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ABSTRACT
With the rise of large language models (LLMs), recent works have
leveraged LLMs to improve the performance of click-through rate
(CTR) prediction. However, we argue that a critical obstacle remains
in deploying LLMs for practical use: the efficiency of LLMs when
processing long textual user behaviors. As user sequences grow
longer, the current efficiency of LLMs is inadequate for training on
billions of users and items. To break through the efficiency barrier
of LLMs, we propose Behavior Aggregated Hierarchical Encoding
(BAHE) to enhance the efficiency of LLM-based CTR modeling.
Specifically, BAHE proposes a novel hierarchical architecture that
decouples the encoding of user behaviors from inter-behavior inter-
actions. Firstly, to prevent computational redundancy from repeated
encoding of identical user behaviors, BAHE employs the LLM’s pre-
trained shallow layers to extract embeddings of the most granular,
atomic user behaviors from extensive user sequences and stores
them in the offline database. Subsequently, the deeper, trainable
layers of the LLM facilitate intricate inter-behavior interactions,
thereby generating comprehensive user embeddings. This separa-
tion allows the learning of high-level user representations to be
independent of low-level behavior encoding, significantly reducing
computational complexity. Finally, these refined user embeddings,
in conjunction with correspondingly processed item embeddings,
are incorporated into the CTR model to compute the CTR scores.
Extensive experimental results show that BAHE reduces training
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time and memory by five times for CTR models using LLMs, espe-
cially with longer user sequences. BAHE has been deployed in a
real-world system, allowing for daily updates of 50 million CTR
data on 8 A100 GPUs, making LLMs practical for industrial CTR
prediction.
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1 INTRODUCTION
Click-through rate (CTR) prediction plays a significant role in var-
ious domains, including online advertising, search engines, and
recommendation systems. Recently, large language models (LLMs)
have achieved remarkable results across various domains [3, 11,
13, 17, 20, 26]. Numerous studies have investigated the application
of LLMs in CTR prediction, leveraging LLMs’ powerful semantic
understanding and world knowledge to enhance CTRmodeling. For
example, M6-Rec [5] reconstructs the interactions between users
and items in textual prompts and utilizes M6 to conduct several
recommendation tasks including CTR prediction. Both CTRL [14]
and FLIP [23] integrate semantic information from LLMs into tradi-
tional ID-based models [25] using contrastive learning and masked
language modeling. KAR [24] develops a three-stage framework
based on the reasoning and factual knowledge of LLMs, transfer-
ring knowledge from LLMs into the CTR model through embed-
dings. These works demonstrate the tremendous potential and
broad prospects for LLMs in enhancing CTR prediction.

However, we argue that a challenge for LLMs in practical CTR
prediction remains unresolved: the efficiency bottleneck of LLMs
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when dealing with long user behavior sequences. This issue sig-
nificantly hampers the real-world application of LLMs. In tradi-
tional CTR modeling, it is widely known that integrating diverse,
long-term user sequences into the model can enhance its perfor-
mance [4, 18, 19, 27]. However,incorporating longer texts into LLM-
based CTR models may improve performance but also introduces a
bottleneck, as extended texts significantly slow down training and
inference, making such models unsuitable for large-scale deploy-
ment. This reason has led the LLM-based CTR methods mentioned
before to compromise by using smaller languagemodels and shorter
user sequences [14, 15, 23, 24]. Moreover, some LLM-based recom-
mendation methods are not directly tailored to CTR tasks, such as
sequential recommendation [6, 8, 9, 12, 13, 16, 22]. These methods
are more focused on item matching or retrieval, where the user
sequences only consist of items that have been interacted with. As
a result, the issue of long user sequences is relatively less severe in
these works.

To address these challenges, in this paper, we propose Behavior
Aggregated Hierarchical Encoding (BAHE) to tackle the perfor-
mance bottleneck of LLMs with long user sequences, facilitating
the application of LLMs in real-world CTR prediction. Specifically,
BAHE proposes a novel hierarchical architecture that decouples
the encoding of user behaviors from inter-behavior interactions.
Firstly, to understand the semantic meaning of each user behavior
and to prevent computational redundancy from repeated encoding
of identical user behavior, BAHE employs the LLM’s pre-trained
low layers to extract embeddings of the most granular, atomic
user behaviors from extensive user sequences and stores them
in the offline database. In this way, BAHE converts the encoding
from token-level to behavior-level, substantially reducing sequence
length and enhancing the reusability of behavior. Subsequently,
BAHE retrieves all of a user’s behaviors from the offline restored
atomic behavior database and utilizes the deeper, trainable layers of
the LLM to facilitate intricate inter-behavior interactions, thereby
learning user preferences and generating comprehensive user em-
beddings. This separation allows the learning of high-level user
representations to be independent of low-level behavior encod-
ing, significantly reducing computational complexity. Finally, these
refined user embeddings, in conjunction with correspondingly pro-
cessed item embeddings, are incorporated into the CTR model to
compute the CTR scores.Significantly, atomic behaviors rarely un-
dergo changes, which permits infrequent updates within the lower
layers of the LLM. These updates can proceed asynchronously rela-
tive to those in the higher layers, thereby boosting computational
efficiency. Furthermore, the input sequence for the LLM’s higher
layers is significantly compacted, reducing from the original token
count to a smaller number of behaviors. This concise representation
not only shortens the sequence length the LLM needs to process
but also enhances the model’s overall efficiency.

BAHE has been successfully implemented in real-world indus-
trial CTR prediction, where the training time for LLM-based CTR
with over 50 million data has been reduced from the initial 5 days
to just 1 day, enabling daily model updates and scheduling. Overall,
our main contributions are as follows:

• We investigate a significant and unresolved problem: the effi-
ciency bottleneck in LLM-based CTR modeling with long user

sequences. We find that the main reasons for the performance
bottleneck due to the repetitive encoding of user behaviors and
the strong coupling between behavior representation extraction
and behavior interaction modeling.

• We propose the BAHE method, which is a novel hierarchical
structure to LLM by decoupling the representation extraction
of atomic behaviors from the learning of behavior interactions.
BAHE solves redundant representations of the same behavior
across different users and significantly reduces the length of input
sequences.

• Extensive offline experiments validate that BAHE significantly
enhances the efficiency of LLM-based CTR models. Moreover,
online experiments fully demonstrate BAHE’s ability to reduce
computational resources in real-world industrial CTR prediction.

2 PROPOSED METHOD
2.1 Problem Definition
LLM-based CTR prediction aims to estimate the probability of a
user clicking on an item based on textual features. For each user
𝑢 ∈ 𝑈 , the user’s textual behavior sequence is 𝑠𝑢 , with the total
token length of 𝑠𝑢 being 𝑙𝑢 . 𝑠𝑢 is composed of 𝑁 behavior sequences
from different domains (such as click, favorite, add-to-cart actions)
denoted as 𝑠𝑢 = [𝑠𝑢𝑛 |0 < 𝑛 < 𝑁 ], with each sequence 𝑠𝑢𝑛 contain-
ing an average of𝑀 user behaviors 𝑠𝑢𝑛 = [𝑎𝑢𝑛𝑚 |0 < 𝑚 < 𝑀], and
each behavior 𝑎𝑢𝑛𝑚 having an average of 𝐾 tokens, which means
𝑙𝑢 = 𝑁 × 𝑀 × 𝐾 . For an item 𝑖 ∈ 𝐼 , the textual features of 𝑖 is 𝑡𝑖 ,
comprised of the item’s title, with the overall length 𝑙𝑖 , which is
significantly shorter than 𝑙𝑢 . We define 𝐻 to be the set of distinct
atomic behaviors across all users:

𝐻 = {𝑎𝑢𝑚𝑛 |𝑢 ∈ 𝑈 , 0 < 𝑚 < 𝑀, 0 < 𝑛 < 𝑁 } (1)
Each user’s behavior sequence 𝑠𝑢 consists of these atomic behaviors
and includes the titles of items they’ve interacted with, hence 𝑡𝑖 ∈ 𝐻 .
The objective of LLM-based CTR modeling is to minimize 𝐿:

𝐿 =
1
|𝐷 |

∑︁
𝑢∈𝑈 ,𝑖∈𝐼

𝑙 (𝑌, 𝐹 (𝑠𝑢 , 𝑡𝑖 )) (2)

where 𝑙 represents the loss function, |𝐷 | denotes the total number
of training samples, and 𝑌 indicates the click label.

2.2 Behavior Aggregated Hierarchical Encoding
Given users 𝑖 and 𝑗 , with atomic behavior sequences 𝑠𝑖 = [𝑎1, 𝑎2, 𝑎3]
and 𝑠 𝑗 = [𝑎3, 𝑎1, 𝑎2] respectively, Traditional LLM-based CTR mod-
eling struggle with efficiency due to:
• Redundant behavior encoding: The same behaviors are redun-
dantly encoded across different users’ sequences. For example, 𝑠𝑖
and 𝑠 𝑗 both contain 𝑎1, 𝑎2, and 𝑎3, causing unnecessary repetition
in encoding and a waste of computational resources.

• Tight coupling: Behaviors like 𝑎1, 𝑎2, and 𝑎3 have fixed mean-
ings, while their sequence varies per user. Existing approaches
couple representation extraction with sequence understanding,
causing regular, costly updates when behaviors change.
To address these issues, we propose the Behavior Aggregated

Hierarchical Encoding (BAHE) approach, and Figure 1 shows the
architecture of BAHE. BAHE upgrades the LLM’s encoding from
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Figure 1: Architecture of the proposed BAHE method.

token-level to behavior-level, dramatically reducing the encoding
length and increasing the cross-user reusability of behaviors. Ad-
ditionally, BAHE stratifies the LLM and decouples representation
extraction from behavior interaction, boosting computational effi-
ciency and adaptability.

2.2.1 Atomic Behavior Encoding (ABE). BAHE first encodes all
behaviors from the set 𝐻 using the LLM’s pre-trained low layers,
denoted as 𝐿𝐿𝑀𝐿𝑙𝑜𝑤 , then stores them offline to serve as a behavior
embedding table 𝐸. Subsequently, the LLM’s high layers will utilize
the 𝐸 as a replacement for the original token embedding table to
learn interactions among user behaviors. The encoding of atomic
behaviors is illustrated as follows:

𝐸𝑎𝑖 = 𝐹𝑝 (𝐿𝐿𝑀𝐿𝑙𝑜𝑤 (𝑎𝑖 )) 𝐸 = {𝑎𝑖 : 𝐸𝑎𝑖 |𝑎𝑖 ∈ 𝐻 } (3)
where 𝑎𝑖 is an atomic behavior defined in 𝐻 , composed of 𝐾 text
tokens. 𝐿𝐿𝑀𝐿𝑙𝑜𝑤 (𝑎𝑖 ) ∈ 𝑅𝐾×𝑑 corresponds to the 𝐿𝑙𝑜𝑤 hidden states,
where 𝑑 is the dimension. 𝐹𝑝 : 𝑅𝐾×𝑑 ⇒ 𝑅𝑑 is the pooling function.
The behavior embedding table is 𝐸 ∈ R |𝐻 |×𝑑 , where |𝐻 | is the
total number of atomic behaviors. In this way, BAHE transforms
encoding from the token level to the behavior level, substantially
reducing the encoding length from the number of tokens to the
number of atomic behaviors.

2.2.2 Behavior Aggregation (BA). After obtaining the atomic be-
havior embedding table 𝐸, BAHE retrieves the corresponding 𝐸𝑎𝑖
for each 𝑎𝑖 in user 𝑢’s n-th sequence 𝑠𝑢𝑛 , and then concatenates
them as representation for 𝑠𝑢𝑛 :

𝐸 (𝑠𝑢𝑛) = [𝐸 (𝑎𝑢𝑛1) ⊕ 𝐸 (𝑎𝑢𝑛2) ⊕ . . . ⊕ 𝐸 (𝑎𝑢𝑛𝑀 )] (4)

BAHE next employs the LLM’s higher layers 𝐿𝐿𝑀𝐿ℎ𝑖𝑔ℎ to model
the interaction between behaviors, and obtains the overall repre-
sentation for user sequence 𝑠𝑢𝑛 :

𝑄𝑢𝑛 = 𝐹𝑑 (𝐹𝑝 (𝐿𝐿𝑀𝐿ℎ𝑖𝑔ℎ (𝐸 (𝑠𝑢𝑛)))) (5)

𝑄𝑢𝑛 ∈ R𝑑 is the representation of the n-th sequence. 𝐹𝑑 : 𝑅𝑑 ⇒ 𝑅𝑑

is a dimensionality reduction function that aims to transform high-
dimensional LLM hidden states into lower-dimensional, facilitating
its use in subsequent models.

2.2.3 Feature Parallel (FP). To avoid the exponential growth in
LLM’s attention computations as the number of user sequences 𝑁
increases, BAHE utilizes a parallel and independent way to process
each user sequence through the 𝐿𝐿𝑀𝐿ℎ𝑖𝑔ℎ and concatenate them to
get the final user representation:

𝑄𝑢 = [𝑄𝑢1 ⊕ 𝑄𝑢2 ⊕ . . . ⊕ 𝑄𝑢𝑁 ] (6)

Following the same method described above, BAHE can also obtain
the representation of the item, denoted as 𝑄𝑖 .

2.2.4 CTR Modeling. After obtaining the user representation 𝑄𝑢
and item representation 𝑄𝑖 , BAHE feeds their concatenation into
the CTR model 𝐹𝜃 to compute the final CTR score 𝑦:

𝑦 = 𝐹𝜃 (𝑄𝑢 ⊕ 𝑄𝑖 ) (7)
BAHE is model-agnostic, which can apply to any embedding-based
CTR model. For illustrative purposes, BAHE chose the simple but
efficient DNN (Deep Neural Network) as default. BAHE optimizes
the loss function defined in Equation 2 to learn the final LLM-
based CTR model. After training, BAHE uses𝑄𝑢 and𝑄𝑖 to improve
downstream model performance by providing additional semantic
knowledge [24].

2.3 Complexity Analysis
We analyze the time complexity of BAHE against traditional LLM-
based CTR models. With 𝑁 textual behavior features per user,
𝑀 behaviors per sequence, 𝐻 atomic actions, and 𝐾 tokens per
action. The original complexity is 𝑂 (𝐿(𝑁𝑀𝐾)2), where 𝐿 is the
number of layers in the LLM. BAHE splits this into two stages:
atomic behavior encoding 𝑂 (𝐿𝑙𝑜𝑤 (𝐻𝐾2)), and behavior aggrega-
tion with feature parallel 𝑂 (𝐿ℎ𝑖𝑔ℎ (𝑁𝑀2)), where 𝐿 = 𝐿𝑙𝑜𝑤 + 𝐿ℎ𝑖𝑔ℎ .
The efficiency improvement brought by BAHE is𝑂 (𝐿𝑙𝑜𝑤 ((𝑁 2𝑀2 −
𝐻 )𝐾2)) +𝑂 (𝐿ℎ𝑖𝑔ℎ ((𝑁 2𝐾2 − 𝑁 )𝑀2)).

BAHE simplifies the LLM’s lower-level encoding, lowering com-
plexity by (𝑁 2𝑀2 −𝐻 )𝐾2 as it encodes just 𝐻 atomic behaviors in-
stead of redundantly processing𝑁 2𝑀2 identical user behaviors. Fur-
thermore, for LLM’s higher-level semantic understanding, BAHE
processes 𝑁 sequence features in parallel and employs behavior
aggregation, cutting computations by (𝑁 2𝐾2 − 𝑁 )𝑀2.

3 EXPERIMENT
3.1 Experimental Setup
3.1.1 Dataset. We evaluated BAHE using a real-world industrial
dataset with around 50 million CTR records collected over a week.
The data, split into training, validation, and test sets by log time,
includes 6 text features like user bills, searches, and mini-program



Conference’17, July 2017, Washington, DC, USA Binzong Geng, Zhaoxin Huan, Xiaolu Zhang, Yong He, Liang Zhang, Fajie Yuan, Jun Zhou, and Linjian Mo

Table 1: Performance of BAHE at different text lengths.
"AUC" represents the modeling performance of LLM, while
"AUC𝑑 " indicates the performance when transferring LLM
representations to downstream models.

Model
Text Length=1024 Text Length=2048

AUC GPU-h Mem(G) AUC GPU-h Mem(G) AUC𝑑

DNN - - - - - - 0.7219
LLM-CTR 0.7161 448 43.8 0.7276 928 75.4 0.7323

+ FP 0.7143 420 36.8 0.7326 864 67.8 0.7369
+ ABE 0.7150 256 23.0 0.7332 416 38.0 0.7372

+ BA(BAHE) 0.7132 116 9.8 0.7309 164 12.6 0.7352

visits, along with item titles. Each user sequence has 50 user be-
haviors, averaging 5 tokens each, summing up to 10 million atomic
behaviors. The label indicates whether the user clicked on the item.

3.1.2 Baseline Methods. The baseline methods select mainstream
LLM-based CTR modeling (denoted as LLM-CTR) [7, 14, 23, 24],
which concatenate multiple user text sequences into single long
sequences, and then perform CTR modeling based on the LLM.
Since BAHE is model-agnostic, it can be applied to any LLM-based
models.Furthermore, to test the enhancement that LLM provides
to the downstream CTR model, we also present the performance of
the downstream CTR model, which is denoted as DNN.

3.1.3 Evaluation Metrics. We assess performance using the Area
Under the Curve (AUC) [2], standard for CTR. Efficiency is eval-
uated by training GPU hours (GPU-h) [21] and memory usage.
Furthermore, as mentioned in Section 2.2.4, we also show AUC𝑑 to
demonstrate LLM’s benefits for downstream CTR models.

3.1.4 Experimental Details. Our backbone LLM leverages the open-
source Qwen-1_8B1 [1]. As detailed in Section 2.2, we employ an
MLP with [2048, 512, 128] units as 𝐹𝑑 to condense LLM embeddings,
and another MLP as 𝐹𝜃 with [256, 32, 1] units for CTR predictions,
using mean pooling as default 𝐹𝑝 . We fine-tune using Lora Tun-
ing [6, 10] at rank 64, batch size 16, one training epoch, and a 5e-5
learning rate with cosine decay. All tests run on 8 A100 GPUs.

3.2 Performance
3.2.1 Offline Performance. Table 1 compares BAHE with the base-
line. The findings are: Firstly, BAHE cuts training time by 5x, from
928 to 164 GPU hours, and slashes GPU memory to a sixth of the
baseline. This marks a significant improvement in the efficiency of
LLMs when processing long sequences. Secondly, BAHE’s reuse
of behavior representations improves key behavior capture, sub-
stantially raising AUC for both LLMs and downstream models.
BAHE thus strikes an effective balance between efficiency and
performance. Lastly, the individual components of BAHE-Feature
Parallel (FP), Atomic Behavior Encoding (ABE), and Behavior Ag-
gregation (BA)-contributes to these improvements, highlighting
their importance. In summary, BAHE enhances both efficiency and
effectiveness for LLMs in long sequence applications, paving the
way for their practical use.

1https://huggingface.co/Qwen/Qwen-1_8B
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Figure 2: (a) presents a comparison of the normalized training
time and memory usage (left y-axis) and the AUC (right y-
axis) of BAHE with the baseline for different user sequence
lengths (x-axis). Figure (b) shows the AUC comparison of
BAHE utilizing different behavior pooling methods.

3.2.2 Online Deployment. To demonstrate BAHE’s practical bene-
fits, we deploy BAHE on a large-scale e-commerce platform’s adver-
tisement CTR prediction and conduct a two-week A/B test. BAHE
allowed daily LLM training on 50 million CTR records, outperform-
ing the baseline model’s weekly training capacity. Consequently,
BAHE unlocks a greater potential for LLM-based CTR, resulting in
a 9.65% increase in online CTR and 2.41% rise in advertising CPM.

3.3 Empirical Analysis
3.3.1 Comparison at Different Sequence Lengths. To give a more
detailed analysis of the performance enhancements attributable
to BAHE, Figure 2(a) presents a comparison between BAHE and
the baseline at different sequence lengths. Firstly, AUC improves
with longer user sequences, showing that extended texts enhance
LLM-based CTR. Secondly, BAHE’s performance boosts are greater
for longer texts, indicating its effectiveness in handling increased
lengths.

3.3.2 Comparison of Different Pooling Methods. During the extrac-
tion of atomic behavioral representations and subsequent behavior
aggregation, the choice of pooling method (denoted as 𝐹𝑝 in Equa-
tions 3 and 5) plays a crucial role. We evaluate two prevalent tech-
niques in Figure 2(b): mean pooling and the last hidden state of the
LLM (denoted as EOS).Our findings show mean pooling is superior
to EOS, indicating global representations are more effective than
the last hidden embedding for generative LLMs.

4 CONCLUSION
To tackle the challenge of efficiency in LLM-based CTR models
when dealing with users’ extensive text sequences, this paper pro-
poses a novel BAHE method. BAHE enhances the reusability of
behavioral representations across users by encoding atomic behav-
iors. It employs LLM’s hierarchical encoding technique to separate
the learning of behavior representations from the inter-behavior
modeling, thereby boosting computational efficiency. Extensive
online and offline experimental results demonstrate that BAHE
not only achieves a more than 5 times increase in efficiency but
also enhances the CTR performance, offering fresh insights for the
practical deployment of LLM-based CTR models.
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