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Patients Using 122 Parameters 
 
 
ABSTRACT: 
 
For severely affected COVID-19 patients, it is crucial to identify high-risk patients and predict 
survival and need for intensive care (ICU). Most of the proposed models are not well reported 
making them less reproducible and prone to high risk of bias particularly in presence of 
imbalance data/class. In this study, the performances of nine machine and deep learning 
algorithms in combination with two widely used feature selection methods were investigated 
to predict “last status” representing mortality, “ICU requirement”, and “ventilation days”. 
Fivefold cross-validation was used for training and validation purposes. To minimize bias, the 
training and testing sets were split maintaining similar distributions. Only 10 out of 122 features 
were found to be useful in prediction modelling with “Acute kidney injury during 
hospitalization” feature being the most important one. The algorithms’ performances depend 
on feature numbers and data pre-processing techniques. LSTM performs the best in predicting 
“last status” and “ICU requirement” with 90%, 92%, 86% and 95% accuracy, sensitivity, 
specificity, and AUC respectively. DNN performs the best in predicting “Ventilation days” 
with 88% accuracy. Considering all the factors and limitations including absence of exact time 
point of clinical onset, LSTM with carefully selected features can accurately predict “last 
status” and “ICU requirement”. DNN performs the best in predicting “Ventilation days”. 
Appropriate machine learning algorithm with carefully selected features and balance data can 
accurately predict mortality, ICU requirement and ventilation support. Such model can be very 
useful in emergency and pandemic where prompt and precise decision making is crucial.  
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Introduction: 

The COVID-19 pandemic caused a severe global health crisis and socio-economic challenges 
with millions of confirmed cases and hundreds of thousands of deaths. The virus can lead to 
severe respiratory problems and can cause pneumonia. The severity of the disease varies from 
asymptomatic to severe respiratory illness requiring hospitalization and intensive care [1].  
Different biomarkers have been reported to be associated with different stages of the disease 
[2]. The pandemic resulted in an overwhelming burden on healthcare systems worldwide, 
making it imperative to identify high-risk patients and predict the need for intensive care and 
survival. Accurate prediction of ICU admission rates and survival can play an important role 
in case of relapse or reoccurrence of another pandemic.   
 
ICU prediction: 
Several predictive models have been developed to identify patients at high risk of ICU 
admission. A clinical prediction model was developed incorporating age, sex, comorbidities, 
respiratory rate, oxygen saturation, and C-reactive protein levels to predict the need for ICU 
admission [3]. The study reported that the model had good predictive performance. Other 
studies found that age, comorbidities, and abnormal laboratory findings were significant factors 
associated with ICU admission rates in COVID-19 patients [4], [5]. Different machine learning 
models using demographic and clinical data were investigated to predict ICU admission [6], 
[7]. These models had sensitivity and specificity above 90% and 85% respectively indicating 
its high accuracy in predicting ICU admission.  
 
Survival prediction: 
Several studies have been conducted to identify factors associated with COVID-19 survival. A 
study found that age, comorbidities, and severity of illness were significant predictors of 
mortality in COVID-19 patients [8]. Similarly, another study reported that age, comorbidities, 
and the need for mechanical ventilation were significant predictors of mortality in COVID-19 
patients [9]. It was reported that advanced age, high Sequential Organ Failure Assessment 
(SOFA) score, and D-dimer levels were associated with increased mortality in COVID-19 
patients [10]. Patients with comorbidities such as hypertension, diabetes, and cardiovascular 
disease had a higher risk of mortality [11]. Additionally, the study found that the use of 
corticosteroids was associated with increased mortality in COVID-19 patients. Early diagnosis, 
timely treatment, and adequate supportive care were crucial for improving survival rates in 
COVID-19 patients [12], [13]. 
 
Advanced age, male gender, and underlying comorbidities were predictors of both ICU 
admission and mortality in COVID-19 patients [14]. Early recognition and prompt treatment 
of severe cases were crucial for improving both ICU admission rates and survival [15]. 

It has been reported in a review that many COVID-19 predictive models are not well reported 
and prone to high risk of bias [3]. In this study, the performances of seven classical machine 
and two deep leaning models in combination with two widely used feature selection methods 
(random forest and extra tree classifier) were investigated to predict “last status” representing 
mortality, “ICU requirement”, and “ventilation days”. Fivefold cross-validation was used for 
training and validation purposes. In each fold, 80% data were used for training the models and 
the rest 20% were preserved for validation. To minimize bias, the training and testing sets were 
split maintaining similar distributions. 

 



 
Materials and Methods: 
 
Data Description: 
The publicly available data was acquired at Stony Brook University from patients who tested 
positive for COVID-19 [16], [17]. The dataset used in this study contains 122 demographic and 
clinical features of 1384 patients. The detail of all the 122 features is available in the database. 
Among all the 122 features, 86 are categorical and the rest 36 features are continuous numeric 
values. The dataset contains 3 outcome attributes – a) “last status”, b) “ICU needed”, and c) 
“ventilated days”. 
 
Data Preprocessing and Preparation: 
Before training different machine learning algorithms, we needed to address two issues related 
to the data – a) Missing sample data and 2) Imbalanced data.  
 

a) Missing Data 
Only two features (age and acute kidney injury during hospitalization) have all the samples for 
all patients. The rest 120 features have different numbers of sample data missing for different 
patients with the notation “NA (not available)”. Since removal of missing samples will 
drastically reduce data points, they were replaced in two different ways. First, missing values 
of Boolean features were replaced with a fixed value (0.5). For example, sample values of the 
feature "pulseOx.under90" are Boolean, i.e., either true (1) and false (0). Missing sample values 
of this feature were replaced with 0.5 which means “do not count” by the machine learning 
algorithm.  
 
Missing data of features with continuous values were handled by KNN imputation [18]. KNN 
imputation is a widely used effective technique for medical data imputation. The hyper-
parameters of the KNN algorithm were set to the number of neighbours 5, weights "uniform", 
and metric "nan_euclidian".  
 

b) Imbalanced data 
Like most of the typical medical data, the dataset used in this study is highly imbalanced. For 
example, only 260 samples out of 1384 samples represent death cases representing only about 
19% of the total sample. To investigate the impact of imbalance in the dataset on machine 
learning algorithm, we experimented with both original dataset as well as normalized dataset. 
In the normalized dataset, samples were either generated or deleted using oversampling or 
undersampling techniques respectively. In oversampling, the number of samples of the 
minority class was increased by randomly duplicating samples using bootstrapping method so 
that the new oversampled dataset remained bias free. Total number of duplications made the 
minority class approximately half of the majority class. On the other hand, undersampling of 
the majority class produced a dataset that contained an almost equal number of samples of both 
classes by deleting samples from the majority class.  
 
Predicting number of days for invasive ventilation (“ventilation days”) support required for a 
patient is a regression task. Because of the availability of sparse samples with ventilation days 
in the dataset, all the renowned regression models performed poorly despite applying 
oversampling on the dataset. Because of this reason, the regression task was transformed into 
a classification task by binning the days into weeks. Five different bins with index 3, 4, 5, 6, 7 
were produced from the original dataset. In Table 1, bin labels for these derived datasets are 
given and Table 2 contains the meaning of these labels. The dataset with 3 bins consists of 



three categorical values which are 0 (no ventilation needed), 1 (ventilation needed for about 1 
week), and 2 (ventilation needed for more than 1 week). Other datasets were produced with 
this procedure. 
 

Table 1: Bin labels of the derived datasets for ventilated days prediction 
 

No. of Bins Bin Labels 
3 0 1 >1     
4 0 1 2 >2    
5 0 1 2 3 >3   
6 0 1 2 3 4 >4  
7 0 1 2 3 4 5 >5 

 
 

Table 2: Interpretation of the bin labels of Table 1 (derived datasets for ventilated days prediction) 
 

Symbol Meaning 
0 No ventilation required 
1 Approximately 1 week i.e., 1 to 7 days of ventilation required 

>1 More than 1 week of ventilation is required 
2 Approximately 2 weeks i.e., 8 to 14 days of ventilation required 

>2 More than 2 week of ventilation is required 
3 Approximately 3 weeks i.e., 15 to 21 days of ventilation required 

>3 More than 3 week of ventilation is required 
4 Approximately 4 weeks i.e., 22 to 28 days of ventilation required 

>4 More than 4 week of ventilation is required 
5 Approximately 5 weeks i.e., 29 to 35 days of ventilation required 

>5 More than 5 week of ventilation is required 
 

Automatic Feature Selection and Classification 
All the 122 features of the dataset are not equally important for predicting the outcome. Some 
features contribute more to the prediction than others. On the other hand, overloading the 
machine learning algorithm with features that are less important could impact the performance 
of the algorithm. Because of this reason, the most relevant features were first selected before 
training the algorithm. There are several techniques for feature selection. In this study, we 
investigated with two widely used techniques – a) random forest and b) extra tree classifier. 
While training and testing, we observed that predictive model trained with the features selected 
by the extra tree classifier performed slightly better compared to the features selected by the 
random forest. Though the difference is non-significant, we decided to use extra tree classifier 
for further investigation.  
 
Training and Validation: 
Top 10 features from 122 features were selected for predicting “last status”, “ICU requirement”, 
and “ventilation days”. It was observed that selecting more than 10 features did not improve 
the prediction rather lowered the performance.  
 
Prediction of “last status” and “ICU requirement” are binary classification tasks. For these 
classification tasks, seven machine learning algorithms were explored in this study. They are – 
1) Random Forest (RF), 2) Logistic Regression (LR), 3) Support Vector Machine (SVM), 4) 
k-Nearest Neighbor (KNN), 5) XGBoost, 6) Linear Discriminant Analysis (LDA) and 7) 
Gaussian Naïve Bayes (NB) were used. Scikit-learn library was used to implement these 
algorithms. Hyper parameters used for the first six machine learning algorithms were chosen 
by randomized parameter search technique which are shown in Table 3.  



 
Table 3.  Hyper parameters used for different machine learning algorithms. 

Model Parameters 
RF n_estimators = 50, criterion = entropy, max_depth = 10, 

min_samples_split = 8, min_samples_leaf = 1 
LR penalty = 'l2', solver = 'newton-cg', max_iter = 20, 

SVM kernel = 'rbf', degree = 3, gamma = 'auto' 
KNN n_neighbors = 7, weights = 'distance', algorithm = 'auto', 

leaf_size = 10, metric = 'minkowski' 
XGBoost n_estimators = 100, learning_rate = 1.0, max_depth = 2, 

min_samples_split=5, min_samples_leaf=4, 
loss='deviance' 

LDA n_components = None, solver = 'svd' 
 
“RandomizedSearchCV” from the scikit-learn library was used for getting a decent parameter 
combination. The “n_iter “parameter of this function was set to 1000 and other parameters 
were kept as their default values during training.  
 
Two deep learning approaches – 1) Deep Neural Network (DNN), and 2) Long Short-Term 
Memory (LSTM) were also used in this study. Figures 1(a) and 1(b) depict the LSTM and 
DNN architectures for “last status” and “ICU requirement” respectively used in this study. For 
predicting “Ventilation days”, only DNN was used. The DNN architecture that was used in the 
study shown in Figure 1(c). The original dataset contains very few patients who required 
ventilation. To train the algorithm, a good amount of data is required. Because of that, only 
oversampled data were used for predicting “Ventilation days”. 
 

 
Figure 1: Model architecture (a) Long Short-Term Memory (LSTM) and (b) Deep Neural Network 
(DNN) architecture for predicting “last status'” and “ICU requirement “ICU requirement”. (c) DNN 
architecture for predicting “Ventilation days”.  

Fivefold cross-validation was used for training and validation purposes. In each fold, 80% 
samples were used for training the models and the rest 20% of the samples were preserved for 
validation. Mean probability distributions of fifteen features which are present in the top ten 
features for the three prediction tasks are shown in Supplementary Figure 1. It is clear from the 



figure that the training and testing data are from the same population since they have almost 
the same distribution for all the features. This figure contains the probability distribution of 
training and testing sets of original, over-sampled and under-sampled datasets for 15 features.  
 
 
The performances of the models were evaluated by measuring accuracy, sensitivity, and 
specificity using the following formulas: 
 

Accuracy = 	 ("#$"%)
("#$"%$'#$'%)

        (1) 
 

Sensitivity = 	 "#
("#$'%)

                  (2) 
 

Specificity = 	 "%
("%$'#)

                   (3) 
 
TP, TN, FP, and FN stand for true positive, true negative, false positive and false negative 
respectively. The sensitivity of a model determines its capability of successfully predicting 
survival of patients among all the patients who survived and similarly specificity implies the 
capability of successfully predicting the death of infected patients from all the patients who 
passed away.  
 
Receiver operating characteristic (ROC) curves were also generated and Area Under the Curve 
(AUC) were measured for each model. ROC is a graphical representation of a binary classifier's 
diagnostic ability. Higher the AUC of a model the better its classification efficiency. 
 
Results and Discussions 
Feature selection: 
Figure 2 shows the top 10 contributing features along with their importance measure in all three 
prediction tasks. “Acute kidney injury during hospitalization” is the most important feature for 
all of them. Only four features are present in top 10 features for all three prediction models– 
“Blood pH below 7.5”, “Gender”, “Therapeutic heparin” and “Acute kidney injury during 
hospitalization”. Gender and age are found to be vital in predicting last status. However, 
“Gender” has a very little impact in predicting the need of ICU, and “Ventilated days”. For 
both these prediction cases, “Age” is not listed in the top 10 features.   

 
(a)  
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Acute kidney injury during hospitalization
Age

Therapeutic heparin
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Troponin above 0.01
Blood Urea Nitrogen between 5 and 20

Blood pH.above 7.45
Acute hepatic injury during hospitalization

PulseOx under 90
Oxygen saturation in arterial blood by pulse oximetry



 
(b) 

 
(c) 

Figure 2: Top 10 contributing features for predicting (a) last status (b) ICU needed (c) ventilated days. 
 

 
Prediction of “last status” 
Table 4 shows the results of the top performing three models using a varied number of top-
ranked features. Receiver operating characteristic (ROC) curve and Area Under the Curve 
(AUC) for these three models are shown in Figure 3. For the original dataset, LDA showed 
90.10% (+/- 0.71%) accuracy, 93.34% (+/- 1.02%) sensitivity, and 68.83% (+/- 6.65%) 
specificity when top 3 features were used. Since the original dataset contains more survival 
cases than death cases, the specificity is low with high variance. Though XGBoost showed 
91.47% (+/- 1.22%) using the top 3 features which is slightly higher than LSTM, its specificity 
is quite low compared to LSTM which is 63.35% (+/- 7.19%). It showed 95.75% (+/- 1.35%) 
sensitivity that implies models’ expertise in accurately predicting survival cases.  For the 
original dataset, in terms of accuracy SVM showed better performance than all other models. 
Its overall accuracy was 92.12% (+/- 0.70%) and specificity was 63.35% (+/- 6.07%) when the 
top 4 features were used. The highest AUC of SVM, XGBoost, LDA were 0.93, 0.95, 0.93 
respectively was achieved with the top 10 features. For SVM, AUC is very much dependent 
on the number of features selected ranging from 0.79 to 0.93 for the top 3 and10 features 
respectively.  
 
 
 

0 0.05 0.1

Acute kidney injury during hospitalization
Therapeutic exnox

Blood pH above 7.45
Blood pH between 7.35 and 7.45

Blood pH below 7.35
Therapeutic heparin

Procalcitonin below 0.25
PulseOx under 90

Kidney replacement therapy
Gender

0 0.02 0.04 0.06

Acute kidney injury during hospitalization
Blood pH below 7.35

Therapeutic exnox
Blood pH above 7.45

Blood pH between 7.35 and 7.45
Therapeutic heparin

Kidney replacement therapy
Acute hepatic injury during hospitalization

Gender
Oxygen saturation in Arterial blood by Pulse oximetry



Table 4. Performance of top three machine learning models in ‘last status’ prediction using different 
top-ranked features from the original dataset. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

SVM 
Accuracy 91.40% (+/- 0.80%) 92.12% (+/- 0.70%) 90.90% (+/- 0.61%) 90.90% (+/- 0.62%) 91.19% (+/- 0.67%) 91.11% (+/- 0.66%) 
Sensitivity 96.75% (+/- 1.57%) 96.50% (+/- 1.04%) 95.84% (+/- 1.90%) 96.50% (+/- 1.25%) 97.08% (+/- 1.37%) 96.59% (+/- 0.97%) 
Specificity 56.22% (+/- 6.44%) 63.35% (+/- 6.07%) 58.41% (+/- 8.93%) 54.02% (+/- 7.04%) 52.42% (+/- 5.41%) 55.15% (+/- 8.71%) 

XGBoost 
Accuracy 91.47% (+/- 1.22%) 91.47% (+/- 1.78%) 91.47% (+/- 1.32%) 91.19% (+/- 1.45%) 91.33% (+/- 1.68%) 91.62% (+/- 1.28%) 
Sensitivity 95.75% (+/- 1.35%) 96.17% (+/- 1.27%) 96.09% (+/- 1.33%) 95.92% (+/- 1.30%)  96.42% (+/- 1.07%) 96.17% (+/- 1.22%) 
Specificity 63.35% (+/- 7.19%) 60.62% (+/- 10.49%) 61.16% (+/- 8.49%) 60.08% (+/- 9.44%) 57.90% (+/- 12.12%) 61.70% (+/- 6.02%) 

LDA 

Accuracy 90.10% (+/- 0.71%) 89.45% (+/- 0.74%) 89.31% (+/- 0.78%) 89.31% (+/- 0.84%) 90.03% (+/- 0.66%) 89.89% (+/- 1.22%) 

Sensitivity 93.34% (+/- 1.02%) 93.01% (+/- 1.54%) 93.17% (+/- 1.67%) 93.09% (+/- 1.77%) 93.76% (+/- 1.80%) 93.51% (+/- 1.75%) 
Specificity 68.83% (+/- 6.65%) 66.13% (+/- 4.67%) 63.95% (+/- 5.95%) 64.50% (+/- 5.79%) 65.59% (+/- 9.10%) 66.16% (+/- 5.09%) 

 

   
(a) (b) (c) 

Figure 3: ROC curve and AUC of top three performing models (a) SVM (b) XGBoost (c) LDA 
 
For under-sampled and over-sampled dataset, the specificity increases significantly as the data 
between survival and death becomes balance though the accuracy and sensitivity decrease 
compared to the original data. RF, XGBoost and LSTM display the best performance compared 
to other models using top 5 features for under-sampled data. The performance of these three 
methods with the 5 features are comparable as shown in Table 5 and Figure 4 (near to 90% 
accuracy, sensitivity, specificity and   
 
Table 5. Performance of top three machine learning models in ‘last status’ prediction using top-
ranked features from the under-sampled dataset. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

RF 
Accuracy 78.69% (+/- 2.01%) 86.40% (+/- 2.24%) 87.58% (+/- 2.23%) 85.71% (+/- 4.17%) 84.55% (+/- 4.00%) 84.30% (+/- 5.80%) 
Sensitivity 85.67% (+/- 5.13%) 86.90% (+/- 2.71%) 86.51% (+/- 6.11%) 85.30% (+/- 8.97%) 86.86% (+/- 5.02%) 84.40% (+/- 5.38%) 
Specificity 69.38% (+/- 7.58%) 85.78% (+/- 6.54%) 89.10% (+/- 7.43%) 86.38% (+/- 9.22%) 81.49% (+/- 5.08%) 84.17% (+/- 7.13%) 

XGBoost 
Accuracy 79.15% (+/- 1.40%) 86.41% (+/- 3.06%) 88.76% (+/- 1.78%) 87.11% (+/- 4.90%) 86.17% (+/- 4.87%) 88.27% (+/- 6.25%) 
Sensitivity 84.45% (+/- 4.35%) 88.54% (+/- 2.73%) 89.38% (+/- 4.53%) 90.19% (+/- 7.22%) 85.63% (+/- 4.59%) 89.73% (+/- 5.08%) 
Specificity 72.15% (+/- 7.91%) 83.60% (+/- 8.11%) 87.99% (+/- 4.70%) 83.11% (+/- 8.94%) 86.91% (+/- 5.99%) 86.38% (+/- 8.52%) 

LSTM 
Accuracy 79.39% (+/- 3.54%) 85.49% (+/- 2.76%) 89.93% (+/- 2.85%) 87.59% (+/- 3.01%) 87.35% (+/- 4.57%) 88.76% (+/- 2.40%) 
Sensitivity 87.30% (+/- 3.93%) 88.10% (+/- 7.28%) 89.37% (+/- 5.36%) 85.65% (+/- 2.58%) 85.62% (+/- 6.32%) 92.62% (+/- 4.94%) 
Specificity 68.87% (+/- 9.40%) 81.92% (+/- 8.68%) 90.71% (+/- 2.84%) 90.14% (+/- 6.59%) 89.61% (+/- 3.20%) 83.62% (+/- 5.92%) 

 



   
(a) (b) (c) 

Figure 4: ROC curve and AUC of top three performing models (a) RF (b) XGBoost (c) LSTM 
 
For oversampled data, RF, DNN and LSTM performs the best and their performances are 
comparable with more than 90% accuracy, sensitivity, specificity, and AUC as shown in Table 
6 and Figure 5. This accuracy is achieved with top 8 features for RF and top 10 features for 
DNN and LSTM.  
 
 
 
Table 6. Performance of top three machine learning models in ‘last status’ prediction using top-
ranked features from the oversampled dataset. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

RF 
Accuracy 82.95% (+/- 0.91%) 86.12% (+/- 2.07%) 89.89% (+/- 1.10%) 89.95% (+/- 1.63%) 92.00% (+/- 1.07%) 91.84% (+/- 0.60%) 
Sensitivity 89.43% (+/- 1.91%) 89.26% (+/- 4.30%) 90.84% (+/- 2.02%) 91.51% (+/- 1.76%) 91.76% (+/- 1.38%) 91.51% (+/- 1.48%) 
Specificity 70.00% (+/- 3.37%) 79.83% (+/- 6.02%) 88.00% (+/- 6.09%) 86.83% (+/- 3.05%) 92.50% (+/- 4.28%) 92.50% (+/- 3.46%) 

DNN 
Accuracy 84.18% (+/- 1.88%) 87.28% (+/- 0.71%) 90.23% (+/- 1.52%) 89.45% (+/- 1.45%) 92.28% (+/- 1.78%) 93.95% (+/- 1.27%) 
Sensitivity 90.34% (+/- 3.37%) 94.42% (+/- 1.43%) 92.84% (+/- 2.36%) 93.92% (+/- 2.48%) 94.01% (+/- 2.52%) 95.01% (+/- 1.01%) 
Specificity 71.83% (+/- 9.24%) 73.00% (+/- 2.56%) 85.00% (+/- 5.53%) 80.50% (+/- 5.69%) 88.83% (+/- 2.56%) 91.83% (+/- 4.64%) 

LSTM 
Accuracy 83.01% (+/- 0.87%) 88.17% (+/- 1.27%) 90.67% (+/- 1.20%) 90.12% (+/- 1.92%) 91.40% (+/- 2.66%) 93.01% (+/- 2.50%) 
Sensitivity 90.09% (+/- 1.09%) 91.01% (+/- 2.26%) 91.17% (+/- 1.81%) 93.01% (+/- 1.87%) 91.43% (+/- 3.01%) 93.17% (+/- 2.83%) 
Specificity 68.83% (+/- 2.67%) 82.50% (+/- 6.21%) 89.67% (+/- 3.86%) 84.33% (+/- 4.70%) 91.33% (+/- 3.48%) 92.67% (+/- 5.97%) 

 

   
(a) (b) (c) 

Figure 5: ROC curve and AUC of top three performing models (a) RF (b) DNN (c) LSTM 
 
 
None of the algorithm is in top 3 positions for all original, under-sampled and oversampled 
data. XGBoost is common for original and under-sampled data, whereas LSTM is common 
for under-sampled and oversampled data.  
 
 
Prediction of “ICU Requirement” 
Among all the algorithms XGBoost, LDA and LSTM are the top three performers in predicting 
“ICU Requirement”. Like “last status”, accuracy and sensitivity for all three methods are above 



90% for original data. However, specificity is around 70%. The results are shown in Table 7. 
ROC curves along with the AUC is shown in Figure 6. Number of top features does not impact 
the outcome of accuracy, sensitivity, and AUC significantly. However, as the number of 
features increases, specificity decreases for all the three machine learning algorithms.  
 
Table 7. Performance comparison of top three machine learning models in predicting “ICU 
Requirement” using different number of features of the original data. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

XGBoost 
Accuracy 90.03% (+/- 0.87%) 90.03% (+/- 0.87%) 90.25% (+/- 0.94%) 90.25% (+/- 0.94%) 89.38% (+/- 1.30%) 88.73% (+/- 1.28%) 
Sensitivity 95.11% (+/- 1.49%) 95.11% (+/- 1.49%) 95.11% (+/- 1.49%) 95.11% (+/- 1.49%) 95.37% (+/- 1.66%) 94.84% (+/- 1.75%) 
Specificity 68.08% (+/- 8.12%) 68.08% (+/- 8.12%) 69.23% (+/- 8.85%) 69.23% (+/- 8.85%) 63.46% (+/- 11.54%) 62.31% (+/- 9.78%) 

LDA 
Accuracy 84.32% (+/- 1.73%) 87.57% (+/- 0.73%) 88.08% (+/- 1.81%) 90.03% (+/- 0.81%) 89.23% (+/- 0.99%) 89.60% (+/- 1.15%) 
Sensitivity 91.10% (+/- 1.73%) 96.26% (+/- 1.00%) 95.73% (+/- 1.15%) 94.66% (+/- 1.26%) 94.48% (+/- 1.56%) 94.75% (+/- 1.75%) 
Specificity 55.00% (+/- 5.78%) 50.00% (+/- 5.70%) 55.00% (+/- 8.90%) 70.00% (+/- 8.82%) 66.54% (+/- 9.47%) 67.31% (+/- 9.58%) 

LSTM 
Accuracy 87.64% (+/- 1.44%) 89.60% (+/- 1.38%) 89.81% (+/- 1.31%) 90.17% (+/- 0.89%) 90.03% (+/- 1.30%) 90.10% (+/- 1.37%) 
Sensitivity 95.91% (+/- 1.47%) 94.04% (+/- 1.46%) 95.55% (+/- 1.35%) 94.93% (+/- 1.37%) 95.28% (+/- 1.37%) 95.46% (+/- 1.61%) 
Specificity 51.92% (+/- 2.43%) 70.38% (+/- 9.85%) 65.00% (+/- 8.01%) 69.62% (+/- 8.80%) 67.31% (+/- 9.18%) 66.92% (+/- 5.88%) 

 

   
(a) (b) (c) 

Figure 6: ROC curve and AUC of top three performing models for predicting “ICU Requirement” 
using original data. (a) XGBoost, (b) LDA and (c) LSTM 

 
For the under-sampled data, SVM, DNN and LSTM are the top three performer using 10 
features (Table 8). DNN provides the highest AUC of 95% with top 10 features, followed by 
LSTM with 93% AUC and top 10 features (Figure 7).   

 
Table 8. Performance comparison of top three machine learning models in predicting “ICU 
Requirement” using different number of features of the under-sampled data. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

SVM 
Accuracy 81.02% (+/- 3.02%) 84.82% (+/- 2.89%) 84.32% (+/- 2.44%) 84.32% (+/- 2.44%) 84.32% (+/- 2.44%) 86.31% (+/- 1.21%) 
Sensitivity 78.62% (+/- 4.39%) 84.11% (+/- 4.55%) 84.11% (+/- 4.55%) 84.11% (+/- 4.55%) 84.40% (+/- 4.10%) 86.41% (+/- 4.27%) 
Specificity 84.23% (+/- 10.97%) 85.77% (+/- 8.48%) 84.62% (+/- 7.98%) 84.62% (+/- 7.98%) 84.23% (+/- 7.24%) 86.15% (+/- 5.22%) 

DNN 
Accuracy 85.32% (+/- 1.87%) 83.66% (+/- 3.79%) 85.64% (+/- 2.13%) 86.31% (+/- 2.46%) 85.81% (+/- 1.92%) 89.28% (+/- 2.71%) 
Sensitivity 92.53% (+/- 7.83%) 94.22% (+/- 1.83%) 93.64% (+/- 1.97%) 94.22% (+/- 0.92%) 95.38% (+/- 1.68%) 97.98% (+/- 2.17%) 
Specificity 75.77% (+/- 8.30%) 69.62% (+/- 6.48%) 75.00% (+/- 4.39%) 75.77% (+/- 5.25%) 73.08% (+/- 4.03%) 77.69% (+/- 3.57%) 

LSTM 
Accuracy 86.64% (+/- 3.23%) 81.84% (+/- 2.49%) 82.01% (+/- 3.22%) 85.48% (+/- 1.99%) 86.80% (+/- 2.16%) 87.30% (+/- 3.45%) 
Sensitivity 85.84% (+/- 4.69%) 78.31% (+/- 3.95%) 76.29% (+/- 4.77%) 84.37% (+/- 3.65%) 87.55% (+/- 6.07%) 89.30% (+/- 3.40%) 
Specificity 87.69% (+/- 4.14%) 86.54% (+/- 5.57%) 89.62% (+/- 3.12%) 86.92% (+/- 6.25%) 85.77% (+/- 6.39%) 84.62% (+/- 7.98%) 
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Figure 7: ROC curve and AUC of top three performing models for predicting “ICU Requirement” 
using under-sampled data. (a) SVM, (b) DNN and (c) LSTM. 

 

Accuracy, sensitivity, and specificity are shown in Table 9 for the oversampled data. In this 
case of oversampled data, RF, SVM and LSTM are the top three performer using 10 features., 
The highest AUC of 95% is provided by the LSTM algorithm with top 10 features, followed 
by RF with 93% AUC and top 10 features as shown in Figure 8. LSTM is the most robust 
across original, under-sampled and oversampled data and perform the best in predicting “ICU 
Requirement”.    
 

Table 9. Performance comparison of top three machine learning models in predicting “ICU 
Requirement” using different number of features of the oversampled data. 

Model Matrices Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

RF 
Accuracy 86.12% (+/- 1.45%) 86.54% (+/- 2.07%) 86.77% (+/- 1.82%) 85.65% (+/- 1.63%) 85.70% (+/- 1.42%) 87.66% (+/- 2.05%) 
Sensitivity 93.50% (+/- 2.05%) 93.77% (+/- 1.85%) 92.97% (+/- 2.12%) 91.90% (+/- 1.73%) 91.99% (+/- 1.65%) 92.08% (+/- 2.10%) 
Specificity 71.36% (+/- 1.46%) 72.06% (+/- 3.12%) 74.38% (+/- 2.30%) 73.14% (+/- 3.06%) 73.12% (+/- 2.44%) 78.82% (+/- 3.21%) 

SVM 
Accuracy 86.12% (+/- 1.45%) 86.54% (+/- 2.07%) 87.01% (+/- 1.54%) 85.53% (+/- 1.64%) 85.82% (+/- 1.95%) 86.65% (+/- 1.54%) 
Sensitivity 93.50% (+/- 2.05%) 93.77% (+/- 1.85%) 93.42% (+/- 1.68%) 91.81% (+/- 2.05%) 90.48% (+/- 2.60%) 90.92% (+/- 2.22%) 
Specificity 71.36% (+/- 1.46%) 72.06% (+/- 3.12%) 74.20% (+/- 2.15%) 72.97% (+/- 3.66%) 76.50% (+/- 3.58%) 78.11% (+/- 1.96%) 

LSTM 
Accuracy 86.77% (+/- 2.03%) 86.12% (+/- 2.21%) 87.37% (+/- 1.30%) 87.84% (+/- 2.09%) 88.73% (+/- 1.49%) 89.86% (+/- 1.32%) 
Sensitivity 94.13% (+/- 1.94%) 94.31% (+/- 1.90%) 94.31% (+/- 1.81%) 93.32% (+/- 2.23%) 94.22% (+/- 1.93%) 94.13% (+/- 1.60%) 
Specificity 72.08% (+/- 4.20%) 69.75% (+/- 3.31%) 73.48% (+/- 1.68%) 76.85% (+/- 5.24%) 77.76% (+/- 1.57%) 81.32% (+/- 3.44%) 

 
 

   
 
Figure 8: ROC curve and AUC of top three performing models for predicting “ICU Requirement” 
using oversampled data. (a) RF, (b) SVM and (c) LSTM.  
 
Prediction of “Ventilation Days” 
Performance of the DNN model for these datasets using different number of features are shown 
in Table 10. Including 10 features increase the prediction performance. As the number of bins 
increases (bins are defined in Table 1 and 2), the performance of the algorithm decreases. 
Among all the datasets, the dataset with 3 bins (0 week or no need for ventilation, 1 week, and 



more than 1 week) showed the highest accuracy of 87.59% with the top 10 feature. For 7 bins, 
the model achieved 75.85% accuracy. In Figure 9, confusion matrices for all the datasets and 
for different number of features with highest accuracy are shown.  
 
Table 10. Percentage accuracy of different models in estimating 'Ventilated Days' in terms of weeks. 

No. of 
Classes 

Top 3 Features Top 4 Features Top 5 Features Top 6 Features Top 8 Features Top 10 Features 

7  72.27% (+/- 0.64%) 70.56% (+/- 1.20%) 72.10% (+/- 1.77%) 73.01% (+/- 1.39%) 75.29% (+/- 1.57%) 75.85% (+/- 1.49%) 
6 71.07% (+/- 0.92%) 71.93% (+/- 1.09%) 72.32% (+/- 2.06%) 73.63% (+/- 1.21%) 77.68% (+/- 1.55%) 75.57% (+/- 2.93%) 
5  73.06% (+/- 1.49%) 71.98% (+/- 1.65%) 76.31% (+/- 1.27%) 74.83% (+/- 0.58%) 76.99% (+/- 1.34%) 82.35% (+/- 1.74%) 
4 75.17% (+/- 1.61%) 76.08% (+/- 2.47%) 76.82% (+/- 1.99%) 78.42% (+/- 1.58%) 80.41% (+/- 1.19%) 83.03% (+/- 1.36%) 
3 80.92% (+/- 1.75%) 83.89% (+/- 1.57%) 84.40% (+/- 1.64%) 84.11% (+/- 1.82%) 85.65% (+/- 1.66%) 87.59% (+/- 2.54%) 
 
 
 

              Predicted Class 
  0 1 2 3  4 5 > 5  

A
ct

ua
l C

la
ss

 0 272 6 9 6 0 0 0 
1 6 13 7 8 0 0 0 
2 5 7 20 15 0 0 0 
3 0 4 1 15 0 0 0 
4 2 1 1 11 1 0 0 
5 2 0 1 3 2 4 0 

> 5  1 2 3 12 0 1 0 
 

  Predicted Class 

  0 1 2 3  4 > 4 

A
ct

ua
l C

la
ss

 0 277 1 6 9 0 0 
1 14 11 7 5 0 0 
2 7 3 16 10 0 7 
3 2 0 0 16 0 3 
4 1 0 3 5 0 8 

> 4 1 0 3 12 0 12 
 

                  (a)                 (b) 

  Predicted Class 

  0 1 2 3  > 3 

A
ct

ua
l C

la
ss

 0 275 4 10 4 0 
1 12 16 4 5 0 
2 10 11 24 3 0 
3 1 1 4 16 0 

> 3 4 1 10 8 16 
 

  Predicted Class 
  0 1 2 > 2  

A
ct

ua
l 

C
la

ss
 0 275 2 8 8 

1 12 10 9 2 
2 18 1 26 2 

> 2 9 3 15 39 
 

   Predicted Class 
  0 1 > 1 

A
ct

ua
l 

C
la

ss
 0 275 2 8 

1 12 10 9 
> 1 18 1 26 

 

               (c)                  (d)                    (e) 
Figure 9: Confusion Matrix of ventilated days prediction (a) 7 class 10 features (b) 6 class 8 feature
s (c) 5 class 10 features (d) 4 class 10 features (e) 3 class 10 features 
 
 
Discussion: 
In this study, automatic feature selection and prediction models of three outcomes 1) “last 
status” representing mortality, 2) “ICU requirement”, and 3) “ventilation days” were 
investigated using different machine learning algorithms.  
 
Predictive models for COVID-19 outcomes rely on diverse datasets encompassing a wide range 
of features. Feature selection plays a crucial role in machine learning especially when dealing 
with limited datasets, influencing model performance, interpretability, and computational 
efficiency. Appropriate selection of features is crucial to get an accurate prediction using 
machine learning algorithms [19]. Selection of too many or too less features adversely affect 
the performance of algorithm. In this study, it is found that the importance of most of the 
clinical features is related to the type of outcome predictions except “Acute kidney injury 
during hospitalization”. This feature is strongly associated with severe forms of COVID-19. 
The presence of “acute kidney injury” serves as an indicator of disease severity and may 
contribute to risk stratification and predicting adverse outcomes, including increased mortality 
rates among COVID-19 patients [20]–[22].  
 



“Blood pH” presents a decent discrimination capability especially in predicting “ICU 
requirement”, and “ventilated days”. Similar finding has been reported indicating that a 
decrease in blood pH might be indicative of a more severe clinical course in COVID-19 patients 
[23], [24]. However, the exact mechanisms by which COVID-19 affects blood pH are not fully 
understood, and the relationship between blood pH and disease severity is likely influenced by 
various factors, including respiratory function, immune response, and comorbidities. Gender 
and age are the other two most prominent features in predicting “last status”. Similar finding 
has been reported by different studies [25]–[28].  
 
Since the original dataset consists of more survival data than data of patients who died (i.e., 
limited representation of positive cases), the performance of almost all the models is good at 
predicting patients’ survival and hence shows very high sensitivity. On the other hand, because 
of the limited number of patients who died in the training dataset the machine learning models 
struggle in predicting death cases. The scarcity of severe or critical outcome instances 
compared to mild or asymptomatic cases can lead to biased models that may not adequately 
capture the factors influencing severe disease progression [29]. Imbalanced datasets 
compromise the sensitivity and specificity of outcome prediction models, impacting their 
ability to correctly identify and differentiate between different outcome classes [30], [31]. 
 
Various sampling techniques such as oversampling the minority class, undersampling the 
majority class, or employing more advanced methods like SMOTE (Synthetic Minority Over-
sampling Technique) can address class imbalance and improve the ability of the model to 
predict less frequent outcomes [32], [33]. Using the under-sampled dataset (i.e., ensuring class 
balance) in this study, capabilities of all the models in accurately predicting death cases 
increased. As the data increases, the performances of all the method increase. With the 
oversampled data, the performance of different machine learning algorithm increases with the 
increase of number of features. No single algorithm is stands out in performance for all three 
data cases implying that the performance of machine algorithm is very sensitive to the data 
imbalance.  
 
Apart from imbalance distribution of the data, the other main limitation of this dataset is that 
the exact time point of the collection of the clinical data is not available and hence, it was 
difficult to set a reference time point to compare different clinical parameters of different 
patients. Time of admission is typically considered as reference point for prediction modelling 
for COVID-19 without explicitly accounting for history of the vital clinical markers [34], [35]. 
Saria, S. et al (2021) [36] investigated prediction modelling using clinical onset. However, they 
reported wide variation in time between the first alert and onset of Acute Respiratory Failure 
(ARF) that makes machine learning based prediction modeling more challenging.  
 
Conclusion: 
In conclusion, predicting ICU admission rates and survival is crucial in managing the COVID-
19 pandemic. Age, comorbidities, abnormal laboratory findings, and severity of illness have 
been identified as significant factors associated with ICU admission rates and survival in 
COVID-19 patients. Overall, considering all the factors and limitations, Long Short-Term 
Memory (LSTM) with carefully selected features can accurately predict “last status” and “ICU 
requirement” within 90% accuracy, sensitivity, and specificity. On the other hand, DNN 
performs the best in predicting “Ventilation days”. Early recognition, prompt treatment, and 
adequate supportive care are essential for improving ICU admission rates and survival in 
COVID-19 patients. These findings can guide healthcare professionals in managing COVID-
19 patients and reducing the burden on healthcare systems. 
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