we have

(3.38) |Gg,α(x, y)| ≤ Cε











dg(x, y)
−(n−2k) √

αdg(x, y) ≤ 1

dg(x, y)
−(n−2k)e−(1−ε)

√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

.
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Proof. Fix any 0 < ε < 1. First, let x, y ∈ M be such that dg(x, y) ≤ 1/
√
α and

x 6= y. Going back to the definition of Gg,α in (3.26), we use (3.2), (3.19) and the
fact that ux ∈ C0(M) satisfies (3.25), and we obtain

|Gg,α(x, y)| ≤ Cdg(x, y)
−(n−2k)

for all dg(x, y) ≤ 1/
√
α.

Now let 1
√
α ≤ dg(x, y) < ig/2. We use (3.2) and (3.21), there is a constant Cε

independent of α, x, y such that
∣

∣

∣
G̃i

α(x, y)
∣

∣

∣
≤ Cεα

−idg(x, y)
−(n−2k)

e−(1−ε)
√
αdg(x,y)

for i = 0, . . .N − 1, writing G̃0
α := G̃α. Up to taking a slightly smaller 0 < ε′ < ε,

we also have for all y ∈M

|uα,x(y)| ≤ Cε′α
−ke−(1−ε′)

√
αdg(x,y)

≤ Cε,ε′α
− n

2 dg(x, y)
−(n−2k)

e−(1−ε)
√
αdg(x,y),

using (3.29). We have thus obtained

|Gg,α(x, y)| ≤ Cεdg(x, y)
−(n−2k)

e−(1−ε)
√
αdg(x,y).

Finally, when dg(x, y) ≥ ig/2, the estimate follows from (3.29). �

Lemma 3.7. Fix α > α0 and let Gg,α be the Green’s function for the operator

(∆g +α)k in M defined in Proposition 3.4. Then for all x 6= y in M , Gg,α(x, y) =
Gg,α(y, x).

Proof. Let ϕ ∈ C∞(M), define for y ∈M

h(y) :=

∫

M

Gg,α(z, y)ϕ(z) dvg(z).

Then since Gg,α(·, y) ∈ C∞(M \ {y}) ∩ L1(M), h is well-defined. We claim that h
is continuous on M . To prove the latter, fix y ∈ M and take a sequence of points
in M , ym → y as m→ ∞. Let δm := dg(ym, y), we have

h(ym) =

∫

Bym (δm/2)

Gg,α(z, ym)ϕ(z) dvg(z)+

∫

M\Bym (δm/2)

Gg,α(z, ym)ϕ(z) dvg(z).

On the one hand, by (3.38), we have
∫

Bym (δm/2)

G(ym, z)ϕ(z) dvg(z) = o(1)

as m → ∞. On the other hand, for z ∈ M \ Bym
(δm/2), we have dg(z, ym) ≥

1
3dg(z, y), so that using (3.38),

|G(ym, z)ϕ(z)| ≤ Cdg(z, y)
2k−n

.

By dominated convergence, we conclude that

lim
m→∞

h(ym) = lim
m→∞

∫

M\Bym (δm/2)

Gg,α(z, ym)ϕ(z) dvg(z)

=

∫

M

Gg,α(z, y)ϕ(z) dvg(z),

and h is continuous at y ∈M .
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Let now g ∈ C∞(M) be the unique solution to (∆g+α)
kg = ϕ on M . Since Gg,α

is the Green’s function for the operator (∆g + α)k in M , we have, for all x ∈M ,

g(x) =

∫

M

Gg,α(x, y)ϕ(y) dvg(y).

Now since h ∈ C0(M), g ∈ C∞(M), one has h− g ∈ L∞(M) and there is a unique
ψ0 ∈ Hk(M) such that

(∆g + α)kψ0 = h− g in the weak sense on M .

Moreover, elliptic theory gives ψ0 ∈ H2k,p(M) for all p ≥ 1. By Fubini’s theorem,
and since Gg,α;x ∈ L1(M) by Proposition 3.4, we have
∫

M

h (∆g + α)kψ0 dvg =

∫

M

(
∫

M

Gg,α(x, y)ϕ(x) dvg(x)

)

(∆g + α)kψ0(y) dvg(y)

=

∫

M

(
∫

M

Gg,α(x, y)(∆g + α)kψ0(y) dvg(y)

)

ϕ(x) dvg(x)

=

∫

M

ψ0(x)ϕ(x) dvg(x).

Use the definition of g and integrate by parts: Since ψ0 ∈ H2k,p(M) for any p ≥ 1,
∫

M

ψ0ϕdvg =

∫

M

ψ0(∆g + α)kg dvg =

∫

M

(∆g + α)kψ0g dvg.

By definition of ψ0, we have thus shown in the end that
∫

M

(∆g + α)kψ0

(

h− g
)

dvg = 0 =

∫

M

(

h− g
)2
dvg,

so that h(x) = g(x) for almost every x ∈M , and thus h ≡ g on M by continuity of
h, g. This shows that for all ϕ ∈ C∞(M), and all x ∈M ,

∫

M

(Gg,α(x, y)−Gg,α(y, x))ϕ(y) dvg(y) = 0.

Since Gg,α(x, ·), Gg,α(·, x) ∈ L1(M) for all x ∈M , we deduce that

Gg,α(x, y) = Gg,α(y, x)

for almost every y ∈ M , and we conclude with the continuity of Gg,α in M ×M \
Diag. �

Proof. (of Theorem 1.1) Recall the definition (3.26) of Gg,α, we have

Gg,α(x, y) = G̃∗
α(x, y) + uα,x(y),

where G̃∗
α was defined in (3.22), and uα,x is the unique solution to (3.24). It is a

Green’s function for (∆g + α)k in M as we proved in Proposition 3.4, and we have
proved the estimates on Gg,α in Lemma 3.6. Moreover, when dg(x, y) ≤ 1/

√
α,

by Proposition 3.3, G̃∗
α(x, y) satisfies (3.15), so that Gg,α(x, y) satisfies (1.2), since

uα,x is bounded.
Uniqueness was proved in Lemma 3.1, while the symmetry was proved in Lemma

3.7. It remains only to show the positivity of the Green’s function.
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Let H
(1)
g,α be the Green’s function for the operator ∆g + α in M as constructed

in Proposition 3.4, and define for all x 6= y, as in (2.12),

H(k)
g,α(x, y) :=

∫

M

H(k−1)
g,α (x, z)H(1)

g,α(z, y) dvg(z)

for k ≥ 2. This function is well-defined provided that n > 2k, and smooth away
from the diagonal, thanks to Lemma A.2. The same argument as in (2.14) shows

that H
(k)
g,α is a Green’s function for the operator (∆g + α)k in M . By Lemma 3.1,

H
(k)
g,α = Gg,α in M ×M \ Diag. Now, recall that H

(1)
g,α is positive by the strong

maximum principle and Hopf Lemma (see [22, Theorem 3.]). Thus, Gg,α = H
(k)
g,α is

positive in M ×M \Diag. �

Remark 3.4. Note that the factorized form of (∆g + α)k is crucial to obtain posi-
tivity. In general, the question of positivity of for higher-order operators is a hard
problem. We refer to [8, 13, 14] for positivity results for polyharmonic operators on
domains of Rn with specific boundary conditions. The argument that we describe
here for the positivity would work for any polyharmonic operator which is decom-
posed as the product of coercive operators of order 2, such as the GJMS operator
in a Riemannian manifold with Einstein metric (see [6]).

3.5. Control on the derivatives. We are now interested in estimates similar to
(3.38) for the derivatives of Gg,α. Let f ∈ C∞(M), then the lth covariant derivative
∇lf ∈ (T ∗M)l is a (l, 0)-tensor. Fix x ∈M , on a neighborhood Bx(τ) with τ < ig,
the exponential map at x allows us to define the metric on B0(τ) ⊂ R

n,

(3.39) g̃(u) := exp∗x g(u).

Since M is compact, there is a global constant C > 0 independent of x ∈ M such
that for u ∈ B0(τ),

(3.40)















|g̃(u)ij − δij | ≤ C |u|2 1 ≤ i, j ≤ n

∣

∣

∣
∇l

g̃ f̃(u)−∇l
ξf̃(u)

∣

∣

∣
≤ C

(

|u|
∣

∣

∣
∇l−1

ξ f̃(u)
∣

∣

∣
+

l−2
∑

m=1

∣

∣

∣
∇m

ξ f̃(u)
∣

∣

∣

)

l ≥ 2

where f̃ := f ◦ expx, and g̃(u)ij are the components of g̃ at u in the exponential
chart.

Proposition 3.8. Let α0 ≥ 1 be given by Proposition 3.5. For all 0 < ε < 1,
there is a constant Cε > 0 such that for all α ≥ α0, for all x, y ∈ M and for

l = 1, . . . 2k − 1, we have

∣

∣∇luα,x
∣

∣

g
(y) ≤ Cα−k+ l

2











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

.

Proof. Let us fix x ∈M and let y ∈M . We prove the estimates on the derivatives
of uα,x by using elliptic estimates in balls centered at y. Observe that for z ∈
By(1/

√
α),

dg(x, y)− 1/
√
α ≤ dg(x, z) ≤ dg(x, y) + 1/

√
α.
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With this realization, and with Proposition 3.5, we obtain

(3.41)
|uα,x(z)| ≤ Cεα

−k











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

= Cεα
−kΨε,α(x, y)

for all z ∈ By(1/
√
α), where Ψε,α is as in (3.30). We also have by (3.16) that there

exists a constant C′
ε > 0 independent of x, y and α ≥ α0 such that

(3.42) |γα,x(z)| ≤ C′
εα

−N+n
2 Ψε,α(x, y)

for all z ∈ By(1/
√
α).

Set v :=
√
α exp−1

y (z), then if z ∈ By(1/
√
α), v ∈ B0(1) ⊂ R

n. For α ≥ α0, we

have 1/
√
α < ig, define

g̃α,y(v) := exp∗y g(v/
√
α) and

{

ũα,x,y(v) := uα,x(expy(v/
√
α))

γ̃α,x,y(v) := γα,x(expy(v/
√
α))

.

Observe that γ̃α,x,y ∈ C0(B0(1)) since γα,x ∈ C0(M), and that ũα,x,y ∈ L∞(B0(1)).
We compute, for all v ∈ B0(1),

∆guα,x(expy(v/
√
α)) = α∆g̃α,y

ũα,x,y(v)

so that ũα,x,y solves the following equation on B0(1),

αk(∆g̃α,y
+ 1)kũα,x,y = γ̃α,x,y.

Using the fact that when α → ∞, g̃α,y → ξ the Euclidean metric in C∞
loc(R

n),
(∆g̃α,y

+ 1)k is an elliptic operator with coefficients bounded independently of α ≥
α0. Elliptic theory gives ũα,x,y ∈ C2k−1,θ(B0(1/2)) for all θ ∈ (0, 1). There is a
constant C > 0 that does not depend on α, x, y, such that for l = 1, . . . 2k − 1 and
all v ∈ B0(1/2) we have

∣

∣∇lũα,x,y(v)
∣

∣ ≤ C(‖ũα,x,y‖L∞(B0(1))
+
∥

∥α−kγ̃α,x,y
∥

∥

C0(B0(1))
)

≤ Cα−kΨε,α(x, y),

using (3.41) and (3.42). Note that here the gradient and the norm are taken in
the Euclidean space R

n. To get the metric-related quantities we use (3.40), for all
v ∈ B0(1/2), we have

∣

∣∇l
guα,x

∣

∣

g
(expy(v/

√
α)) ≤ C

∣

∣

∣
∇l

g̃α,y
ũα,x,y(v)

∣

∣

∣
≤ C

l
∑

m=1

α
m
2 |∇mũα,x,y(v)|

≤ Cα
l
2−kΨε,α(x, y).

Taking this inequality at v = 0 ∈ B0(1/2), then expy(0) = y, and we conclude. �

The following Proposition extends Corollary 2.7 to the Riemannian case, showing
that the pointwise decomposition of Gg,α in (1.2) can be differentiated formally.

Proposition 3.9. Fix 0 < ε < 1, there exists α0 ≥ 1 such that for all α ≥ α0,

the derivatives of Gg,α have the following estimates. There exists a constant C > 0
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independent of α such that for all x 6= y ∈M , and for l = 1, . . . 2k − 1, x 6= y,

∣

∣∇lGg,α;x(y)
∣

∣

g
≤ C











dg(x, y)
−(n−2k+l) √

αdg(x, y) ≤ 1

dg(x, y)
−(n−2k+l)e−(1−ε)

√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

.

Moreover, for dg(x, y) ≤ 1/
√
α with x 6= y,

∣

∣

∣
∇l
(

dg(x, y)
n−2k

Gg,α;x(y)
)∣

∣

∣

g
≤ Cdg(x, y)

−l
η(
√
αdg(x, y)),

where η is defined in (2.15).

Proof. We estimate the derivative of each term in the expression 3.26 independently.
First, we compute estimates for the derivatives of G̃α. Fix x ∈ M , and let

u := exp−1
x (y), then by the definition (3.1), and (3.6), we have for u ∈ B0(τ0),

(3.43)

∣

∣

∣
∇l

gG̃α;x

∣

∣

∣

g
(expx(u)) ≤ C

∣

∣

∣
∇l

g̃

(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣

≤ C

l
∑

m=1

∣

∣

∣
∇m

ξ

(

χ(|u|)H(k)
α;0(u)

)∣

∣

∣

≤ C

{

|u|−(n−2k+l) √
α |u| ≤ 1

αk n−3
4 + l

2 |u|
n(k−2)+k

2 e−
√
α|u| √

α |u| ≥ 1
,

using (3.40), where g̃ is as in (3.39). By the multiplication by the cutoff, we also
have

∣

∣

∣
∇lG̃α;x(y)

∣

∣

∣

g
= 0 for y ∈M \Bx(τ0).

In a second step, we use (3.18) and the fact that
∣

∣∇lG̃α;x

∣

∣

g
∈ L1(M) for l =

1, . . . 2k − 1 thanks to (3.43), and we obtain
∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
≤
∫

M

∣

∣Γi
α(x, z)

∣

∣

∣

∣

∣
∇lG̃α;z(y)

∣

∣

∣
dvg(z)g,

for i = 1, . . .N−1. Using Lemma A.2, we then have, when x 6= y with
√
αdg(x, y) ≤

1,

(3.44)
∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
≤ Ci











dg(x, y)
−(n−2k−2i+l) when 2k + 2i− l < n

1 + |log(√αdg(x, y))| if 2k + 2i− l = n

α− 2k+2i−n−l
2 when 2k + 2i− l > n

.

We also have, when
√
αdg(x, y) ≥ 1,

∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
≤ Cαpi+

l
2 dg(x, y)

ρie−
√
αdg(x,y)

where pi, ρi were defined in (3.20). Finally,
∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
= 0 when dg(x, y) ≥

(i + 1)τ0, where τ0 is as in Proposition 3.3. There is then a constant Cε > 0 such
that for α large enough and all x, y with

√
αdg(x, y) ≥ 1,

∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
≤ Cεα

−idg(x, y)
−(n−2k+l)

e−(1−ε)
√
αdg(x,y)

for i = 1, . . .N − 1, l = 1, . . . 2k − 1.
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For the last term uα,x, choose 0 < ε′ < ε, Proposition 3.8 gives

(3.45)
∣

∣∇luα,x(y)
∣

∣

g
≤ Cα−k+ l

2











1
√
αdg(x, y) ≤ 1

e−(1−ε′)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε′)
√
αig/2 dg(x, y) ≥ ig/2

≤ Cα− n
2 dg(x, y)

−(n−2k+l)











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

.

Putting this together, we obtain for l = 1, . . . 2k − 1,

(3.46)

∣

∣∇lGg,α;x(y)
∣

∣

g
≤
∣

∣

∣
∇lG̃α;x(y)

∣

∣

∣

g
+

N−1
∑

i=1

∣

∣

∣
∇lG̃i

α;x(y)
∣

∣

∣

g
+
∣

∣∇luα,x(y)
∣

∣

g

≤ C











dg(x, y)
−(n−2k+l) √

αdg(x, y) ≤ 1

dg(x, y)
−(n−2k+l)

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
αig/2 dg(x, y) ≥ ig/2

which proves the first part of Proposition 3.9.
For the second part of the proof, we use again (3.26), for dg(x, y) ≤ 1/

√
α we

have

(3.47)
∣

∣

∣
∇l
(

dg(x, y)
n−2k

Gg,α;x(y)
)
∣

∣

∣

g

=
∣

∣

∣
∇l
(

dg(x, y)
n−2k

G̃α;x(y)
)∣

∣

∣

g
+O

(

1
αη
(√
αdg(x, y)

)

dg(x, y)
−l
)

using (3.44) and (3.45). Let Fx(y) := dg(x, y)
n−2k

G̃α;x(y) for y ∈ Bx(1/
√
α), and

F̃ (u) := Fx(expx(u)) = |u|n−2k
H

(k)
α;0(u) for |u| ≤ 1/

√
α. Then, writing g̃ := exp∗x g

as before,

∣

∣∇l
gFx

∣

∣

g
(expx(u)) =

∣

∣

∣
∇l

g̃F̃ (u)
∣

∣

∣
(1 +O(|u|2))

=

(

∣

∣

∣
∇l

ξF̃ (u)
∣

∣

∣
+O

(

|u|
∣

∣

∣
∇l−1

ξ F̃ (u)
∣

∣

∣

)

+O
(

l−2
∑

m=1

∣

∣

∣
∇m

ξ F̃ (u)
∣

∣

∣

))

(1 +O(|u|2))

for all |u| ≤ 1/
√
α, using (3.40). Each term in this sum is estimated using Corollary

2.7, and we finally obtain in (3.47) that, when
√
αdg(x, y) ≤ 1 and α ≥ α0,

∣

∣

∣
∇l
(

dg(x, y)
n−2k

Gg,α;x(y)
)∣

∣

∣

g
≤ Cη

(√
αdg(x, y)

)

dg(x, y)
−l
.

�

3.6. Mass of the operator in dimension n = 2k + 1. We conclude this paper
by a consideration in the case where n = 2k + 1. When n = 2k + 1, the Green’s
function Gg,α can be re-written as

Gg,α(x, y) =
cn,k

dg(x, y)
+ µx(y),

where cn,k is given by (2.1), and µx(y) is a continuous function for all x ∈ M ,
as recalled below. It is then standard to define the mass of the operator as the
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quantity µx(x), see [24] for the conformal Laplacian, and [18] for the Paneitz-
Branson operator.

Lemma 3.10. There exists α0 ≥ 1 and C1, C2 > 0 such that for all x ∈M , α ≥ α0,

C1

√
α ≤ −µx(x) ≤ C2

√
α.

Proof. First, by relation (1.2) we obtain an upper bound on the absolute value of
the mass : There exists α0 ≥ 1 and C > 0 such that for all x ∈M , α ≥ α0,

|µx(x)| ≤ C
√
α.

Now for the second part, fix α0 ≥ 1 given by Theorem 1.1. From the decomposition
(3.26), one obtains that

|µx(y)| ≤
∣

∣

∣

∣

G̃α(x, y)−
cn,k

dg(x, y)

∣

∣

∣

∣

+

N
∑

i=1

∣

∣

∣
G̃i

α(x, y)
∣

∣

∣
+ |uα,x(y)| ,

so that

µx(y) = G̃α(x, y)−
cn,k

dg(x, y)
+O(α−1/2)

using (3.19), (3.21) and Proposition 3.5. Now with the definition (3.1), we have for
dg(x, y) ≤ τ0/2 given in Proposition 3.3,

(3.48) µx(y) =

(

H(k)
α (0, u)− cn,k

|u|

)

∣

∣

∣

u=exp−1
x (y)

+O(α−1/2).

Using the notations of Proposition 2.6, recall that

H(k)
α (0, u)− cn,k

|u| = Rα(0, u),

where Rα satisfies (2.18),

Rα(0, u) = −
∫

Rn

cn,k |u− z|−1
k−1
∑

l=0

αk−l(−∆)lH
(k)
α;0(z)dz

for all u 6= 0. By integration by part, and using Proposition 2.5, we obtain

(3.49) Rα(0, u) = −cn,k
k−1
∑

l=0

αk−l

∫

Rn

(−∆)l(z)

(

|u− z|−1
)

H
(k)
α;0(z)dz.

Simple calculations show that for l = 0, . . . k − 1, there is a constant dn,k > 0
depending only on n, k such that

(−∆)l
(

1
|u|
)

= dn,k
1

|u|1+2l
.

Since H
(k)
α > 0, (3.49) gives

−Rα(0, u) ≥ c̃n,k α

∫

Rn

1

|u− z|2k−1
H

(k)
α;0(y) dy.

Let δ ∈ (0, 1) whose value will be fixed later. Proposition 2.6 shows that there
exists a constant C > 0 independent of α, such that

H(k)
α (x, y) ≥ cn,k

|x− y|(1− C
√
α |x− y|)
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for all |x− y| ≤ 1/
√
α. Thus,

−Rα(0, u) ≥ c̃n,kα

∫

B0(δ/
√
α)

1

|y − u|2k−1

1

|y| (1− Cδ)dy

≥ c̃n,kα
δ√
α
(1 − δC)

for all |u| ≤ 2δ√
α
. Finally, fix δ > 0 small enough so that 1− δC ≥ 1

2 , we obtain that

there exists C > 0 independent of α such that for all |u| ≤ 2δ√
α
,

(3.50) −Rα(0, u) ≥ C
√
α.

The continuity of Rα follows from elliptic theory, since Rα satisfies

(−∆)kRα,x = hα,x

and hα,x ∈ Lp(Rn) for all p > n
n−2 using (2.17), with n− 2 < 2k. This implies the

continuity of µx(y), since all the terms G̃i
α and uα,x are also continuous by Lemma

A.2. Putting (3.48) and (3.50) together and evaluating them at u = 0 gives

µx(x) = Rα(0, u)
∣

∣

∣

u=0
+O(α−1/2) ≤ −C1

√
α

for some C1 > 0 and for α ≥ α0. In particular, µx(x) → −∞ as α → ∞. �

Note that the terms due to the presence of the metric contribute only in O(α−1/2)
whereas the main contribution leading to the divergence of the mass comes from
the lower-order terms in the operator (−∆+ α)k on the Euclidean space.

Appendix A. Generalized Giraud’s Lemmas

In this Appendix, we compute some convolution estimates that are needed in
the previous Sections to obtain the bounds on the Green’s functions. These are
modified versions of results known as Giraud’s Lemma in the literature (see [2,
Proposition 4.12], [16, Lemma 7.5]), proved in [10, p. 150].

Lemma A.1 (Exponential Giraud’s). Let X,Y ∈ C0(Rn × R
n \ Diag). Assume

that there exist β, γ ∈ (0, n], and ρ, ν > −n such that

|X(x, y)| ≤
{

|x− y|β−n
if |x− y| ≤ 1

|x− y|ρ e−|x−y| if |x− y| ≥ 1
,

|Y (x, y)| ≤
{

|x− y|γ−n
if |x− y| ≤ 1

|x− y|ν e−|x−y| if |x− y| ≥ 1

for all x 6= y. Let Z(x, y) :=
∫

Rn X(x, z)Y (z, y) dz for x 6= y. Then Z ∈ C0(Rn ×
R

n \Diag) and there exists C > 0 such that for all x 6= y :

• If |x− y| ≤ 1,

|Z(x, y)| ≤











C |x− y|β+γ−n
when β + γ < n

C
(

1 + |log |x− y||
)

when β + γ = n

C when β + γ > n.

• If |x− y| ≥ 1,

|Z(x, y)| ≤ C |x− y|ρ+ν+n
e−|x−y|.
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Moreover, when β + γ > n, Z is continuous on the whole R
n × R

n.

The following Proposition extends this result on a compact Riemannian manifold
M with injectivity radius ig > 0, and with a scale parameter α ≥ 1.

Lemma A.2. Let (M, g) be a closed Riemannian manifold, and τ, σ > 0 such that

τ + σ < ig. Let X,Y ∈ C0(M ×M \ Diag), such that for all x, y ∈ M , X(x, ·)
is supported in Bx(τ) and Y (·, y) in By(σ). Assume that there exist β, γ ∈ (0, n],
p, q ≥ 0 and ρ, ν > −n satisfying

(A.1)

{

2p− ρ ≤ n− β

2q − ν ≤ n− γ

and such that, for all x 6= y, α ≥ 1,

|X(x, y)| ≤
{

dg(x, y)
β−n

if
√
αdg(x, y) ≤ 1

αpdg(x, y)
ρe−

√
αdg(x,y) if

√
αdg(x, y) ≥ 1

|Y (x, y)| ≤
{

dg(x, y)
γ−n

if
√
αdg(x, y) ≤ 1

αqdg(x, y)
ν
e−

√
αdg(x,y) if

√
αdg(x, y) ≥ 1.

Let, for all x 6= y, Z(x, y) :=
∫

M
X(x, z)Y (z, y) dvg(z). Then Z ∈ C0(M ×M \

Diag) and, for all x ∈ M , Z(x, ·) is supported in Bx(τ + σ). There exists α0 ≥ 1
and C > 0 such that for all x 6= y and α ≥ α0, we have the following :

• If
√
αdg(x, y) ≤ 1,

|Z(x, y)| ≤ C











dg(x, y)
β+γ−n

when β + γ < n

(1 + |log(√αdg(x, y))|) when β + γ = n

α− β+γ−n
2 when β + γ > n.

• If
√
αdg(x, y) ≥ 1,

|Z(x, y)| ≤ Cαn− β+γ
2 + ρ+ν

2 dg(x, y)
ρ+ν+n

e−
√
αdg(x,y).

Moreover, when β + γ > n, Z ∈ C0(M ×M).

Since the proofs of these two Lemmas are the same, we only show the second
one. The proof of Lemma A.1 is identical setting formally τ, σ = ∞ and α = 1,
and taking the integrals on the Euclidean space.

Proof. Up to choosing α0 large enough, we can assume that 5/
√
α < τ + σ < ig.

For the first part of the proof, let x, y ∈ M with x 6= y, and assume that
dg(x, y) ≤ 2/

√
α. We have

(A.2) |Z(x, y)| ≤ C

∫

Bx(3/
√
α)

1

dg(x, z)
n−β

1

dg(z, y)
n−γ dvg(z)

+

∣

∣

∣

∣

∣

∫

M\Bx(3/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

,

this comes from fact that for z ∈ Bx(3/
√
α),

|X(x, z)| ≤ Cαpdg(x, z)
ρ
e−

√
αdg(x,y) ≤ Cdg(x, z)

β−n
when dg(x, z) ≥ 1/

√
α

|Y (z, y)| ≤ Cαqdg(z, y)
ν
e−

√
αdg(x,y) ≤ Cdg(z, y)

γ−n
when dg(z, y) ≥ 1/

√
α

for a constant C > 0 independent of α, x, y, z, by (A.1).
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Write r := dg(x, y) ≤ 2/
√
α, we first claim that

(A.3)

∫

Bx(3/
√
α)

1

dg(x, z)
n−β

1

dg(z, y)
n−γ dvg(z)

≤ C











dg(x, y)
−(n−β−γ)

when β + γ < n

1 + |log(√αdg(x, y))| when β + γ = n

α− β+γ−n
2 when β + γ > n

.

To prove (A.3), we decompose Bx(3/
√
α) in three parts: Bx(r/2), Bx(3r/2) \

Bx(r/2) and Bx(3/
√
α) \ Bx(3r/2). First, when z ∈ Bx(r/2), we have dg(y, z) ≥

r/2, so that
(A.4)
∫

Bx(r/2)

1

dg(x, z)
n−β

1

dg(z, y)
n−γ dvg(z) ≤ Crγ−n

∫

Bx(r/2)

1

dg(x, z)
n−β

dvg(z)

≤ Crγ+β−n

since r/2 ≤ 1/
√
α < ig and β > 0. Similarly, when z ∈ Bx(3r/2) \ Bx(r/2), we

have dg(x, z) ≥ r/2, so that

(A.5)

∫

Bx(3r/2)\Bx(r/2)

1

dg(x, z)
n−β

1

dg(z, y)
n−γ dvg(z)

≤ Crβ−n

∫

Bx(3r/2)\Bx(r/2)

1

dg(y, z)
n−γ dvg(z)

≤ Crβ+γ−n

since 5r/2 ≤ 5/
√
α < ig and γ > 0. Finally, when z ∈ Bx(3/

√
α) \ Bx(3r/2), we

have 1
3dg(x, z) ≤ dg(z, y) ≤ 5

3dg(x, z), so that

∫

Bx(3/
√
α)\Bx(3r/2)

1

dg(x, z)
n−β

1

dg(z, y)
n−γ dvg(z)

≤ C

∫

Bx(3/
√
α)\Bx(3r/2)

1

dg(x, z)
2n−β−γ

dvg

≤ C











rβ+γ−n when β + γ < n

1 + |log√αr| when β + γ = n

α− β+γ−n
2 when β + γ > n

since 3/
√
α < ig. This concludes the proof of (A.3) when r ≤ 2

√
α, realizing that

when β + γ > n, rβ+γ−n ≤ Cα− β+γ−n
2 in (A.4) and (A.5).

We now claim that

(A.6)

∫

M\Bx(3/
√
α)

|X(x, z)| |Y (z, y)| dvg(z) ≤ C

{

rβ+γ−n when β + γ < n

α− β+γ−n
2 when β + γ ≥ n

.

To prove (A.6), note that, by assumption onX,Y , the integral in (A.6) has non-zero
contribution only on the support ofX and Y , i.e. onBx(τ)∩By(σ). Moreover, when
z ∈ M \ Bx(3/

√
α), we have dg(x, z) ≥ 1/

√
α, dg(z, y) ≥ 1/

√
α and 1

3dg(x, z) ≤
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dg(z, y) ≤ 5
3dg(x, z), so that

∫

M\Bx(3/
√
α)

|X(x, z)| |Y (z, y)| dvg(z)

≤ C

∫

(Bx(τ)∩By(σ))\Bx(3/
√
α)

αp+qdg(x, z)
ρ+ν

e−
4
3

√
αdg(x,z) dvg(z)

≤ Cαp+q

∫ τ

3/
√
α

tρ+ν+n−1e−
4
3

√
αtdt ≤ Cα− β+γ−n

2 ,

where the last inequality follows from (A.1). This concludes the proof of (A.6) for

r ≤ 2/
√
α, realizing that when β + γ < n, α− β+γ−n

2 ≤ Crβ+γ−n.
Combining (A.3) and (A.6) with (A.2), we have proven that, for dg(x, y) ≤ 2/

√
α,

(A.7) |Z(x, y)| ≤











Cdg(x, y)
−(n−β−γ)

β + γ < n

C(1 + |log(√αdg(x, y))|) β + γ = n

Cα− β+γ−n
2 β + γ > n

.

For the second part of the proof, assume now that dg(x, y) ≥ 2/
√
α. Write again

r := dg(x, y), we split the domain M in the integral that defines Z(x, y) in several
parts: Bx(1/

√
α), By(1/

√
α), Bx(3r/2)\(Bx(1/

√
α)∪By(1/

√
α)) andM\Bx(3r/2).

As before, the integral has non-zero contributions only in Ω0 := Bx(τ)∩By(σ), and

Ω0 ⊂ Bx(ig), Ω0 ⊂ By(ig). It is then clear that Z(x, ·) is supported in Bx(τ + σ).
Without loss of generality, we can therefore assume that Ω0 6= ø, i.e. we can restrict
to the case where dg(x, y) ≤ σ + τ .

For z ∈ Bx(1/
√
α), we have dg(y, z) ≥ r − 1/

√
α and 1

2dg(x, y) ≤ dg(y, z) ≤
3
2dg(x, y), so that
∣

∣

∣

∣

∣

∫

Bx(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ C

∫

Bx(1/
√
α)

αq dg(y, z)
ν

dg(x, z)
n−β

e−
√
αdg(z,y) dvg

≤ Cαqrνe−
√
αr

∫

Bx(1/
√
α)

1

dg(x, z)
n−β

dvg(z)

≤ Cαq− β
2 rνe−

√
αr

≤ Cαn− β+γ
2 + ρ+ν

2 rρ+ν+ne−
√
αr

since 1/
√
α < ig, where the last inequality follows from (A.1) and n+ ρ ≥ 0. The

same arguments on By(1/
√
α) similarly show that

∣

∣

∣

∣

∣

∫

By(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαn− β+γ
2 + ρ+ν

2 rρ+ν+ne−
√
αr.

Now for z ∈ Bx(3r/2) \ (Bx(1/
√
α) ∪By(1/

√
α)), we have dg(x, z) + dg(z, y) ≥

dg(x, y), so that

(A.8)

∣

∣

∣

∣

∣

∫

Bx(3r/2)\(Bx(1/
√
α)∪By(1/

√
α))

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαp+qe−
√
αr

∫

Ω0∩Bx(3r/2)\(Bx(1/
√
α)∪By(1/

√
α))

dg(x, z)
ρ
dg(z, y)

ν
dvg(z).
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We claim that

(A.9)

∫

Ω0∩Bx(3r/2)\(Bx(1/
√
α)∪By(1/

√
α))

dg(x, z)
ρdg(z, y)

ν dvg(z) ≤ Crρ+ν+n

for r ≥ 2/
√
α. To see this, we decompose the domain of integration in two parts:

Bx(r/2)\Bx(1/
√
α) and Ω0∩Bx(3r/2)\(Bx(r/2) ∪By(1/

√
α)). When z ∈ Bx(r/2),

we have r/2 ≤ dg(z, y) ≤ 3r/2, so that
∫

Bx(r/2)\Bx(1/
√
α)

dg(x, z)
ρ
dg(z, y)

ν
dvg(z) ≤ Crρ+ν+n,

since r/2 < ig and ρ+ n > 0. For analogous reasons, we have
∫

Ω0∩Bx(3r/2)\(Bx(r/2)∪By(1/
√
α))

dg(x, z)
ρ
dg(z, y)

ν
dvg(z) ≤ Crρ+ν+n.

This concludes the proof of (A.9). Putting (A.8) with (A.9), we have proven that,
for r ≥ 2/

√
α,

∣

∣

∣

∣

∣

∫

Bx(3r/2)\(Bx(1/
√
α)∪By(1/

√
α))

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαn− β+γ
2 +ρ+ν

2 rρ+ν+ne−
√
αr

using (A.1).
Finally, when z ∈ M \ Bx(3r/2), we have as before 1

3dg(x, z) ≤ dg(y, z) ≤
5
3dg(x, z), so that since X(x, ·) is supported in Bx(τ),
∣

∣

∣

∣

∣

∫

M\Bx(3r/2)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαp+q

∫

Bx(τ)\Bx(3r/2)

dg(x, z)
ρ+ν

e−
√
α 4

3dg(x,z) dvg(z)

≤ Cαp+q Γ(ρ+ ν + n, 2
√
αr)

where Γ(δ, t) :=
∫ +∞
t

sδ−1e−sds is the incomplete Gamma function. Note that this
last integral is non-zero only in the case where r < 2τ/3. It is easily seen that
Γ(δ, t) ∼ tδe−t as t→ ∞, so that in the end we have shown that, for r ≥ 2/

√
α,

∣

∣

∣

∣

∣

∫

M\Bx(3r/2)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ αn− β+γ
2 + ρ+ν

2 rρ+ν+ne−
√
αr

using (A.1). This concludes the second part of the proof for dg(x, y) ≥ 2/
√
α.

Finally, when 1 ≤ √
αdg(x, y) ≤ 2, as before, the two regimes coincide, up to a

constant. The first part of the proof shows that, with (A.7),
∣

∣

∣

∣

∫

M

X(x, z)Y (z, y) dvg

∣

∣

∣

∣

≤ Cα
n−β−γ

2 .

Moreover, there is a constant C > 0 independent of α, x, y, such that

1
Cα

n−β−γ
2 ≤ αn− β+γ

2 + ρ+ν
2 dg(x, y)

ρ+ν+ne−
√
αdg(x,y) ≤ Cα

n−β−γ
2 .

We can then conclude, when 1 ≤ √
αdg(x, y) ≤ 2 we have

|Z(x, y)| ≤ Cαn− β+γ
2 + ρ+ν

2 dg(x, y)
ρ+ν+n

e−
√
αdg(x,y).
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Regarding the continuity, fix x, y ∈ M with x 6= y, and take any sequence
((xm, ym))m such that xm → x, ym → y. Let δm := dg(xm, x), δ̃m := dg(ym, y),
we assume without loss of generality that dg(xm, x) ≤ 1

3dg(x, y) and dg(ym, y) ≤
1
3dg(x, y) for all m ∈ N. Then we compute

(A.10) Z(xm, ym) =

∫

Bxm (δm/2)

X(xm, z)Y (z, ym) dvg(z)

+

∫

Bym (δ̃m/2)

X(xm, z)Y (z, ym) dvg(z)

+

∫

M\(Bxm (δm/2)∪Bym (δ̃/2))

X(xm, z)Y (z, ym) dvg(z).

On the one hand, when z ∈ Bxm
(δm/2), we have dg(z, ym) > r/2, writing once

again r = dg(x, y) > 0, so that
∣

∣

∣

∣

∣

∫

Bxm (δm/2)

X(xm, z)Y (z, ym) dvg(z)

∣

∣

∣

∣

∣

≤ Crγ−n

∫

Bxm (δm/2)

dg(xm, z)
β−n

dvg(z)

≤ Cδβmr
γ−n.

Similarly, when z ∈ Bym
(δ̃m/2), we have dg(xm, z) > r/2, so that

∣

∣

∣

∣

∣

∫

Bym (δ̃m/2)

X(xm, z)Y (z, ym) dvg(z)

∣

∣

∣

∣

∣

≤ Crβ−n

∫

Bym (δ̃m/2)

dg(z, ym)
γ−n

dvg(z)

≤ Cδ̃γmr
β−n.

On the other hand, when z 6∈ (Bxm
(δm/2) ∪ Bxm

(δ̃m/2)), we have dg(xm, z) ≥
1
3dg(x, z) and dg(z, ym) ≥ 1

3dg(z, y), so that

|X(xm, z)| ≤ Cdg(x, z)
β−n

,

|Y (z, ym)| ≤ Cdg(z, y)
γ−n

By dominated convergence, we obtain
∫

M\(Bxm (δm/2)∪Bym (δ̃m/2))

X(xm, z)Y (z, ym) dvg(z)

m→∞−−−−→
∫

M

X(x, z)Y (z, y) dvg(z).

Coming back to (A.10), we have shown that for all x 6= y in M ,

lim
m→∞

Z(xm, ym) =

∫

M

X(x, z)Y (z, y) dvg(z) + 0 + 0 = Z(x, y),

and Z is continuous at (x, y) ∈ M ×M \Diag. Additionally, when β + γ > n, for
all w ∈M , and for all 0 < δ < 1/

√
α, there exists C > 0 such that for all x, y ∈M ,

∣

∣

∣

∣

∣

∫

Bw(δ)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cδβ+γ−n,

this holds true even when x = y. We conclude that Z ∈ C0(M ×M). �

Remark A.1. The assumption (A.1) is a compatibility condition. If 2p−ρ = n−β,
we know that the two regimes of X are equivalent when dg(x, y) ∼ 1/

√
α.
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Remark A.2. Observe that the convolution Z decreases less quickly than either
X and Y at large distances. This is due to the term dg(x, y)

ρ+ν+n that comes

from (A.8). This term becomes larger than α− ρ+ν+n
2 when dg(x, y) ≫ 1/

√
α, which

happens at finite distance as α→ ∞.

We conclude this Appendix with variant of Lemma A.2, which is used in the proof
of Theorem 1.1, where X and Y are allowed to have slightly different exponential
decay.

Lemma A.3. Let α0 ≥ 1 and let X,Y ∈ C0(M ×M \Diag) be such that X(x, ·)
is supported in Bx(τ), τ < ig/2. Suppose that there are p ≥ 0 and ρ > −n with

2p− ρ ≤ 0, and 0 < ε < 1 such that for all x 6= y,

|X(x, y)| ≤
{

1
√
αdg(x, y) ≤ 1

αpdg(x, y)
ρ
e−

√
αdg(x,y)

√
αdg(x, y) ≥ 1

|Y (x, y)| ≤











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
α ig/2 dg(x, y) ≥ ig/2.

Let, for all x, y ∈M , Z(x, y) :=
∫

M
X(x, z)Y (z, y) dvg(z). There exists α0 ≥ 1 and

C > 0 such that for all x, y ∈M and α ≥ α0,

|Z(x, y)| ≤ Cα−n
2











1
√
αdg(x, y) ≤ 1

e−(1−ε)
√
αdg(x,y)

√
αdg(x, y) ≥ 1

e−(1−ε)
√
α ig/2 dg(x, y) ≥ ig/2

.

Remark A.3. Classically, the exponential decay of Z exactly matches that of the
least decreasing term Y .

The proof follows the same steps as the proof of Lemma A.2, and we just explain
the modifications.

Proof. Assume first that dg(x, y) ≤ 2/
√
α. Arguing as in the proof of Lemma A.2

in the case β = γ = n, we obtain

|Z(x, y)| ≤ Cα−n
2 .

Assume now that 2/
√
α ≤ dg(x, y) ≤ ig/2. We adapt the proof of Lemma A.2.

Write r = dg(x, y) and split the domain M in the integral that defines Z(x, y)
between Bx(1/

√
α), By(1/

√
α), and M \ (Bx(1/

√
α) ∪By(1/

√
α)).

When z ∈ Bx(1/
√
α), we have dg(y, z) ≥ r − 1/

√
α, so that

∣

∣

∣

∣

∣

∫

Bx(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Ce−(1−ε)
√
αr

∫

Bx(1/
√
α)

dvg(z)

≤ Cα− n
2 e−(1−ε)

√
αr.

Now when z ∈ By(1/
√
α), we have

|X(x, z)| ≤ Ce−(1−ε)
√
αr,
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since dg(x, z) ≥ r − 1/
√
α and p− ρ/2 < 0. Therefore, we obtain

∣

∣

∣

∣

∣

∫

By(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Ce−(1−ε)
√
αr

∫

By(1/
√
α)

dvg(z)

≤ Cα− n
2 e−(1−ε)

√
αr.

Finally, when z ∈M \ (Bx(1/
√
α)∪By(1/

√
α)), we have dg(x, z)+dg(z, y) ≥ r and

dg(x, z) + ig/2 ≥ ig/2 ≥ r, so that since X(x, ·) is supported in Bx(τ),

(A.11)

∣

∣

∣

∣

∣

∫

M\(Bx(1/
√
α)∪By(1/

√
α))

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαpe−(1−ε)
√
αr

∫

Bx(τ)\Bx(1/
√
α)

dg(x, z)
ρ
e−ε

√
αdg(x,z) dvg(z)

≤ Cαp− ρ
2−n

2 e−(1−ε)
√
αr

∫ ∞

ε

tρ+n−1e−tdt

≤ Cα− n
2 e−(1−ε)

√
αr

since p− ρ/2 < 0. This concludes the proof for the case 2/
√
α ≤ dg(x, y) ≤ ig/2.

For the last case, assume that dg(x, y) ≥ ig/2, and split the domain M in the
integral that defines Z(x, y) in two parts: Bx(1/

√
α) and M \ Bx(1/

√
α). When

z ∈ Bx(1/
√
α), we have dg(z, y) ≥ dg(x, y)− 1/

√
α ≥ ig/2− 1/

√
α, so that

∣

∣

∣

∣

∣

∫

Bx(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Ce−(1−ε)
√
αig/2

∫

Bx(1/
√
α)

dvg(z)

≤ Cα−n
2 e−(1−ε)

√
αig/2.

On the other hand, when z ∈M \Bx(1/
√
α), we have

dg(x, z) + dg(z, y) ≥ dg(x, y) ≥ ig/2,

so that, as in (A.11),
∣

∣

∣

∣

∣

∫

M\Bx(1/
√
α)

X(x, z)Y (z, y) dvg(z)

∣

∣

∣

∣

∣

≤ Cαpe−(1−ε)
√
αig/2

∫

Bx(τ)\Bx(1/
√
α)

dg(x, z)
ρe−ε

√
αdg(x,z) dvg(z)

≤ Cα− n
2 e−(1−ε)

√
αig/2

using p− ρ/2 < 0, which concludes the proof. �

References

1. Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series,
vol. No. 55, U. S. Government Printing Office, Washington, DC, 1964.

2. Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der
mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252,
Springer-Verlag, New York, 1982.

3. Tommaso Boggio, Sulle funzioni di green d’ordine m, Rendiconti del Circolo Matematico di
Palermo (1905), no. 20, 97–135.



GREEN’S FUNCTION OF POLYHARMONIC OPERATORS 39

4. Anna Dall’Acqua, Christian Meister, and Guido Sweers, Separating positivity and regularity
for fourth order Dirichlet problems in 2d-domains, Analysis (Munich) 25 (2005), no. 3, 205–
261. MR 2232852

5. Dean G. Duffy, Green’s functions with applications, second ed., Advances in Applied Mathe-
matics, CRC Press, Boca Raton, FL, 2015. MR 3379916

6. Charles Fefferman and C. Robin Graham, The ambient metric, Annals of Mathematics Stud-
ies, vol. 178, Princeton University Press, Princeton, NJ, 2012. MR 2858236

7. Veronica Felli, Emmanuel Hebey, and Frédéric Robert, Fourth order equations of critical
Sobolev growth. Energy function and solutions of bounded energy in the conformally flat case,
NoDEA Nonlinear Differential Equations Appl. 12 (2005), no. 2, 171–213. MR 2184079

8. Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers, Polyharmonic boundary value
problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010, Positivity
preserving and nonlinear higher order elliptic equations in bounded domains.

9. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order,
Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition.

10. Georges Giraud, Sur le problème de Dirichlet généralisé (deuxième mémoire), Ann. Sci. École
Norm. Sup. (3) 46 (1929), 131–245. MR 1509295

11. C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally
invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3,
557–565.

12. Hans-Christoph Grunau, Optimal estimates from below for Green functions of higher order
elliptic operators with variable leading coefficients, Arch. Math. (Basel) 117 (2021), no. 1,
95–104.

13. Hans-Christoph Grunau and Frédéric Robert, Positivity and almost positivity of biharmonic
Green’s functions under Dirichlet boundary conditions, Arch. Ration. Mech. Anal. 195 (2010),
no. 3, 865–898.

14. Hans-Christoph Grunau and Guido Sweers, Positivity for perturbations of polyharmonic op-
erators with Dirichlet boundary conditions in two dimensions, Math. Nachr. 179 (1996),
89–102.

15. Emmanuel Hebey, Sharp Sobolev inequalities of second order, J. Geom. Anal. 13 (2003), no. 1,
145–162.

16. , Compactness and stability for nonlinear elliptic equations, Zurich Lectures in Ad-
vanced Mathematics, European Mathematical Society (EMS), Zürich, 2014.

17. Emmanuel Hebey and Michel Vaugon, Meilleures constantes dans le théorème d’inclusion de
Sobolev, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 1, 57–93. MR 1373472

18. Emmanuel Humbert and Simon Raulot, Positive mass theorem for the Paneitz-Branson op-
erator, Calc. Var. Partial Differential Equations 36 (2009), no. 4, 525–531. MR 2558328

19. Saikat Mazumdar and Jerome Vetois, Existence results for the higher-order q-curvature equa-
tion, arXiv preprint 2007.10180, 2022.

20. Benoît Michel, Masse des opérateurs gjms, arXiv preprint 1012.4414, 2010.
21. Olivier Rey, The question of interior blow-up-points for an elliptic Neumann problem: the

critical case, J. Math. Pures Appl. (9) 81 (2002), no. 7, 655–696. MR 1968337
22. Frédéric Robert, Existence et asymptotiques optimales des fonctions de green des opérateurs

elliptiques d’ordre deux., https://iecl.univ-lorraine.fr/files/2021/04/ConstrucGreen.pdf (Ac-
cessed November 22, 2023), 2010.

23. Richard Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature,
J. Differential Geom. 20 (1984), no. 2, 479–495. MR 788292

24. Richard Schoen and Shing Tung Yau, Proof of the positive mass theorem. II, Comm. Math.
Phys. 79 (1981), no. 2, 231–260. MR 612249

Lorenzo Carletti, Université Libre de Bruxelles, Service d’Analyse, Boulevard

du Triomphe - Campus de la Plaine, 1050 Bruxelles, Belgique

Email address: lorenzo.carletti@ulb.be

lorenzo.carletti@ulb.be

	1. Introduction and statement of the result
	2. The Green's function for (-+ )k in Rn
	2.1. Green's function of the poly-Laplacian in Rn
	2.2. Construction and uniqueness.
	2.3. Refined asymptotics.

	3. Extending the construction to a Riemannian manifold
	3.1. Step 1: An approximate fundamental solution.
	3.2. Step 2: The induction step.
	3.3. Step 3: Estimates on the remainder term.
	3.4. Step 4: End of the proof of Theorem 1.1.
	3.5. Control on the derivatives.
	3.6. Mass of the operator in dimension n = 2k+1.

	Appendix A. Generalized Giraud's Lemmas
	References

