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Abstract

We simulate the electrical response of multiple disjoint biological 3D cells in the electrop-
ermeabilization process. Instead of solving the boundary value problem in the volume, we
reduce it to a system of boundary integrals equations with nonlinear dynamics on the cell
membranes via a coupling the local Multiple Traces Formulation with a time semi-implicit
scheme. Spatially, boundary unknowns are approximated by spherical harmonics, thereby al-
lowing for spectral convergence rates for suitable time steps. Numerical results are provided to
validate our claims.
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1 Introduction

Electropermeabilization designates the use of short high voltage or electric field pulses to increase the
permeability of the cell membrane and its potential to allow the access of non-permeant molecules
[19, 25]. This technique is used to deliver therapeutic molecules such as drugs and genes into cells
to treat cancer, perform genetic engineering, screen drugs, among others applications (cf. [18]).

Theoretically, several models have been proposed to describe the reversible membrane electrop-
ermeabilization mechanism without rigorous proof. For instance, during electropermeabilization
it is thought that aqueous pores are formed along the cell membrane—electroporation—thereby
increasing the permeability of the membrane. Yet, this has not been experimentally observed to
occur for voltages used in practice. The pores are either too small to be seen by optical microscopy
and too fragile for electron imaging. Only molecular dynamics’ simulations have been able to pro-
vide demonstrate pore formation (cf. [19, Section 3], [3, Section 2.1]). Moreover, the application
of external electric pulses triggers other physical and chemical cell mechanisms, many of them not
fully understood due to complex interactions at multiple length scales: from nanometers at the cell
membrane to centimeters in tissues [19]. “Therefore, while the term electroporation is commonly
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used among biologists, the term electropermeabilization should be preferred in order to prevent any
molecular description of the phenomenon” [25].

Still, mathematical models and numerical methods can lead to a better understanding of the
different underlying phenomena. For instance, Neu and Krassowska [22] consider a pure electro-
poration process by modeling the nanoscale phenomena involved in the creation and resealing of
the cell membrane pores, and apply homogenization theory to derive nonlinear-in-time dynamics.
Well-posedness of the Neu-Krassowska model and a new one including anisotropies are derived in
[2]. Alternatively, in [17] the authors propose a phenomenological model that forgoes the ab initio
understanding of the mechanisms involved. A more complete phenomenological model splits in the
electroporation process into two different stages: conducting and permeable [20]. This model also
takes into account the diffusion and electric transport of non-permeable molecules. In [10, 21], the
authors discard particle diffusion and transport in [20] to then apply the Voronoi Interface Method
[9] for its numerical approximation. Specifically, they construct a Voronoi mesh of the volume cou-
pled to a ghost fluid method to capture discontinuous boundary conditions. Further computational
enhancements via parallelization are given in [21].

Instead of solving the volume boundary value problem, we recast the problem onto cell mem-
branes via the local Multiple Traces Formulation (MTF) [13, 4, 14, 5, 16]. Originally introduced
to solve acoustic wave transmission problems in heterogeneous scatterers, the local MTF considers
independent trace unknowns at either side of the subdomains’ boundaries to then enforce continuity
conditions weakly via Calderón identities. In [12, 11] the method was successfully applied to model
the electrical behavior of peripheral neurons by coupling the Laplace boundary integral operators
with Hodgkin-Huxley nonlinear dynamics. The volume Laplace equations in intra- and extracellu-
lar media arises when assuming a quasi-static electromagnetic regime and one can show that for 2D
and 3D the model is well posed. Numerically, the authors prove stability and convergence of time
semi-implicit discretizations with low- and high (spectral) order spatial boundary unknown repre-
sentations. Moreover, the numerical method proposed can be extended to model other nonlinear
dynamics.

Following [12, 11], we employ the above boundary integral equations to simulate the electric
potential response of multiple disjoint cells in three dimensions when subject to electric pulses.
Spatially, the boundary unknowns will be approximated by spherical harmonics, thereby allowing
for spectral convergence rates. The nonlinear dynamics of the cell membrane follow [17] which
are solved by a semi-implicit scheme. The rest of the paper is organized as follows. In Section 2
we formulate the problem and the corresponding non-linear dynamic model, and derive MTF. In
Section 3, we present a numerical scheme for spatial and time-domain discretizations, as well as
discuss advantages and limitations of the proposed method. Computational results are provided in
Section 4. Code validation experiments with analytic and overkill solutions confirm our theoretical
results and open new avenues of research.

2 Problem Statement and Boundary Integral Formulation

2.1 Dirichlet and Neumann traces

In what follows we will need the notion of Dirichlet and Neumann traces, which we introduce
below. Let Ω ⊂ Rd, d = 1, 2, 3, be an open non-empty domain with a Lipschitz boundary Γ. For
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Figure 1: A system of three cells N = 3.

u ∈ C∞(Ω), Dirichlet and Neumann traces operators are defined as

γDu := u|Γ, γNu := ∇u|Γ · n̂,

where n̂ is the exterior unit normal. For a Lipschitz Γ, the Dirichlet trace has a unique extension
to a linear and continuous operator γD : H1

loc(Ω) → L2(Γ). The image of this operator is dense

and is denoted by H
1
2 (Γ). The norm is given by ∥v∥

H
1
2 (Γ)

:= {∥u∥H1(Ω) : γDu = v}. The space of

bounded linear functionals on H
1
2 (Γ) is denoted by H− 1

2 (Γ). One can also show that the Neumann

trace operator γN : H1
loc(∆,Ω) → H− 1

2 (Γ) is continuous (see [26, Section 2.6 to 2.8]). H
1
2 (Γ) and

H− 1
2 (Γ) are referred to as Dirichlet and Neumann trace spaces, respectively [26, Sections 2.4, 2.6

and 2.7].

2.2 Cell Electropermeabilization Model

We now present a continuous model used for the electropermeabilization process. Specifically, we
assume a quasi-static electromagnetic problem in the intra- and extracellular domains coupled with
non-linear dynamics at the cells’ membranes. This coupling relies on enforcing adequate transmis-
sion conditions for potentials and currents across the cells. By a quasi-static regime, we imply that
the frequency of the electric fields is low enough to discard any time delay in electromagnetic wave
propagation [24].

We consider the electric interaction ofN ∈ N disjoint spherical cells located at pj ∈ R3 with radii
Rj ∈ R+, j ∈ {1, ...,N}. We define the interior space of the jth cell by Ωj := {x ∈ R3 : ∥x− pj∥2 <
Rj}, with its membrane being the boundary Γj := ∂Ωj = {x ∈ R3 : ∥x− pj∥2 = Rj}. The

extracellular medium is defined as the complement to the intracellular domain: Ω0 := R3 \
⋃N

j=1 Ωj .
An illustration for three cells is presented in Figure 1.

For j ∈ {0, ..., N}, each cell Ωj is assumed to have constant conductivity σj ∈ R+. For T ∈ R+,
let ϕe : [0, T ]×Ω0 → R be a given external potential. Let u0 : [0, T ]×Ω0 → R be the electric potential
without excitation in the extracellular medium, so that total external potential is utot0 := u0 + ϕe.
We denote by uj : [0, T ] × Ωj → R, j ∈ {1, ...,N}, the electric potential inside the jth cell, as in
Figure 1.

On cell membranes Γj the potential is discontinuous, the difference vj := uj − u0 is called
the membrane or transmembrane potential and the flux is assumed to be continuous. Thus, our

3



boundary value problem becomes1

div (σj∇uj) = 0, (t,x) ∈ [0, T ]× Ωj , j ∈ {0, ...,N},
−γ0jD u0 + γjDuj = vj + γ0jD ϕe, (t,x) ∈ [0, T ]× Γj , j ∈ {1, ...,N},

σ0γ
0j
N u0 + σjγ

j
Nuj = −σ0γ0jN ϕe, (t,x) ∈ [0, T ]× Γj , j ∈ {1, ...,N}.

For the electro-permeabilization process, we adopt the phenomenological model presented in
[17]. Specifically, at each cell j ∈ {1, ...,N}, one has

cm,j∂tvj + Iepj (vj , Zj) = −σjγjNuj on [0, T ]× Γj ,

Iepj (vj , Zj) = vj(SL,j + Zj(t, vj(t,x))(Sir,j − SL,j)) on [0, T ]× Γj ,

with cm,j denoting the membrane capacitance per unit area, and Iepj being the electropermeabi-

lization current. This last quantity depends on the transmembrane potential vj and a C1-function
Zj : [0, T ] × Γj → [0, 1] (cf. [17, Lemma 7]). For brevity, and slightly abusing the notations, we
write Zj(t,x) instead of Zj(t, vj(t,x)). The variable Zj(t,x) “measures in some way the likelihood
that a given infinitesimal portion of the membrane is going to be electropermeabilized” [17, p 247].
Specifically, Zj enforces the surface membrane conductivity to take values between two parameters:
the surface conductivity Sir,j for which the electropermeabilization process becomes irreversible,
and the lipid surface conductivity SL,j . Indeed, when Zj = 0, the membrane conductivity equals
the lipid conductivity, and there is no electropermeabilization; if Zj = 1, the membrane conductiv-
ity takes the maximal value above which electropermeabilization is irreversible. Following [17], Zj

satisfies the ordinary differential equation:

∂

∂t
Zj(t, λ) = max

(
βj(λ)− Zj(t, λ)

τep,j
,
βj(λ)− Zj(t, λ)

τres,j

)
.

Here, βj ∈ W 1,∞(R; [0, 1]) = {u ∈ L∞(Ω) : Dαu ∈ L∞(Ω), |α| ≤ 1}. If βj(vj) − Zj(t, vj) is pos-
itive, the electric pulse is sufficiently intense to enlarge the electropermeabilized region with a
characteristic time τep,j . Contrarily, if βj(vj)−Zj(t, vj) is negative, the pulse is not strong enough
to allow electropermeabilization and the membrane returns to its resting state, with a characteristic
resealing time τres,j . Experimental observations suggest that τres,j > τep,j .

In general [17], one can use any function βj such that βj ∈ W 1,∞(R), vβ′
j(v) ∈ L∞(R), βj is

non decreasing in (0,∞), 0 ≤ βj(v) ≤ 1, limv→∞ βj(v) = 1. In our case, we set βj as

βj(v) :=
1 + tanh(kep,j(|v| − Vrev,j))

2
, (1)

wherein two additional parameters are introduced: the electropermeabilization switch speed kep,j
between Sir,j and SL,j , and Vrev,j , the transmembrane potential threshold for electropermeabiliza-
tion to occur. The chosen βj (1) satisfies the above conditions. This can be checked by recalling
the properties of the hyperbolic functions tanh : R → [−1, 1] and sech : R → [0, 1]. We will assume
that the threshold potential Vrev is constant throughout the electropermeabilization process.

In summary, the full electropermeabilization dynamic problem reads:

1Observe that the Dirichlet and Neumann operators only act in the spatial variable x. For a collection of spheres,
we have added super-indices to emphasize where the traces are taken from: 0j for the trace arising from Ω0 onto Γj ,
and j for the one from Ωj to Γj .
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Problem 2.1. Given T ∈ R+, an external potential ϕe ∈ C([0, T ], H1
loc (Ω0)), and the initial

conditions u0j ∈ H1 (Ωj), and Z0
j ∈ H

1
2 (Γj), for j = 1, . . . ,N , we seek uj ∈ C([0, T ], H1 (Ωj)),

vj ∈ C([0, T ], H
1
2 (Γj)), and Zj ∈ C([0, T ], H

1
2 (Γj)) for j ∈ {1, ...,N} such that for t ∈ [0, T ], the

following holds

div (σ0∇u0) = 0 in Ω0, (2a)

div (σj∇uj) = 0 in Ωj , (2b)

−γ0jD u0 + γjDuj = vj + γ0jD ϕe on Γj , (2c)

σ0γ
0j
N u0 + σjγ

j
Nuj = −σ0γ0jN ϕe on Γj , (2d)

cm,j∂tvj + Iepj (vj , Zj) = −σjγjNuj on Γj , (2e)

uj(0,x) = u0j , Zj(0,x) = Z0
j in Ωj (2f)

u0(0,x) = u00 in Ω0, (2g)

u0 → O(∥x∥−1
2 ) as ∥x∥2 → ∞, (2h)

with Iepj defined as:

Iepj (vj , Zj) := vj (SL,j + Zj(t, vj)(Sir,j − SL,j)) , (3)

where the Zj(t, λ) satisfy:

∂

∂t
Zj(t, λ) = max

(
βj(λ)− Zj(t, λ)

τep,j
,
βj(λ)− Zj(t, λ)

τres,j

)
(4)

with βj given by (1) and parameters τep,j , τres,j described above.

As above, we write Zj(x,x) = Zj(t, vj(t,x)). Observe that (2h) is the standard decay condition
for the Laplace problem in three dimensions that guarantees that the problem is well posed. Finally,
the parameters of each cell, cm,j , Vep,j , τep,j and τres,j might differ from cell to cell. In practical
applications, these parameters depend on the cell type, e.g., cancer cells possess material properties
different from healthy cells in the same tissue [23].

2.3 Boundary integral formulation

Due to the unboundedness of the domain as well as the constant conductivity values inside intra-
and extracellular domains, one can write Problem 2.1 using boundary integral operators, thereby
reducing the volume problem to a boundary one as in [13, 12, 11].

2.3.1 Boundary integral potential and operators

The free space fundamental solution of the Laplace equation for a source located at r′ satisfying
the decay condition (2h) is ([15, Section 1.7])

g (r, r′) :=
1

4π ∥r− r′∥2
, r ̸= r′.
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We recall the standard single and double layer operators defined for smooth densities:

DL0j (ψ) (r) :=

∫
Γj

ψ (r′)∇g (r, r′) · n̂0j dS
′, SL0j (ψ) (r) :=

∫
Γj

ψ (r′) g (r, r′) dS′,

DLj (ψ) (r) :=

∫
Γj

ψ (r′)∇g (r, r′) · n̂j dS
′, SLj (ψ) (r) :=

∫
Γj

ψ (r′) g (r, r′) dS′,

with the gradient being taken with respect to r′, n̂j being the exterior normal vector of Ωj , and
n̂j = −n̂0j . It can be shown that these operators are linear and continuous (cf. [26, Section 3.1],
[11, Section 3.1]), in the following Sobolev spaces:

DL0j : H
1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
, SL0j : H

− 1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
,

DLj : H
1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
, SLj : H

− 1
2 (Γj) → H1

loc

(
R3 \ ∪N

j=1Γj

)
.

We will write uj in terms of these boundary potentials, and since we aim at rendering Problem 2.1
onto the cells’ boundaries, we will take traces of these potentials. This leads to boundary integral
operators (BIOs), which are defined by taking the following averages [26, Section 3.1.2]:

V 0
i,j :=

1

2

(
γiDSL0j + γ0iDSL0j

)
, Vj :=

1

2

(
γ0jD SLj + γjDSLj

)
,

K0
i,j :=

1

2

(
γiDDL0j + γ0iDDL0j

)
, Kj :=

1

2

(
γ0jDDLj + γjDDLj

)
, (5)

K∗0
i,j :=

1

2

(
−γiNSL0j + γ0iNSL0j

)
, K∗

j :=
1

2

(
−γ0jN SLj + γjNSLj

)
,

W 0
i,j := −1

2

(
−γiNDL0j + γ0iNDL0j

)
, Wj := −1

2

(
−γ0jNDLj + γjNDLj

)
.

One can show that these operators are linear and continuous [26, Theorem 3.1.16] in the following
Sobolev spaces:

V 0
i,j : H

− 1
2 (Γj) → H

1
2 (Γi), Vj : H

− 1
2 (Γj) → H

1
2 (Γj),

W 0
i,j : H

1
2 (Γj) → H− 1

2 (Γi), Wj : H
1
2 (Γj) → H− 1

2 (Γj),

K0
i,j : H

1
2 (Γj) → H

1
2 (Γi), Kj : H

1
2 (Γj) → H

1
2 (Γj),

K∗0
i,j : H

− 1
2 (Γj) → H− 1

2 (Γi), K∗
j : H− 1

2 (Γj) → H− 1
2 (Γj).

For smooth domains, the jump relations for the potentials across a closed boundary [26, Theorem
3.3.1] yield

V 0
i,j = γ0iDSL0j , Vj = γjDSLj ,

W 0
i,j = −γ0iNDL0j , Wj = −γjNDLj ,

K0
i,j = γ0iDDL0j with i ̸= j, K∗0

i,j = γ0iNSL0j with i ̸= j,

K0
j,j(ψ) =

1

2
ψ + γ0jDDL0j(ψ), Kj(ψ) =

1

2
ψ + γjDDLj(ψ),

K∗0
j,j(ψ) = −1

2
ψ + γ0jN SL0j(ψ), K∗

j (ψ) = −1

2
ψ + γjNSLj(ψ).

In the next theorem presents the integral representation formulas for the electric potentials uj and
u0.
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Theorem 2.2. ([26, Section 3]) The integral representation formulas for uj ∈ H1(Ωj), u0 ∈
H1

loc(Ω0) read

u0 = −
N∑
i=1

DL0i

(
γ0iDu0

)
+

N∑
i=1

SL0i

(
γ0iNu0

)
, (6a)

uj = −DLj

(
γjDuj

)
+ SLj

(
γjNuj

)
, ∀j ∈ {1, ...,N}. (6b)

where uj are zero-valued on the complement of Ωj.

2.3.2 Multiple traces formulation for Problem 2.1

Using the operators introduced in above along with the integral representation formula we write
the MTF of Problem 2.1 (cf. [13] and later references).

For j ∈ {1, ...,N}, we introduce the Cartesian product of Hilbert spaces Hj := H
1
2 (Γj) ×

H− 1
2 (Γj), with norm ∥ ·∥Hj

= ∥ ·∥
H

1
2 (Γj)

+∥ ·∥
H− 1

2 (Γj)
. Let be ϕ, ξ ∈ Hj , such that ϕ = (ϕD, ϕN )

and ξ = (ξD, ξN ). We introduce the cross-product over Γj [13, Section 2.2.1] by ⟨ϕ, ξ⟩×,j :=
⟨ϕD, ξN ⟩j + ⟨ξD, ϕN ⟩j , where for brevity we denote ⟨ξD, ϕN ⟩j := ⟨ξD, ϕN ⟩

H
1
2 (Γj)×H− 1

2 (Γj)
.

We define also the flip-sign operator Xj : Hj → Hj , γ0j : H1
loc(∆,Ω0) → Hj and γj :

H1(∆,Ωj) → Hj as:

Xj :=

[
I 0

0 −σ0

σj
I

]
, γ0j :=

(
γ0jD

γ0jN

)
and γj :=

(
γjD

γjN

)
, j ∈ {1, ...,N}, (7)

with I being the identity operator in the corresponding functional space, and for simplicity, we
adopt the same notation for I in different spaces. Then, we write Dirichlet and Neumamn boundary
conditions, (2c) and (2d), respectively, succinctly as

−Xjγ
0ju0 + γjuj = Xj(vj , 0)

t + Xjγ
0jϕe, (8a)

γ0ju0 − X−1
j γjuj = −(vj , 0)

t − γ0jϕe, (8b)

where both equations are equivalent. Taking Dirichlet and Neumann traces of both (6a) and (6b),
and rewriting in terms of BIOs, we obtain

γ0jD u0 = −

(
−1

2
I
(
γ0jD u0

)
+

n∑
i=1

K0
j,i

(
γ0iDu0

))
+

n∑
i=1

V 0
j,i

(
γ0iNu0

)
,

γ0jN u0 =

n∑
i=1

W 0
j,i

(
γ0iDu0

)
+

(
1

2
I
(
γ0jN u0

)
+

n∑
i=1

K∗0
j,i

(
γ0iNu0

))
,

γjDuj = −
(
−1

2
I
(
γjDuj

)
+Kj

(
γjDuj

))
+ Vj

(
γjNuj

)
,

γjNuj =Wj

(
γjDuj

)
+

(
1

2
I
(
γjNuj

)
+K∗

j

(
γjNuj

))
.

7



After some algebra, one can write

γ0ju0 = 2

N∑
i=1

A0
j,i γ

0iu0, γjuj = 2Aj γ
juj , j ∈ {1, ...,N},

with A0
j,i :=

[
−K0

j,i V 0
j,i

W 0
j,i K∗0

j,i

]
and Aj :=

[
−Kj Vj
Wj K∗

j

]
. By replacing γ0ju0, γ

juj into (8b) and (8a),

we obtain

2

n∑
i=1

A0
j,i γ

0iu0 − X−1
j γjuj = −(vj , 0)

t − γ0jϕe,

−Xjγ
0ju0 + 2Aj γ

juj = Xj(vj , 0)
t + Xjγ

0jϕe on Γj .

We define Cartesian product space of multiple traces:

H := ΠN
j=1Hj and H(2) := H×H = ΠN

j=1Hj ×ΠN
j=1Hj ,

the multiple trace spaces reordering:

HD := ΠN
j=1H

1
2 (Γj), HN := ΠN

j=1H
− 1

2 (Γj),

and the cross-product:

⟨ϕ, ξ⟩× =

N∑
j=1

⟨ϕ0j , ξ0j⟩×,j +

N∑
j=1

⟨ϕj , ξj⟩×,j ,

with ϕ = (ϕ01, ...,ϕ0N ,ϕ1, ...,ϕN ) and ξ = (ξ01, ..., ξ0N , ξ1, ..., ξN ).
Now, we can introduce the local Multiple Trace formulation (MTF) operator [13, Section 3.2.3],

MN : H(2) → H(2), for the geometry presented in Section 2:

MN :=

[
2A0,N −X−1

N
−XN 2A1,N

]
, with A0,N :=


A0
1,1 A0

1,2 ... A0
1,N

A0
2,1 A0

2,2 ... A0
2,N

...
. . .

...

A0
N ,1 A0

N ,2 ... A0
N ,N

 , (9)

A1,N :=


A1 0 ... 0
0 A2 ... 0
...

. . .
...

0 ... 0 AN

 and XN :=


X1 0 ... 0
0 X2 ... 0
...

. . .
...

0 ... 0 XN

 .
With the MTF operator, the interface conditions (2b), (2c) and (2d) (Problem 2.1) can be written
as:

MN

(
γ0
u

γu

)
=

(
− I2N×N v
XN I2N×N v

)
+

(
−γ0

ϕe

XN γ0
ϕe

)
, (10)

8



where we use the notation:

γ0
u :=

(
γ01u0,γ

02u0, . . . ,γ
0Nu0

)t
, γu :=

(
γ1u1,γ

2u2, ...,γ
NuN

)t
,

γ0
ϕe

:=
(
γ01ϕe,γ

02ϕe, . . . ,γ
0Nϕe

)t
, v :=

(
v1, v2, v3, . . . , vN

)t
,

with superscript t denoting the transposition, and the operator I2N×N : HD → H is defined as2:

I2N×N :=



I 0 ... 0
0 0 ... 0
0 I ... 0
0 0 ... 0
...

...
...

0 0 ... I
0 0 ... 0


.

The following result is a consequence of [11, Proposition 3.9, Proposition 3.10] along with the
Fredholm alternative.

Theorem 2.3 (Existence, uniqueness and stability). The operator MN is a linear, injective and
coercive operator in H(2). For all ξ ∈ H(2), there exists a unique weak solution λ ∈ H(2) of

(MNλ,ϕ)× = (ξ,ϕ)×, ∀ϕ ∈ H(2),

that satisfies the stability estimate ∥λ∥H(2) ≤ c∥ξ∥H(2) , for a constant c > 0.

2.3.3 Boundary integral formulation of Problem 2.1

Until this point, we have not introduced the membrane dynamics of Problem 2.1. In the following,
we will use the theory presented in [12, 11] to combine the MTF with the nonlinear dynamics.
Indeed, thanks to Theorem 2.3 we can take the inverse of the MTF operator, and (10) becomes(

γ0
u

γu

)
= M−1

N

(
− I2N×N v

XN I2N×N v

)
+M−1

N

(
−γ0

ϕe

XN γ0
ϕe

)
.

The even components of the vector γu (the interior Neumann traces), related to the nonlinear
dynamics of the problem by (2e), can be retrieved as follows:

σ1γ
1
N (u1)

σ2γ
2
N (u2)
...

σNγ
N
N (uN )

 = σN×4NM−1
N

((
− I2N×N v
XN I2N×N v

)
+

(
−γ0

ϕe

XN γ0
ϕe

))
,

where the dimensions of σN×4N are N × 4N , the first half containing only zeros:

σN×4N :=


0 ... 0 σ1I 0 0 ... 0
0 ... 0 0 0 σ2I ... 0
...

...
...

...
...

...
0 ... 0 0 0 0 ... σN I

 .

2Notice that the identity operators act on the corresponding Dirichlet traces.
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Now, we define the Dirichlet-to-Neumann operators JN : HD → HN , and Φ : H1
loc(Ω0) → HN

as

JN (v) := σN×4NM−1
N

(
− I2N×N v

XN I2N×N v

)
, and Φ(ϕe) := σN×4NMN

(
−γ0

ϕe

XN γ0
ϕe

)
. (11)

Theorem 2.4 (Lemma 4.3 in [11]). The operator JN : HD → HN is continuous and coercive.

Now we can finally rewrite3 Problem 2.1 as an abstract parabolic equation on Γj .

Problem 2.5. Given a final time T ∈ R+, ϕe ∈ C([0, T ], H1
loc (Ω0)) an external potential, and

the initial conditions vj(0) = v0 ∈ H
1
2 (Γj), Zj(0) = Z0

j ∈ H
1
2 (Γj), for j ∈ {1, ...,N}. We seek

v = (v1, . . . , vN )t, with vj ∈ C([0, T ], H
1
2 (Γj)), and Z = (Z1, . . . , ZN )t, Zj ∈ C([0, T ], H

1
2 (Γj)), for

j ∈ {1, ...,N}, such that

Cm∂tv = −Iep(v,Z)− JN (v)− Φ(ϕe) on [0, T ]× Γj , (12)

where Cm is a diagonal matrix diag(cm,1, . . . , cm,N ); the operators JN (v) and Φ(ϕe) are defined
in (11). The vector Iep(v,Z) = (Iep1 (v1, Z1), . . . , I

ep
N (vN , ZN ))t satisfy (3), (4) and (1).

3 Numerical Approximation

In this section we propose a numerical solution of Problem 2.5. We use a semi-implicit time stepping
scheme, similar to one used in [12, 11] (see Section 3.1). For the space discretization, we follow an
analogous approach in the two-dimensional case employed in [11], using spherical harmonics. Since
we do not work with complex valued functions, we employ real spherical harmonics to approximate
boundary unknowns.

3.1 Semi-implicit time stepping scheme

Let TS := {ts}Ss=0 denote the uniform partition of the time interval [0, T ], with T ∈ R+, and S ∈ N,
where the time step is τ = T/S, and ts = sτ . Write

ts+ 1
2
:= ts +

τ

2
, s ∈ {0, . . . , S − 1},

for the midstep between ts and ts+1. For a time dependent quantity ϕ(t), we write ϕ(s) = ϕ(ts),
and we define the following quantities:

ϕ(s+
1
2 ) := ϕ(ts+ 1

2
), ϕ

(s+ 1
2 ) :=

ϕ(s+1) + ϕ(s)

2
,

ϕ̂(s+
1
2 ) :=

3ϕ(s) − ϕ(s−1)

2
, ∂ϕ(s) :=

ϕ(s+1) − ϕ(s)

τ
.

3The MTF (9) is similar to one in [11] and [12]. Specifically, (9) is multiplied by two, and the first row does not
have a factor σj as in [12] and [11].
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With these, we approximate in time (2.5) and (4) as follows:

Cm∂v
(s) = −Iep

(
v̂(s+ 1

2 ), Ẑ(s+ 1
2 )
)
− JN

(
v(s+ 1

2 )
)
− Φ(ϕ

(s+ 1
2 )

e ),

∂
(s)
Zj = max

βj(v̂(s+ 1
2 )

j )− Ẑj

(s+ 1
2 )

τep,j
,
βj(v̂

(s+ 1
2 )

j )− Ẑj

(s+ 1
2 )

τres,j

 .

From these expressions, we can notice that

(i) At each iteration, the approximation at ts+1 requires two previous steps, ts and ts−1, but we
only have information about the time t0. Thus, we will estimate the values for the time t1
with a predictor-corrector algorithm introduced later in this Section.

(ii) Provided with values for the two previous time steps, unknowns for the next time are obtained

in terms of ∂v(s), v(s+ 1
2 ) and ∂

(s)
, which are linear. Nonlinear terms are evaluated with values

already known, i.e. they are explicit terms, unlike the others. For this reason, the time scheme
is called semi-implicit.

(iii) At each time step, the discrete problem to be solved is linear. One could choose time-domain
schemes with implicit non-linear parts. Consequently, more information about Iep may be
needed. In contrast, our semi-implicit time only requires us to evaluate the function Iep.

(iv) The method is not fully implicit, and the time step τ needs to be small enough for the scheme
to converge.

The predictor-corrector algorithm can be found in detail in [27, Chapter 13], [12, Algorithm 1].
Set w(0) = v(0) and Q(0) = Z(0). Then, proceed as follows:

(I) Predictor. First, construct predictions w(1) and Q(1) by solving:

Cm∂w
(0) = −Iep

(
w(0),Q(0)

)
− JN

(
w( 1

2 )
)
− Φ

(
ϕ
( 1
2 )

e

)
,

∂Q
(0)
j = max

(
βj(w

(0)
j )−Q

(0)
j

τep,j
,
βj(w

(0)
j )−Q

(0)
j

τres,j

)
∀j ∈ {1, ...,N}.

(II) Corrector. Then, correct w(1) and Q(1) to obtain final values for v(1) and Z(1) through:

Cm∂v
(0) = −Iep

(
ŵ( 1

2 ), Q̂( 1
2 )
)
− JN

(
v( 1

2 )
)
− Φ

(
ϕ
( 1
2 )

e

)
,

∂
(0)
Zj = max

βj(ŵ( 1
2 )

j )− Q̂j

( 1
2 )

τep,j
,
βj(ŵ

( 1
2 )

j )− Q̂j

( 1
2 )

τres,j

 ∀j ∈ {1, ...,N}.

From the corrector equations, v(1) and Z(1) are obtained implicitly. Finally, before going to the
spatial discretization, we recall the following result:
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Theorem 3.1. [12, Lemma 7]. Let ϕ ∈ C2([0, T ];L2(Γj)), j ∈ {1, . . . ,N} then it holds that∥∥∥ϕ(s+ 1
2 ) − ϕ(s+

1
2 )
∥∥∥
L2(Γj)

≤ τ2

4
max

t∈[ts,ts+1]

∥∥∂2t ϕ(t)∥∥L2(Γj)
,∥∥∥ϕ̂(s+ 1

2 ) − ϕ(s+
1
2 )
∥∥∥
L2(Γj)

≤ 5τ2

16
max

t∈[ts−1,ts+1]

∥∥∂2t ϕ(t)∥∥L2(Γj)
.

3.2 Spatial discretization

We now spatially discretize Problem 2.5. We start by introducing the real spherical harmonics
used as spatial basis for the Dirichlet and Neumann traces (15). Then, we proceed with the
BIOs discretization (see Theorem 3.3). Finally, the semi-explicit time method and the spatial
discretization are combined into a fully discrete scheme (see Problem (3.7)).

3.2.1 Spherical coordinates and spherical harmonics

A vector is written as r = (r, φ, θ)
t
, with r ∈ [0,∞), φ ∈ [0, 2π) and θ ∈ [0, π], which in Cartesian

coordinates is equivalent to r = r (sin θ cosφ, sin θ sinφ, cos θ)
t
. Spherical harmonics of degree l and

order m are defined using spherical coordinates as [29, Section 2], [7, Example 4.3.33]:

Yl,m (θ, φ) :=

√
(2− δm,0)

(2l + 1) (l −m)!

4π (l +m)!
Pm
l (cos θ) cosmφ, and (13a)

Yl,−m (θ, φ) :=

√
(2− δm,0)

(2l + 1) (l −m)!

4π (l +m)!
Pm
l (cos θ) sinmφ, (13b)

with l ∈ N0, m ∈ Z such that 0 ≤ m ≤ l. If m = 0, then δm,0 = 1, and it is zero otherwise. Pm
l are

the associated Legendre functions of degree l and order m defined as:

Pm
l (x) := (−1)m

(
1− x2

)m
2
dm

dxm
Pl(x), with Pl (x) :=

1

2ll!

dl

dxl
(x2 − 1)l.

Here, the term (−1)m is the Condon-Shortley phase factor. Spherical harmonics are dense in
C(S2), with S2 the surface of the unit sphere, and form a complete orthonormal system in L2(S2)
[8, Section 7.3 and 7.5].

Let be j ∈ {1, ...,N}. We define the reference system j as the one centered at pj with the same
orientation that the reference system centered in the origin. Furthermore, we denote by Yl,m,j the
spherical harmonic Yl,m centered in the origin of the reference system j. Thus, if (rj , φj , θj) are the
vector spherical coordinates of rj in the reference system j, we have that Yl,m,j (rj) = Yl,m (θj , φj).

For L ∈ N0 and j ∈ {1, ...,N}, we define subspaces

YL (Γj) := span {Yl,m,j : l ∈ N0,m ∈ Z, l ≤ L, |m| ≤ l} , (14)

equipped with the L2(Γj)−norm. Notice that the dimension of each subspace is (L + 1)2, and

that the sequence of subspaces {YL (Γj)}L∈N0
is dense in H

1
2 (Γj) and in H− 1

2 (Γj). The result
follows from the density of spherical harmonics in the spaces of continuous functions. This last
result justifies the discretization of all boundary Dirichlet and Neumann unknowns with spherical
harmonics. At a given time t, for j ∈ {1, ...,N}, we write uLD,0j , u

L
N,0j , u

L
D,j , u

L
N,j , v

L
j and ZL

j in
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YL(Γj) for the approximations of γ0jD u0, γ
0j
N u0, γ

j
Duj , γ

j
Nuj , vj and Zj , respectively. They can be

written as the following series expansions:

uLD,0j =

L∑
l=0

l∑
m=−l

ul,mD,0jYl,m,j , uLN,0j =

L∑
l=0

l∑
m=−l

ul,mN,0jYl,m,j , (15a)

uLD,j =

L∑
l=0

l∑
m=−l

ul,mD,jYl,m,j , uLN,j =

L∑
l=0

l∑
m=−l

ul,mN,jYl,m,j , (15b)

vLj =

L∑
l=0

l∑
m=−l

vl,mj Yl,m,j , ZL
j =

L∑
l=0

l∑
m=−l

Zl,m
j Yl,m,j (15c)

with ul,mD,0j , u
l,m
N,0j , u

l,m
D,j , u

l,m
N,j , v

l,m
j , and Zl,m

j being constants in the space but varying in time.
Notice that the norm in YL (Γj) of any of these functions is the square root of the sum of squared
coefficients times the radius of Γj , i.e.

∥∥vLj ∥∥2YL(Γj)
= Rj

L∑
l=0

l∑
m=−l

(vl,mj )2. (16)

Finally, let YL := ΠN
j=1YL(Γj), and define the following vectors in YL:

vL :=
(
vL1 , . . . , v

L
j , . . . , v

L
N
)t
, ZL :=

(
zL1 , . . . , Z

L
j , . . . , z

L
N
)t
, (17a)

uL
D,0 :=

(
uLD,01, . . . , u

L
D,0j , . . . , u

L
D,0N

)t
, uL

D :=
(
uLD,1, . . . , u

L
D,j , . . . , u

L
D,N

)t
, (17b)

uL
N,0 :=

(
uLN,01, . . . , u

L
N,0j , . . . , u

L
N,0N

)t
, uL

D :=
(
uLN,1, . . . , u

L
N,j , . . . , u

L
N,N

)t
. (17c)

The norm for a function in YL, for example, vL, is
∥∥vL

∥∥2
YL

=

N∑
j=1

||vLj ||2YL(Γj)
.

3.2.2 BIOs discretization

The fundamental solution can be expanded using spherical harmonics [7, Theorem 4.3.29, Lemma
4.4.1 and Remark 4.4.2] as the following result shows.

Theorem 3.2. Let r, r′ be vectors, whose spherical coordinates in the reference system j are
(rj , θj , φj) and

(
r′j , θ

′
j , φ

′
j

)
, respectively. For rj > r′j we have that

g (r, r′) =

∞∑
l=0

1

2l + 1

r
′l
j

rl+1
j

l∑
m=−l

Yl,m,j (r)Yl,m,j (r
′) . (18)

Moreover, the series (18) and its term by term first derivatives with respect to rj or r
′
j are absolutely

and uniformly convergent on compact subsets with rj > r′j [6, Section 2.3, p.23 and p.24].
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Theorem 3.3. The diagonal forms of the BIOs (5) are:

V 0
j,j (Yl,m,j) =

1

2l + 1
RjYl,m,j , Vj (Yl,m,j) =

1

2l + 1
RjYl,m,j ,

K0
j,j (Yl,m,j) =

1

2(2l + 1)
Yl,m,j , Kj (Yl,m,j) = − 1

2(2l + 1)
Yl,m,j ,

K∗0
j,j (Yl,m,j) =

1

2l + 1
Yl,m,j , K∗

j (Yl,m,j) = − 1

2(2l + 1)
Yl,m,j ,

W 0
j,j (Yl,m,j) =

l(l + 1)

2l + 1

1

Rj
Yl,m,j , Wj (Yl,m,j) =

l(l + 1)

2l + 1

1

Rj
Yl,m,j .

Proof. The result follows from Theorem 3.2, the orthonormality of spherical harmonics, and the
definitions of the BIOs presented in (5). Similar diagonal forms can also be found in [28, Section 3
and Table 2], where the result is stated for complex spherical harmonics on the unit sphere.

Corollary 3.4. The following holds

(
V 0
j,j (Yl,m,j) , Yp,q,j

)
L2(Γj)

= (Vj (Yl,m,j) , Yp,q,j)L2(Γj)
=

R3
j

2l + 1
δl,pδm,q,(

K0
j,j (Yl,m,j) , Yp,q,j

)
L2(Γj)

= − (Kj (Yl,m,j) , Yp,q,j)L2(Γj)
=

R2
j

2(2l + 1)
δl,pδm,q,

(
K∗0

j,j (Yl,m,j) , Yp,q,j
)
L2(Γj)

= −
(
K∗

j (Yl,m,j) , Yp,q,j
)
L2(Γj)

=
R2

j

2(2l + 1)
δl,pδm,q,(

W 0
j,j (Yl,m,j) , Yp,q,j

)
L2(Γj)

= (Wj (Yl,m,j) , Yp,q,j)L2(Γs)
=
l(l + 1)

2l + 1
Rjδl,pδm,q,

with δl,p, δm,q denoting the standard Kronecker deltas. Also, for the scalar identity operators pre-
sented in Section 2.3, it holds that (I (Yl,m,j) , Yp,q,j)L2(Γj)

= R2
jδl,pδm,q.

Cross-interaction operators, e.g. V 0
i,j for i ̸= j, are non-singular and generally non diagonalizable.

The double and single layer operators analytic expressions can be used to compute the non-singular
integrals for i ̸= j:(

V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

=

∫
Γi

SL0j(Yl,m,j)Yp,q,i dΓi, (19a)

(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=

∫
Γi

DL0j(Yl,m,j)Yp,q,i dΓi, (19b)

(
K∗0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=

∫
Γi

n̂0i · ∇SL0j(Yl,m,j)Yp,q,i dΓi, (19c)

(
W 0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

= −
∫
Γi

n̂0i · ∇DL0j(Yl,m,j)Yp,q,i dΓi. (19d)

Approximations of the integrals (19) are provided via Gauss-Legendre quadratures. Specifically,
along θ, we use the change of variable u = cos(θ). Then, variable functions are sampled at the
zeros of the Legendre Polynomial of degree Lc+1, whereas the trapezoidal rule is applied to equally
spaced nodes in φ, with 2Lc + 1 points. If the function being integrated has a spherical harmonic
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expansion with coefficients equal to zero for degrees higher than Lc, then the quadrature yields the
exact result, assuming that there are not other sources of error [29]. Moreover, quadrature in φ can
be computed using the Fast Fourier Transform.

Remark 3.5. One would expect Lc to be greater than p and l in (19). Yet, without further anal-
ysis, it is not known if a polynomial of degree Lc is a good approximation for SL0j(Yl,m,j)Yp,q,i,
DL0j(Yl,m,j)Yp,q,i, ∇SL0j(Yl,m,j) · n̂0i Yp,q,i and ∇SL0j(Yl,m,j) · n̂0i Yp,q,i, since, as the transla-
tion theorems for spherical harmonics highlight, the translation of only one spherical harmonic is
expressed as another infinite series of spherical harmonics. Also, notice that (19) can also be com-
puted using a translation theorem for real spherical harmonics as in [1]. In this case, the integral
has an explicit expression and does not need to be computed numerically. Instead, the computing
efforts focus on calculating the coefficients given by the translation theorem.

Corollary 3.6. The following holds(
V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

=
(
V 0
j,i (Yp,q,i) ;Yl,m,j

)
L2(Γj)

,(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

= − l

Rj

(
V 0
i,j (Yl,m,j) ;Yp,q,i

)
L2(Γi)

,(
K∗0

j,i (Yp,q,i) ;Yl,m,j

)
L2(Γj)

=
(
K0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

,(
W 0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

=
l

Rj

(
K∗0

i,j (Yl,m,j) ;Yp,q,i
)
L2(Γi)

.

Proof. The result follows from Theorem 3.2, the orthonormality of spherical harmonics along with
the definition of the BIOs.

From this last corollary, it can be deduced that the integrals of all the cross-interactions of a
couple of spheres i and j (19) can be derived having the results of the expression (19a) for all of the
l, m, p and q needed, which avoids the need of computing numerically the other integral expressions.

3.3 Fully discrete scheme.

Following Section 3.1, we state the semi-implicit in time and space numerical discretization of
Problem 2.5:

Problem 3.7. Let vL,(0) and ZL,(0) in YL be given. Then, for s ∈ {2, ..., S − 1}, we seek vL,(s),
ZL,(s) in YL solution of:(

Cm∂v
L,(s) + JN

(
vL,(s+ 1

2 )
)
+ Iep

(
v̂L,(s+ 1

2 ), ẐL,(s+ 1
2 )
)
+Φ

(
ϕ
(s+ 1

2 )
e

)
,y
)
YL

= 0 (20)

∂
(s)
ZL
j =max

βj(v̂L,(s+ 1
2 )

j )− Ẑj

L,(s+ 1
2 )

τep,j
,
βj(v̂

L,(s+ 1
2 )

j )− Ẑj

L,(s+ 1
2 )

τres,j

 , (21)

for all y ∈ YL. For s = 1 we use the equivalent weak formulation of the corrector-predictor algorithm
presented in 3.1.
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In order to solve Problem 3.7, at each time step, with the exception of the predictor-corrector
algorithm, we solve the weak linear system equivalent to

[
4A0,N −2X−1

N I2N×N
−2XN 4A1,N −XN I2N×N

σN×4N
1
τ Cm

]
u

L,(s+1/2)
D,0

u
L,(s+1/2)
N,0

u
L,(s+1/2)
D

u
L,(s+1/2)
N

vL,(s+1)

 =


−
(
2γ0

ϕ
L,(s+1

2
)

e

+I2N×NvL,(s)

)

XN

(
2γ0

ϕ
L,(s+1

2
)

e

+I2N×NvL,(s)

)
1
τ CmvL,(s)−Iep

(
v̂L,(s+1

2
),ẐL,(s+1

2
)
)

 , (22)

where the test function is in YL×YL×YL×YL×YL. Notice that we obtain mid-steps (s+1/2) for
traces of extra- and intracellular potentials, whereas only the transmembrane potential is obtained
at time steps s.

Remark 3.8. With the exception of the scalar operators inside of A0,N and Iep, which are com-
puted numerically, all other matrices are diagonalizable and analytic for the geometry here consid-
ered (Theorem 3.4). Thus, the discrete matrix used to solve at each time step is almost entirely
block diagonal. Note that if changing Iep without modifying the dynamics for the transmembrane
potentials, leads to a modified right-hand side in the linear system of equation (22).

4 Numerical Results

In this section, we verify and test the proposed computational scheme. To this end, we first check
the MTF implementation for single and multiple cells to then combine it with the semi-implicit time-
domain method. Next, we perform tests for linear and non-linear dynamics. Physical parameters
used thorough the Section are given in [21, Table 1] and [17, Table 1].

4.1 Hardware and Code Implementation

Numerical results were obtained in a machine with Quad Core Intel Core i7-4770 (-MT MCP-),
1498 MHz, 31982.1 MiB RAM (90% available for computations), with operating system Linux Mint
20.3 Una and Kernel: 5.4.0-131- generic x86 64. Simulation codes were programmed on Python
3.10. Its installation was via the open-source platform Anaconda4, Conda5 4.13.0, and using the
conda-forge repository.6 With the numpy library, we take advantage of vectorized computations.
Moreover, we only use direct solvers. The code is implemented sequentially with no compression.

4.2 Code validation

In order to validate our code, we check that computed solutions satisfy to fulfill discrete Calderón
identities at the boundaries as well as discrete jump conditions. Being approximations, these
properties do not hold exactly, thus we define the following errors:

• Discrete Calderón exterior and interior errors respectively:∥∥∥∥(2A0,N − I)

(
u

L,(s+1)
D,0

u
L,(s+1)
N,0

)∥∥∥∥
YL×YL

,

∥∥∥∥(2A1,N − I)

(
u

L,(s+1)
D

u
L,(s+1)
N

)∥∥∥∥
YL×YL

. (23)

4https://www.anaconda.com/products/distribution
5https://docs.conda.io/projects/conda/en/stable/
6The following packages were installed explicitly: pyshtools 4.10 [29], (conda install pyshtools=4.10), numpy

1.23.1, scipy 1.9.0, and matplotlib-base 3.5.2.
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• Jump error: ∥∥∥∥( u
L,(s+1)
D,0

u
L,(s+1)
N,0

)
−X−1

N

(
u

L,(s+1)
D

u
L,(s+1)
N

)
+ I2N×NvL + γ0jϕLe

∥∥∥∥
YL×YL

≈ 0. (24)

Here the norm ∥ · ∥YL×YL
is computed as∥∥∥∥( u

L,(s+1)
D

u
L,(s+1)
N

)∥∥∥∥2
YL×YL

=
∥∥∥uL,(s+1)

D

∥∥∥2
YL

+
∥∥∥uL,(s+1)

N

∥∥∥2
YL

.

In what follows, we will use the following notations:

• Relative error in L2(Γj):

re2(ϕ1, ϕ2)j :=
∥ϕ1 − ϕ2∥L2(Γj)

∥ϕ1∥L2(Γj)

. (25)

This error is computed for spherical harmonics expansions when possible (16) or using the
numerical quadrature presented at the end of Section 3.2.2.

• Relative error in C0
(
(0, T ), L2(Γ1)

)
:

re∞,2(ϕ1, ϕ2)j :=
maxts∈Ts ∥ϕ1(ts + τ/2)− ϕ2(ts + τ/2)∥L2(Γj)

maxts∈Ts ∥ϕ1(ts + τ/2)∥L2(Γj)

. (26)

• Relative error in L2
(
(0, T ), L2(Γ1)

)
:

re2,2(ϕ1, ϕ2)j :=
∥ϕ1 − ϕ2∥L2((0,T ),L2(Γ1))

∥ϕ1∥L2((0,T ),L2(Γ1))

. (27)

The approximation of the time integral is done by a composite trapezoidal rule using the
points of the computed time mid-steps.

4.2.1 MTF Validation

We verify first the MTF method without time evolution, by solving Problem 10 for four different
geometrical configurations and sources. In all four experiments, we set v = 0 and use the point
source function ϕe = 1/(4πσ0 ∥r− p0∥2) as the external applied potential.

• Example 1: One sphere centered at the origin with intracellular conductivity σ1 different
from σ0.

• Example 2: Three (aligned) spheres. The first and the third one have conductivity σ0
(phantom sphere), while the one in the middle has a different conductivity σ1.

The parameters used for validation for Examples 1 and 2 for a single sphere are presented in
Table 1, additional parameters for Example 2 are presented in Table 3. Discrete Calderón and jump
errors (23), (24) are presented in Table 2. In Example 1, the sphere has a different conductivity
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Table 1: Parameters used in Section 4.2.1 for Example 1 and 2 for the MTF validation. Conductivity
values are from [17, Table 1], cell radius from [21, Table 1].

Parameter Symbol Example 1 Unit
Intensity a 1 µA
Source position p0 (0, 0, 20) µm
Extracellular conductivity σ0 5 µS/µm
Intracellular conductivity σ1 0.455 µS/µm
Cell radius R1 10 µm
Maximum degree of spherical harmonics L 50

Table 2: Discrete Calderón errors and jump errors for Examples 1 and 2 from Section 4.2.1.

Error Example 1 Example 2
Discrete Calderón exterior 2.61 · 10−17 2.38 · 10−16

Discrete Calderón interior 2.61 · 10−17 2.31 · 10−16

Jump error 2.61 · 10−17 2.38 · 10−16

than the extracellular space, and an analytic solution can be obtained. In Figure 2 the relative
errors in L2(Γ1) (25) of the computed solutions for different L against the analytic solution are
presented. The image shows the expected exponential convergence with respect to the maximum
degree of the spectral basis L. Discrete Calderón and jump errors are given in Table 2. Example 2
involves three spheres, two of those having the same properties as the external medium, while the
one in the middle is different (see Figure 3). Therefore, the traces of the latter should be equal to
the ones computed without the first two, i.e. the same as in Example 1. The relative L2(Γ1) error of
the difference between the analytic solution for the four traces and the numerical one corresponding
to the sphere with different conductivity, is 6.06 · 10−15. In Figure 3, u500 is plotted where the only
sphere showing a response to ϕe is the sphere in the middle that has different properties compared
to the external medium. Discrete Calderón and jump errors are given in Table 2, with errors of
order 10−16.

4.2.2 Semi-implicit time approximation validation: linear case

To validate the proposed time discretization, we solve problem (20) for a linear current with only

one cell cm,1∂tv1 +
1

rm,1
vj = −σ1γ1Nu1 , where instead of Iep1 (v1, Z1) we use 1

rm,1
vj . Additionally,

we assume that ϕe can be factorized ϕe(t, r) = ϕtime(t)ϕspace(r). If ϕspace is expanded in spherical

harmonics, the coefficients for the equivalent expansion of v1, v
l,m
1 , can be obtained by solving

∂

∂t
vl,m1 + αl,m

1 vl,m1 = −βl,m
1 ϕtime(t), with

αl,m
1 :=

1

cmRm
+

σ0σ1l(l + 1)

cmR1(σ0(l + 1) + σ1l)
, βl,m

1 :=
σ0σ1l(bd,l,m(l + 1)− bn,l,mR1)

cmR1(σ0(l + 1) + σ1l)
,

where bd,l,m and bn,l,m are the coefficient of degree l and order m of the Dirichlet and Neumann
expansion of ϕspace on the cell membrane, respectively. Then, the spherical harmonic expansion
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Figure 2: Error convergence for traces in Example 1 (Section 4.2.1). The relative error L2(Γ1) (25)
is computed against the analytic solution with parameter values in Table 1.

Table 3: Parameters used for the MTF verification with ϕe = 1/(4πσ0 ∥r− p0∥2) in Example 2,
Section 4.2.1. Conductivities are given in [17, Table 1] and radii are in [21, Table 1].

Parameter Symbol Value Unit
Cell 1 intracellular conductivity σ1 0.455 µS/µm
Cell 2 and 3 intracellular conductivity σ2, σ3 5 µS/µm
Cell 1 radius R1 10 µm
Cell 2 radius R2 8 µm
Cell 3 radius R3 9 µm
Cell 1 center position p1 (0, 0, 0) µm
Cell 2 center position p2 (25, 0, 0) µm
Cell 3 center position p3 (-24, 0, 0) µm
Maximum degree of spherical harmonics L 50
Quadrature degree Lc 100

(a) Plane y = 0. (b) Plane z = 0.

Figure 3: Field u500 of Example 2, Section 4.2.1 with parameters from Table 3.
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Table 4: Parameters used for the time scheme validation in Section 4.2.2 where linear dynamics
are assumed. The external potential is ϕe = I(t)/(4πσ0 ∥r− p0∥2) and only one cell is considered.
Conductivity values are given in [17, Table 1], the cell radius and the specific membrane capacitance
are given in [21, Table 1], and the specific membrane resistance is from [12, Table 1].

Parameter Symbol Values Unit
Intensity I(t) e−t and 1 µA
Source position p0 (0, 0, 50) µm
Extracellular conductivity σ0 5 µS/µm
Intracellular conductivity σ1 0.455 µS/µm
Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2 (=F/m2)
Specific membrane resistance rm,1 1 · 105 MΩ(µm)2

Cell Radius R1 7 µm
Length time step τ 0.025 µs
Final time T 2.5 µs
Maximum degree of spherical harmonics L 25

coefficients of v1 are

vl,m1 (t) = −βl,m
1 e−αl,m

1 t

∫ t

0

ϕtime(s)e
αl,m

1 sds+ vl,m1 (0)e−αl,m
1 t.

We present simulation results for the two different time parts of ϕe, ϕtime−exp = e−t and ϕtime−cte =
1. We use a point source function for the spatial part of ϕe. Parameters are presented in Table
4. In Figure 4, the absolute error of the difference between v231 (τ = 0.025µs) and v1 in space is

presented for each mid-time step. We compute also τ2

4

∥∥∂2t v1∥∥L2(Γj)
to validate the first bound in

Theorem 3.1. For ϕtime−exp, the absolute error satisfies the first bound in Theorem 3.1 everywhere
except for the range between 0.4 µs and 0.7 µs, caused by a too large τ . For ϕtime−cte the bound
is fulfilled at all times.

Finally, Figure 5 presents the relative error in time and space for decreasing values of τ . We
compute the error using two norms: an approximation of the C0

(
(0, T ), L2(Γ1)

)
-norm taking the

maximum value at each mid-step computed (26), and an approximation of the L2
(
(0, T ), L2(Γ1)

)
-

norm, using a composite trapezoidal rule with the computed mid-steps (27). We observe that the
slope of the errors in the log-log plot is close to two, therefore the error decreases as τ2.

4.3 Numerical Results for a Single Cell with Nonlinear Dynamics

After having verified our numerical scheme for the linear dynamics, we now we study the nonlinear
dynamics for a single cell (Problem 2.5). Note that in [11, Theorem 6.14] error estimates are given
in 2D for the Hodgkin-Huxley model. The estimates depend on four terms: the first two are the
norms of the difference between initial conditions and approximated ones used in the computations;
the third is related to the spatial discretization, where a spectral basis in 2D is used, and this term
is proved to decay exponentially with the total number of functions in the spatial discretization
basis; the fourth one is related to the time approximation, and it decays as τ2. Here, we expect a
similar behavior. In other words, fixing the maximum degree of spherical harmonics L used in the
discretization and decreasing the length of the time step τ , we expect to see the error converging
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(a) ϕtime−ext(t) = e−t. (b) ϕtime−cte(t) = 1.

Figure 4: Absolute error in L2(Γ1) between v
25
1 (discrete approximation) and v1 (analytic solution),

as well as τ2

4

∥∥∂2t v1(ts)∥∥L2(Γj)
, plotted to verify the bound given by Theorem 3.1 for the time scheme

from Section 4.2.2 where linear dynamics are assumed. The time step τ is 0.025 µs and the rest of
the parameters used are in Table 4.

(a) ϕtime−exp(t) = e−t. (b) ϕtime−cte(t) = 1.

Figure 5: Error convergence for diminishing time steps τ for the time scheme in Section 4.2.2 where
linear dynamics are assumed. Slopes on the log-log plot show error converges as τ2. Relative errors
re∞,2(v1, v

25
1 )1 and re2,2(v1, v

25
1 )1 are given in (26) and (27), respectively. Simulation parameters

can be found in Table 4.
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Table 5: Parameters used for the simulation of a single cell with non-linear dynamics (2e) in Section
4.3.1 when studying the time convergence with fixed L. Parameters used are found in [17, Table 1].

Parameter Symbol Values Unit
Cell Radius R1 10 µm
Time part of ϕe ϕtime 1
Spatial part of ϕe ϕspatial 5 z · 10−2 V
Extracellular conductivity σ0 5 µS/µm
Intracellular conductivity σ1 0.455 µS/µm
Lipid surface conductivity SL,1 1.9 · 10−6 µS/(µm)2

Irreversible surface conductivity Sir,1 2.5 · 102 µS/(µm)2

Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2

Transmembrane potential threshold Vrev,1 1.5 V
Electropermeabilization switch speed kep,1 40 V−1

Characteristic time of electropermeabilization τep,1 1 µs
Characteristic resealing time τres,1 103 µs
Final time T 26 µs
Maximum degree of spherical harmonics L 1
Quadrature degree Lc 2

to a constant depending on L. Similarly, if we fix τ and increase L, we expect the error to converge
to a constant depending on τ .

4.3.1 Time convergence for a fixed L

We use the parameters presented in Table 5 to solve the non-linear discrete Problem 3.7, with
external applied potential ϕe = 5z · 10−2, and initial conditions equal to zero. Since we no longer
possess an analytic solution for comparison, we check for convergence as time steps become smaller.
We remark that L is fixed, and we use L = 1, along with Lc = 2.

Table 6 displays the error norms between two successively refined solutions for different time
steps. These results show a convergence rate of one as the time step decreases, and thus we do not
obtain the same as in [11]. This is due to the lesser regularity in time of the functions used in the
non-linear electropermeabilization model. In Figure 6, we plot the evolution of the transmembrane
potential v11 for three different values of τ . Though the solution shapes are similar, peaks appear
at different locations and coincide as the time step decreases. Specifically, between τ = 2.6 · 10−3µs
and τ = 2.6 · 10−4µs, there is a delay of less than 0.16 µs, while between τ = 2.6 · 10−4µs and
τ = 2.6 · 10−5µs the delay is less than 0.017 µs.

4.3.2 Spatial convergence with nonlinear dynamics

We now present numerical results for different maximum degrees of the spherical harmonics, L = 51
and L ∈ [1, 2, ..., 36], computed with Lc = 150. Given that we use a spectral discretization in space,
we expect an exponential decrease in the error when increasing the maximum degree L—recall that
the number of spatial discretization functions basis is (L+ 1)2)7. The external applied potential is
ϕe = 5z · 10−2 until t = 5 and equal to zero thereafter. Initial conditions are set to zero, and the
length of the time step used is τ ≈ 0.0024.

7The parameters used are provided in Table 7. Notice that extra- and intracellular conductivities have different
values from the previous simulations, and were changed to obtain a response of the impulse sooner.
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Table 6: Error convergence for the nonlinear problem with one cell from Section 4.3.1 for fixed L.
Computed norms are the difference between two successive solutions. Parameters used are in Table
5.

τi Value [µs] maxt∈[0,T ] ||v
1,τi+1
1 − v

1,τi
1 ||L2(Γ1)

maxt∈[0,T ] ||Z
1,τi+1
1 − Z

1,τi
1 ||L2(Γ1)

τ1 2.6 · 10−3 - -
τ2 2.6 · 10−4 8.8 4.64 · 10−3

τ3 2.6 · 10−5 0.9 3.02 · 10−4

τ4 2.6 · 10−6 0.097 3.59 · 10−5

τ5 2.6 · 10−7 0.0097 3.15 · 10−6

Figure 6: Evolution of v11 at the north pole of the cell (θ = 0) for different lengths of time step τ
illustrating the time convergence for fixed L, Section 4.3.1. The image at the right is zoomed near
to the maximum value of v11 . Parameters employed are given in Table 5.

23



Table 7: Parameters used in the numerical simulations in Sections 4.3.2 and 4.4, with the non-
linar dynamics of the electropermeabilization model. The specific choice of extra- and intracellular
conductivities, different from the previous simulations, allow us to obtain a response of the impulse
sooner in time. The rest of the parameters are from [17, Table 1]. The external applied potential
used is equal to zero after t = 5.

Parameter Symbol Values Unit
Cell Radius R1 10 µm
External applied potential ϕe 5 z · 10−2 V
Extracellular conductivity σ0 15 µS/µm
Intracellular conductivity σ1 1.5 µS/µm
Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2 (=F/m2)
Lipid surface conductivity SL,1 1.9 · 10−6 µS/(µm)2

Irreversible surface conductivity Sir,1 2.5 · 102 µS/(µm)2

Specific membrane capacitance cm,1 9.5 · 10−3 pF/(µm)2

Transmembrane potential threshold Vrev,1 1.5 V
Electropermeabilization switch speed kep,1 40 V−1

Characteristic time of electropermeabilization τep,1 1 µs
Characteristic resealing time τres,1 103 µs
Final time T 10 µs

We compute the relative errors between vL1 and v511 , and between ZL
1 and Z51

1 . The results are
shown in Figure 7. The plots are in a log-linear scale, and the errors tends to form a straight line
with the slope of order −10−2, which suggests an exponential rate of convergence. Recall, that β
(1) in our case is only continuous C0(R) due to the discontinuity of the derivative at the origin
worsening the rate of convergence. While the obtained Z1 is an even function in space, v1 is an
odd one. Thus, the nonlinear current, is an odd function in space. The external applied potential
is an odd function, so we expect that v1 has an odd component, while Z1 is defined by an ordinary
differential equation that takes v1 in to an even function. Finally, in Figure 8 we plot the evolution
in time of v171 , v241 , v351 , and v511 at the north pole. The differences between the results are more
noticeable after the peak of the potential and when the cell tries to stabilize it.

4.4 Results with multiple cells

In previous sections, the convergence of the numerical method was studied for a single cell. We
proceed now with the case of multiple cells to perform five experiments in the nonlinear case. The
examples presented highlight how the distance among cells affects the results as all cell conductivities
are set to the same value σ1.

• Example 3: Three cells aligned along the x-axis and far from each other, with distance
between cells 18R1.

• Example 4: Three cells aligned along the x-axis, near from each other, with distance between
cells R1/2.

• Example 5: Eight cells aligned in a cubic lattice, the nearest distance between two cells is
R1/2, the first sphere is at the origin.
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(a) Relative norms for vL1 . (b) Relative norms for ZL
1 .

Figure 7: Spatial convergence for the nonlinear dynamics of Section 4.3.2. Relative norms are
computed against an overkill of L = 51. On the left, results for vL1 , while on the right ZL

1 is
displayed with time step τ ≈ 0.0024 µs. The x−axis indicates the maximum degree used for
discretization. Convergence starts from L = 11. Plots are in log-linear scale and error tends to
form a straight line with slope of approximately −10−2, i.e. exponential convergence. Parameters
are given in Table 7.

(a) (b) Zoom at peak.

Figure 8: Evolution of the transmembrane potentials v171 , v241 , v351 and v511 at the north pole of the
cell (θ = 0) obtained in Section 4.3.2 where the spatial convergence for one cell in the nonlinear
case is studied. The time step used is τ ≈ 0.0024 µs, with parameters given in Table 7.
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Table 8: Center positions for Examples 3 and 4 from Section 4.4, where nonlinear dynamics are
simulated.

Center position Symbol Example 3 Example 4 Unit
Cell 1 p1 (0, 0, 0) (0, 0, 0) µm
Cell 2 p2 (200, 0, 0) (25, 0, 0) µm
Cell 3 p3 (-200, 0, 0) (-25, 0, 0) µm

Table 9: Positions of cells in Example 5 from Section 4.4, where nonlinear dynamics are simulated.

Center position Symbol Value in µm Center position Symbol Value in µm
Cell 1 p1 (0, 0, 0) Cell 5 p5 (0, 0, 25)
Cell 2 p2 (25, 0, 0) Cell 5 p6 (25, 0, 25)
Cell 3 p3 (0, 25, 0) Cell 7 p7 (0, 25, 25)
Cell 4 p4 (25, 25, 0) Cell 8 p8 (25, 25, 25)

Figure 9: Illustration of cells positions for Examples 3 and 4 in Section 4.4.
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Figure 10: Evolution of v35j and Z35
j at the north pole of each j cell (θ = 0), from Example 3 in

Section 4.4. The time step is τ ≈ 6.1 · 10−4. Parameters employed are found in Tables 7 and 8.

Cell radii and physical parameters used for Examples 3–5 are presented in Table 7. Extra- and
intracellular conductivity values were changed so as to obtain a response sooner. Cells centers in
Examples 3 and 4 are given in Table 8 and sketched in Figure 9, while those in Example 5 are
located at the corners of a cube of length 25 µm. (cf. Table 9). Throughout initial conditions are
set to zero. The external applied potential in Examples 3–5 is ϕe = 5z · 10−2 until t = 5 µs and
zero thereafter.

In what follows, we present results for a time step τ ≈ 6.1 · 10−4. The maximum degree of
spherical harmonics used for Examples 3 and 4 is L = 35, while for Example 5 L = 25. Quadrature
degree used in all examples is Lc = 100. Figures 10, 11 and 12 showcase the evolution of the
transmembrane potentials vLj and the variables ZL

j for each cell at their north pole.

In Example 3, ϕe = 5z · 10−2. The perceived excitation for the three cells is the same, and
since they are relatively far from each other, there is almost no interaction among them, and the
potentials v35j and Z35

j look similar, for all j (see Figure 8). In Example 4, we take the same
parameters as in Example 5, except for reducing the distance between cells, which is now R1/2.
Hence, the interaction between cells is stronger, and the shapes of the potentials v35j and Z35

j change
(see Figure 11). One should compare with the previous example in Figure 10). Due to the symmetry
and the form of the external ϕe = 5z · 10−2, cells 2 and 3 should have the same response at the
north pole. However, they are slightly different, hinting at further refinement. Finally, in Example
5 eight cells close to each other are simulated. In Figure 12, the corresponding transmembrane
voltage v25j and Z25

j at the north pole are presented. The cells with the centers in the plane z = 0
show similar response—see Table 9 for the center position of each cell—, while the cells with centers
in the plane z = 25 have similar response too while differing from cells beneath them. Figure 13
shows six snapshots of the transmembrane voltages for the eight cells. The transmembrane voltage
starts changing earlier on parts of the surface closest to the rest of the cells.

5 Conclusions and future work

We studied the electropermeabilization of disjoint cells following the nonlinear dynamics from [17]
and recast the volume boundary value problem via a MTF to obtain a parabolic system of boundary
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Figure 11: Evolution of v35j and Z35
j at the north pole of each j cell (θ = 0), from Example

4 from Section 4.4. Cells are near each other and the interaction among them influences the
transmbembrane potential v35j and Z35

j (cf. Example 5 in contrast). The only difference between

Examples 5 and 6 is the distance between successive cells. The time step is τ ≈ 6.1 · 10−4, and the
parameters employed are given in Tables 7 and 8.

Figure 12: Evolution of v25j and Z25
j at the north pole of each cell (θ = 0), from Example 5 from

Section 4.4. The first four cells are in the plane z = 0, while the others are in the plane z = 25.
The time step is τ ≈ 6.1 · 10−4µs. The rest of parameters employed are given in Tables 7 and 8.
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(a) t = 5.75 µs. (b) t = 6 µs.

(c) t = 6.5 µs. (d) t = 7 µs.

Figure 13: Transmembrane voltages v25j obtained in Example 9 of Section 4.4 at different times.

The length of the time step is τ ≈ 6.1 · 10−4. Parameters employed are given in Tables 7 and 8.
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integral equations on the cell membrane. This extends signficantly the numerical method presented
in [11]. Still, the semi-implicit time stepping scheme though stable requires relatively small time
steps. For simplicity, we assumed spherical cells but other shapes can be easily considered.

One can easily change the dynamics’ model as long as it only involves the nonlinear term and/or
variables that exclude the transmembrane potential. In this case, only the right-hand side of the
system to be solved (22) and the equations corresponding to the additional variables. Further
improvements to the numerical method to be implemented in the future are matrix compression
and parallelization techniques, along with an efficient solver for linear systems at each time step.
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