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Distinguishing causation from correlation is crucial and requires careful consideration. In this
study, we utilize a recent quantum extension of Liang information to investigate causation in
quantum chains across their phase diagram. Our analysis encompasses two distinct scenarios: (i)
the Aubry-André-Harper model, characterized by a spectrum-wide phase transition, and (ii) the
Anisotropic Transverse Field Ising (ANNNI) model, which demonstrates a ground state transition.
We discern a notable shift in causation behavior across the critical point with each case exhibiting
distinct hallmarks, different from correlation measures. Especially, in the latter case, we observe
maximum causation in the ordered phase just preceding the critical point.

Introduction: The study of dynamics of quantum
many-body systems typically involve the time evolution
of correlation functions and the spreading of entangle-
ment [1]. Quantifying causation dynamics in the quan-
tum realm, unlike classical theories, has been challeng-
ing [2]. Descriptions of causation dynamics have been
mostly limited to quantifying scrambling and relating it
to chaos by modifying classical concepts such the Lya-
punov exponents. One such attempt yielded the Out-
of-time-ordered-Correlator (OTOC), a reasonably good
quantifier of scrambling but having limited applications
to identify quantum chaos unlike originally anticipated
[3–8]. Hence very recently other modes of quantification
of quantum chaos has been proposed [9, 10]. Neverthe-
less, the adage "correlation does not always imply causa-
tion" holds true, and in the context of quantum mechan-
ics, a distinct quantifier for quantum causation remains
less established.

Model Hamiltonians of quantum chains provide the mi-
crocosm of quantum effects prevalent in our universe.
Hence, it is of paramount importance to find a simple
detector of causation in these systems, which is easily
measurable and can be appropriately connected to the
physical intuition born from classical systems. This led to
efforts which extract quantum causation from quantum
correlations (which are different from the classical cor-
relations), drawing inspiration from the Liang-Kleeman
analysis used in classical systems[11]. In classical sys-
tems, this analysis was originally formulated with re-
spect to Shannon entropy, and then extended to rel-
ative entropy[12], which provides a better measure of
predictability than Shannon entropy in certain cases[13–
16]. For quantum mechanical systems, this formalism
was adapted using von Neumann entropy analogous to
Shannon entropy of classical systems.[17] The two big
advantages of the quantum version of Liang information
over specific observable based correlation measures such
as OTOC are (i) the usage of information theoretic tools
which makes it more universal, and (ii) it is intuitively

 

 

 

 

 

 

 

FIG. 1. Schematic diagram of how Liang information flow is
computed between two sites by freezing one site (denoted by
red cross) and the target site denoted by the white colour.
See text for details.

connected to the classical picture, and is practically easy
to implement in expererimental setups as its simplest ver-
sion requires single site measurements.

Furthermore, understanding the behaviour of the
quantum causation near critical points is completely un-
explored. This is the void we wish to fill in this work by
using the quantum Liang information formulated with
respect to von Neumann entropy as a causation quanti-
fier (note that the direct usage of von Neumann entropy
just measures quantum correlations, not causation). To
achieve this goal, we conduct simulations of non-trivial
dynamics in a quantum state using model Hamiltonians,
typically chosen such that their eigenstates exclude the
initial state—–a scenario known as a quantum quench.
While previous research has extensively explored the time
evolution of correlation functions for quenches across crit-
ical points in quantum many-body systems[18, 19], lever-
aging non-analyticities in these functions to detect phase
transitions[20, 21], to the best of our knowledge, there
has been no significant investigation into causality within
such a setup. Although some studies involving Out-
of-time-ordered-Correlator (OTOC) are available in the
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literature[22–24], as mentioned before, their behaviour
frequently depends on the choice of operator and we have
to be mindful of conservation laws on the system. On the
other hand, our study using Liang information suffers
from no such drawback and we shall use it to examine
the behavior of causation during a quench across critical
points in a chain geometry .

Definitions: For density operator ρ, the von Neu-
mann entropy S(ρ) is defined as:

S(ρ) = −Tr[ρ log ρ] (1)

Consider a bipartite state ρ evolve under unitary op-
erator U(t) generated from Hamiltonian function H, the
reduced density state of system AB and subsystems A,
B are then denoted ρAB , ρA, ρB . Following the method-
ology of its classical counterpart[12], quantum Liang in-
formation flow is then given by

T r
B→A =

dS(ρA)

dt
− dS(ρA̸B)

dt
(2)

the cumulative information flow is then

TB→A =

∫
T r
B→Adt = ∆S(ρA)−∆S(ρA̸B). (3)

Here ρA ̸B refers to the density state of A evolving with
B frozen[17].

Setup: The schematic setup for investigating Liang
information flow is illustrated in Fig. 1. We begin by
considering a chain with only nearest-neighbor couplings.
While the target site can be either a single site or a group,
for simplicity, we focus on a single site denoted by the vio-
let marker in the schematic figure throughout this study.
In the top three chains, we depict situations with only
nearest-neighbor couplings. Removing a site results in a
break in the chain, and the effective evolution then oc-
curs within a smaller chain. With longer-range couplings,
freezing one site does not break the chain, positioning the
target site consistently within the bulk as shown in the
bottom three chains.[25].

Localization transition in Aubry-Andre-Harper
model Liang information, as a measure of causality,
proves to be a highly effective tool for delineating the
cone of influence in quantum systems. To illustrate, we
examine a 1D XX model with a spatially varying on-
site magnetic field. The corresponding Hamiltonian is
expressed as follows:

H =

L−1∑
j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1) +

L∑
j=1

Bjσ
z
j . (4)

where, Bj = λ cos(2πβj), and β is typically chosen as
the inverse golden ratio, β =

√
5−1
2 . The system size L

is typically chosen as a Fibonacci number to minimize
finite size effects. This model undergoes a localization-
delocalization transition at λ = 2 across its eigenspec-
trum [26].
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FIG. 2. Cumulative Liang info growth for the model in
Eq. (4). (a) We show late time cumulative Liang informa-
tion to a site d sites away from the frozen site. |Td| denotes
averaged Td for t ∼ 102. Averaging is performed to smoothen
the plot. The blue dashed line denotes the parameter λ = 2
where localization phase transition occurs. (b) The cross sec-
tion of (a) marked by the red dashed line alongside similar
data for other system sizes denoted by different colours. The
blue line denotes the critical point. The position of the frozen
size is the closest smaller Fibonacci number +1 to L, i.e. for
L = 2584 it is i = 1598 etc.

In Fig. 2, we explore the causal influence of a selected
site on other sites across the transition, quantified by
cumulative Liang information Td flow over time between
two sites separated by a distance d. The plot is smoothed
through an average over Td at timescales beyond the ini-
tial transient growth (t ∼ 102). While the frozen site
can be arbitrarily chosen for an infinite system, for fi-
nite systems as the one utilized in this work, we select
the truncated lattice length as the next lowest Fibonacci
number to avoid spurious finite size effects from the in-
commensurate potential. [27]

In Fig. 2(a), we observe that in the delocalized regime,
there is equitable Liang information flow from the frozen
site to other sites. This corroborates the unrestricted
transport expected in this regime as a result of spatially
extensive single-particle eigenfunctions. However, as λ
approaches the critical point, we note a significant in-
crease in causation effects for nearby sites compared to
those farther away. This behavior stems from the re-
striction of information propagation beyond a certain dis-
tance, the localization length. Consequently, local effects
strongly influence the evolution of a site. Given that
this phase transition occurs across the eigenspectrum,
the energy of the chosen initial state minimally affects
our findings. Hence, our choice of the Neel state as the
initial state for this analysis yields qualitative results sim-
ilar to those obtained with other typical initial states (see
Appendix A).

In Fig. 2(b), we focus on two specific scenarios: (i)
d = 1, representing a nearby site to the frozen site, and
(ii) d = 15, representing a site at a significantly greater
distance beyond the localization length of the system.
For the site at d = 1, we observe the anticipated behav-
ior described in the preceding paragraph as λ increases.
However for distant sites the causation flow becomes in-
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FIG. 3. Variation of absolute value of Liang information for
quench to different B fields for κ = 0. For (a) and (b) The
initial state is chosen to be ground state of B = 0.01 while for
(c) and (d) the initial state is taken to be the ground state of
the B field at which the Liang information is computed. Fig.
(a) shows the value of Liang information |T3|, 3 sites away
from the frozen site. The red dashed lines indicate the cross
section plotted in Fig. (b), in which the black line indicates
the critical point. In (c) and (d) even though we start from an
eigenstate, the non-trivial evolution occurs due to the removal
of the frozen site, and is used to compute the causation flow.
(e) and (f) shows the spatial profile of Liang information for
quenches for L = 250 at a chosen time instance. (e) has same
setup as (a),(b) and (f) has the same setup as (c),(d). The
red dashed line indicates the critical point Bc = 1

teresting near criticality. For small λ, the behavior mir-
rors that of nearby sites i.e. there is a gradual increase in
cumulative Liang information with λ until approximately
λ ∼ 1.5. This is followed by a plateau before the expected
sharp decline in the localized regime. The intriguing as-
pect is the occurrence of a peak in causality for λ < 2 for
distant sites, which seems to slowly drift towards λ ∼ 1.5
for larger values of d as seen in Fig. 2(a), from the faint
violet regions. The larger causation values indicate an
already inequitable flow of information between different
sites in the said parameter regime. This in turn signifies
traces of localization in the parts of the system acting as
a herald to the onset of localization across the spectrum

for λ = 2. However, it is not fully clear whether this
effect holds in the thermodynamic limit, even though a
naive finite size analysis in Fig. 2(b) suggests it is not
dependent on size. Furthermore, for λ > 2 exponentially
localized wavefunctions result in exponentially small in-
formation leakage with d beyond the localization length,
whose signature is given by a rapid but continuous de-
crease in Liang information with d.

Ground state phase transitions in Ising models:
The localization phase transition in the previous exam-
ple demonstrated the goodness of Liang information to
measure causation, which encourages us to study it in
more complicated settings. So we next direct our focus
to the Anisotropic Next Nearest Neighbor Ising (ANNNI)
model. This model includes a next-nearest-neighbor cou-
pling, is non-integrable, and lacks U(1) symmetry present
in the previous example. In certain parameter regimes,
the ground state of this model undergoes a ferromagnetic
to paramagnetic Ising phase transition upon tuning the
transverse magnetization strength. In the following anal-
ysis, we will investigate the influence of the middle site
of the chain on other chosen sites across different param-
eter regimes. Generalizing this study to encompass the
influence over multiple sites is straightforward.

The Hamiltonian of ANNNI chain is given by,

HL = −
L−1∑
j

σz
jσ

z
j+1 + κ

L−2∑
j

σz
jσ

z
j+1 − B

L∑
j

σx
j , (5)

where κ represents the strength of the next-nearest neigh-
bor term and B is the magnitude of magnetic field applied
along the transverse axis and L denotes the number of
sites in the system.

At fixed value of 0 < κ < 0.5, the ground state of
the ANNNI model undergoes quantum phase transition
from the ferromagnetic phase to the paramagnetic phase
when transverse field B > 0 exceeds a critical value
Bc. The phase transition point has been been computed
before[28–33] and the critical parameters κc and Bc are
known to satisfy:

1− 2κc = Bc − B2
c

κc
2− 2κc

(6)

While the quantum phase transition is traditionally
considered an equilibrium phenomenon occurring in the
ground state, previous studies [20, 21, 34, 35] have
demonstrated that signatures of this transition can mani-
fest in non-equilibrium quantum quenches. In the present
work, motivated by the understanding of heightened
quantum sensitivity near phase transitions[36], we ac-
tively seek these signatures within the causation measure
Liang information.

Since the model in Eq. (5) is non-integrable for generic
parameter values we will resort to numerical simulations
(exact diagonalization, TDVP and DMRG) for our re-
sults. However at the special point κ = 0, it reduces
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to the integrable transverse Ising model. We first visit
the growth of Liang information in this integrable chain
before discussing the results for κ > 0.
κ = 0 case: For κ = 0, we can use a canonical trans-

formation (σx → σz, σz → −σx) and then a Jordan-
Wigner transformation to map the HL to a system of
spinless fermions,

HL = −1

2

L−1∑
i=1

[c†i ci+1+c
†
i c

†
i+1+h.c.]−B

L∑
i=1

(c†i ci−
1

2
) (7)

where ci[c
†
i ] is the spinless JW fermion annihilation [cre-

ation] operator. Since we are interested in the influence
on a single site, we require the one site density matrix
which in this special case is given by[37],

ρj =
I+ ⟨σz

j ⟩σz

2
, (8)

where ⟨σz
j ⟩ = 2⟨c†jcj⟩ − 1. Furthermore since the Hamil-

tonian is quadratic in fermionic operators, the time evo-
lution of this quantity can be found semi-analytically.
Details of the computation are provided in Appendix. B

The results for such a system starting from different
initial states are shown in Fig. 3. In Fig. 3(a) we show the
growth of Lianginfo three sites away from the frozen site
(chosen to be the middle site of the full lattice) when the
initial state is chosen to be the ground state at B = 0.01
and we quench to different values of B. When B is small,
we are far away from criticality. The initial state in this
regime has large overlap with the ground state, and the
causal influence of one site over another during evolution
is very limited as evolution itself is limited. This grad-
ually changes as we increase B towards Bc as we expect
maximum sensitivity near the critical point. On the other
extreme for very large B the system has only local evo-
lution, so we expect Liang information to again be small
during time evolution. This is the qualitative behaviour
we notice in Fig. 3(b). While the peak of causation is
distinct it appears to be quite shifted from the critical
Bc = 1. Naively we might identify the reason for this
anomaly to be our choice of initial state, which has finite
overlaps several high energy states that do not posses
the desired features at criticality. To prevent this one
can choose the initial state to always be the ground state
of the corresponding B, the results of which is shown in
Figs. 3 (c) and (d). However the peak still occurs for
Bp < Bc, even though now Bp shifts to larger values.

The strongest indicator is shown in Fig. 3(e) and (f)
where we study how the frozen site influences sites at dif-
ferent distances. Clearly for quenches at Bp, the chosen
site influences other sites at all lengthscales. This is a
hallmark of criticality for second order phase transitions,
the divergence of correlation length, which in turn means
correlations and thus entanglement develop at all length
scales. While typically such a behaviour is seen in equi-
librium properties of the ground state, this phenomenon

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

FIG. 4. Variation of absolute value of Liang information for
quench to different B field with constant κ ̸= 0 for system size
of L = 50, 250 computed via TDVPa. (a) Liang information
|T3|, 3 sites away from the frozen site when the initial state
is chosen to be ferromagnetic state |↓↓ . . . ↓⟩, and κ = 0.4.
(b) |T3| for κ = 0.2 starting from the same initial state. (c)
|T3| for κ = 0.2 starting from the ground state, similar to
Fig. 3(c). (d) Cross section of (c) at t = 30 compared with
|T3| for a larger system size, L = 250. The red/black dashed
lines represent Bc computed from Eq. (6).
a parameters- cutoff= 10−7, dt = 0.01, χ or bond dimension was

capped at 5000.

still shows up in Liang information, a non-equilibrium
quantity, remarkably well irrespective of the initial state.
κ > 0 case: For κ > 0 one can perform quenches in

B keeping κ constant or vice-versa. Both yield qualita-
tively similar results (see also Appendix D). In Fig. 4 we
demonstrate that features shown by Liang information in
the non-interacting case continue to persist for the non-
integrable interacting model. As in the previous section
we study two scenarios: the ferromagnetic initial state
|↓↓↓ . . . ↓⟩ which is the ground state at κ = B = 0, and
the local quench from the ground state of corresponding
B. We also add a very small longitudinal field to prevent
any degeneracy for small values of B.

In Fig. 4(a) we notice that inspite of starting from
the ferromagnetic initial state for much smaller L = 50
compared to Fig. 3, Liang information shows a peak just
before criticality. (in fact for κ = 0, this small system
size shows noisy data). The reason for the closeness of
the peak to the critical point compared to the κ = 0
case is that, larger κ pushes the critical point towards
B = 0. Then even at these system sizes this initial state
maintains sufficient overlap with the ground state of the
Hamiltonian before the critical point to exhibit the ex-
pected behaviour.

But as we decrease κ to 0.2, there remains no corre-
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lation between the maxima and the critical point, which
is denoted by the red dashed lines. This is expected as
the critical point moves to larger B, the initial state no
longer remains a low energy state and thus cannot re-
spond to phase transition in ground states. Furthermore
since this model is non-integrable, lack of conservation
laws allows exploration of more of Hilbert space com-
pared to the κ = 0 model leading to greater deviations
than that case.

However, we do recover the peak just before criticality
phenomena once we start from the ground state, shown
in Figs. 4(c),(d), just as we did for κ = 0, for even smaller
system sizes.(See Appendix D for other parameters). It
is clear that for all κ which supports phase transition,
the maxima typically occurs at Bp ̸= Bc(B < Bc for all
the cases considered here), distinguishing causation from
correlation. While correlation length of the ground state
can indeed diverge at the critical point, the causation
dynamics can maximize at slightly different values, as it
is governed by the competing behaviour of the various
Hamiltonian terms on the initial state. Of course the
correlation lengthscales still plays a crucial part in cau-
sation dynamics, more so in the integrable model and for
the ground state initial state where such non-analyticities
are stronger, shown by the closeness inBp and Bc in these
cases. Further analytical insights may be obtained by
finding a mean field mapping of κ ̸= 0 model to the solv-
able transverse Ising model[34], but it is left as a future
endeavour.

Discussion: In this work we have studied causation
behaviour of different sites in quantum chains by study-
ing the cumulative Liang information flow between them.
Specifically, we study the parameter regime where we
find a peak in cumulative Liang information indicating
a causality peak. The causality peaks do not necessar-
ily correspond to a maxima in correlation of the corre-
sponding sites, but rather roughly detects the maxima
in difference of expectation values of local operators with
and without the site whose influence we want to compute.
We have showed that this measure successfully showcases
the democracy of influence in the fully delocalized regime
and near-site causation in localized regime in one dimen-
sional Aubry Andre Harper model. Furthermore it even
responds to the diverging correlation lengths in ground
state second order phase transitions of the next-nearest
neighbour Ising model. Our most crucial find is that the
peak of causation does not occur exactly at the critical
point, but rather slightly towards the ordered side of the
transition, for quenches from the ordered side. Thus cau-
sation flow encapsulated by quantum Liang information
between two sites is a new non-equilibrium herald of an
equilibrium phase transition.

While classical Liang information analysis is a well-
established approach to quantify causation in classical
networks, its applicability in quantum systems is an area
that is just beginning to be explored. This work rep-

resents an initial exploration, focusing on two specific
quantum systems. One can immediately see that Liang
information analysis can provide a natural test bed for
the analysis of many-body localization transitions, for
instance, it can be employed to identify resonances be-
tween sets of sites that induce the avalanche breakdown
of localization in different geometries. There are also
open questions regarding its behaviour in the vicinity of
topological phase transitions, and in higher dimensional
quantum systems including complex networks.
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FIG. 5. Demonstration of cumulative Liang information flow
for Aubry Andre model, similar to Fig. 2

atyipical states such as the domain wall states have very
different information leakage during evolution compared
to Neel states.[38] This shows up as small quantitative
differences in flow of Liang information for states at in-
termediate distance from the frozen site as seen in the
figure.

Appendix B: Deatils of computation for open Ising
chain

The nearest neighbour transverse Ising model Hamil-
tonian,

H = −
L−1∑
j

σz
jσ

z
j+1 − B

L∑
j

σx
j , (B1)

after the JW transformation is a Hamiltonian quadratic
in fermionic operators.

H = −1

2

L−1∑
i=1

[c†i ci+1+c
†
i c

†
i+1+h.c.]−B

L∑
i=1

(c†i ci−
1

2
) (B2)

Hence the entanglement entropy of a subsystem
can be computed just from the two point correlation
functions[39, 40] ⟨c†i cj⟩ and ⟨c†i c

†
j⟩. In our case this fur-

ther simplifies to just computing ⟨c†jcj⟩ since we are just
interested in computing influence on one site i.e. the sub-
system consists of just one site. In fact it can be shown
that[37] the one site density matrix in such a system is
given by,

ρj =
I+ ⟨σz

j ⟩σz

2
, (B3)

where ⟨σz
j ⟩ = 2⟨c†jcj⟩−1. Since we are using open bound-

ary conditions, momentum k is no longer a good quantum
number, hence this Hamiltonian cannot be block diago-
nalized by the Fourier transformation. However using the
quadratic nature of the Hamiltonian we can construct the
eigenmodes of the system analytically as follows[41, 42].

We define two new fermionic operators[43] for conve-
nience,

Ai = (c†i + ci), Bi = (c†i − ci), (B4)

the Eq. (5) becomes,

H =
1

2

L−1∑
i

Ai+1B +
h

2

∑
i

AiBi (B5)

and we can compute the two point correlations functions
such as ⟨σz

j ⟩ = −⟨AjBj⟩ appropriately.
Then H in Eq. B2 can be immediately diagonalized to

HD =
∑
j

ϵkη
†
kηk + const. (B6)

where ϵk =
√
1− 2B cos k + B2, by the real linear trans-

formation,

ηk =
1

2

∑
j

[ϕkjAj − ψkjBj ] (B7)

with
ϕkj = −Nk(−1)n sin[k(L+ 1− j)]

ψkj = −Nk sin[kj].
(B8)

Here the k ∈ [0, π] modes are obtained from the nth (This
is the same n as in Eq. (B8)) solution of the equation,

sin[(L+ 1)k]

sin[Lk]
= − 1

B
(B9)

and Nk is the normalization constant given by,

Nk =
1√

L
2 + B(B+cos k)

2ϵ2k

.

Note that for B → ∞, k ∼ πn
L+1 , n = 1, .., L. Note that

for B > 1 Eq. (B9) always supports real valued solutions,
but it can have an imaginary solution for B < 1. Clearly
the imaginary value of k indicates the wavefunction is
localized, and it happens at the edges. For further details
on construction of this localized solution refer 42. This
aspect is not relevant for our computations. Now we shall
compute the time evolution of ⟨c†i ci⟩ to understand the
time evolution of the reduced density matrix. This can
be done in the following steps.

1. ⟨Aj(t)Bj(t)⟩=⟨
�

��(c†j)
2 + 1 − 2c†j(t)cj(t) − ���(cj)

2⟩ =

−⟨σz
j (t)⟩ where we have used that cj [c

†
j ] are

fermionic annihilation [creation] operators.

2. ⟨Aj(t)Bj(t)⟩ can be written in terms of the Bogoli-
ubov quasiparticles,

⟨Aj(t)Bj(t)⟩ =
L∑

k,l=1

ϕkjψlj⟨(η†k(t)+ηk(t))(ηl(t)
†−ηl(t))⟩

3. Now η(t) and η† being the quasiparticles of the
Hamiltonian has a very simple time evolution,

η†k(t) = eiϵktη†k(0)

which can be substituted in the previous expres-
sion.
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4. The next step is to rotate the expression back to
thye A,B basis to obtain

⟨Aj(t)Bj(t)⟩ = −1

2

∑
m,n,k.l

ϕkjψljϕknψlm⟨An(0)Bm(0)⟩(cos[t(ϵk + ϵl)] + cos[t(ϵk − ϵl)])

− 1

2

∑
m,n,k.l

ϕkjψljψknϕlm⟨Bn(0)Am(0)⟩(cos[t(ϵk + ϵl)]− cos[t(ϵk − ϵl)])

(B10)
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FIG. 6. (a) The variation of the magnitude of Liang informa-
tion at a distance d from the frozen site. d = 0 denotes the
site next to the frozen site for a quench from the ferromag-
netic ground state |↓↓ . . . ↓⟩ to B = 0.1 and κ = 0.4. (b) Plot
of τ , the time at which Td ⩾ 0.001 for quenches to different
values of B for κ = 0.4. the system size chosen is L = 50.

Here while indices j,m, n can take any integer values
in [1, L], k, l label the eigenmodes obtained by solving
Eq. (B9). In our case (see Fig.1), since we remove one
site for the system, this amounts to a change in L and j to
L′ and j′ of the system. This means upon removal of site
⟨Aj(0)Bm(0)⟩ will require the available indices restricted
to L′ with j changing to j′ reflecting the new position of
the same site on the truncated chain.

Appendix C: Lightcones in the ANNNI model

Let us examine the causality light cones obtained for
the next-nearest neighbor ANNNI model. For this pur-
pose, we choose representative values of B and κ in Fig. 6
for the quench and study the evolution of Liang informa-
tion across different sites in the chain. The initial state is
chosen to be the ferromagnetic state, |↓↓ . . . ↓⟩ As antic-
ipated, on the site closest to the frozen site (d = 0), we
observe an immediate growth of Liang information, with
the growth occurring at later times as we move to sites
with increasing distance. This characteristic pattern is
a hallmark of local Hamiltonians. Furthermore, there is
larger causation flow for B = 0.2 than for B = 0.1, since
B = 0.2 is closer to the critical point Bc = 0.21. This is
specially apparent for the d = 3, 6 cases where |Td| shows
values which differ by several orders of magnitude for the
two cases.

In Fig. 6(b) we define τ such that |Td|< 0.001 for t < τ
and plot its variation with B and distance d. We ob-
serve an interesting behaviour that τ for same d becomes
smaller as we increase B. We have also verified that
the even smaller choices of cutoff does not qualitatively
change our results. This result can seem surprising since
we have claimed causation peak is observed for quenches
to B which is just smaller than Bc, but we see a decrease
in τ(d) with B, which seems to suggest the influence of
sites maximize beyond critical quenches. But upon closer
look we realize that this is just a transient effect which
is also seen in Fig. 4. Indeed since the initial state is an
eigenstate for B = 0, in the initial stages of quench to in-
termediate B, the initial undergoes non-trivial evolution
which reflects in the significant influence of different sites
on the chosen site during evolution. Relaxation typically
occurs faster for larger B, which in turn indicates smaller
observed values of τ . But beyond the transient relax-
ation period the sites exert very little influence, as the
system has completely relaxed. And furthermore large B
makes the Hamiltonian effectively on-site, so each spin
effectively evolves independently. On the opposite ex-
treme, for small B, where the initial state has a very
large overlap with one of the eigenstates of the Hamilto-
nian for both the ordinary and frozen system. Hence the
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FIG. 7. Variation of absolute value of Liang information for
quench to different κ fields with constant B = 0.2. The initial
state is chosen to be ferromagnetic state, i.e. eigenstate of
B = κ = 0. Fig. (a) shows the value of Liang information
|T3|, 3 sites away from the frozen site. the black dashed lines
indicate the cross sections plotted in Fig.(c), the red dashed
line indicates the cross section plotted in Fig.(d). Fig.(b) is
same as Fig.(a) except the distance is 6 sites.

evolution is slow, and the slope is larger.

Appendix D: Results for quenches to other
parameters

1. Quench in κ from ferromagnetic state

In this section, we discuss the effect of the nature of the
quench by studying the variation of Liang information
flow while quenching to a specific B but varying κ. The
results are shown in Fig. 7, where we quench to B = 0.2
with varying κ. From Eq. 6, we expect κc ∼ 0.4. Hence,
using similar arguments as before, we expect Liang infor-
mation to show a sharp rise close to κc before showing a
sharp decrease for κ > κc, a feature evident in Fig. 7(a),
(b), and (d). As expected from the previous section, the
liang information of the farther site, |T6| shows slightly
lower sensitivity to the critical point than |T3|. Also,
one can clearly see the light-cone effect, which causes the
Liang info to rise at later times for the more distant site.
In Fig. 7(c), we plot the growth for three values of κ and
see that remarkably, for values of κ close but less than
κc, we almost saturate the Liang information growth, in-
dicating that the entanglement growth becomes fully dif-
ferent between the unfrozen site and frozen site scenarios.

This stems from the still large overlap of the initial state
with the ground state eigenfunction in the unfrozen case,
while a significant change occurs in the frozen case. Com-
paring to the quench in B, changing κ while keeping B
constant causes the evolution of the site-frozen system

FIG. 8. Variation Liang formation when the quench is for
κ = 0.45. (a) The initial state is the ferromagnetic state. All
the rest of the parameters are same as Fig. 4(a). (b) The
initial state is the ground state of the corresponding B, the
rest of the parameters are same as Fig. 4(c)

to change more than changing B just before the critical
point. This is possibly because while B is just an on-site
term, κ connects two sites and thus shows an enhanced
response when Liang information is computed.

2. Further results for quenches in B

In Fig. 8 we plot the scenario for quenches in B when
κ = 0.45. In (a) we show the case when we start from
the ferromagnetic state, and since the critical point is for
even smaller B than when κ = 0.4, such an initial state
gives good response near the critical point, comparable
to the case when we start from the ground state of corre-
sponding B which is shown in (b). Interestingly it seems
that here starting from the ground state gives a weaker
signal than starting from the ferromagnetic state. This
is possibly due to the Bc ∼ 0 making the on site spin
flip term of weaker strength. This evolution very slow
in this case and we possibly need to go to much larger
timescales to have a conclusive result which is beyond
the scope of ordinary tensor network algorithms. Finally
in Fig. 9 we show more cases of the ‘peak before criti-
cal point’ phenomena computing the Liang information
flow between sites separated by a distance d = 3 starting
from the ground state. These results further corroborate
our conclusions in the main text. Additionally note how
the growth of Liang information near the point of criti-
cality occurs at an earlier timescale for smaller κ, which
showcases how larger B, induces spin flip processes at a
smaller timescale causing dynamics, if existent , to speed
up, creating a light cone with a greater slope.
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FIG. 9. Variation of Liang formation for the quench starting
from the ground state for top-κ = 0.1 , middle=κ = 0.3
bottom-κ = 0.4. The rest of the parameters are same as
Fig. 4(c)
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