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Multi-Agent Team Access Monitoring: Environments that Benefit
from Target Information Sharing

Andrew Dudash1, Scott James2, and Ryan Rubel3

Abstract—Robotic access monitoring of multiple target areas
has applications including checkpoint enforcement, surveillance
and containment of fire and flood hazards. Monitoring access
for a single target region has been successfully modeled as a
minimum-cut problem. We generalize this model to support
multiple target areas using two approaches: iterating on indi-
vidual targets and examining the collections of targets holisti-
cally. Through simulation we measure the performance of each
approach on different scenarios.

I. INTRODUCTION

Consider the obstacle-filled environment in Figure 1a and
Figure 1b. Three non-contiguous target regions are surrounded
so that nothing can enter from the edge of the environment and
reach them without being detected by a robot. Attempting to
minimize the amount of robots required for each target region
individually requires three robots (Figure 1a), one for each
target. Conversely, by treating the target regions holistically,
the amount of agents required to survey an area can be reduced
to two (Figure 1b), the size of the common opening to the
targets. In some scenarios, the individual and holistic approach
result in identical solutions. (Figure 1c). In this paper, we will
examine the characteristics of scenarios that benefit from a
holistic approach versus an individualized approach and vice
versa.

We will address the following question: given an obstacle-
filled environment, how many robots n, with limited sensor
range, must be placed to protect m target regions from agents
entering from the edges of the environment?

The access monitoring problem has applications in multiple
areas. The counter-insurgent checkpoints described by Galula
are used to temporarily isolate insecure regions until they
can be combined with existing safe zones [1]. If this were
automated, an efficient solution to our access monitoring
problem could ease dynamic checkpoint changes. Otte built
a robotic swarm that assumes a formation when exposed to
environmental conditions [2] and suggests its use for handling
fires, floods, tornadoes, and earthquakes; one of the response
formations could be access monitoring. For surveillance, the
Leschi Town combined arms collective training facility [3]
was used to test the ability of drone swarms to isolate areas
containing items of interest. Once the individual areas are
secured, the drones could transition to monitoring all areas
collectively. If collective monitoring requires less robots, as

1Noblis Autonomous Systems Research Center Reston, Virginia
Andrew.Dudash@noblis.org

2Noblis Simulation and Visualization Research Center Reston, Virginia
Scott.James@noblis.org

3Noblis Autonomous Systems Research Center Reston, Virginia
Ryan.Rubel@noblis.org

(a) The individual approach
blocks access to target regions.

(b) The holistic approach ex-
ploits the environment, requiring
one less robot than the individual
approach.

(c) The individual and holistic
algorithms produce the same so-
lution.

Fig. 1: Sharing target region information can improve solution
quality for some environments.

our paper explores, the remaining robots could be freed for
other operations.

Gupta’s solution has already shown that a method that
exploits environment obstacles can reduce the number of
required robots.

In this paper, we will:
• Extend an existing access-monitoring technique to mon-

itor access to multiple non-contiguous target regions
(Section III-A).

• Prove the new holistic approach provides valid solutions
(Section III-B).

• Compare the holistic approach to the individual approach
in simulations for different scenarios. (Section IV).

II. RELATED WORK
Prior research suggests an efficient access-monitoring al-

gorithm must exploit environmental obstacles. This is similar
to how humans monitor access to a room: they only watch
entryways. A solution to the access monitoring problem,
presented by Gupta et al. in 2019 [4], is possible by modeling
the problem as a minimum-cut problem [5]. This method
is effective but was only implemented for single contiguous

ar
X

iv
:2

40
3.

19
37

5v
1 

 [
cs

.R
O

] 
 2

8 
M

ar
 2

02
4



2

target areas. We are interested in applications that include
multiple, non-contiguous target regions, for instance, multiple
fires to be contained or multiple buildings to be surveilled.

Prior work in robotic surveillance solves variations of the
art gallery problem: how to minimize the amount of robots
required to watch a region. Katsilieris et al. develop a solution
where robots with infinite sensor range secure and search an
obstacle-filled environment [6]. Similar to our work, Kazazakis
and Argyos use robots with limited range sensors, but instead
of pursuing, securing, or monitoring an area, the robots are
tasked to sweep an obstacle-filled environment [7]. Isler et al.
recognize a class of environments where a single pursuer with
a random search strategy will always locate an invader, even
if the invader is arbitrarily fast and knows the position of the
pursuer [8]. Kolling and Carpin model multi-robot surveillance
as a graph problem, introducing the terms contaminate and
clear to describe the multi-robot securing process. Our contri-
bution is closely based on an existing solution to the isolation
region surveillance problem and the minimum robot isolation
region surveillance problem introduced by Gupta et al. [4].
All related work described includes simulated experiments that
demonstrate the viability of one or more approaches, measure
the performance of one or more approaches, or both.

Prior research in distributed robotics uses a variety of
network models. In some models, communication is syn-
chronous; latency is bounded. In others, communication is
asynchronous: latency is unbounded [9]. Optimizers are easier
to write for synchronous networks, because all information
stored in the network is guaranteed to be available, but
these networks are too fragile to handle network partitions
[10], latency [11], or the failure of individual robots. Mar-
colino and Chaimowicz built a successful swarm avoidance
algorithm, but assume peer-to-peer messages with bounded
latency—no explicit time-out logic is included—and they
limit their physical experiments to a laboratory environment
[12]. Otte’s distributed neural network converges, but the
proof explicitly requires bounded delays [2]. In contrast,
Jones’ foraging swarms are explicitly asynchronous and are
designed to continue working, at reduced performance, when
no network information is available [13]. A system capable
of opportunistic cooperation, exploiting available information
without relying on bounded latency, like Jones’ foragers,
is ideal. This opportunistic cooperation is difficult enough
that we do not attempt to incorporate it within this paper.
However, similar to how Bajcsy et al. [14] suggest adapting
their synchronous centralized system to use the asynchronous
decentralized Drona system, provided by Desai, Saha, Yang
et al. [15], our access monitoring work could also be made
asynchronous.

III. METHODOLOGY
We compare the results of our holistic and iterative algo-

rithms on simulated environments within a discretized grid.
Each square of an environment can be free, a target region,
or blocked by an obstacle. Each robot can block a single free
square.

Our simulator presents our map as an occupancy grid.
Similar to other work in robotic surveillance, we also represent

our environment as a graph where vertices correspond to areas
and edges correspond to directly traversable paths between
them [16], [6]. We simulate our approaches on random envi-
ronments, similar to other studies in distributed robotics [4],
[8].

Our simulation can correspond to several physical systems.
In the first system, described by Gupta [4], unmanned aerial
vehicles aim cameras down at a 2D space. Other interpreta-
tions could include terrestrial robots in an office environment
with limited reaction time or sensor range [7]. Beyond surveil-
lance, robots could cordon off an area and alert humans in their
range, blocking access to a flood zone.

A. Algorithm Description

There are two methods we use to calculate where to position
access monitoring robots: an individual solution and a holistic
solution. The individual method finds a solution for each
target area individually. The total solution is the union of
all individual solutions. The holistic method finds a solution
for all target areas simultaneously. The individual approach
extends the existing access-monitoring solution[4] without
information sharing.

The individual approach takes Gupta’s existing algorithm
and applies it to each target region individually. Sink points
correspond to target regions. For each target region, a planar
graph is created that corresponds to the access-monitoring
problem for that single region. One of the advantages of
the individual approach is that it is easily parallelizable. We
account for this advantage when we compare calculation times
in Section V.

Listing 1: Individual Algorithm
positions = set()
for target in targets:
new_positions = minimum_cut(source, target)
positions = union(positions, new_positions)

return positions

The holistic approach considers all targets simultaneously.
A single possibly non-planar graph is created that corresponds
to the holistic access-monitoring problem. The graph may be
non-planar because non-contiguous target regions are joined
together. Figure 2 shows the target regions are adjacent to a
common target region node.

For multiple non-contiguous targets, the graph generated
by the holistic approach is almost always non-planar. If, for
example, there is only one target, then the graph will be planar,
but the problem is a single target problem. If all targets form
a contiguous region, then the graph will be planar, but the
problem is now a continguous target problem. It is, however,
possible to construct a multiple non-contiguous target problem
where the holistic approach generates a planar graph.

Listing 2: Holistic Algorithm
add_node(sink)
for target in targets:
for neighbor in neighbors(target):
add_edge(neighbor, sink)
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(a) (b)

Fig. 2: Each node in 2a corresponds to a discretized space of
2b. All border regions are contracted to a common node. This
is the holistic approach and the graph is non-planar; the three
target nodes are all adjacent to one common target node.

remove_edge(neighbor, target)
positions = min_cut(source, sink)
return positions

Both approaches use the same minimum-cut algorithm, a
preflow-push algorithm[17], to place robots. In contrast to
Gupta, we use a minimum-node cut rather than a minimum-
edge cut; to partition our graphs, we remove nodes instead of
edges. Once a traversability graph is defined, the preflow-push
algorithm finds a minimum-cut partitioning the target regions
from the border region. The cut nodes correspond to the robot
positions; all paths from the border region to a target region
must pass through a robot position.

The main difference between the two approaches is
how they combine information. In the holistic approach,
information is combined early; all target areas are joined at the
beginning; there is one traversability graph. In the individual
approach, information is combined late; robot positions are
combined after they consider each individual target; there is a
different traversability graph for each target.

The collection of robot positions is a set so the same grid
cell is never watched by more than one robot. Robots are not
double counted for either approach.

B. Algorithm Analysis

The holistic algorithm may provide better solutions, but it
only works if partitioning the combined target regions and
source has the same effect as partitioning each target region
from the source individually. We prove this below.

For our analysis, we reuse the nomenclature of Gupta [4],
summarized in Table I, with an alteration: we have multiple
areas of interest and each target region is a single node.

TABLE I: The different variables in our model.

Symbol Meaning
Xobs The regions blocked by obstacles.
Xi

int Target region of interest i.
Xfree The free region.
δX The border region.
Bi The regions surveilled by machines.
δXiso The combined region of all blocked and surveilled regions.

Theorem 1. Let there be a graph dual G of the given
environment. Let there be n target regions Xi

int and let δX be
the border region subgraph. Let there be an extra node S that
all Xi

int are adjacent to. Let there be a partition separating
δX from Xint. If the partition separates δX from Xint, it will
still separate δX from Xint with S cut out.

Proof. 1) Suppose that the graph G is cut to partition the
Xint and δX nodes, then the graph has been split into
two graphs: A, containing Xint, and B, containing δX;
A and B are disconnected.

2) Disconnection is monotone; it applies to every subgraph.
If A is disconnected from B, then all subgraphs of A
are disconnected from all subgraphs of B.

3) Therefore, no Xi
int, a subgraph of A, is connected to

any subgraph of B, including δX .
4) Removing a node or edges cannot introduce a new path.
With or without the S node, there is no path from δX to

any Xi
int. If the partition separates δX from Xint, it will still

separate δX from Xint with S cut out.

C. Simulator Design

We will simulate random environments and measure which
environments are preferred by the two approaches.

Rather than use continuous space, like in [4], we restrict
our simulation to a discrete grid. The width of a grid space is
the range—sensor, alarm distance, block range—of a robot.

Our model could be extended to continuous space, but based
on prior results, this seems unnecessary. Gupta tested an access
monitoring approach on continuous space and used two dif-
ferent ways to discretize continuous space, a predefined lattice
and Delaunay triangulation. Despite a gap in performance
between the two methods, they followed each other closely[4].
For this reason, we doubt that a mapping to continuous space
would impact our experiments and instead use a discrete grid.

We will experiment with two types of environments: an open
environment with random obstacles and a closed environment
where a grid of intersections are randomly blocked. The
open environment might correspond to an outdoor area dotted
with large irregular obstacles. The closed environment might
correspond to an urban environment with regular obstacles,
like roads in a dense city.

In the simulation, we aim to protect the target areas of
interest. We assume any unobstructed border can be a source of
contaminants. In both experiments, a graph of the traversable
areas is generated [17] to represent the minimum robot iso-
lation problem. The program builds a random environment.
The program is configured by environment size, obstacle
count, target region count, and random number generator seed.
After environment obstacles are generated, target regions are
randomly placed in unobstructed areas. For each environment,
the problem is solved using both approaches: holistic and
individual. The parameters of each test, including a seed value,
are saved with the results.

In the open environment, the map is initially empty, then
random obstacles are generated. In the closed environment,
the map is initially set to a grid, then random intersections are
blocked.
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The output of the simulation includes the calculation time
for the solution and the list of positions to place robots.

Note that the obstacles in closed environments are smaller
than the obstacles generated in open environments. For this
reason, our experiments with closed environments, in Section
IV, use a higher obstacle count.

IV. EXPERIMENTS

We design five simulator experiments. In the first exper-
iment, we compare our solutions on a single hand-picked
environment. In the second experiment, we generate open
environments and vary the number of random obstacles. In
the third experiment, we generate closed environments and
vary the number of randomly blocked intersections. In the
fourth experiment, we generate open environments and vary
the number of target areas. In the fifth experiment, we generate
a closed environment and vary the size of the environment.

Experiment 1 - Pathologic

Our environment corresponds to Figure 1, generated by our
simulator.

Experiment 2 - Open-Environment Obstacle Sweep

In the second experiment, the performance of the two
methods on an open environment with varying obstacles is
determined. We create 1000 random environments for 16
different obstacle counts: 10 to 235 by increments of 15. This
range of obstacle counts goes from a near empty map, similar
to an open or empty parking lot, to a near completely filled
map, similar to a cave system or debris covered area. Each
environment has a height and width of 100 units. For each
environment, there is a random number of targets between
15-20. The targets are randomly placed. There are 16000
environments in total. Both approaches are run on every
environment.

Experiment 3 - Closed-Environment Obstacle Sweep

In the third experiment, the performance of the two methods
on a closed environment with varying obstacles is determined.
We create 1000 random environments for 31 different obstacle
counts: 10 to 1510 by increments of 50. This range of obstacle
counts goes from a near empty map, similar to an open city
grid, to a near completely filled map, similar to a city with
closed or obstructed streets. Each environment has a height
and width of 100 units. For each environment, there is a
random number of targets between 15-20. The targets are
randomly placed. There are 31000 environments in total. Both
approaches are run on every environment.

The obstacle count is higher in Experiment 3 than Experi-
ment 2 because the obstacles in Experiment 3 are smaller than
the obstacles in Experiment 2.

Experiment 4 - Open-Environment Target Area Count Sweep

In the fourth experiment, we measure how the performance
of the holistic method changes as the number of target areas
varies. We create 100 random environment for 12 different
target area counts: 1 to 551 by increments of 50. The targets
are randomly placed. Each environment has a height and width
of 100 units. For each environment, there are 100 obstacles—
an obstacle count that the holistic method was discovered, in
Experiment 3, to work well on. There are 1200 environments
in total. Both approaches are run on every environment.

Experiment 5 - Closed-Environment Environment Size Sweep

In the fifth experiment, we measure how the performance
of the holistic method changes as the size of environments
varies. We create 1000 random environments for 9 different
environment widths: 50 to 370 by increments of 40. The
environments are square; the width and height are the same.
For each environment, there is a random number of targets
between 15-20. The targets are randomly placed. The block
count is 950 intersections. There are 9000 environments in
total. Both approaches are run on every environment.

V. RESULTS

To compare the performance of different access monitoring
approaches, we generate solutions with each method and
record the amount of robots required and time taken to
calculate the solutions.

Experiment 1 Results - Pathologic

The individual solution and our solution, as expected, gener-
ate solutions that correspond to Figure 1. The holistic solution
protects all target regions but requires one less robot than the
individual solution.

Experiment 2 Results - Open-Environment Obstacle Sweep

In Experiment 2, for each algorithm we compare the calcu-
lation time and number of robots required against the number
of obstacles generated. We include sample environments of
our sweep in Figure 3.

In Figure 4, we plot the median and percentiles of per-
formance. For all trials in Experiment 2, the holistic method
performs as good as or better than the individual method with
regards to the number of machines required.

We measured performance as obstacle density increased.
When there are few obstacles, the two methods perform
similarly. Because the environments are almost completely
empty, there are no environment obstacles for the holistic
approach to exploit. As the number of obstacles increases,
the holistic method shows significant improvement over the
iterative approach. This effect weakens as the amount of obsta-
cles increases and the performance of the two methods slowly
converges. We attribute the convergence to overcrowding. As
the map fills up, obstacles isolate robots from each other
and the holistic method’s information sharing becomes less
useful. We label these three sections in Figure 4. The holistic
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Fig. 3: Experiment 2 compared the performance of the indi-
vidual and holistic approach on open environments with varied
obstacle counts.

Fig. 4: For all open environments tested, the holistic approach
allocates fewer robots than the individual approach. Medium
density environments show the greatest improvement.

Fig. 5: In open environments with high obstacle count, the
holistic approach shows a computational advantage compared
to the parallelized, individual approach. Conversely, the it-
erative approach shows a computational advantage for low
obstacle count.

algorithm shows greatest improvement when the environment
has a medium obstacle density.

For all obstacle densities, including the holistic method’s
preferred medium obstacle density, there are environments
where the holistic and individual solutions require the same
number of machines. In Figure 4, we plot the median and
percentile, rather than the mean and standard deviation, to
better show the outliers; the performance of the holistic
method is sensitive to the specific environment.

In open environments, the holistic method calculates an
order of magnitude faster than the individual method, because
the individual method must run the preflow-push algorithm
once for each target region. However, this does not consider
the ability of the individual method to be parallelized: all runs
of the preflow-push algorithm can be run at the same time. To
estimate the speed of the parallelized iterative algorithm, we
divide the individual method calculation time by the number
of target regions.

We compare the calculation time of the different approaches
in Figure 5. The holistic method calculates slowest when
the map is sparse. As the obstacle count increases, however,
the holistic method eventually outperforms the parallelized
individual method.

Experiment 3 Results - Closed-Environment Obstacle Sweep

We contrast the performance of the two approaches on
closed environments. We plot our results as two graphs. In
the first graph, Figure 7, we plot the difference in robot counts
between the two approaches. In the second graph, Figure 8,
we compare the calculation time of each approach. Figure 6
shows sample environments from the experiment.

Similar to the results of Experiment 2, the holistic algorithm
performs better when the environment is slightly crowded, but
not when the environment is sparse or extremely crowded. This
can be seen in Figure 7.
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Fig. 6: Experiment 3 compared the performance of the individ-
ual and holistic approach on closed environments with varied
obstacle counts.

Fig. 7: For all closed environments tested, the holistic approach
allocates fewer robots than the individual approach. Medium
density environments show the greatest improvement.

Fig. 8: In closed environments with high obstacle count, the
holistic approach shows a computational advantage compared
to the parallelized, individual approach. Conversely, the it-
erative approach shows a computational advantage for low
obstacle count.

The relation between machine count and obstacle density in
Experiment 3 is more pronounced than in Experiment 2. We
suspect this is because the obstacles in open environments,
Experiment 2, can overlap, but the obstacles in closed envi-
ronments, Experiment 3, never overlap. Each obstacle added to
an open environment is increasingly likely to block space that
an existing obstacle already blocked. In contrast, the amount
of obstacles in Experiment 3 is proportional to the amount of
space blocked.

The calculation time results are similar to the results of
Experiment 2. When the environment is sparse, the parallelized
individual approach is faster; when the environment is dense,
the holistic approach outperforms the individual approach. See
Figure 8.

Experiment 4 - Open-Environment Target Area Count Sweep

We contrast the performance of two approaches on a
moderately crowded environment, 100 obstacles, as the target
area count changes. The results in Figure 9 show that the
holistic method saves more machines as the number of target
areas increases. As an environment fills with randomly placed
machines, surrounding the entirety of the space becomes
more efficient. The individual samples, shown in Figure 10,
demonstrate this effect.

The figure shows a direct improvement, but we doubt that
the performance can increase without bound. We anticipate a
saturation point where either method, holistic or iterative, must
block the border of the environment to monitor all machines.
However, in our current results the holistic method performs
better as the number of target areas increases.

Experiment 5 - Closed-Environment Environment Size Sweep

We contrast the performance of two approaches on a grid
environment with varying size. The results in Figure 11
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Fig. 9: As the target count increases, the holistic algorithm
performs better.

Fig. 10: As the number of targets increases, the robot place-
ments suggested by the holistic approach begin to outline the
border of the environment.

Fig. 11: As the environment size increases, the holistic algo-
rithm struggles to exploit the environment.

show that the holistic method saves more machines while
the environment is small, but rapidly loses its effectiveness
as the environment size increases. With a fixed obstacle and
target area count but larger environment size, the environment
becomes very sparse. This is similar to an environment with
a low obstacle count. The holistic algorithm shows little
improvement as the environment size increases.

VI. CONCLUSION

We studied if and when monitoring access to a group of
target areas can be more efficient than monitoring access to
each target area individually. We examined environments with
irregularly located obstacles and environments where obstacles
were arranged in a regular grid.

Our results revealed that in medium density environments,
robots can monitor access to a group of target areas more
efficiently than monitoring access to each target area individ-
ually. The holistic approach showed fewer improvements in
sparse environments and in environments with a high density
of obstacles. In addition, increasing the size of the environment
decreased the effectiveness of the holistic approach but in-
creasing the number of target areas increased the effectiveness.
Finally, we proved that the holistic algorithm provides valid
solutions.

A more thorough study of different environment types,
based on the properties of the corresponding traversability
graph, could reveal when environments benefit from informa-
tion sharing.
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