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Abstract— This paper introduces an automatic affordance
reasoning paradigm tailored to minimal semantic inputs, ad-
dressing the critical challenges of classifying and manipulating
unseen classes of objects in household settings. Inspired by
human cognitive processes, our method integrates generative
language models and physics-based simulators to foster ana-
lytical thinking and creative imagination of novel affordances.
Structured with a tripartite framework consisting of analy-
sis, imagination, and evaluation, our system “analyzes” the
requested affordance names into interaction-based definitions,
“imagines” the virtual scenarios, and “evaluates” the object
affordance. If an object is recognized as possessing the re-
quested affordance, our method also predicts the optimal pose
for such functionality, and how a potential user can interact
with it. Tuned on only a few synthetic examples across 3
affordance classes, our pipeline achieves a very high success
rate on affordance classification and functional pose prediction
of 8 classes of novel objects, outperforming learning-based base-
lines. Validation through real robot manipulating experiments
demonstrates the practical applicability of the imagined user
interaction, showcasing the system’s ability to independently
conceptualize unseen affordances and interact with new objects
and scenarios in everyday settings.

I. INTRODUCTION

In domestic settings and healthcare facilities, unstructured
environments and dynamic daily tasks necessitate human-
level intelligence for robots to automatically and adaptively
engage in novel objects and scenarios. Recently, Large
Language Models (LLMs) have showcased their impres-
sive conversational and logical abilities. Trained on vast
amounts of data, LLMs can distill essential information
from ambiguous and unspecific requests to create coherent
narratives. Recent studies have demonstrated that LLMs can
assist robots in making high-level decisions applicable to
real-world scenarios. A key challenge lies in the fact that
LLMs lack a practical grasp of physics, which hinders their
comprehension of the physical world and their ability to
make grounded assessments and feasible plans. For example,
when provided with a description and asked “Is it a table?”,
LLMs may provide a logical response that lacks physical
plausibility.

* denotes equal contribution.
This work was supported by NUS Startup grants A-0009059-02-00, A-

0009059-03-00, CDE Board account E-465-00-0009-01, and National Re-
search Foundation, Singapore, under its Medium Sized Centre Programme -
Centre for Advanced Robotics Technology Innovation (CARTIN), sub award
A-0009428-08-00.

1 Ceng Zhang, Xin Meng and Gregory S. Chirikjian are with the
Department of Mechanical Engineering, National University of Singapore,
Singapore. {tmy zc, mengxin, mpegre}@nus.edu.sg

2 Dongchen Qi and Gregory S. Chirikjian are with the Department of
Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
{dcqi, gchirik}@udel.edu

Fig. 1. Robot imagination with LLMs. (a) The robot imagines the
affordances of randomly placed novel objects assisted with LLMs. (b) The
robot performs novel tasks based on affordance reasoning.

Integrating physical properties, the concept of robot imag-
ination assesses the object affordances from an interactive
perspective, enriching the information for robot manipula-
tion. To approach the affordance reasoning from a user-
centric perspective, we define the affordance of an object
by Interaction-Based Definition (IBD). Illustrated by the
examples of chairs and containers in [1]–[3], IBD defines the
potential user and feasible user-object interactions, providing
extensive instructions for the robot to imagine the scenario
and assess the resultant interaction. We define the pose of the
object that allows the expected interaction as the functional
pose for the target affordance. The object that has at least
one functional pose is recognized as functional, i.e., fulfilling
such affordance.

Current robot imagination methods require the devel-
opment of customized imagination systems for different
affordances, in which developers analyze the definition of
a class of objects from the dictionary and decompose it
into an IBD. To translate the affordance request into the
programming language that the robot can understand and
execute, in our previous works [2], [3], we propose the
simplified agent model to describe the potential user and
encode the interaction into feasible motions and expected
outcomes. We define the applicable agent models and mo-
tions as the imagination profile. An evaluation matrix is
tuned to determine the successful interactions, allowing the
robot to recognize the functional poses of the object and,
therefore, classify the objects. However, it is still an open
challenge to imagine novel affordances without complicated
implementations by human developers.

In this paper, we tackle this challenge by developing an
automatic imagination pipeline that is only conditioned on
the name of the requested object affordance, by employing
LLMs to replace human analysis and heuristics. When ap-
proaching novel affordances, humans read the definition from
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Fig. 2. Pipeline. Given an object model in a random pose, the algorithm first imagines its stable poses. The Imagination Analyzer analyzes the requested
affordance and generates an executable imagination profile. The algorithm simulates the imagination profile with the object and loop for all stable poses.
The Imagination Evaluation determines whether the object has the requested affordance. If the object is functional, the functional pose and agent trajectories
are recorded for potential real robot execution.

the dictionary, analyze IBD, construct an imagination profile,
and put it into the brain to imagine it, thereby analyzing the
conclusion and generating executable actions. With robots
having cameras as eyes, imagination as brains, and end-
effectors as hands, we use LLMs as a powerful dictionary
that provides detailed profiles.

Instead of asking LLMs to directly reason about the
environment and plan actions to manipulate the object, we
only require them to answer affordance-related semantic
questions that are not conditioned on the specific objects
and environments. With the imagination profile generated,
the robot puts the real object in its brain and imagines
the interactions proposed by LLMs (Fig. 1). To reach a
physically applicable conclusion, LLMs also assist in com-
paring imagination outcomes with expected ones, providing
practical proposals for affordance classification, functional
pose prediction, and manipulation.

Evaluated with 301 novel synthetic data, our method
showcases a robust 88.2% accuracy in identifying new affor-
dances and an impressive 92.7% success rate in determining
functional poses. In real robot experiments, the system rec-
ognized both the affordances and the functional poses of 18
previously unseen objects. It achieves a 100% success rate in
executing novel tasks by accurately parsing semantic requests
and reasoning novel affordances. Comparing it with leading
learning-based approaches and an ablation study baseline,
we empathize the effectiveness, generality, and practical
applicability of our method. The main contribution of this
paper lies in:

• An affordance reasoning pipeline that only requests
target affordance names.

• An imagination framework simulates customized pro-
files for multi-class affordances.

• A real robot manipulation system for performing novel
tasks on unseen objects based on affordance reasoning.

II. RELATED WORK

A. Learning-based Object Classification

Object classification has been a crucial area of research
in computer vision, a fundamental approach in this field is
the application of Convolutional Neural Networks (CNNs)
[4], based on which later works have made improvement
and achieved better performance in tasks with large datasets
[5]–[8]. Despite the speed and efficacy of these methods,
they impose strict requirements on images. One challenge
is that visual occlusions can greatly impact result accuracy,
and potential flaws may go unnoticed by the method, leading
to objects lacking their intended functionality (e.g., a cup
without a bottom cannot hold liquid). To address this, studies
have employed sophisticated techniques to integrate multiple
viewpoints for 3D object classification [9]–[11]. However,
they still encounter difficulties with object poses, resulting
in a significant drop in classification accuracy when objects
are not in their functional poses.

Recently, the incorporation of methods such as attention
mechanisms and transformer models, as demonstrated in
Vision Transformer (ViT) [12], indicates a promising av-
enue to further enhance classification precision by utilizing
global context and long-distance dependencies in images.
Nevertheless, based on visual information, these methods
face similar challenges. In addition, requiring substantial
datasets and significant computational resources and time
for training such a substantial model remain issues. In
contrast, our approach does not depend on visual cues, but
infers the object’s affordance through physical interaction in
simulation. And by employing a pre-trained frozen LLM,
our system releases the need for training process and data
requirements.

B. Affordance Recognition by Physical Reasoning

The detection of affordances has recently been a highly
popular subject [13]–[16]. This area of study helps robots



Fig. 3. Imagination analysis and evaluation framework. The Affordance Analyzer creates the IBD and an abstract imagination outline. The Imagination
Profile Generator then develops detailed agent model and action trajectories. Subsequently, the Affordance Evaluator uses a scoring function generated to
assess each imagined plan, determining the functional pose.

better identify objects in their environment, understand their
functionalities, and learn to interact with them appropriately.
One of the approaches to affordance detection involves
physical interaction, which is seen as an intuitive and natural
behavior of human [17]. Research works such as [18] and
[19] suggest that robots can explore the functionalities of new
objects by interacting with them, potentially using them as
tools to perform tasks that were previously inaccessible. Our
previous research also focuses on envisioning the affordances
of objects, such as determining the sitability of a chair [2] and
the containability of a cup [1], and utilizing the functional
poses of these objects for robot manipulation tasks in real-
world settings. While these methods are intuitive, setting up
the simulation environment involves extensive hard coding
and only identifies a specific affordance. In this study, we
streamline the analysis and evaluation process by leveraging
the reasoning capabilitiy of LLMs and applying it to robot
imagination with various novel affordances.

C. Robot Planning with Large Language Models

As interest in large language models grows, the reasoning
capability of these models has provided new opportunities
for robot planning, a problem that previously required com-
plex algorithm development [20]–[22]. Furthermore, their
language analysis skills can help robots better understand
user needs based on abstract instructions [23]–[25]. A unified
model suggested in [21] can be implemented across various
robots for diverse task executions. Fan et al. highlight the
potential of LLMs in industrial robot applications in [26],
with the aim of autonomous completion of production tasks
on different assembly lines. One work similar to ours is [27],
where a tool recognition system for robot task completion is
introduced that comprises multiple LLM modules including
an analyzer, planner, encoder, etc. In contrast to these in-
stances, our focus is on utilizing a framework with several
LLM modules to create an autonomous system that classifies
objects by imagining the affordances of novel objects with

minimal human intervention.

III. LANGUAGE MODEL ASSISTED IMAGINATION

The pose of a rigid body can be represented as g =
(R,p) ∈ SE(3), where R ∈ SO(3) is a rotation matrix,
p ∈ R3 describes the position. Functional pose gf is
therefore defined as a pose in which the object affords the
functionality. Given an unseen object and a novel affordance,
our goal is three-fold: verifying whether the object possesses
such affordance, identifying the functional pose, and how to
use the object if it is functional.

In this work, we approach the problem of affordance rea-
soning from an interaction-based perspective by employing
a generalized automatic robot imagination pipeline shown in
Fig. 2. The novel affordance can be assessed by a three-step
stream: 1) imagination analysis: analyzing the IBD of the
affordance and decomposing it into the potential interaction
of agents and expected outcome; 2) imagination: simulating
the generated interaction in a physics-based simulator; 3)
imagination evaluation: evaluating the quantitative imagina-
tion results and proposing the object affordance. Instead of
heuristic reasoning from human developers, we propose a
framework that integrates LLMs for analysis that can be
generalized to a wide scope of affordances.

Taking natural language a as the prompt from the corpus
V , LLMs output the optimal content a∗ based on previous
tokens t:

a∗ = argmax
a∈V

P (a|t), (1)

our framework employs multiple LLM modules to analyze
affordances and imagination outcomes. Specifically, they
take the user’s prompt r and constraints c as input and
generate output O = L(r, c).

For a novel object, the input of the framework is a task de-
scription dtask which only includes the requested affordance
and the dimensional information of the object, defined as
dtask = {raff, gobj}. The requested affordance raff is specified



Fig. 4. (a) Affordance Analyzer, (b) Agent Configuration Generator, (c)
Agent Motion Planner.

by natural language, and gobj includes the dimension of the
object’s bounding box (OBB) and the object position.

In IBD, an object must be in a stable pose to be
considered functional for any affordance. Therefore, the
algorithm first takes the 3D model of the unseen object
and finds a set of stable poses by stable pose imagina-
tion [2], referred to as gs ∈ Gs. Setting the object into
each stable pose as the candidate pose, by breaking the
imagination analysis into a high-level affordance analysis
and a low-level imagination profile generation, our approach
proposes the four-step workflow: 1) Affordance Analyzer
A(dtask) → dIBD, dagent, dinteraction, devl parses the input dtask
and generates the IBD dIBD and an abstract imagination
outline including the description of the agent dagent and agent
action dinteraction, and expected outcome devl. 2) Imagina-
tion Profile Generator G(dagent, dinteraction) → a, p takes
the analyzed outline as input and outputs executable agent
model a and trajectories T for imagination. 3) Imagination
I(a, T ) → R simulates the generated agent motions and
saves resultant configurations R. 4) Imagination Evaluator
E(dagent, dinteraction, devl,R) → j outputs the summarized
affordance judgments by generating a scoring function to
evaluate the imagination outcomes. The workflow is shown
in Fig. 3.

A. Affordance Analysis

The Affordance Analyzer A processes the task description
dtask and proposes analysis as the outline of the affordance
reasoning. This module first assesses whether the object
dimension matches the target affordance raff. If there is a
mismatch, it proposes a potential alternative affordance and
replaces it as raff. Given the target affordance, the analyzer
summarizes the IBD dIBD. Based on dIBD, it proposes a
physical figure that can act as an agent to verify the tar-
get affordance. Multiple agents are involved in simulating
complicated physics or efficient parallel computing. The
configuration of the agent dagent is analyzed as a language
description of the shape and the abstract layout, i.e., the
geometry shape of the agent, and how the agent(s) distribute.
The analyzer plans the active motion dinteraction of the agent(s)

to interact with the object and forecast the outcome, dresult.
If the resultant configuration of the planned agent(s) motion
aligns with the expected outcome, the object is identified as
functional.

B. Imagination Profile Generation

With the abstract analysis, the algorithm creates a set
of configuration files to perform the planned agent motion,
including the agent model and the numerical trajectories. The
generator is composed of four LLM modules, acting in a
step-wise manner.

1) Agent Model Generator: Taking dtask and dagent, the
generator outputs a simple representation of the agent model
a in a unified robotics description format (URDF) file. The
agent model maintains the essential characteristics related
to the target affordance and employs an appropriate scale
considering the object dimension.

2) Agent Configuration Generator: To handle compli-
cated scenarios, the imagination analyzer proposes multiple
agents to simulate joint or parallel physics. We organize the
spatial distribution of the agent into a cube or planar grid
pattern, with sides of the shape aligning with the world
frames, and the orientations of all agents remaining the
same, an example is shown in Fig. 4(b). The distribution is
parameterized by the number of agents along each side and
the distance between each pair of neighboring agents. Based
on dtask and a, the LLM module proposes the distribution
parameters, considering the object dimension and collision
avoidance. Therefore, the pose of each agent relative to the
geometric center of the distribution can be extracted. For
cases where only one agent is employed, the agent geometric
center is the center of the distribution.

3) Agent Motion Planner: Taking dtask and the abstract
description of the interaction method dinteraction, the planner
aims to produce high-level plans of agent motions, shown in
Fig. 4(c). Specifically, each plan provides a sequence of ac-
tions dmotion, indicating the relative spatial relations between
the agent and object, as well as the moving direction of the
agent. With the object placed in each candidate pose, it gen-
erates multiple plans D = {dmotion1, dmotion2, ..., dmotioni, ...},
enabling the exploration of a diverse range of interactions.
dmotioni is the language description of the i-th plan.

4) Trajectory Generator: With the initial language de-
scriptions D of the plans, the generator converts them into
a group of numerical trajectories, referred to as T =
{t1, t2, ..., ti, ...}. ti is the i-th trajectory of the center of
the agent(s). Each trajectory is given as a sequence of via
poses of the agent(s) relative to the object, with the object
in a candidate pose. The algorithm calculates the trajectory
of each agent as the executable plan saved in a JSON file
imported for imagination.

C. Imagination

The algorithm imagines the proposed agent a and planned
interactions T in a physics-based simulator. It first loads the
objects in the candidate stable poses and the agents in the
initial poses, then simulates the agent moving through the



planned via-poses and the agent is released after the trajec-
tory is completely executed. In addition, collision checking
is performed at each step, and when a collision occurs, all
agents involved are released immediately.

For the simulation of each plan, the resultant configuration
r is summarized from two aspects: 1) Agent poses: the
position and orientation of each agent relative to the object;
2) Contact points: number of contact points of each agent
with the object, other agents, and the ground, respectively.

The outcome of imagination is the combination of
the resultant configuration of all generated plans R =
{r1, r2, ..., ri, ...}.

D. Affordance Evaluation

In this part, the algorithm analyzes the results of the
simulation R to evaluate the object affordance. It consists
of two LLM modules to evaluate r of each plan and the
object affordance, respectively.

1) Scoring Function Generator: Based on dIBD and devl,
the generator produces an executable function F that scores
the outcome of each plan. The function takes in the resultant
configuration of each imagined plan r and generates a
weighted score S.

F(r) −→ S (2)

It considers criteria related to target affordance, including
agent-object relative position, agent orientation, agent-object
contact, agent-agent contact, and agent-ground contact. The
success of the plan is determined by whether S exceeds 0. All
successful interactions are selected as candidate functional
interactions (dmotionf , tf , rf ). Compared to previous works
where the evaluation matrix is manually defined and tuned,
our method provides an automatic approach that enables
generalization across various types of affordances.

2) Functional Pose Analyzer: The imagined pose is hy-
pothesized as potentially functional if there exists at least
one candidate functional interaction. To analyze the validity
of the candidate functional pose, we introduce another LLM
module. By analyzing the candidate functional interactions
(dmotionf , tf , rf ), it determines if the evaluation provided by
F is consistent with common sense.

The object is classified as not functional if none of the
candidate interactions of all stable poses gs ∈ Gs is valid.
If there exists at least one valid candidate interaction, the
analyzer selects the best functional interaction. The corre-
sponding object pose is therefore the optimal functional pose.

IV. EXPERIMENTS

We implement our framework system with Python, using
Pybullet [28] as the physics simulator. The algorithm is
evaluated on a computer running an Intel Core i7-11370H
@ 3.3GHz CPU and Nvidia GTX 3060 GPU. In a real
experiment setting Fig 5 (b), a Franka Emika robot arm is
used for manipulation. An RGBD camera is mounted on the
end effector for reconstruction. The language model in this
study is founded on GPT-4 [29]. To enhance response time
and speed of generation, we opt for the GPT-4-turbo variant

Fig. 5. Real world experiment details. (a) Snapshot for different classes
of objects used for affordance imagination. The circled cup is used to tune
the robot planning. (b) Real robot setting.

and set the parameter Temperature = 0.1 to ensure optimality
while providing a certain degree of generalization.

A. Data

Our dataset comprises 301 synthetic and 19 real-life
objects. The synthetic objects, sourced from a subset of the
Princeton ModelNet40 dataset [30], span 8 classes: cup, bas-
ket, bathtub, chair, plate, table, vase and bowl. To optimize
the performance of LLM modules and the simulator, we
utilize 6 synthetic objects across 3 classes, i.e., cup, vase,
and chair. The rest data, which are unseen by our system,
are used as the test set. To assess affordance classification,
non-functional objects from various classes are also included
in the testing phase.

In real robot experiments, we use a cup to tune the
parameters for the robot planning to shorten the sim-to-
real gap. The remaining 18 novel objects, varied in size
and appearance, are used to test the recognization of 15
classes of affordances and affordance-based manipulation.
This includes 13 novel affordances previously unencountered
by our system.

B. Real Robot Experiment

The object is placed on a transparent stand to enable
comprehensive scanning of the bottom section, with it in
a functional pose. The task is given to the system through
a semantic request formatted as “put the (real agent) in/on
the (requested affordance name).” The system has no prior
knowledge of the object as well as the requested affordance.

The robot arm first moves to 12 predefined poses to scan
the object. The object model is cropped and segmented from
the scene point cloud reconstructed using TSDF-Fusion [31].
With the requested affordance name segmented and passed
to the affordance reasoning module, the algorithm imagines
the object model and classifies if the object can be used with
the requested affordance in the placed pose. If the object
is recognized as functional and in a functional pose, the
algorithm proposes an optimal agent trajectory. The robot
then requests a volunteer to hand over the real agent. Holding
the real agent, the robot executes the imagined trajectory and
positions the agent, transferring the affordance understanding
to practical actions. Throughout this process, simple force
control is used for robot manipulation, pausing its motion
if external force surpasses a set limit, ensuring safety and
precision in task execution.



TABLE I
ACCURACY (%) OF AFFORDANCE CLASSIFICATION

Method
Synthetic data

basket bathtub chair cup plate table vase bowl overall

Ours (random pose) 94.6 82.6 85.7 91.2 91.7 85.7 74.6 93.2 87.7

BLIP
functional pose 45.2 13.0 95.2 70.6 11.1 85.1 87.2 68.2 56.8

random pose 12.9 8.7 42.9 35.3 5.6 31.9 38.5 36.4 30.2

Fig. 6. Functional poses analysis. (a) True functional poses. (b) ”Fake”
functional poses in which the simulation result is scored as successful but
is not validated by the Functional Pose Analyzer.

C. Baseline

We compare our method with the baseline, BLIP [32],
which is a Visiual Question Answering (VQA) model that
makes responses to user’s prompt, we make comparisons
on two tasks: affordance classification and functional pose
prediction.

For affordance classification, we present an object’s image
alongside the query “Is it a (requested affordance name)?”,
and it ascertains whether the model possesses the requested
affordance. To study how the object’s pose impacts its
performance and demonstrate the versatility of our approach
across different poses, for each data sample we capture two
images in arbitrary and functional poses, respectively. In
functional pose prediction, we change the query to ”Can the
(requested affordance name) function in this pose?” With the
image input, it makes judgement whether the object is in its
functional pose. By doing so, we evaluate its ability to make
responses on object pose information by visual cues.

Additionally, we perform ablation experiments in func-
tional pose prediction to assess the significance of the
functional pose analyzer in the framework. By comparing the
outcomes of the base method with and without the functional
pose analyzer, we aim to elucidate its impact on the overall
performance of the affordance reasoning process.

D. Evaluation

We recruit volunteers to annotate the experiment result.
For each object, we present it to the volunteer and ask “Do
you think it can be a (requested affordance name)?” For each
predicted functional pose, with the result of imagination, we
ask the volunteer “Do you think this is the functional pose
for (requested affordance name)?” In addition, for each trial
of the real robot experiment, we show the experiment video
and ask “Do you think the task was successfully performed?”
to ensure that the pipeline runs in a reasonable manner.

V. RESULTS

We test our method on synthetic and real object data,
respectively. The synthetic data are placed in a random pose,
while the real object is placed on the table with an arbitrary
upright pose.

A. Affordance Classification

The affordance classification achieves high success rates
on synthetic data, as shown in Tab. I. Notably, the classifi-
cation of novel affordance classes demonstrates exceptional
performance, achieving a 88.2% success rate. Failure exam-
ples are mainly due to improperly generated profiles, such
as imagination outline analysis, agent’s model, trajectory pa-
rameters of agent motion, etc. We notice that the performance
is degraded on vases, which we hypothesize is because the
geometry varies greatly and the openings are usually small.
In the absence of specific information about geometry, the
generated agent may only match the overall dimensions of
the object and it might be oversized for the opening, leading
to a failure of the affordance imagination. BLIP does not
perform as well on synthetic data even with objects in a
functional pose. It shows good performances only for classes
with unique appearance features such as chairs and vases.
When objects are placed in random poses, it results in an
overall correctness of only 30.2%.

In real robot experiments, the success rate is achieved
100%, with the objects placed in functional poses. BLIP
showed a significant increase in performance on real data,
with a success rate of 84.2%, which we attribute to the fact
that most of the data used to train the model come from
pictures of real objects.

TABLE II
ACCURACY (%) OF FUNCTIONAL POSE PREDICTION

Method Synthetic data Real data

Ours 92.7 100.0

Ours w/o Functional Pose Analyzer 75.3 79.2

BLIP 55.1 60.5

B. Functional Pose Prediction

We evaluate the functional pose prediction results on
objects that are successfully recognized as functional. In Tab
II, our method achieves very high accuracy in functional
pose prediction for synthetic data. When considering only



Fig. 7. Real Robot Experiment Results. (a)-(b)The robot positions the real agent according to the requested task. (c) Results.

the current pose, the robot successfully recognizes the object
as being in a functional pose across all real-world trials.

In contrast, the baseline method BLIP shows low accuracy
on both synthetic and real data, which is in line with the out-
of-distribution challenge faced by vision-based methods. The
performance is hugely affected by the view points, object
pose, and object appearances. The ablation trials exhibit
a notable decline in accuracy, suggesting that the Func-
tional Pose Analyzer plays an important role in accurately
determining the correct functional pose. Failure is often
caused by the incomprehension of the Scoring Function,
leading to the identification of “fake” functional poses that
we do not expect from human common sense, illustrated
in Fig. 6 By incorporating the Functional Pose Analyzer,
our method provides more adequate and reliable judgments,
ensuring that the predictions align more closely with practical
expectations.

C. Real Robot Manipulation

Qualitative results are shown in Fig. 7, our system achieves
100% across 20 novel trials encompassing 15 distinct tasks,
utilizing 18 objects previously unknown to the system.
Notably, the system exhibits impressive generalization ca-
pabilities by successfully recognizing and manipulating 13
new affordances. Furthermore, it can identify objects with
multifunctional uses and adapts its interaction accordingly.
For example, the rightmost two trials in Fig. 7 showcase
an object that the system recognizes both as a shelf, by
positioning the agent on top, and as a cupboard, by inserting
the agent inside.

VI. CONCLUSION

In this paper, we introduced an intelligent real2sim2real
affordance reasoning framework that enables robots to un-
derstand and interact with novel classes of objects based on
semantic requests. This process involves analyzing the affor-
dance, imagining the generated scenarios, and evaluating the
outcome to classify object affordance, predict the functional
pose, and propose the potential user interaction. Our system
demonstrated a success rate of 88.2% in identifying the affor-
dance of novel classes, and successfully performed 20 novel
tasks in real-world settings, showing significant potential
in a wide range of daily indoor applications. Future work
aims to expand the framework to articulated and deformable

objects and understand and execute more complicated task
commands.
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